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Abstract. The Canadian Land Surface Scheme Including
Biogeochemical Cycles (CLASSIC) is an open-source com-
munity model designed to address research questions that
explore the role of the land surface in the global climate
system. Here, we evaluate how well CLASSIC reproduces
the energy, water, and carbon cycle when forced with quasi-
observed meteorological data. Model skill scores summarize
how well model output agrees with observation-based refer-
ence data across multiple statistical metrics. A lack of agree-
ment may be due to deficiencies in the model, its forcing
data, and/or reference data. To address uncertainties in the
forcing, we evaluate an ensemble of CLASSIC runs that is
based on three meteorological data sets. To account for ob-
servational uncertainty, we compute benchmark skill scores
that quantify the level of agreement among independent ref-
erence data sets. The benchmark scores demonstrate what
score values a model may realistically achieve given the un-
certainties in the observations. Our results show that uncer-
tainties associated with the forcing and observations are con-
siderably large. For instance, for 10 out of 19 variables as-
sessed in this study, the sign of the bias changes depend-
ing on what forcing and reference data are used. Benchmark
scores are much lower than expected, implying large obser-
vational uncertainties. Model and benchmark score values
are mostly similar, indicating that CLASSIC performs well
when considering observational uncertainty. Future model
development should address (i) a positive albedo bias and

resulting shortwave radiation bias in parts of the Northern
Hemisphere (NH) extratropics and Tibetan Plateau, (ii) an
out-of-phase seasonal gross primary productivity cycle in
the humid tropics of South America and Africa, (iii) a lack-
ing spatial correlation of annual mean net ecosystem ex-
change with site-level measurements, (iv) an underestimation
of fractional area burned and corresponding emissions in the
boreal forests, (v) a negative soil organic carbon bias in high
latitudes, and (vi) a time lag in seasonal leaf area index max-
ima in parts of the NH extratropics. Our results will serve as
a baseline for guiding and monitoring future CLASSIC de-
velopment.

Copyright statement. The works published in this journal are
distributed under the Creative Commons Attribution 4.0 License.
This licence does not affect the Crown copyright work, which is
reusable under the Open Government Licence (OGL). The Creative
Commons Attribution 4.0 License and the OGL are interoperable
and do not conflict with, reduce or limit each other.

©Crown copyright 2021

Published by Copernicus Publications on behalf of the European Geosciences Union.



2372

1 Introduction

The land surface interacts with the atmosphere through fluxes
of momentum, radiation, heat, and mass, the latter includ-
ing water, trace gases, and aerosols. Land surface models
(LSMs) have been developed to simulate these fluxes in
global climate models. Early LSMs consisted of simple aero-
dynamic bulk transfer formulas with prescribed surface pa-
rameters that are uniform across continents (Manabe, 1969;
Manabe and Bryan, 1969). Major advancements in LSM de-
velopment have occurred since then, including the incorpo-
ration of (i) vegetation effects on the surface energy balance
(Dickinson, 1984), (ii) vegetation phenology (Sellers et al.,
1996), (iii) ecological processes (Foley et al., 1996), and
(iv) nutrient cycles (Goll et al., 2012).

The Canadian Land Surface Scheme Including Biogeo-
chemical Cycles (CLASSIC; v1.0; Melton et al., 2020) is
a state-of-the-art land surface model primarily developed
by Environment and Climate Change Canada. CLASSIC is
the open-source community model successor to the CLASS-
CTEM modeling framework, which consists of the Canadian
Land Surface Scheme (CLASS) and the Canadian Terres-
trial Ecosystem Model (CTEM). CLASS and CTEM simu-
late physical and biogeochemical land surface processes, re-
spectively, and together they form the land component of the
Canadian Earth System Model (Swart et al., 2019).

Assessing model performance provides invaluable guid-
ance for future model development. Strategies for LSM
evaluation have been developed in a number of collab-
orative research projects, such as the Project for Inter-
comparison of Land Surface Parameterization Schemes
(PILPS) (Henderson-Sellers et al., 1993), the Global Land-
Atmosphere Coupling Experiment (GLACE) (Koster et al.,
2006), the Protocol for the Analysis of Land Surface Mod-
els (PALS), the Land Surface Model Benchmarking Evalua-
tion Project (PLUMBER) (Best et al., 2015), and the Inter-
national Land Model Benchmarking (ILAMB) project (Col-
lier et al., 2018). The ILAMB approach summarizes model
performance across multiple statistical metrics using a di-
mensionless skill score that ranges from zero to unity, where
higher values imply better performance (see Sect. 2 for de-
tails).

The ILAMB framework has been adopted by the Global
Carbon Project to evaluate the performance of LSMs used
for estimating global carbon budgets (Friedlingstein et al.,
2019). The project assessed 15 LSMs with respect to
gross primary productivity (GPP), ecosystem respiration, net
ecosystem exchange (NEE), biomass, soil carbon, leaf area
index (LAI), evapotranspiration, and runoff. For CLASS-
CTEM, which was one of the 15 models, performance was
considerably weaker for LAI and NEE than for other vari-
ables. While a low LAI score was also found for most other
LSMs, the NEE score was below the multi-model mean
value. The variables for which CLASS-CTEM performed
best and worst with respect to the multi-model mean were
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GPP and biomass, respectively. However, skill scores must
be interpreted with caution. For instance, low score values
may actually reflect uncertainties in model inputs and/or ref-
erence data rather than deficiencies in the model. A robust
analysis should therefore account for uncertainties associated
with the forcing and reference data.

Lawrence et al. (2019) applied ILAMB to quantify how
model development affected model performance for the
Community Land Model (CLM). While the authors found a
general improvement from CLM version 4 to version 5, they
also identified variables where model performance would im-
prove or worsen, depending on the choice of reference data.
A second source of uncertainty identified by the authors was
related to the choice of meteorological forcing. Driving CLM
with three different data sets (GSWP3, CRUNCEPv7, and
WATCH/WFDEI) showed that model performance was gen-
erally better when forcing CLM with the Global Soil Wetness
Project forcing data set (GSWP3), and that the uncertainty
associated with the forcing is too large to be neglected (Bo-
nan et al., 2019).

A first evaluation of CLASSIC has been presented by
Melton et al. (2020), who ran the model for 31 FLUXNET
sites using locally observed meteorological data and vege-
tation composition. Model outputs were compared against
observed net surface radiation (RNS), latent heat flux
(HFLS), sensible heat flux (HFSS), GPP, ecosystem respi-
ration (RECO), and NEE. Results showed that CLASSIC re-
produced the RNS, HFLS, HFSS, GPP, and RECO observa-
tions reasonably well. Reproducing NEE fluxes proved to be
more challenging. While for some sites modeled NEE fluxes
were in good agreement with measurements (e.g. site FI-
Hyy; Figs. S22 and S23 in Melton et al., 2020), for most
sites NEE differed considerably from observations. Assess-
ing the annual mean NEE value for each station showed that
modeled and observed annual mean values were not corre-
lated across stations. The poor model performance for NEE
may be related to the fact that the model does not account
for the disturbance history nor the climate history of a given
site. A comparison between results presented in the present
study and Melton et al. (2020) is provided in the Discussion
section.

This present paper provides a comprehensive assessment
of model performance on a global scale. Our assessment is
based on ILAMB’s statistical framework, which we imple-
mented in a new R package referred to as the Automated
Model Benchmarking R package (AMBER) (Seiler, 2020).
The development of AMBER allowed us to tailor the [LAMB
approach to CLASSIC model output. The resulting benefits
include (i) a seamless data ingestion that does not require
any pre-processing, (ii) the ability to evaluate CLASSIC in
different simulation modes (i.e. global runs on a regular grid,
regional runs on a rotated grid, and site-level runs), (iii) full
control on how the statistical framework is implemented, and
(iv) the addition of new functionalities. Our analysis pays
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special attention to how model performance is affected by
uncertainties in the forcing and reference data.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the forcing data, reference data, model
structure, and benchmarking approach. Section 3 assesses
model performance for an ensemble of three model runs that
differ in their meteorological forcing. For most variables,
each ensemble member is compared against more than one
observation-based reference data set. For each variable, we
assess global, zonal, and seasonal biases, as well as root-
mean-square errors, time lags in seasonal peaks, interannual
variability, spatial patterns, and corresponding skill scores.
Furthermore, we compare model skill scores against bench-
mark scores, which are based on reference data only, to as-
sess the extent to which score values are affected by obser-
vational uncertainty. Section 4 elaborates on our principal
findings, with a particular focus on LAI and NEE, and the
importance of in situ measurements.

2 Methods

2.1 Canadian Land Surface Scheme Including
Biogeochemical Cycles (CLASSIC)

CLASSIC is the open-source community model successor to
the CLASS-CTEM modeling framework, which consists of
the Canadian Land Surface Scheme (CLASS) and the Cana-
dian Terrestrial Ecosystem Model (CTEM). CLASS and
CTEM are two fully integrated model components that simu-
late physical and biogeochemical land surface processes, re-
spectively. A brief outline of these two components is pro-
vided next.

CLASSIC’s physical component (CLASS) divides the
land surface into four possible subareas, namely bare ground,
ground covered by snow, ground covered by canopy, and
snow covered by canopy. The model solves the energy bal-
ance for the canopy layer and underlying ground, separately.
The canopy consists of a single layer and is for the re-
sults presented here composed of four plant functional types
(PFTs), namely needleleaf trees, broadleaf trees, grasses, and
crops. The model output evaluated here is from the offline
mode in which we use 20 soil layers ranging from 10 lay-
ers of 0.1 m thickness, gradually increasing to a 30 m thick
layer for a total ground depth of over 61 m. Water fluxes
are calculated for soil layers within the permeable soil depth
of the ground column but not the underlying bedrock lay-
ers, whereas temperatures are calculated for both soil and
bedrock layers. Also calculated are the temperature, mass,
albedo, and density of the single-layer snowpack, the tem-
perature and interception and storage of rain and snow on the
vegetation canopy, and the temperature and depth of ponded
water on the ground surface.

CLASSIC’s biogeochemical component (CTEM) is a dy-
namic vegetation model coupled to CLASS. CLASS pro-
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vides CTEM physical land surface information, including
soil moisture, soil temperature and net radiation. CTEM uses
this information to simulate photosynthesis in response to at-
mospheric CO; concentration. CTEM considers three live
vegetation components (leaves, stem, and roots) and two
dead carbon pools (litter and soil). These five carbon pools
are tracked, in the default CLASSIC configuration used here,
for nine PFTs that map directly onto the four PFTs used by
CLASS. Needleleaf trees are divided into their deciduous
and evergreen types, broadleaf trees are divided into cold
and drought deciduous and evergreen types, and crops and
grasses are divided based on their photosynthetic pathways
into C3 and C4 versions. In this study, the spatial distribution
of PFTs has been prescribed to reduce the number of possi-
ble causes for model biases. The prognostic carbon masses of
leaf, stem, and root simulated by CTEM are used to calculate
the structural vegetation characteristics required by CLASS.
The main processes simulated by CTEM include photosyn-
thesis, canopy conductance, tissue turnover, allocation of car-
bon, and phenology (Arora and Boer, 2005b); dynamic root
distribution (Arora and Boer, 2003); maintenance, growth,
and heterotrophic respiration (Melton et al., 2015); wildfires
(Arora and Boer, 2005a; Arora and Melton, 2018); competi-
tion for space between PFTs (Arora and Boer, 2006; Melton
and Arora, 2016), and land use change (Arora and Boer,
2010). For the purpose of this study, CLASSIC’s recently
added nitrogen cycle has been turned off (Asaadi and Arora,
2021). A more detailed description of the model and its his-
tory is documented in Melton et al. (2020). Details on the
computation of radiation fluxes, surface albedo, heat fluxes,
LAI GPP, ecosystem respiration, and biomass are provided
in the Appendix.

2.2 Meteorological forcing

Meteorological inputs required by CLASSIC include surface
downwelling shortwave (SW) and longwave (LW) radiation,
near-surface air temperature, precipitation, near-surface spe-
cific humidity, surface pressure, and near-surface horizontal
wind speed. Model outputs are potentially sensitive to un-
certainties in the meteorological forcing. To account for this
uncertainty, we drive CLASSIC with three different quasi-
observed meteorological data sets, namely the Climate Re-
search Unit — National Centers for Environmental Prediction
version 8 (CRUNCEP; 1901-2016; Viovy, 2018), the Cli-
mate Research Unit — Japanese 55-year Reanalysis version
2.0 (CRUJRAV2; 1901-2017; Harris et al., 2014; Kobayashi
et al., 2015), and the Global Soil Wetness Project Phase 3
(GSWP3) — WFDES over land merged with ERAS over the
ocean (W5ES) (GSWP3WS5ES; 1901-2016; ISIMIP, 2020).
All meteorological forcings are disaggregated from 6-hourly
to half-hourly time steps, following the methodology by
Melton and Arora (2016).

Zonal mean values suggest that all three forcings are rel-
atively consistent (Fig. Al). The corresponding global mean
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Table 1. Observation-based reference data used for model evaluation. Meanings of acronyms are provided in Sect. 2. N/A: not applicable.

Source Variables Approach (n sites) Period Reference
In situ measurements
FLUXNET2015 RNS, HFLS, HFSS, HFG eddy covariance (204) 1997-2014  Pastorello et al. (2017)
GPP, RECO, NEE
GRDC MRRO gauge records (50) 1980-2010  Dai and Trenberth (2002)
Mortimer SNW gravimetry (3271) 1970-2017  Mortimer et al. (2020)
CEOS LAI transfer function (141) 1999-2017  Garrigues et al. (2008)
ORNL DAAC LAI maximum LAI (2653) 1932-2011 Tio and Ito (2014)
FOS AGB allometry (274) 1999-2018  Schepaschenko et al. (2019)
Globally gridded data sets
MODIS ALBS BRDF 2000-2014  Strahler et al. (1999)
GPP light use efficiency model ~ 2000-2016  Zhang et al. (2017)
LAI radiative transfer model 2000-2017  Myneni et al. (2002)
AVHRR LAI artificial neural network 1982-2010  Claverie et al. (2016)
CERES ALBS, RSS, RLS, RNS radiative transfer model 2000-2012  Kato et al. (2013)
GEWEXSRB ALBS, RSS, RLS, RNS radiative transfer model 1984-2007  Stackhouse et al. (2011)
GOSIF GPP statistical model 2000-2017  Li and Xiao (2019)
FluxCom RNS, HFLS, HFSS machine learning 2001-2013  Jung et al. (2019)
FluxCom GPP, RECO, NEE machine learning 1980-2013  Jung et al. (2020)
CLASSr RNS, HFLS, HFSS, HFG, MRRO  blended product 2003-2009  Hobeichi et al. (2019)
ESA MRSLL land surface model 19792017 Liuetal. (2011)
ECCC SNW blended product 1981-2017  Mudryk (2020)
Brown SNW temperature index model 1981-2017  Brown et al. (2003)
Crocus SNW snowpack model 1981-2017 Brun et al. (2013)
GS3 SNW passive microwave 1981-2017  Takala et al. (2011)
MERRA-2 SNW reanalysis 1981-2017  Gelaro et al. (2017)
GFED4S BURNT burned-area mapping 20012015  Giglio et al. (2010)
ESACCI BURNT burned-area mapping 2001-2017  Chuvieco et al. (2018)
CT2019 NEE, FIRE inversion model 2000-2017  Jacobson et al. (2020)
GEOCARBON  AGB machine learning N/A Avitabile et al. (2016),
Santoro et al. (2015)
Saatchi CVEG machine learning 2000 Saatchi et al. (2011)
HWSD CSOIL soil inventory N/A Wieder (2014)

Todd-Brown et al. (2013)

values for CRUJRAvV2, GSWP3WS5ES, and CRUNCEP are
182, 178, and 183 W m~2 for downwelling SW radiation,
304, 309, and 300 W m~2 for downwelling LW radiation,
10 °C for near-surface air temperature (all three forcings), 59,
64, and 60 mm per month precipitation, 6.9, 7.4, and 6.9 x
1073 kg kg*1 for specific humidity, 947, 948, and 950 hPa
surface pressure, and 2.6, 3.3, and 2.6 m s~! horizontal wind
speed, respectively. With the exception of surface pressure,
the data from CRUJRAv2 and GSWP3W5ES tend to be more
similar compared to CRUNCEP.

2.3 Simulation protocol

Our simulations are based on the trends in the land car-
bon cycle project (TRENDY) simulation protocol with time-
varying COy, climate, and land use (S3) (Friedlingstein et al.,
2019). The protocol consists of a spinup for the year 1700
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and two transient runs for the periods 1701-1900 and 1901
2016, respectively. The spinup uses a constant atmospheric
CO; concentration of 276.59 ppm, climate data from the
early decades of the 20th century (i.e. 1901-1920), and a land
use map with constant crops and pasture distribution. The
first transient run uses the same climate as for the spinup but
time-varying CO» concentrations and land use for the 1701-
1900 period. The second transient run uses time-varying
COa, climate, and land use for the 1901-2017 period.

2.4 Reference data

Model outputs are evaluated against in situ observations and
globally gridded observation-based reference data (Table 1).
The reference database covers 19 variables that form part
of the energy, water, and carbon cycle. While most data
sets consist of monthly mean values, some are assessed on

https://doi.org/10.5194/gmd-14-2371-2021
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(a) Net surface radiation
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(c) Sensible heat flux
Bias HFSS CLASSIC.CRUJRAV2 vs. FLUXNET from 1996-01 to 2014-12
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(e) Streamflow
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(b) Latent heat flux
Bias HFLS CLASSIC.CRUJRAV2 vs. FLUXNET from 1996-01 to 2014-12
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(d) Soil heat flux
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(f) Snow water equivalent
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Figure 1. Biases when comparing CLASSIC forced with CRUJRAv2 against in situ measurements of (a) net surface radiation, (b) latent
heat flux, (c) sensible heat flux, (d) soil heat flux, (e) streamflow, and (f) snow water equivalent. Measurements located in the same model
grid cell were merged. Upward- and downward-pointing triangles indicate positive and negative biases, respectively.

an annual timescale (streamflow) or present a snapshot in
time (vegetation biomass, organic soil carbon mass, and in
situ LAI measurements provided by the Oak Ridge National
Laboratory). All gridded reference data are spatially inter-
polated to the spatial resolution of a CLASSIC grid cell
(2.8125° x 2.8125°). In situ observations that fall into the
same model grid cell are averaged prior to the comparison
against model output. In most cases, the evaluation is based
on the grid cell value, which reflects the average conditions
across all land cover types located in a grid cell. For above-
ground biomass, however, a comparison between the grid
cell value and forest inventory data is not ideal, as the lat-
ter provides biomass estimates for trees only. We therefore
only consider biomass simulated for trees when evaluating
model results against forest inventory data. Details on each
reference data set are provided next.

2.4.1 In situ observations

The FLUXNET2015 database includes 204 eddy covari-
ance sites with measurements overlapping during the years

https://doi.org/10.5194/gmd-14-2371-2021

1997 and 2014 (Pastorello et al., 2017) (Table 1). The corre-
sponding variables include RNS, HFLS, HFSS, soil heat flux
(HFG) (Fig. 1a—d), GPP, RECO, and NEE (Fig. 2a—c).

Streamflow gauge records are provided by the Global
Runoff Data Centre (GRDC) for the world’s 50 largest basins
(Dai and Trenberth, 2002) (Fig. le). Measurements were
made sometime between 1980 and 2010, depending on the
basin.

Mortimer et al. (2020) compiled manual gravimetric mea-
surements of snow water equivalent (SNW) collected from
3271 sites located between 42 and 83° N for the 1970-2017
period (Fig. 1f).

Above-ground biomass (AGB) measurements were pro-
vided by the Forest Observation System (FOS) who com-
piled measurements from 274 permanent research plots
(Schepaschenko et al., 2019) (Fig. 2d). Measurements are
based on allometric relations and were made between 1999
and 2018, depending on the inventory plot.

LAI observations are taken from the Committee on Earth
Observation Satellites (CEOS) (Garrigues et al., 2008) and

Geosci. Model Dev., 14, 2371-2417, 2021
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(a) Gross primary productivity
Bias GPP CLASSIC.CRUJRAV2 vs. FLUXNET from 1991-01 to 2014-12
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(c) Net ecosystem exchange
Bias NEE CLASSIC.CRUJRAV2 vs. FLUXNET from 1991-01 to 2014-12
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(e) Leaf area index
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(b) Ecosystem respiration
Bias RECO CLASSIC.CRUJRAV2 vs. FLUXNET from 1991-01 to 2014-12
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(d) Above ground living biomass
Bias AGB CLASSIC.CRUJRAV2 vs. FOS from 1980-01 to 2017-12
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(f) Leaf area index
Bias LAl CLASSIC.CRUJRAV2 vs. ORNL from 1980-01 to 2017-12
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Figure 2. Same as Fig. 1 but for (a) gross primary productivity, (b) ecosystem respiration, (c¢) net ecosystem exchange, (d) above-ground

biomass, (e) leaf area index, and (f) maximum leaf area index.

the Oak Ridge National Laboratory (ORNL) (Tio and Ito,
2014) (Fig. 2e and f). The CEOS database consists of 141
sites with measurements during the 1999-2017 period. The
values are based on a transfer function that upscales ground
LAI measurements to a moderate-resolution grid cell using
high-spatial-resolution surface reflectances. The ORNL data
set contains a total of 2653 measurements compiled from
literature that was published between 1932 and 2012. The
values present site-specific maximum ground LAI measure-
ments.
2.4.2 Globally gridded reference data

The Moderate Resolution Imaging Spectroradiometer
(MODIS) provides globally gridded data sets for white-sky
surface albedo (2000-2014), GPP (2000-2016), and LAI
(2000-2017). The white-sky albedo (MCD43C3 v006)
integrates the bidirectional reflectance distribution function
(BRDF) over all viewing and irradiance directions. The
resulting albedo values are properties of the surface that do
not depend on the state of the atmosphere (Strahler et al.,
1999). Only data with quality flags of less than 3 and solar

Geosci. Model Dev., 14, 2371-2417, 2021

zenith angles of less than 70° were considered. Evaluating
MODIS V6 surface albedo against in situ measurements
shows that biases for the high-quality data (full inversion)
range from —0.0061 in needleleaf forests to 0.0023 in
deserts (Wang et al., 2018).

MODIS-based GPP is provided by Zhang et al. (2017) for
the period 2000-2017. The data set estimates GPP as the
product of light absorption by chlorophyll and the efficiency
that converts the absorbed energy to carbon fixed by plants
through photosynthesis. The required inputs include a range
of MODIS products (surface temperature, land surface water
index, enhanced vegetation index, and land cover classifica-
tion), as well as air temperature and radiation fluxes from
NCEP Reanalysis II (Kanamitsu et al., 2002).

MODIS LAI (MOD15A2H, Collection 6; Myneni et al.,
2015) is based on the inversion of a three-dimensional
canopy radiative transfer model that simulates surface re-
flectance from canopy structural characteristics (Knyazikhin
et al., 1998). The inversion approach causes LAI to be very
sensitive to uncertainties in surface reflectance. Those un-
certainties may occur due to calibration errors, residual at-

https://doi.org/10.5194/gmd-14-2371-2021
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mospheric and cloud contamination, background underneath
the canopy, topography, view-illumination geometry effects,
and reflectance saturation in dense canopies (Garrigues et al.,
2008). MODIS LAI uncertainties of annual mean values
range from 23 % to 38 % across biomes, with a global mean
value of 27 % for MODIS LAI Collection 5 (Fang et al.,
2012).

A second set of globally gridded LAI was provided by
Claverie et al. (2016) for the period 1982-2010. This data set
is based on an artificial neural network (ANN) that relates
LAI to surface reflectance from the Advanced Very High
Resolution Radiometer (AVHRR). The ANN was calibrated
with LAI from MODIS (MCD15A2) and in situ LAI mea-
surements from BELMANIP2 (445 sites; Baret et al., 2006).
The performance of the algorithm was assessed against in
situ observations from the DIRECT database (113; Garrigues
et al., 2008).

The Clouds and the Earth’s Radiant Energy System
(CERES) provides globally gridded SW and LW radiation
fluxes at the surface under all-sky conditions for the period
2000-2012 (Kato et al., 2013). The data set is based on a
radiative transfer model that uses satellite-retrieved surface,
cloud, and aerosol properties as inputs. The values of these
inputs are adjusted within their uncertainty ranges to obtain
irradiance values at the top of the atmosphere that are consis-
tent with observations.

The Global Energy and Water Exchanges Surface Radi-
ation Budget (GEWEXSRB) release 3.0 (Stackhouse et al.,
2011) provides globally gridded SW and LW radiation fluxes
at the surface under all-sky conditions for the period 1984—
2007. The data set is based on a radiative transfer model de-
veloped by Pinker and Laszlo (1992), which is driven with
satellite observations (cloud parameters and ozone fields)
and reanalysis data (Stackhouse et al., 2011). The algorithm
scales spectral surface albedos of 12 surface types in such a
way that the resulting clear-sky composite broadband top-of-
the-atmosphere albedo is consistent with observations from
the International Satellite Cloud Climatology Project (Zhang
et al., 2019). Surface fluxes have been evaluated against
ground-based measurements from sources that include the
Baseline Surface Radiation Network and the Global Energy
Balance Archive.

The GOSIF data provided by Li and Xiao (2019) are
based on linear correlations between solar-induced chloro-
phyll fluorescence (SIF) soundings from the Orbiting Car-
bon Observatory-2 (OCO-2) and GPP measurements from
91 eddy covariance measurements sites from FLUXNET.

The FluxCom data set is an ensemble of globally grid-
ded energy fluxes (HFLS, HFSS, and RNS from 2001
to 2013) and carbon fluxes (GPP, NEE, and RECO from
1980 to 2013). Using a range of machine learning meth-
ods, FluxCom upscales FLUXNET observations, where re-
mote sensing data and meteorological data serve as global
predictors. The former includes land surface temperature
(LST; MOD11A226), land cover (MCD12Q127), fraction
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of absorbed photosynthetically active radiation by a canopy
(fPAR; MOD15A228), and BRDF-corrected reflectances
(MCD43B429) from MODIS. Meteorological data em-
ployed by FluxCom were taken from the WATCH Forcing
Data ERA-Interim (WFDEI), Global Soil Wetness Project 3
(GSWP), CRUNCEPvS837, Global Precipitation Climatology
Project (GPCP), and CERES. The FluxCom values used in
the present study are the median values computed over the
FluxCom ensembles.

The Conserving Land-Atmosphere Synthesis Suite
(CLASSY) provides globally gridded estimates of net surface
radiation, latent heat flux, sensible heat flux, soil heat flux,
and runoff for the 2003-2009 period (Hobeichi et al., 2019).
Each variable presents a weighted mean computed from
multiple data products that are, to some extent, observation
based. The data are observationally constrained with in situ
measurements, and each term is adjusted to allow for energy
and water balance closure. Net surface radiation, latent heat
flux, and sensible heat flux are based on blending data from
remote sensing, reanalysis, and land surface models. Soil
heat flux estimates are based on reanalysis and land surface
models, and runoff is derived from land surface models
and hydrological models. The original acronym for the
Conserving Land-Atmosphere Synthesis Suite is CLASS.
However, in the present paper, we use the acronym CLASSr
instead to avoid confusion with the Canadian Land Surface
Scheme acronym.

Globally gridded soil moisture estimates provided by
Liu et al. (2011) are based on the retrieval characteristics
of passive (Advanced Microwave Scanning Radiometer —
Earth Observing System; AMSR-E) and active (Advanced
Scatterometer; ASCAT) microwave satellite data. Remotely
sensed estimates are rescaled using the Noah land surface
model (Niu et al., 2011) and evaluated with in situ measure-
ments from the International Soil Moisture Network (Dorigo
etal., 2011). Values represent conditions of the first 10 cm of
the top soil layer.

Gridded estimates of snow water equivalent for the North-
ern Hemisphere (NH) are provided by Mudryk (2020). The
blended data set is derived from four sources, including a
satellite passive microwave radiometer data set (GlobSnow
GS3; Takala et al., 2011), reanalysis data (Modern-Era Ret-
rospective analysis for Research and Applications, version 2
—MERRA-2; Gelaro et al., 2017), a temperature index model
by Brown et al. (2003), and a physical snowpack model re-
ferred to as Crocus (Brun et al., 2013). The present study
evaluates model output against the blended product, referred
to as ECCC, as well as its four sources.

Global maps of monthly burned area were taken from
the fourth generation of the Global Fire Emissions Database
(GFED4; Giglio et al., 2010). The data are based on the
500 m Collection 5.1 MODIS direct broadcast (DB) burned-
area product (MCD64A1) using the MODIS DB burned-area
mapping algorithm by Giglio et al. (2009). The data set has
been evaluated against high-resolution Landsat imagery for
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locations in southern Africa, Siberia, central Asia, Alaska,
and the western conterminous United States.

A second data set of monthly burned area is provided by
the Fire Disturbance Project of the European Space Agency’s
Climate Change Initiative program (Chuvieco et al., 2018).
This data set was generated from the MODIS red and near-
infrared reflectances (MOD09GQ and MCDI14ML, both
from Collection 6) and thermal anomaly data (MCD14ML).
The employed algorithm identifies those grid cells where the
presence of wildfires is most evident and then searches for
wildfires in close proximity to those grid cells.

CarbonTracker (CT2019) is an inversion model that at-
tempts to reproduce observed atmospheric CO, concentra-
tions by adjusting CO; fluxes at the surface. The initial states
of terrestrial fluxes are obtained from the Carnegie—Ames—
Stanford approach (CASA) biogeochemical model (Potter
et al., 1993). Fluxes associated with biomass burning are
taken from GFED4S. Observations consist of air samples
from 460 sites provided by the GLOBALVIEW+ data prod-
uct version 5.0 (Masarie et al., 2014). While CT2019 is con-
tinuously updated, the period considered in this study ranges
from 2000 to 2017.

Globally gridded above-ground biomass estimates are pro-
vided by GEOCARBON, which is based on a boreal forest
biomass map by Santoro et al. (2015) and two pan-tropical
biomass maps from Avitabile et al. (2016) and Saatchi et al.
(2011). The GEOCARBON map covers only areas that are
dominated by trees in the Global Land Cover 2000 map
(GLC2000; Bartholome and Belward, 2005). The boreal
biomass estimates are based on radar imagery provided by
the Envisat Advanced Synthetic Aperture Radar (ASAR).
The pan-tropical biomass maps are based on light detection
and ranging (lidar) observations that were calibrated with in
situ measurements of tree allometry. Baccini et al. (2012) up-
scaled data using a random forest machine learning algorithm
and satellite imagery, including the MODIS nadir BRDF-
adjusted reflectance (NBAR), MODIS land surface tempera-
ture, and Shuttle Radar Topography Mission (SRTM) digital
elevation data. Saatchi et al. (2011) upscaled in situ measure-
ments using a machine learning algorithm (maximum en-
tropy approach) and satellite imagery, including the MODIS
normalized difference vegetation index (NDVI) and LAI
products, global quick scatterometer (QSCAT), and SRTM
digital elevation data. Note that we also used the Saatchi et al.
(2011) data on their own to evaluate vegetation carbon in the
tropics.

The Harmonized World Soil Database (HWSD) provided
by the Food and Agriculture Organization (FAO) combines
existing regional and national updates of soil information
worldwide with the information contained by the FAO Soil
Map of the World (Wieder, 2014). The data were processed
by Todd-Brown et al. (2013), who computed soil carbon
stocks from bulk densities and organic carbon concentrations
given in the HWSD for the top 1 m of soil at a 0.5° x 0.5° res-
olution.
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Different Meteorological Forcing Data Sets

CRUJRAV2 GSWP3WSES CRUNCEP
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| CLASSIC ‘ | CLASSIC | ‘ CLASSIC ‘
\ ) J /
Model Gridded In situ
Ensemble Reference Data Reference Data

/

AMBER l

AMBER

Figure 3. Experimental setup, where yellow boxes refer to data,
green boxes to algorithms, and blue boxes to analysis output.

2.5 Automated Model Benchmarking R package
(AMBER)

The Automated Model Benchmarking R package (AMBER;
version 1.1.0) quantifies model performance using a skill
score system originally developed by Collier et al. (2018).
The method employs five scores that assess the model’s bias
(Sbias), root-mean-square error (Symse), seasonality (Sphase)s
interannual variability (Siav), and spatial distribution (Sgis).
The main steps for computing a score usually include
(i) computing a dimensionless statistical metric, (ii) scaling
this metric onto a unit interval, and (iii) computing a spa-
tial mean. All scores are dimensionless and range from O to
1, where increasing values imply better performance. These
properties allow us to average skill scores across different
statistical metrics in order to obtain an overall score for each
variable (Soverall)-

Figure 3 provides an overview of our experimental setup.
As a first step, we create a small model ensemble by driv-
ing CLASSIC with three different meteorological data sets.
The purpose of the ensemble is to determine the sensitivity
of model performance to uncertainties in the meteorologi-
cal forcing. Next, we evaluate each ensemble member us-
ing AMBER. The resulting model scores express how well
model and reference data agree. A low score, however, does
not necessarily imply poor model performance, as the lack
of agreement may also be due to uncertainties in the forcing
data and/or reference data. To assess to what extent model
scores are affected by observational uncertainties, we also
run AMBER with reference data only. The resulting bench-
mark scores quantify the level of agreement among different
reference data sets. Comparing model scores against bench-
mark scores then shows how well CLASSIC performs rela-
tive to the performance of a reference data set. The remaining
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part of this section documents the details of the skill scores
employed by AMBER.

2.5.1 Bias score (Spias)

The bias is defined as the difference between the time-mean
values of model and reference data:

bias(, ¢) = Umod (A, @) — Vref (%, ), ey

where Unod (A, @) and Voq(A, @) are the mean values in time
(t) of a variable v as a function of longitude A and latitude ¢
for model and reference data, respectively. Nondimensional-
ization is achieved by dividing the bias by the standard devi-
ation of the reference data (over):

Ebias (A, @) = |bias(A, )| [orer(A, ). 2

Note that epias is always positive, as it uses the absolute
value of the bias. For evaluations against streamflow mea-
surements, the bias is divided by the annual mean rather than
the standard deviation of the reference data. This is because
we assess streamflow on an annual rather than monthly basis,
implying that the corresponding standard deviation is small.
The same approach is applied to soil carbon and biomass,
whose reference data provide a static snapshot in time. In
both of these cases, epjas (A, @) becomes

Ebias (A, ) = |bias(h, §)| /T (1, @). 3)
A bias score that scales from O to 1 is calculated next:
Sbias (1, ) = e~ w0, @)

While small relative errors yield score values close to 1, large
relative errors cause score values to approach 0 (Fig. 4a).
Taking the mean of spias across all latitudes and longitudes,
denoted by a double bar over a variable, leads to the scalar
score:

Sbias = Sbias (A, P). o)

2.5.2 Root-mean-square-error score (Symse)

While the bias assesses the difference between time-mean
values, the root-mean-square error (rmse) is concerned with
the residuals of the modeled and observed time series:

rmse(A, ¢) =

1
Ir— 1o

I
/ (Umod (£ &y @) — vrer(t, 1 )21 ©)
0]

where #j and #; are the initial and final time steps, respectively
(Fig. A2a and c). A similar metric is the centralized rmse
(crmse), which is based on the residuals of the anomalies:

crmse(X, ¢) =

1t
1
J Pa— /[(vmod(t,k,qb)—vmod(k,qﬁ))— (Vres (1, A, §) — Trer (A, 9))17dr.
1o
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)

The crmse therefore assesses residuals that have been bias
corrected (Fig. A2c and e). Since we already assessed the
model’s bias through Sp;qs, it is convenient to assess the resid-
uals using crmse rather than rmse. In a similar fashion to the
bias, we then compute a relative error:

ermse (A, ¢) = crmse(X, @) /Trer (X, ¢), ®)
scale this error onto a unit interval (Fig. 4a):

Srmse (b, @) = e_srmse()h(l’)’ 9)
and compute the spatial mean:

Stmse = Srmse- (10)
2.5.3 Phase score (Sphase)

The skill score Sphase assesses how well the model repro-
duces the seasonality of a variable by computing the time
difference (6 (X, ¢)) between modeled and observed maxima
of the climatological mean cycle:

9()\'7 ¢) = max(cmod(ts )"7 ¢)) - max(cref(ta )\'7 ¢))’ (1 1)

where cmod and crer are the climatological mean cycle of the
model and reference data, respectively (Fig. A2b). This time
difference is then scaled from O to 1 based on the considera-
tion that the maximum possible time difference is 6 months

(Fig. 4b):

1 270\, @)
Sphase (}\., ¢) = E 1+ cos T . (12)
The spatial mean of sphase then leads to the scalar score:
Sphase = Sphase- (13)

2.5.4 Interannual variability score (Sjay)

The skill score S,y quantifies how well the model reproduces
patterns of interannual variability. This score is based on data
where the seasonal cycle (cmod and crer) has been removed
(Fig. A2d and f):

iavmod (A, @) =

3

/ (Umod (t, Ay §) — Cmod (t, 1, $))dt, (14)

fo

I —1o

1

iaveer(A, @) = fr—1o

143
/ (Vret (£, &, @) — Cref(, A, ))*dr.
fo
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Figure 4. Score functions for (a) bias, root-mean-square error, and
interannual variability, (b) seasonality, and (c) spatial distribution.
15)

The relative error, nondimensionalization, and spatial mean
are computed next (Fig. 4a):

Eiav = | (1aVmod (1, @) — iavier (1, 9))| [iavrer (1, ¢), (16)

Siav (A, @) = e~ Fin . ?) (17)

Siav = ﬁ‘ (18)
2.5.5 Spatial distribution score (Sgist)

The spatial distribution score Sgis; assesses how well the
model reproduces the spatial pattern of a variable. The score
considers the correlation coefficient R and the relative stan-
dard deviation o between VUmod(X, ) and ver(A, ). The
score Sgist increases from O to 1, the closer R and o approach

Geosci. Model Dev., 14, 2371-2417, 2021

C. Seiler et al.: Benchmarking CLASSIC - Part 2

a value of 1 (Fig. 4c). No spatial integration is required, as
this calculation yields a single value:

1\ 2
Sdist=2(1+R)<0'+;) ; 19)

where o is the ratio between the standard deviation of the
model and reference data:

o = O'm/ﬁ@. (20)

2.5.6 Overall score (Soveran)

As a final step, scores are averaged to obtain an overall score:
Sbias + 2Srmse + Sphase + Siav + Sdist
1+2+1+14+1 ’

Note that Sypse is weighted by a factor of 2, which empha-
sizes its importance.

21

Soverall =

3 Results

We start our evaluation with a qualitative overview of
how the choice of meteorological forcing (CRUJRAvV2,
GSWP3WS5ES, CRUNCEP) and reference data affect global
mean biases. Our results show that for 10 out of 19 variables
assessed in this study, the sign of the bias changes depending
on what forcing and reference data are used (Table 2). As-
suming that global values are reasonably accurate if (i) the
sign of the bias varies depending on the choice of forcing
and/or reference, or (ii) the global mean bias is reasonably
small (< 5 %), we can divide our variables into four groups.
The first group includes variables that show accurate global
mean values for both gridded and in situ reference data. This
includes the following variables: net surface radiation, sen-
sible heat flux, snow water equivalent, and runoff (Table 2).
The second group consists of variables that lack in situ ob-
servations but show accurate values when assessed against
gridded reference data. This involves the following variables:
net LW radiation, soil moisture, fractional area burned, net
SW radiation, and vegetation carbon in the tropics. The third
group includes variables that show accurate values for ei-
ther globally gridded data (latent heat flux, GPP, NEE) or
in situ reference data (ecosystem respiration, above-ground
biomass, and LAI). For this group of variables, it will be im-
portant to assess the differences between evaluations based
on gridded and in situ data in more detail. The fourth group
includes variables with systematic biases across all evalua-
tions, which includes surface albedo, emissions from wild-
fires, soil carbon, and soil heat flux. The following sections
evaluate biases and other statistical metrics for each variable
in detail.

3.1 Net surface radiation

RNS biases range from positive to negative values, depend-
ing on the choice of forcing (CRUJRAv2, GSWP3WS5ES,
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Table 2. Qualitative assessment of global mean biases. Variables for which positive and negative mean biases are found are denoted with
=+. Biases that have a consistent sign across all evaluations but are smaller than 45 % are marked with < 5 %. Larger systematic biases are
marked with + or —. Numbers provided for each of the in situ reference data refer to the number of grid cells involved.

Variable Acronym Grid Insitu  Gridded reference data In situ reference data (1)

Net surface radiation RNS + + CERES, CLASSTr, FluxCom, FLUXNET(73)
GEWEXSRB

Sensible heat flux HFSS + + CLASSr, FluxCom FLUXNET (65)

Snow water equivalent SNW + 4+  Brown, Crocus, GS3, MERRA-2  Mortimer (363)

Runoff MRRO <5% + CLASSr GRDC (50 basins)

Net LW radiation RLS + CERES, GEWEXSRB

Soil moisture MRSLL + ESA

Fractional area burned BURNT + ESACCI, GFED4S

Net SW radiation RSS <5% CERES, GEWEXSRB

Vegetation carbon in the tropics CVEG <5% Saatchi

Latent heat flux HFLS + —  CLASST, FluxCom FLUXNET (65)

Gross primary productivity GPP + —  FluxCom, GOSIF, MODIS FLUXNET (89)

Net ecosystem exchange NEE <5% +  FluxCom, CT2019 FLUXNET (91)

Ecosystem respiration RECO + <5% FluxCom FLUXNET (88)

Above-ground biomass AGB — <5% GEOCARBON FOS (56)

Leaf area index LAI + + AVHRR, MODIS CEOS (36), ORNL (330)

Surface albedo ALBS + CERES, GEWEXSRB, MODIS

Emissions from wildfires FIRE — CT2019

Soil carbon CSOIL — HWSD

Soil heat flux HFG — — CLASSr FLUXNET (60)

CRUNCEP) and reference data (CERES, CLASSr, Flux-
Com, GEWEXSRB, and FLUXNET). For instance, global
mean biases range from —15% (—12.07Wm~2) when
forcing CLASSIC with CRUNCEP and evaluating results
against CERES (2000-2012), to 419 % (+12.24 W m~2) for
CRUJRAV2 and CLASSr (2003-2009) (Fig. 5). Evaluating
model output against in situ measurements by FLUXNET
yields mean biases that range from —8% (—6.39 Wm™2
for CRUNCEP) to +2% (+1.99 Wm~2 for CRUJRAvV2)
(Figs. 5 and 1a).

Zonal mean values in net surface radiation are in close
agreement with the corresponding reference values, with bi-
ases that range from —20 to +20 W m~2 (Fig. 6). The same
figure shows that net surface radiation biases in the NH ex-
tratropics are negative when evaluating CLASSIC against
CERES, FluxCom, and GEWEXSRB, and positive when
choosing CLASSr as a reference data set. Considering all
three model runs and four gridded reference data sets shows
that for most grid cells annual mean biases can be both neg-
ative and positive, depending on which model run is com-
pared against which reference data (Fig. 7a). The strongest
annual mean bias is located in the Tibetan Plateau with values
below —30 W m~2. Hovmdller diagrams show that CLAS-
SIC captures the observed seasonality well across all lati-
tudes (Fig. 8). Monthly biases range from negative to pos-
itive values across most latitudes and months, depending on
the choice of meteorological forcing and reference data. This
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suggests that model values are reasonably accurate across
space and time when considering the uncertainties associated
with the forcing and all four globally gridded reference data.

Other statistical metrics confirm that CLASSIC repro-
duces net surface radiation reasonably well. The relative
measure of the centralized root-mean-square error (€crmse)
ranges from 0.30 to 0.49 (unitless), which is lower than
for most other variables (Fig. 5). Differences in the tim-
ing of modeled and observed seasonal peaks (£) are less
than 1 month. Modeled interannual variability is lower com-
pared to CERES, CLASSr, GEWEXSRB, and FLUXNET,
and larger than FluxCom (not shown). The relative interan-
nual variability error (giy) is reasonably small (0.30 to 0.76,
unitless). CLASSIC reproduces the spatial variability of an-
nual mean values well, where the ratio of model and refer-
ence standard deviation in space (o) is close to unity (1.00
to 1.19). Also, the spatial correlation coefficients (R) range
from 0.86 to 0.97. Averaging the resulting scores across all
three ensemble members shows that Syyera ranges from 0.74
to 0.80 (unitless), depending on the reference data (Fig. 9a).
The choice of meteorological forcing affects scores by less
than 0.1 (Fig. 9b). Scores tend to be higher when forcing
CLASSIC with GSWP3WS5ES (Fig. 9c¢).

3.2 Net shortwave and longwave radiation

Results for net SW radiation (RSS) and LW radiation (RLS)
are mainly consistent with findings for net surface radiation
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mean (units)  bias (abs) bias (%) Emse(—) 6 (months) €y (—) G(-) R(-)
RNS-CERES — 779 757 7092 6589| -22 -7.01 -1207| -3 -9 =15 03 055 077 033 035 W m™2
RNS-CLASSr —6467 7691 7242 67.06(1224 743 233 | 19 11 4 041 | 088 076 028 03 W m™2
RNS-FluxCom —{81.77 7808 73.14 69.89|-369 -8.66 -11.94| -5 -11 =15 026 036|067 049 0.76 0.68 W m™2
RNS-FLUXNET —{80.36 8235 7691 7397|199 -345 639 2 -4 -8 025 035|049 037 039 047 W m™2
RNS-GEWEXSRB —{74.02 7545 7068 6574|143 -3.34 -833| 2 -5 -11 04 044 W m™2
RSS-CERES —{140.94 138.98 136.54 139.4 |-1.97 -445 -1.65| -1 -3 - 0.38 0.11 0.38 Wm'2
RSS-GEWEXSRB —{141.42 138.52 135.43 138.77| -2.89 -599 -274| -2 -4 -2 041 02 051 W m™2
RLS-CERES —{-63.05-63.28 -65.63 -73.51-0.23 -2.55 -1042] 0 -4 -17 063 028 036 W m™2
RLS-GEWEXSRB —{-67.25-62.94 -64.63 -72.8| 432 263 -551| 6 4 -8 54 0.67 029 038 wm?
ALBS-CERES — 025 029 029 03 [005 004 005| 19 18 19 099 1.67 038 0.39 [IEEINEIPL) (-)
ALBS-GEWEXSRB — 021 03 020 03 |009 009 009 | 42 41 42 112 2 047 046 047 JRAZEREH (-)
ALBS-MODIS —{ 022 027 027 027|005 005 005| 23 22 24 1 157 045 039 039 [EEENEEPS (-)
HFLS-CLASSr — 324 3396 338 361|155 14 367| 5 4 11 0 0 W m™2
HFLS-FluxCom —{45.38 37.05 37.02 40.06|-8.32 -8.37 -5.35| -18 -18 -12 2.42 W m™2
HFLS-FLUXNET — 4352 3769 37.97 40.36|-583 -555 -3.16| -18 -13 -7 08 08 08 W m™2
HFSS-CLASSr —{30.82 4163 36.67 2067 (1082 582 -1.19( 35 19 -4 028 025 028 0 W m™2
HFSS-FluxCom —{36.63 39.51 34.24 2833 2.87 -242 -833 8 -7 -23 059 098 081 [EEGEEERET] W m™2
HFSS-FLUXNET —{37.67 4342 385 3161|575 083 -606| 15 2 -16 047 037 039 | 0.78 0 W m™2
HFG-CLASSr — 145 0414 022 019 [-1.31 -122 -1.25 085 094 088 [ 028 028 036 [ 016 018 017 W m™2
HFG-FLUXNET —{ 044 023 032 03 [-021 -0.12 -0.14 091 097 |1 0 0.94 Wm'2
MRSLL-ESA —{2047 2150 214 202|112 092 -028 5 5 -1 133 15 149 151 15 144 152 139 kg m?
MRRO-CLASSr — 064 075 08 065 01 022 0 16 34 1 X 127 NS 2.19 22 069 078 0.71 [ERSERE) kg m?24d~’
MRRO-GRDC — 082 085 098 071|003 016 -0.41| 4 053 063 044 kgm2d~"
SNW-Brown — 263 332 448 319|069 185 057 | 26 0.88 045 [ 019 051 024 (EEERREICERNET cm
SNW-Crocus — 269 343 457 33 | 073 1.88 063 | 27 1 074 | 028 048 031 151 14 cm
SNW-ECCC —{ 261 312 413 299 05 152 04 [ 19 | = 062 [ 029 061 033 1.5/ K cm
SNW-GS3 - 27 329 44 318|059 17 049 | 22 18 077 | 028 052 0.20 (REERECICCRREYS cm
SNW-MERRA2 — 351 341 4143 299 | -04 062 -049| -1 18 -14 075 [ 038 037 0.39 [ 076 0.77 cm
SNW-Mortimer —{ 891 807 1098 803 [-0.84 207 -088| -9 23 -10 0.73 cm
GPP-FluxCom — 228 262 251 243|035 023 015( 15 10 7 5 gCm32g¢~’
GPP-FLUXNET — 329 31 305 295|-0.18 -023 -0.33 aC m‘Zd-1
GPP-GOSIF —{ 257 252 24 233 -0.05 -0.17 -0.23 gC m724~"
GPP-MODIS —{ 223 246 234 228|023 011 0.05 0.96 0.93 gC m324~"
RECO-FluxCom — 181 256 244 235|075 063 054 08 079 038 gC m2d~"
RECO-FLUXNET —| 273 304 299 286|031 026 0.14 069 064 0. gCm2d™
NEE-CT2019 —-009 -007 -008 -008| 001 001 0 123 128 13 |155 147 155 147 gC m2d !
NEE-FluxCom —-048 -0.07 -0.07 -0.08( 042 041 041 129 135 14 [ 142 142 137 335 375 4.19 [MUPEEFZEENP] gC m=2d 1
NEE-FLUXNET —-063 -0.08 -0.08 -0.11| 0.56 0.55 0.52 108 142 143 132 gCm2d™"
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Figure 5. Global mean values of statistical metrics defined in Sect. 2. The color ranges span the minimum and maximum for each metric.
The physical units of the mean and absolute bias are given by the vertical axis on the right-hand side.

described above. Net SW and LW radiation values produced
by CLASSIC are reasonably accurate when considering un-
certainties associated with meteorological forcing and refer-
ence data (CERES and GEWEXSRB). Global mean biases
for net SW radiation range from —1% (—1.65Wm™?) to
—4% (—5.99 Wm~?2) (Fig. 5). For net LW radiation, global
mean biases range from —17 % (—10.42Wm_2) to +6 %
(+4.32Wm_2). CLASSIC captures the zonal mean values

Geosci. Model Dev., 14, 2371-2417, 2021

and seasonal patterns of both variables well (Figs. 6, A4,
and A5). However, CLASSIC also shows a systematic nega-
tive SW radiation bias in the NH extratropics from Decem-
ber to May (up to —40W m~2) (Fig. A4), which is consistent
with a surface albedo bias as discussed further below. Results
for other statistical metrics and corresponding scores are sim-
ilar to the ones described for net surface radiation. For net
SW radiation, &c;mse range between 0.22 and 0.38 (unitless),

https://doi.org/10.5194/gmd-14-2371-2021
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Figure 6. (a) Zonal mean values and (b) corresponding biases for variables related to the radiation cycle.

0 ranges from 0.38 to 0.56 months, &;,y ranges from 0.11 to
0.53 (unitless), o ranges from 0.94 to 1.13 (unitless), and R
ranges from 0.92 to 0.98 (Fig. 5). For net LW radiation, val-
ues in &qmge and 6 are considerably higher than for net SW
radiation, where &.mge ranges from 0.51 to 0.65 (unitless)
and 6 ranges from 0.63 to 0.76 months. The overall scores are
higher for net SW radiation (Soyeranl = 0.80) than for net LW
radiation (Soveral = 0.72) (Fig. 9). The choice of the forcing
has a considerable impact on how well the model captures the
interannual variability of both net SW and LW radiation. The
difference between the maximum and minimum interannual
variability scores (Siay) ranges from 0.10 to 0.21, depending
on the reference data (Fig. 9b). For net LW radiation, the
choice of the forcing has also a considerable impact on the
bias score (A Spias: 0.17-0.2). CLASSIC performs best when
forcing the model with GSWP3WSES (Fig. 9c).

https://doi.org/10.5194/gmd-14-2371-2021

3.3 Albedo

Surface albedo (ALBS) shows a positive global mean bias
across all three ensemble members and reference data sets
(CERES, GEWEXSRB, and MODIS), ranging from +18 %
to +42 % (4+0.04 to 4+0.09, unitless) (Fig. 5). This bias oc-
curs mainly in the NH extratropics, with increasing values to-
wards higher latitudes (40.2; Figs. 6 and 7b). The strongest
annual mean bias is located in the Tibetan Plateau with val-
ues above 0.3. In the NH extratropics, the bias is most ev-
ident during the cold season (+0.4 between 60 and 80° N
from December to January) (Fig. A6). Larger biases (+0.5)
are present north of 80° N, but this involves only few grid
cells. The timing of the bias suggests a possible relation with
snow and/or the large solar zenith angle. The performance
with respect to other statistical metrics tends to be lower
than for net SW radiation. Values for e¢mge range between

Geosci. Model Dev., 14, 2371-2417, 2021
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(b) Albedo (evaluation ensemble bias, N = 9)
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Figure 7. Model ensemble mean values and respective biases for (a) net surface radiation and (b) surface albedo. The mean, minimum, and
maximum ensemble biases refer to the mean, minimum, and maximum values across all evaluations, respectively. For instance, a minimum
bias that is negative implies that at least one evaluation yields a negative bias.

0.98 and 1.12 (unitless), 6 ranges from 1.67 to 2.18 months,
&iav ranges from 0.38 to 0.48 (unitless), o ranges from 1.12
to 2.04 (unitless), and R ranges from 0.77 to 0.91 (Fig. 5).
The corresponding overall score Soveran ranges between 0.48
and 0.59, depending on the reference data (Fig. 9). The
Soverall Values are not very sensitive to the choice of forcing
(ASoveran = 0.01).

3.4 Heat fluxes

CLASSIC reproduces the partitioning of net surface radia-
tion into sensible (HFSS), latent (HFLS), and soil heat flux
(HFG) reasonably well. Global mean values in sensible heat
flux simulated by CLASSIC are likely to be reasonable, with
biases that range from negative to positive values, depend-
ing on the meteorological forcing (—23 % to 435 %, —8.33
to +10.82Wm~2) (Figs. 5 and 10). Driving CLASSIC with
CRUNCERP causes biases to be negative for all three refer-
ence data sets, while the opposite is true when running the
model with CRUJRAV2. For latent heat flux, the sign of the
bias is consistent across all ensemble members, with neg-

Geosci. Model Dev., 14, 2371-2417, 2021

ative biases when compared against FluxCom (—12% to
—18%, —5.35 to —8.32W m~2) and FLUXNET (-7 % to
—13 %, —3.16 to —5.83 W m~2) and reasonably small posi-
tive biases when evaluated against CLASSr (45 % to +11 %,
+1.55 to +3.67 Wm™2). Biases in soil heat flux are nega-
tive across all ensemble members and both reference data
sets (CLASSr and FLUXNET) (—32 % to —90 %). However,
it must be noted that the corresponding absolute values are
small (—0.14 to —1.31 W m™2), implying that the impact of
annual mean soil heat flux biases on the surface energy bal-
ance is minor. The relative partitioning of net surface radia-
tion into sensible and latent heat fluxes is well reproduced,
with reasonably small positive and negative biases, depend-
ing on the meteorological forcing (Fig. 10b). A more detailed
assessment of each heat flux is provided next.

CLASSIC reproduces the zonal mean patterns of sensible
and latent heat flux well, with zonal mean biases of about
+20 W m~2 (Fig. 11). For sensible heat flux, zonal mean
biases range from positive to negative values across all lat-
itudes, depending on the meteorological forcing (Figs. 11
and A7a). For latent heat flux, biases are primarily positive

https://doi.org/10.5194/gmd-14-2371-2021
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(b) RNS Reference Ensemble (N= 4) (c) RNS Mean Ensemble Bias (N = 48)
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Figure 8. Net surface radiation computed from three model runs (CLASSIC driven with CRUJRAv2, GSWP3W5ES5, and CRUNCEP)
and four reference data sets (CERES, CLASSr, FluxCom, and GEWEXSRB). The top, center, and bottom rows provide ensemble mean,
minimum, and maximum values for (a) CLASSIC, (b) reference data, and (c) corresponding biases. The mean, minimum, and maximum
ensemble biases refer to the mean, minimum, and maximum values across all evaluations, respectively. For instance, a minimum bias that is

negative implies that at least one evaluation yields a negative bias.

when compared against CLASSr and negative for FluxCom,
regardless of the forcing (Figs. 11 and A7b). Zonal mean pat-
terns of soil heat flux data from CLASSr are not well cap-
tured, with biases that become increasingly negative towards
higher latitudes (—4 W m~2 in the Arctic) (Figs. 11 and A8a).

CLASSIC captures the seasonal cycle of all three heat
fluxes reasonably well (Figs. A9, A10, and Al1). The neg-
ative latent heat flux biases are stronger during the warm
season in both hemispheres. For soil heat fluxes, CLASSIC
tends towards a more intense seasonal cycle in the extratrop-
ics, with positive biases in the warm and negative biases in
the cold season.

Values of ey are similar among sensible and latent heat
flux (0.45 to 0.77, unitless) and higher for soil heat flux
(0.85 to 0.97) (Fig. 5). For all three heat fluxes, time lags
in seasonal peaks are close to 1 month. The interannual vari-
ability of sensible and latent heat fluxes tends to be smaller
compared to the CLASSr reference data set and larger com-
pared to FluxCom (not shown), implying that model values
lie within the uncertainty of the reference data. The corre-
sponding i,y values range from 0.25 to 2.42 (unitless), where
the higher values are obtained when evaluating CLASSIC
against FluxCom (Fig. 5). For soil heat flux, modeled inter-
annual variability is very similar to the corresponding refer-
ence values (not shown), leading to low values of &5y (0.28
to 0.36). Values of ¢ and R are reasonable for sensible heat
flux (o: 0.74 to 1.26, R: 0.78 to 0.89) and latent heat flux (o:
0.94 to 1.08, R: 0.84 to 0.97), and poor for soil heat flux (o

https://doi.org/10.5194/gmd-14-2371-2021

0.15t0 0.17, R: 0.04 to 0.21). Consistently, the correspond-
ing Soveranl Values are higher for latent and sensible heat flux
(0.64 to 0.73) and lower for soil heat flux (0.53) (Fig. 9).
From all three heat fluxes, sensible heat flux is most sensitive
to the choice of forcing, with A Syyeran €qual to 0.04 when
driving the model with GSWP3WS5ES.

3.5 Soil moisture

Global mean values in soil moisture (MRSLL) of the top
10cm are very close to the corresponding reference val-
ues from ESA (1979-2017), with biases ranging from —1 %
(—0.28kgm~2, CRUNCEP) to +5% (about +1kgm™2,
CRUJRAvV2 and GSWP3WS5ES) (Fig. 5). Zonal mean values
are well reproduced with a tendency towards a positive bias
north of 60° N (+10kg m2) (Fig. 11). This bias is caused by
clusters of grid cells located in different parts of the Arctic
(Fig. A8b). The positive bias is present in all ensemble mem-
bers and occurs from June to September (Fig. A12). Other
statistical metrics confirm that the performance does not dif-
fer largely among ensemble members (Fig. 9). Values of
ermse and time lags of seasonal peaks (6) are higher compared
to most other variables (grmse < 1.5, 6 =~ 1.5 months). The
spatial variability is larger than in the reference data (o =
1.44, unitless) and correlation coefficients are relatively low
(R ~0.62). The corresponding overall score is 0.52 and is
not very sensitive to the choice of forcing (A Soverann = 0.01)
(Fig. 9).

Geosci. Model Dev., 14, 2371-2417, 2021
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3.6 Runoff and streamflow

Global mean runoff (MRRO) biases range from
+1% (<0.005kgm~2d~!, CRUNCEP) to +34%
(0.22kgm™2d~!, GSWP3WSES5) when evaluated against
CLASSr (2003-2009) (Fig. 5). This difference is con-
sistent with the higher precipitation values found for the
GSWP3WSES forcing. CLASSIC reproduces the zonal
mean pattern of gridded reference runoff from CLASSr well,
with mainly positive biases when forcing CLASSIC with

Geosci. Model Dev., 14, 2371-2417, 2021

GSWP3WS5ES (Fig. 11). Smaller, including negative, zonal
mean biases occur when forcing CLASSIC with CRUNCEP.
Consistently, the sign of the bias varies for many grid cells
depending on the forcing (Fig. A13a). Furthermore, the sign
of the bias varies for most latitudes and months (Fig. A14),
suggesting that modeled runoff is within the uncertainty
range of the meteorological forcing. CLASSIC reproduces
the spatial patterns of runoff reasonably well, with o values
between 1.04 and 1.14 and R values between 0.87 and 0.88
(Fig. 5). The timing of the seasonal peaks, however, differs

https://doi.org/10.5194/gmd-14-2371-2021
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Figure 10. (a) Annual mean values of soil heat flux (HFG), latent
heat flux (HFLS), sensible heat flux (HFSS), and net surface ra-
diation (RNS) for the three CLASSIC ensemble members and for
the reference data (CLASSr, FluxCom, and FLUXNET). Panel (b)
shows the corresponding fractions with respect to net surface radia-
tion.

by more than 2 months, and &ye values exceed 1 when
using CLASSTr as reference data. The overall score averaged
over the three ensemble members is 0.53, with a better score
when driving CLASSIC with CRUNCEP and worse when
using GSWP3WS5ES as a forcing data set (Fig. 9).

Summing up the annual runoff from all grid cells lo-
cated within each of the world’s 50 largest river basins
and comparing those values against annual mean streamflow
at the corresponding river mouths yields biases that range
between —14% (—0.11kgm~2d~!, CRUNCEP, GRDC)
to +20% (+0.16kgm~—2d~!, GSWP3WS5ES5, GRDC). For
most basins, the sign of the bias remains constant regard-
less of the forcing (Fig. 1le for CRUJRAvV2 as an example).
CLASSIC reproduces the spatial patterns of streamflow rea-
sonably well, with o values close to 1 and R values ranging
between 0.87 and 0.92 (Fig. 5). The overall score averaged
over the three ensemble members is 0.69. Performance is bet-
ter when driving CLASSIC with CRUNCEP and worse when
using GSWP3WS5ES as a forcing data set (Fig. 9).
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3.7 Snow water equivalent

Global mean SNW biases range from —14 % (—0.49cm,
CRUNCEP-driven run evaluated against MERRA-2) to
+70% (4+1.88cm, GSWP3WS5ES-driven run evaluated
against Crocus) for the 1981-2017 period (Fig. 5). Eval-
vating CLASSIC against in situ measurements compiled
by Mortimer et al. (2020) shows that the mean bias can
be negative (—10%, —0.88cm, CRUNCEP) or positive
(423 %, +2.07 cm, GSWP3WS5ES5), depending on the forc-
ing (Figs. 5 and If). The higher snow water equivalent val-
ues in GSWP3WS5ES5-driven results are consistent with the
higher precipitation values found for this forcing. For most
evaluations, CLASSIC reproduces zonal mean values well
when driven with CRUJRAv2 or CRUNCEP (Fig. 11). The
sign of the bias ranges from positive to negative for most grid
cells (Fig. A13b). Positive biases tend to be larger in eastern
Canada, northern Scandinavia, and northern Siberia, and dur-
ing NH spring (Fig. A15b).

Other statistical metrics confirm that CLASSIC’s ability
to reproduce snow water equivalent tends to be weaker when
driven with GSWP3W5ES (grmse: 0.55 to 0.91, 6: 0.38 to
0.77, &iav: 0.19 to 0.61, o: 0.68 to 1.68, and R: 0.54 to
0.87) (Fig. 5). The corresponding Soyerann Values range from
0.62 to 0.69, with lower scores when driving CLASSIC with
GSWP3WSES and higher scores when using CRUJRAv2
(Fig. 9). Site-level-based score values are similar to grid-
level score values, with an overall score of 0.66.

3.8 Gross primary productivity

Globally accumulated annual mean values of GPP computed
from different reference data are of similar magnitude, with
115PgCyr~! for FluxCom (1980-2013), 121 PgCyr~! for
MODIS (2000-2016), and 130 Pg C yr~! for GOSIF (2000
2017) (Table 3). The corresponding model biases are rea-
sonably small, with negative values when comparing CLAS-
SIC against GOSIF (—2 % to —10 %), and positive values
when evaluating against MODIS (< +1% to +10%) or
FluxCom (4+4 % to +14 %). An assessment with eddy co-
variance data shows that biases range from —6 % to —10 %
(Fig. 5). CLASSIC captures zonal mean GPP patterns well
with no systematic bias pattern among evaluations (Fig. 12).
Annual mean biases range from negative to positive for
most grid cells, depending on the forcing and reference data
(Fig. Al16a). Hovmoller diagrams show that CLASSIC cap-
tures the seasonal GPP cycle well across all latitudes, with
no systematic biases (Fig. A17). A more regional assessment,
however, shows that the seasonal GPP cycle is out of phase in
parts of the humid tropics of South America and Africa (not
shown). Values in &y are less than 1 for all evaluations,
and time lags of seasonal peaks are about 1 month on aver-
age (Fig. 5). CLASSIC reproduces the interannual variabil-
ity of GPP well when compared against FLUXNET, GOSIF,
and MODIS (gjay < 0.6). Higher &,y values are found when

Geosci. Model Dev., 14, 2371-2417, 2021
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Table 3. Globally summed mean values and corresponding biases.

C. Seiler et al.: Benchmarking CLASSIC - Part 2

Variable Ref. ID Model ID Ref. Model Bias Bias (%) Unit Period

GPP FluxCom CLASSIC.CRUJRAV2 11541  131.11 15.70 13.60 PgCyr~! 19802013
GPP FluxCom CLASSIC.GSWP3W5E5 11531  124.23 8.92 774 PgCyr! 1980-2013
GPP FluxCom CLASSIC.CRUNCEP 11539  119.87 4.48 3.88 PgCyr! 1980-2013
GPP GOSIF CLASSIC.CRUJRAV2 130.01  127.84 —2.17 —1.67 PgCyr! 20002017
GPP GOSIF CLASSIC.GSWP3W5E5  129.61  120.02 —9.59 —7.40 PgCyr! 2000-2016
GPP GOSIF CLASSIC.CRUNCEP 12973 11660 —13.13 —10.12 PgCyr~! 2000-2016
GPP MODIS CLASSIC.CRUJRAV2 12147  133.07 11.60 9.55 PgCyr! 2000-2016
GPP MODIS CLASSIC.GSWP3W5E5  121.33  125.29 3.96 326 PgCyr! 2000-2016
GPP MODIS CLASSIC.CRUNCEP 12146  121.74 0.28 023 PgCyr ! 2000-2016
NEE CT2019 CLASSIC.CRUJRAV2 —4.15  —4.19 —0.04 —0.96 PgCyr! 20002017
NEE CT2019 CLASSIC.GSWP3W5E5  —4.18  —4.36 —0.18 —431 PgCyr! 2000-2016
NEE CT2019 CLASSIC.CRUNCEP —419  —4.60 —0.41 —9.79 PgCyr! 2000-2016
NEE FluxCom CLASSIC.CRUJRAV2 -24.88 3.54 21.34 85.77 PgCyr! 19802013
NEE FluxCom CLASSIC.GSWP3W5E5 —24.85  —3.87 20.98 8443 PgCyr~! 1980-2013
NEE FluxCom CLASSIC.CRUNCEP —24.88  —4.13 20.75 83.40 PgCyr! 1980-2013
FIRE CT2019 CLASSIC.CRUJRAV2 2.88 1.82 —1.06 —36.81 PgCyr~! 20002017
FIRE CT2019 CLASSIC.GSWP3WS5E5 2.90 2.70 —0.20 —6.90 PgCyr! 2000-2016
FIRE CT2019 CLASSIC.CRUNCEP 2.90 2.16 —0.74 —25.52 PgCyr~! 2000-2016
BURNT ESACCI CLASSIC.CRUJRAV2 461 3.31 —130 —2820 10°km%yr~! 2001-2017
BURNT ESACCI CLASSIC.GSWP3WS5E5 4.62 5.27 0.65 1407 10 kmZyr~! 20012016
BURNT ESACCI CLASSIC.CRUNCEP 4.62 4.05 —0.57 —1234 100km?yr~! 2001-2016
BURNT GFED4S CLASSIC.CRUJRAV2 4.56 3.32 —124 =27.19 10°km?yr~! 2001-2015
BURNT GFED4S CLASSIC.GSWP3W5E5 4.56 5.29 0.73 1601  10°km?yr~!  2001-2015
BURNT GFED4S CLASSIC.CRUNCEP 4.56 4.06 —0.50  —10.96 10° kmZyr~! 2001-2015
AGB GEOCARBON  CLASSIC.CRUJRAV2 21453 44225 22772 106.15 PgC 1980-2017
AGB GEOCARBON CLASSIC.GSWP3W5E5 21450  384.31 169.81 79.17 PgC 1980-2017
AGB GEOCARBON  CLASSIC.CRUNCEP 21453  364.94 150.41 70.11 PgC 1980-2017
CSOIL  HWSD CLASSIC.CRUJRAV2 1199.32  1108.79  —90.53 —7.55 PgC 1980-2017
CSOIL  HWSD CLASSIC.GSWP3W5E5 119849 102348 —175.01 —14.60 PgC 1980-2017
CSOIL  HWSD CLASSIC.CRUNCEP 119826 95557 —242.69 —2025 PgC 1980-2017

evaluating the model against FluxCom. However, it must be
noted that interannual variability patterns from FluxCom are
not reliable (Jung et al., 2020). Spatial patterns of GPP are
well captured, with values of o close to 1 and correlation
coefficients around 0.91. The corresponding overall scores
range from 0.58 (FluxCom) to 0.67 (MODIS), with higher
scores when forcing CLASSIC with CRUJRAv2 (Fig. 9).

3.9 Ecosystem respiration

Annual mean biases of RECO are reasonably small across
FLUXNET sites, with mean biases ranging from +5 % to
412 %, depending on the forcing (Fig. 5). Looking at the
spatial distribution of FLUXNET sites suggests that the pos-
itive biases are more evident in the NH extratropics rather
than in the tropics (Fig. 2b). Larger biases are present when
comparing CLASSIC with FluxCom; however, those values
are not reliable as FluxCom underestimates ecosystem res-
piration in the tropics (Jung et al., 2020). Other statistical
metrics derived from FLUXNET data suggest that CLASSIC

Geosci. Model Dev., 14, 2371-2417, 2021

reproduces ecosystem respiration reasonably well (&rmge &
0.75, 0 < 1, &jay ® 0.66, 0 =~ 1.0, R ~0.69) (Fig. 5). The
corresponding overall score is 0.64 (Fig. 9). This score value
is insensitive to the choice of forcing.

3.10 Net ecosystem exchange

Globally accumulated annual mean NEE computed from
CT2019 is —4.2PgCyr~! for the period 2000-2016
(Table 3). The corresponding value from FluxCom is
—24.9Pg Cyr~! for the period 1980-2013, which is unreal-
istic and due to an underestimation of ecosystem respiration
in the tropics (Jung et al., 2020). CLASSIC’s estimate of an-
nual mean NEE ranges from —4.2 to —4.6 PgC yr~! (2000~
2016), which corresponds to a bias of about —1 % to —10 %
when compared against CT2019, depending on the meteo-
rological forcing. However, much larger biases apply when
evaluating CLASSIC against FLUXNET (+88 %; Figs. 2c
and 5).

https://doi.org/10.5194/gmd-14-2371-2021
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Figure 11. (a) Zonal mean values and (b) corresponding biases for heat fluxes and variables related to the water cycle.

Zonal mean NEE patterns resemble values from CT2019
to a certain degree (Fig. 12). The strength of the carbon sink
is modeled to be stronger in the tropics (—0.15gCm~2d~")
and weaker in the extratropics (+0.10gCm~2d~") com-
pared to CT2019. FLUXNET data confirm the tendency to-
wards a positive bias, i.e. weaker sink, in the NH extratrop-
ics (Fig. 2c). In the tropics, however, the sign of the bias
is mixed, and the number of sites is too small to confirm
whether or not CLASSIC overestimates the strength of the
carbon sink at low latitudes.

Hovmoller diagrams suggest that CLASSIC reproduces
the general pattern of the seasonal NEE cycle in the extra-
tropics, where the strength of the carbon sink is strongest

https://doi.org/10.5194/gmd-14-2371-2021

during the warm period (Fig. A18). Other statistical met-
rics suggest a considerable mismatch between model and
reference NEE (eymge > 1, 6 > 1, and R < 0.2). The corre-
sponding overall scores are 0.47 for FLUXNET and 0.53 for
CT2019 (Fig. 9).

3.11 Area burned and resulting emissions

Wildfires are estimated to burn an area of about 4.6x
10 km? yr—! (ESACCI from 2001-2017 and GFEDA4S
from 2001-2015), causing emissions of about 2.9 Pg C yr~!
(CT2019, 2000-2017) (Table 3, where BURNT refers to
area burned and FIRE refers to the associated emissions).
CLASSIC reproduces the spatial extent of wildfires well con-

Geosci. Model Dev., 14, 2371-2417, 2021
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Figure 12. (a) Zonal mean values and (b) corresponding biases for variables related to the carbon cycle.

sidering the uncertainty of the meteorological forcing, with
biases ranging from —28 % when forcing CLASSIC with
CRUJRAV2, to +14 % for GSWP3WS5ES. The higher frac-
tional area burned values in GSWP3WS5ES5 are not related
to precipitation, as GSWP3WS5ES is the wettest of the three
forcing data sets across all latitudes and seasons. Instead,
GSWP3WS5ES has larger values in near-surface wind speeds
compared to the other forcing data sets, which increase the
probability of wildfires. Model values for emissions from

Geosci. Model Dev., 14, 2371-2417, 2021

wildfires tend to be lower than observed, with biases rang-
ing from —37 % (CRUJRAvV2) to —7 % (GSWP3WS5EYS).
CLASSIC reproduces the zonal mean pattern of both vari-
ables well, with values that are highest at 10°S and 10° N
(Fig. 12). The sign of the zonal mean bias is consistent be-
tween both variables. Biases tend to be negative in the hu-
mid parts of the tropics and positive in the drier parts of the
tropics (Figs. 12 and A19). CLASSIC reproduces the sea-
sonality of both variables well, with lower values when the
solar zenith angle in the tropics is small (Figs. A20 and A21),

https://doi.org/10.5194/gmd-14-2371-2021
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which is indicative of the position of the intertropical conver-
gence zone. While biases are most evident in the tropics, the
model also underestimates fractional area burned and asso-
ciated emissions in the boreal forests. Other statistical met-
rics suggest that considerable differences between model and
reference values remain (g;nge = 1.0, 8 > 2 months, gj,y ~ 1,
and R <0.51) (Fig. 5). The resulting overall scores for frac-
tional area burned and emissions from fires are 0.51 and 0.47,
respectively (Fig. 9). These score values are not very sensi-
tive to the choice of forcing (A Soverann < 0.01).

3.12 Vegetation biomass

Reference values from GEOCARBON estimate globally ac-
cumulated AGB with 214.5PgC. The corresponding val-
ues from CLASSIC range from 364.9PgC (+70%) to
442.3Pg C (4106 %) (Table 3). The bias is largest between
20° N and 40° N, in particular in the eastern US and in East
Asia (Figs. 12 and A22a). Comparing CLASSIC against veg-
etation carbon (i.e. above- and below-ground living biomass;
CVEQG) for the tropics provided by Saatchi et al. (2011)
suggests smaller biases (4+2% for CRUNCEP to +33 %
for CRUJRAV2) (Figs. 5, 12, and A22b). Spatial correla-
tions are weak, with R < 0.62 for above-ground biomass and
R < 0.71 for vegetation carbon (Fig. 5). The corresponding
overall scores are 0.55 (ASoveranl = 0.01) for above-ground
biomass and 0.68 (A Soverann = 0.05) for vegetation carbon in
the tropics (Fig. 9).

To investigate differences between CLASSIC and GEO-
CARBON in greater detail, we evaluate model and refer-
ence above-ground biomass values against forest inventory
data (FOS). The comparison shows a larger negative bias
for GEOCARBON (—50%) and a smaller negative bias
for CLASSIC (—3 % for CRUJRAV2 to —21 % for CRUN-
CEP) (Figs. 5 and 2d). This finding suggests that GEOCAR-
BON may be subject to considerable uncertainties, which
may contribute to the large bias when evaluating CLASSIC
against GEOCARBON. More forest inventory data are re-
quired to reach a conclusive result, as the current spatial cov-
erage of inventory plots provided by FOS is modest. Evalu-
ating CLASSIC against FOS yields an overall score of 0.64
(Fig. 9).

3.13 Soil carbon

The global stock of soil carbon (CSOIL) is estimated with
1198 Pg C (HWSD). The corresponding values from CLAS-
SIC range from about 956 PgC (—20%; CRUNCEP) to
1109 Pg C (—8 %; CRUJRAV2) (Table 3). CLASSIC repro-
duces the zonal mean patterns of soil carbon well, with a
tendency for negative biases in the Arctic (—10kgCm™2)
(Fig. 12). Some of this bias is related to a small number
of grid cells at high latitudes with particularly large biases
(—40 kng_z) (Fig. A23a). The higher values in the ref-
erence data may be related to the presence of permafrost
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and peatland, which are currently not represented in CLAS-
SIC. The spatial variability of soil carbon is well repro-
duced (o = 0.92), but the spatial correlation is rather weak
(R ~0.5) (Fig. 5). The corresponding overall score is 0.68
(Asoverall = 001) (Flg 9)

3.14 Leaf area index

Evaluating CLASSIC with gridded LAI data from AVHRR
(1982-2010) and MODIS (2000-2009) suggests large
positive global mean biases that range from +31 %
(+0.42m2m~2) to +59% (+0.88m~2m~2), depending
on the forcing and reference data (Fig. 5). While CLASSIC
reproduces the general pattern of zonal mean LAI reason-
ably well, the model has a positive bias across most lati-
tudes (Fig. 12). However, biases have a local minimum at
the Equator, especially when using MODIS as a reference.
All six evaluations tend towards positive biases in forested
regions of the NH extratropics and the drier parts of the trop-
ics (Fig. A23b). In the more humid tropics of the Amazon
and Congo basin, biases range from negative to positive val-
ues, depending on the forcing and reference data. Hovmoller
diagrams show that the positive bias in the NH extratropics
occurs mainly during the cold season, suggesting a possi-
ble relation with snow, leaf shedding, and/or the larger solar
zenith angle (Fig. A24). For most of the remaining months
and latitudes, LAI biases range from positive to negative bi-
ases, suggesting that modeled values are reasonably accurate
when considering the uncertainty of the meteorological forc-
ing and reference data.

Other statistical metrics suggest further differences be-
tween model and reference LAI. Values of &g are higher
than for most other variables (0.99 to 1.31), and time lags in
seasonal peaks range between 1 and 2 months (Fig. 5). The
spatial variability of LAI is considerably larger for model
data than gridded reference data (o ranges from 1.27 to
1.66), and the correlation coefficients are reasonable but not
impressive (0.7 to 0.8). The corresponding overall scores
are 0.49 (A Soverain = 0.01) and 0.53 (A Soverant = 0.03) when
evaluating CLASSIC against gridded LAI reference data
from MODIS and AVHRR, respectively (Fig. 9).

To investigate the apparent LAI bias further, we evalu-
ate model and reference LAI values with in situ measure-
ments of maximum LAI provided by ORNL. The compar-
isons show larger negative biases for MODIS (—37 %) and
AVHRR (—33 %), and smaller negative biases for CLASSIC
(=19 % to —24 %) (Figs. 5 and 2f for CLASSIC only). This
suggests that (i) it is unlikely that CLASSIC overestimates
maximum LAI, and (ii) the large positive LAI bias discussed
above may in part be due to an underestimation of LAI by the
gridded reference data set. Furthermore, evaluating CLAS-
SIC against in situ LAI observations from CEOS shows mean
biases that range from +1 % to +22 % (Figs. 5 and 2e). The
corresponding values for MODIS and AVHRR are —6 % and
—4 %, respectively (not shown). Given these findings, we

Geosci. Model Dev., 14, 2371-2417, 2021
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Figure 13. (a) Benchmark scores computed from reference data only, (¢) mean model ensemble skill scores, and (b) corresponding score

difference.

conclude that the large positive LAI found for CLASSIC
when evaluated against AVHRR and MODIS must be inter-
preted with caution. One possible reason for lower LAI in
satellite-based reference data at high latitudes is the problems
associated with LAI retrievals during winter months when
the sun is low and the surface is snow covered.

3.15 Benchmark scores derived from reference data
only

Benchmark scores are produced by comparing two indepen-
dent reference data sets (Fig. 3). This exercise fulfills three
purposes. First, benchmark scores quantify observational un-
certainty, where lower values imply larger uncertainties. Sec-

Geosci. Model Dev., 14, 2371-2417, 2021

ond, we can evaluate the quality of gridded products using in
situ measurements. Third, comparing model scores against
benchmark scores shows how well CLASSIC performs rela-
tive to the performance of a reference data set. The compar-
ison of two reference data sets is limited to the time period
for which both data sets overlap.

Our results demonstrate that most benchmarks are con-
siderably low, suggesting that observational uncertainties are
large. For most variables, model skill scores are very similar
to benchmark skill scores, implying that CLASSIC performs
similarly to a reference data set. In some cases, CLASSIC
even outperforms gridded reference data sets when evaluat-
ing gridded reference data and model output against in situ
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measurements. The remaining section discusses these find-
ings in more detail.

Contrary to our expectations, most benchmark scores are
far below unity (Fig. 13). Only two variables show Soverall
values equal to or greater than 0.8 (net surface radiation and
net SW radiation). The largest uncertainties are found for
NEE, with Sgyeran = 0.49 when comparing CT2019 against
FLUXNET. Even lower score values are found when eval-
uating FluxCom NEE against FLUXNET due to the known
limitations of the FluxCom data set discussed in Sect. 2.4.2.

Comparing gridded reference data against in situ measure-
ments shows subtle differences in how well gridded prod-
ucts perform for the same variable. For net surface radia-
tion, Soverall Values range from 0.79 for CLASSTr to 0.83 for
CERES when evaluated against FLUXNET. For latent heat
flux, CLASSr (Soveranl = 0.71) performs slightly better than
FluxCom (Sgverant = 0.68). For sensible heat flux, CLASSr
and FluxCom perform equally well (Soveran = 0.69). For
snow water equivalent, the blended multi-reference mean
data (ECCC; Soveral = 0.66) perform very similarly to the in-
dividual reference data (Soyeralr: 0.64 to 0.66) when evaluated
against in situ measurements provided by Mortimer et al.
(2020). For GPP, the Soveran values are highest for GOSIF
(0.66), followed by MODIS (0.65) and FluxCom (0.63) when
evaluated against FLUXNET. In the case of NEE, Soveran val-
ues are higher for FluxCom (0.56) than for CT2019 (0.49).
However, it must be noted that the majority of FLUXNET
sites are located in the NH extratropics, implying that cor-
responding scores reflect the performance in primarily non-
tropical regions. For LAI the Sgyerann values are 0.61 for
MODIS and 0.60 for AVHRR when evaluated against in
situ measurements from ORNL and 0.74 (MODIS) and 0.77
(AVHRR) when compared against data from CEOS.

In most cases, model skill score values are very similar
to the corresponding benchmark score values. For instance,
evaluating CERES net surface radiation against FLUXNET
yields Soveral = 0.83. The corresponding mean score value
from all three CLASSIC ensemble members is 0.80. For a
number of cases, the CLASSIC ensemble performs just as
well as independent reference data sets. For instance, Soverall
values for LW radiation are both 0.8 when evaluating ei-
ther GEWEXSRB against CERES or the CLASSIC ensem-
ble against CERES. In three cases (fractional area burned,
LAI and snow water equivalent), model scores and bench-
mark scores differ by more than 0.1, which is discussed next.

The Sgveran benchmark score for fractional area burned
is 0.62 (GFED4S versus ESACCI) and the correspond-
ing model skill score is 0.51 (CLASSIC ensemble ver-
sus ESACCI). The score difference is driven by deficien-
cies in reproducing spatial patterns (ASgisx = —0.27). For
LAI the Soveran benchmark score is 0.75 (AVHRR versus
MODIS) and the Sgyeran model score is 0.49 (CLASSIC en-
semble versus MODIS). This difference is primarily driven
by lower model skill scores in Spjas and Symse. However, in
Sect. 3.14, we conclude that LAI biases derived from grid-
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ded reference data must be interpreted with caution. Com-
paring LAI benchmark scores derived from in situ measure-
ments (AVHRR versus ORNL, Syveranl = 0.60) shows much
greater similarity with the corresponding model skill scores
(CLASSIC ensemble versus ORNL, Soyerann = 0.63). Similar
results apply when conducting the same analysis with LAI
from MODIS rather than AVHRR.

For snow water equivalent, the Soveral benchmark skill
score exceeds the corresponding model skill score by 0.11
when evaluating Crocus and the CLASSIC ensemble against
GS3. However, using in situ measurements yields bench-
mark and model skill scores that are more similar. For in-
stance, evaluating the snow water equivalent reference en-
semble ECCC and the CLASSIC ensemble against data from
Mortimer et al. (2020) yields identical Soyeral values (0.66).

For some variables, CLASSIC even outperforms gridded
reference data when evaluated against in situ observations.
This applies to net surface radiation from CLASSTr, latent
heat flux from FluxCom, snow water equivalent from Cro-
cus, GS3, and MERRA-2, GPP from FluxCom and MODIS,
and LAI from MODIS and AVHRR.

To rank model performance by variable, we compute the
average model-benchmark score difference across all eval-
uations for each variable. Following this approach, model
performance increases as follows, where the average model-
benchmark score differences are provided in parenthesis:
fractional area burned (—0.12), runoff (—0.1), soil heat flux
(—0.09), LAI (—0.07), net SW radiation (—0.06), NEE
(—0.05), above-ground biomass (—0.03), GPP (—0.03), sur-
face albedo (—0.02), snow water equivalent (—0.01), net sur-
face radiation (—0.01), sensible heat flux (—0.01), net LW
radiation (0.01), latent heat flux (0.03), and ecosystem respi-
ration (0.03). This ranking excludes the FluxCom NEE eval-
uation against CT2019 due to the unrealistic FluxCom NEE
values in the tropics. To conclude, comparing model skill
scores against benchmark scores derived from reference data
suggests that model performance is reasonably good when
considering the uncertainties associated with the reference
data.

4 Discussion

We begin our discussion by comparing our findings with
the skill scores presented for CLASS-CTEM by Friedling-
stein et al. (2019). While our results are largely consistent,
we can now provide more insights that facilitate the inter-
pretation of those scores. Our findings show that the poor
performance of LAI is mainly due to a large positive bias
that occurs in the NH extratropics during the cold season.
An evaluation against in situ LAI measurements shows that
biases can be positive, negative, or close to zero, depend-
ing on the respective forcing and in situ reference data set.
Furthermore, CLASSIC performs very similar to MODIS
and AVHRR when comparing all three data sets against in
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situ LAI measurements. Also, evaluating MODIS against
AVHRR yields an overall score of 0.75, which implies a con-
siderable mismatch between both reference data sets. Given
the uncertainties in remotely sensed LAI retrievals discussed
in Sect. 2.4.2, it is very possible that the mismatch between
modeled and gridded reference LAI is, at least to some ex-
tent, due to deficiencies in remotely sensed LAI

The NEE scores presented in Friedlingstein et al. (2019)
are based on in situ observations and empirically upscaled
eddy covariance measurements by Jung et al. (2009). The
latter presents an earlier version of the FluxCom data set em-
ployed in this study. Both data sets have a much stronger car-
bon sink in the tropics compared to results from inversion
models (Jung et al., 2020). Potential reasons for this mis-
match include (i) a sampling bias towards ecosystems with
a large carbon sink, (ii) missing predictor variables related
to disturbance and site history, and (iii) biases of eddy co-
variance NEE measurements, possibly due to nighttime ad-
vection of carbon dioxide under tall tropical forest canopies
(Jung et al., 2020). Furthermore, the interannual variability
of FluxCom data is considerably lower compared to results
from inversion methods. Evaluating FluxCom and CLASSIC
against the inversion model results from CT2019 shows that
the model outperforms FluxCom. Furthermore, the NEE skill
scores of CT2019 and CLASSIC are similar when assess-
ing both data sets against FLUXNET (0.49 and 0.47, respec-
tively). We conclude that the low NEE score presented in
Friedlingstein et al. (2019) is mainly a sign of observational
uncertainties rather than model deficiencies.

The overall score (Soyeral) Values documented in this study
are similar to the ones reported by Melton et al. (2020). The
values are 0.66 (0.69) for GPP, 0.71 (0.66) for HFLS, 0.68
(0.66) for HESS, 0.47 (0.44) for NEE, 0.64 (0.65) for RECO,
and 0.8 (0.82) for RNS, where values in parenthesis corre-
spond to results from Melton et al. (2020). The fact that both
approaches yield similar results suggests that a comparison
of global model output and eddy covariance data at the grid
cell level provides meaningful results. This finding implies
that the low scores for NEE documented here are not due to
the fact that we used global rather than site-specific model
inputs. However, it must be noted that interpreting the dif-
ferences between both studies is challenging, given that our
evaluation is based on 204 sites, while Melton et al. (2020)
used 31 sites. Furthermore, our approach averages observa-
tions across sites that are located within the same model grid
cell and cover the same time period.

Our benchmarking approach is subject to limitations,
which are discussed next. Evaluating CLASSIC against eddy
covariance measurements has numerous shortcomings. First,
eddy covariance measurements from FLUXNET lack energy
balance closure, where sensible and latent heat fluxes are
about 20 % lower compared to the available energy (Wilson
et al., 2002). Second, FLUXNET data are subject to gaps,
which often occur when conditions are unsuitable for making
measurements. Third, eddy covariance measurements have a
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much smaller footprint size (Schmid, 1994) compared to our
grid cell size of 2.8125° x 2.8125°. The spatial mismatch im-
plies that the measurements are not necessarily representa-
tive for the area covered by the grid cell. Considerable differ-
ences between measured and modeled values are therefore
expected. Finally, the periods of evaluation differ among ref-
erence data sets. For instance, LAI data from MODIS and
AVHRR cover the periods 2000-2017 and 1982-2010, re-
spectively. Three variables assessed in this study were eval-
uated against one reference data set only, namely soil mois-
ture, CO, emissions from fires, and soil carbon. It remains
therefore unclear to what extent model performance for those
three variables is affected by observational uncertainty. Fu-
ture evaluations will therefore consider additional reference
data sets, including soil carbon from the World Soil Informa-
tion Service (Batjes et al., 2017), as well as additional in situ
measurements for surface radiation provided by the Base-
line Surface Radiation Network (Driemel et al., 2018). Fu-
ture developments of AMBER could introduce a new score
that quantifies how well a model reproduces the sensitivity of
ecosystems to climate extremes, which are shown to affect
terrestrial ecosystems in profound ways (Reichstein et al.,
2013).

5 Conclusions

This study assesses the energy, water, and carbon cycle sim-
ulated by CLASSIC, using a wide range of in situ measure-
ments and globally gridded reference data. We account for
uncertainties in the meteorological forcing by evaluating an
ensemble of three model runs that are produced with differ-
ent forcing data sets. Uncertainties in the reference data are
accounted for by comparing model scores against benchmark
scores, which are based on reference data only. The method
has been implemented in a new R package referred to as
AMBER, which is publicly available at the Comprehensive
R Archive Network (https://CRAN.R-project.org/package=
amber, last access: 28 April 2021).

The main deficiencies that should be addressed in future
model development are the (i) positive albedo bias and re-
sulting SW radiation bias in parts of the NH extratropics and
Tibetan Plateau, (ii) out-of-phase seasonal GPP cycle in the
humid tropics of South America and Africa, (iii) lacking spa-
tial correlation of annual mean NEE measured by FLUXNET
sites, (iv) underestimation of fractional area burned and cor-
responding emissions in the boreal forests, (v) negative soil
organic carbon bias in high latitudes, and (vi) time lag in
seasonal LAI maxima in the NH extratropics. Recent model
development has started addressing some of those issues al-
ready, including the improvement of LAI seasonality through
the incorporation of non-structural carbohydrates, which will
form part of the next model version release (Asaadi et al.,
2018). Further research is required to separate the impact
of observational uncertainties on biases in LAI and above-
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ground biomass. For LAI, we propose to add additional
observation-based reference data sets and reduce the spatial
coverage to high-quality grid cells that have not been gap
filled. For biomass, we propose to extend our current forest
inventory database to achieve greater spatial coverage.

The complexity of LSMs and increasing availability of
global Earth observations demand comprehensive methods
of model evaluation. Such methods must account for uncer-
tainties associated with model inputs and observation-based
reference data to yield robust results. Future research could
explore the question of why meteorological forcing data sets
used in this study differ and how this uncertainty could be
reduced. A centralized and updated reference database that
includes spatially explicit information of uncertainties would
also be highly valuable.
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Our results show that model performance is very sensi-
tive to the choice of meteorological forcing and reference
data, confirming recent findings presented in Lawrence et al.
(2019) and Bonan et al. (2019). For instance, for about half
of all variables assessed in this study, the sign of the bias
changes depending on what forcing and reference data are
used. Comparing model and benchmark scores confirms that
CLASSIC performance is strongly affected by observational
uncertainty. Taking this uncertainty into account shows that
CLASSIC performs very well across a wide range of vari-
ables. Our results will serve as a baseline for guiding and
monitoring future CLASSIC development.

Geosci. Model Dev., 14, 2371-2417, 2021
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Appendix A

The computation of GPP is based on the parameterizations
by Farquhar et al. (1980), Collatz et al. (1991), and Collatz
et al. (1992), with some minor adjustments documented in
Arora and Boer (2003). The gross leaf photosynthesis rate
(Gy) is limited by the availability of photosynthetically ac-
tive radiation (PAR) (J,), RuBisCO (J,;), and the transport
capacity (Js) (Melton and Arora, 2016).

To compute GPP, G, is first downregulated in response to
nutrient availability and then multiplied with the fraction of
photosynthetically active radiation fpar:

1
fear = = (I = exp(—kn ). (AD)

where k, is the extinction coefficient that describes the nitro-
gen and time-mean PAR profile along the depth of the canopy
and A is the leaf area index (Arora et al., 2009).

A is computed as the product of specific leaf area (SLA)
and leaf biomass (Cr ), where

SLA =25.07; %, (A2)

and Y is a PFT-specific leaf life span measured in years.

Ecosystem respiration is the sum of autotrophic (R,) and
heterotrophic respiration (R},). Autotrophic respiration is the
sum of maintenance (Ry,) and growth respiration (Rg). Main-
tenance respiration is divided into respiration associated with
the maintenance of leaves (Ryr), stems (Rpys), and roots
(Rmr)- Leaf maintenance respiration is scaled from the leaf
to the canopy level using fpar, and growth respiration (Rg)
is estimated as a fraction of GPP. Heterotrophic respiration
is the sum of respiration from litter and soil carbon and is
affected by soil temperature and soil moisture.

The reflectivity of plant surfaces varies considerably
within the shortwave spectrum, with higher absorptivity in
the visible range due to photosynthesis and lower absorptiv-
ity in the near-infrared (IR) range. CLASSIC therefore com-
putes surface albedo for the visible and near-IR spectrums
separately. Both approaches are identical, except for the use
of different constants that affect the background albedos for
soil, vegetation, and snow, as well as canopy transmissivi-
ties. The surface albedo for the visible spectrum is the sum
of the visible albedos of (i) bare ground (aysg), (ii) open
snow (ctyssn), (iil) vegetation over bare ground (oyscn), and
(iv) vegetation over snow (s cs), multiplied with the corre-
sponding subarea fractional coverage (fg, fgs, fc, and fes,
respectively; Fig. A25):

Uys = fcavs,cn + fg(xvs,g + fcsavs,cs + fgsavs,sn- (A3)

The visible albedo of bare ground (cys o) ranges from the
visible albedo of wet soil (ctg w,v) to the visible albedo of dry
soil (agq,v), depending on the soil moisture content in the
first soil layer (6),1). The visible albedo of open snow (@ys sn)
depends on the all-wave albedo of the snowpack (ctspo). The
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visible albedo of vegetation over bare ground (ayscn) is the
product of the total vegetation albedo of a PFT over bare
soil (agn,n) and its corresponding fractional coverage ( fcan)-
The former depends on the canopy albedo (ayscx), the vis-
ible albedo of ground under vegetation canopy (cys,gc), the
sky view factor () ), and the visible transmissivity of the veg-
etation (Tys):

Aysn = (1 — x)otysex + X Tyslys gc- (A4)

The visible albedo of ground under vegetation canopy
(@ys,gc) is set equal to the visible albedo of bare ground (cys )
computed above. The canopy albedo oy cx is a function of
the fractional coverage of canopy by frozen water ( fsnow.c)
and the average background visible albedo of snow-covered
vegetation (Qys,we):

Uyscx = fsnow,cavs,wc + (1.0 - fsnow,c)avs,c- (AS)

The visible transmissivity of the vegetation (zys) follows
Beer’s law of radiation transfer:

Tys = eXp(—K Apai), (A6)

where « is the canopy extinction coefficient, which depends
on the cloud fraction, the solar zenith angle, and PFT-specific
constants. The sky view factor () expresses the degree of
closure of a canopy, and is a function of a PFT-specific con-
stant (c) and the plant area index (Apai), which is the sum of
A and stem area index:

X = exp(cApai)- (A7)

The same approach described for computing oyscn applies
to the visible albedo of vegetation over Snow (tyscs), €Xcept
that the terms feanctysn and oy gc are replaced with the cor-
responding terms for canopy over snow, i.e. fcans@yss and
Qys,sc-

The visible and near-IR albedos and canopy transmissiv-
ities obtained above are now used to compute the net SW
radiation for the canopy (K ) and underlying ground (or
snow) (K4 g):

Kig =t K (1 — atvsg) + nir Ky (1 — ning) and
K*,c = Ké/s (1 - avs,c) + Ki (1 - Olnir,c) - K*,g» (A8)

nir

where KV is the downwelling SW radiation, carets denote
values that are averaged over multiple PFTs, and the suffix
“nir” indicates that the respective variable applies to the near-
IR spectrum (Fig. A26). The net SW radiation is then the sum
of Ky, g, K« ¢, and the SW radiation transmitted into snow, if
present (Qirans)-

The net LW radiation for the canopy (L ;) and underlying
ground (or snow) (L ¢) follow the Stefan—Boltzmann law:

Lig=(1—3)oTe+ L' —oT(0)* and

Lic=(1-3%) (Li +aT(0)4—2aT§), (A9)
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where LV is the downwelling LW radiation, o is the Stefan—
Boltzmann constant, T is the effective canopy tempera-
ture, and 7'(0) is the temperature of the underlying ground
(Fig. A26).

The sensible heat flux from the ground (Qn,¢) and canopy
Qmu,c are given as

Ong = PaCp(T(0)pot — Tae)/rag and

QH,C = PaCp (Tc - Ta,c)/’”lm (A10)

where p, is the air density, ¢, is the specific heat capacity,
T (0)pot is the potential air temperature at the ground, T, is
the canopy air temperature, , ¢ is the surface resistance, and
1y is the leaf boundary resistance. Air density is a function of
air temperature and pressure as defined in the ideal gas law.
The resistances r, ¢ and ry are defined as

1
— =1.9%x1073(T(0), — Tacy)"/? and
ra,g

1
=0 D AR 107501 — exp(-0.T5AP),

(A11)
where T (0)y is the virtual potential temperature of the sur-
face, Tycy is the virtual temperature of the air in the canopy
space, vy is the wind speed in the canopy air space, f; is the
fractional coverage of each vegetation type i over the subarea
in question, and y; is a vegetation-dependent parameter that
incorporates the effects of leaf dimension and sheltering.

The latent heat flux from the ground (Qgg) and canopy
(QE,) are

QE,g = Lypa(q(0) — Qa,c)/ra,g and

QEc = Lypa(gec — qac)/ (ro +7¢), (A12)

where L, is the latent heat of vaporization, ¢ (0) is the spe-
cific humidity at surface, g, is the specific humidity of air
within vegetation canopy space, ¢. is the saturated specific
humidity at canopy temperature, and r. is the stomatal re-
sistance to transpiration. In the absence of water stress, the
unstressed r¢ is a function of K VA, and «. If soil moisture
is limiting transpiration, r. depends on air temperature, vapor
pressure deficit, and a soil moisture suction coefficient.
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The soil heat flux (G (0)) is estimated from the vertical soil
temperature gradient and the thermal conductivity of the first
three soil layers:

oT
G0)=—r—.
0z

(A13)
The same approach is applied in the presence of snow, where
A is replaced with the thermal conductivity of snow (Ag) and
T becomes the snow temperature (7). The latter depends on
the snow heat capacity, which is a function of snow water
content.

The surface and canopy energy balance are then expressed
as

Kig+Lig— QOng— Qrg—G(0)=0and

K*,c + L*,c - QH,C + QH,g - QE,C - AQS,C = 07 (A14)

where A Qg represents the change of energy storage in the
canopy. In practice, the terms on the left-hand side do not
necessarily add up to zero. CLASSIC attempts to approxi-
mate a zero net balance by slightly adjusting 7' (0) until the
absolute residual of the surface energy balance is less than
5.0 W m™2, or until the absolute value of the iteration step
most recently used is less than 0.01 K.

Geosci. Model Dev., 14, 2371-2417, 2021
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Figure Al. (a) Zonal mean values of meteorological forcing data and (b) corresponding difference between the individual forcing and the
mean of the three forcings, where rsds and rlds are the surface downwelling SW and LW radiation, respectively, tas is the near-surface air
temperature, pr is the precipitation, huss is the near-surface specific humidity, ps is the surface pressure, and sfcWind is the near-surface wind

speed.
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Figure A2. The left-hand column shows monthly values of (a) modeled (black) and observed (red) gross primary productivity, (c) residuals,
and (e) residuals of the anomalies. The right-hand column gives the corresponding model values for the (b) climatological mean seasonal
cycle, (d) monthly variability, and (f) monthly variability of anomalies. The data correspond to CLASSIC model output for the location of
an eddy covariance measurement site in the Netherlands (NL-Loo).
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(a) Net SW Radiation (evaluation ensemble bias, N = 6)
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(b) Net LW Radiation (evaluation ensemble bias, N = 6)
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Figure A4. Same as in Fig. 8 but for net SW radiation.
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(a) RLS Model Ensemble (N= 6) (b) RLS Reference Ensemble (N= 2) (c) RLS Mean Ensemble Bias (N= 12)
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Figure AS. Same as in Fig. 8 but for net LW radiation.

(a) ALBS Model Ensemble (N = 9) (b) ALBS Reference Ensemble (N= 3) (c) ALBS Mean Ensemble Bias (N = 27 )
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Figure A6. Same as in Fig. 8 but for surface albedo.
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(a) Latent Heat Flux (evaluation ensemble bias, N = 6)

=20 | mris-cuasse

HFLS-FluxCom

-40 CLASSIC CRUJRAV2 .
CLASSIC GSWP3WSES .

CLASSIC CRUNCEP model ensemble mean

v
& max ensemble bias
_60 L 1 1 1 1 1 1

-150 -100 -50 0 50 100 150

(%))
o
Wm™2

C. Seiler et al.: Benchmarking CLASSIC - Part 2

(b) Sensible Heat Flux (evaluation ensemble bias, N = 6)
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Figure A7. Same as Fig. 7 but for (a) latent heat flux and (b) sensible heat flux.
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(a) Soil Heat Flux (evaluation ensemble bias, N = 3) (b) Soil Moisture (evaluation ensemble bias, N = 3)
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Figure A8. Same as Fig. 7 but for (a) soil heat flux and (b) soil moisture in the top 10 cm.

(a) HFSS Model Ensemble (N = 6) (b) HFSS Reference Ensemble (N= 2) (c) HFSS Mean Ensemble Bias (N= 12)
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Figure A9. Same as in Fig. 8 but for sensible heat flux.
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) HFLS Model Ensemble (N= 6)

(b) HFLS Reference Ensemble (N= 2)
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(c) HFLS Mean Ensemble Bias (N = 12)
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Figure A10. Same as in Fig. 8 but for latent heat flux.

(a) HFG Model Ensemble (N = 3)

° Latitude

J FMAMUJU J A S OND

Figure A11. Same as in Fig. 8 but for soil heat flux.
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(a) MRSLL Model Ensemble (N= 3) (b) MRSLL Reference Ensemble (N= 1) (c) MRSLL Mean Ensemble Bias (N= 3)
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Figure A12. Same as in Fig. 8 but for soil moisture.
(a) Runoff (evaluation ensemble bias, N = 3) (b) Snow Water Equivalent (evaluation ensemble bias, N = 12)
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Figure A13. Same as Fig. 7 but for (a) runoff and (b) snow water equivalent.
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(a) MRRO Model Ensemble (N= 3) (b) MRRO Reference Ensemble (N= 1) (c) MRRO Mean Ensemble Bias (N= 3)
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Figure A14. Same as in Fig. 8 but for runoff.

(a) SNW Model Ensemble (N = 12) (b) SNW Reference Ensemble (N= 4) (c) SNW Mean Ensemble Bias (N= 48)
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Figure A15. Same as in Fig. 8 but for snow water equivalent.
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(a) Gross Primary Productivity (evaluation ensemble bias, N = 9)

(b) Net Ecosystem Exchange (evaluation ensemble bias, N = 3)
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Figure A16. Same as Fig. 7 but for (a) gross primary productivity and (b) net ecosystem exchange.
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Figure A17. Same as in Fig. 8 but for gross primary productivity.
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(a) NEE Model Ensemble (N = 3) (b) NEE Reference Ensemble (N= 1)  (c) NEE Mean Ensemble Bias (N = 3)

15
Mean 1
. = 2
0 N
| °
-0.5 ¢
€
- L TL8
-15 @
-2
-25
Min
[0}
©
2
kS
'
o
1.2
Max 1
0.8
0.6
04 ~
m m 02 o
[
-02 E
i oEEm o
-0.6 (=]
-0.8
-1
T T T T T T 7T T -1.2
J FM A M J J A S OND J FM AMJ J A S OND J FM A M J J A S OND
Figure A18. Same as in Fig. 8 but for net ecosystem exchange.
(a) Fractional Area Burned (evaluation ensemble bias, N = 6) (b) Emissions from Fires (evaluation ensemble bias, N = 3)
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Figure A19. Same as Fig. 7 but for (a) fractional area burned and (b) emissions from wildfires.
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(a) BURNT Model Ensemble (N= 6) (b) BURNT Reference Ensemble (N = 2 )(c) BURNT Mean Ensemble Bias (N = 12)
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Figure A20. Same as in Fig. 8 but for fractional area burned.
(a) FIRE Model Ensemble (N= 3) (b) FIRE Reference Ensemble (N= 1) (c) FIRE Mean Ensemble Bias (N= 3)
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Figure A21. Same as in Fig. 8 but for emissions from wildfires.
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(a) Aboveground Living Biomass (evaluation ensemble bias, N = 3) (b) Vegetation Carbon (evaluation ensemble bias, N = 3)
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Figure A22. Same as Fig. 7 but for (a) above-ground living biomass and (b) vegetation carbon in the tropics.
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(a) Soil Carbon (evaluation ensemble bias, N = 3)

(b) Leaf Area Index (evaluation ensemble bias, N = 6)
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Figure A23. Same as Fig. 7 but for (a) soil organic carbon mass and (b) leaf area index.

(a) LAl Model Ensemble (N= 6)

(b) LAl Reference Ensemble (N= 2)

(c) LAI Mean Ensemble Bias (N= 12)
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Figure A24. Same as in Fig. 8 but for leaf area index.
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Figure A25. Contributions from the bare ground (brown), canopy
(green), and snow (white) to the total visible albedo of the land sur-
face. All variables are defined in the Appendix.
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Figure A26. Longwave and shortwave radiation fluxes between the
ground (brown), canopy (green), and overlying atmosphere. The
meaning of each arrow is given at its tail. All variables are defined
in the Appendix.

Geosci. Model Dev., 14, 2371-2417, 2021

C. Seiler et al.: Benchmarking CLASSIC - Part 2

https://doi.org/10.5194/gmd-14-2371-2021



C. Seiler et al.: Benchmarking CLASSIC - Part 2
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