
Geosci. Model Dev., 14, 2187–2203, 2021
https://doi.org/10.5194/gmd-14-2187-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

JlBox v1.1: a Julia-based multi-phase atmospheric
chemistry box model
Langwen Huang1,2 and David Topping2

1Department of Mathematics, ETH Zurich, Zurich, Switzerland
2Department of Earth and Environmental Science, The University of Manchester, Manchester, UK

Correspondence: David Topping (david.topping@manchester.ac.uk) and Langwen Huang (langwen.huang@math.ethz.ch)

Received: 13 October 2020 – Discussion started: 31 October 2020
Revised: 17 February 2021 – Accepted: 6 March 2021 – Published: 27 April 2021

Abstract. As our knowledge and understanding of atmo-
spheric aerosol particle evolution and impact grows, design-
ing community mechanistic models requires an ability to
capture increasing chemical, physical and therefore numer-
ical complexity. As the landscape of computing software and
hardware evolves, it is important to profile the usefulness
of emerging platforms in tackling this complexity. Julia is
a relatively new programming language that promises com-
putational performance close to that of Fortran, for example,
without sacrificing the flexibility offered by languages such
as Python. With this in mind, in this paper we present and
demonstrate the initial development of a high-performance
community mixed-phase atmospheric 0D box model, JlBox,
written in Julia.

In JlBox v1.1 we provide the option to simulate the chem-
ical kinetics of a gas phase whilst also providing a fully cou-
pled gas-particle model with dynamic partitioning to a fully
moving sectional size distribution, in the first instance. Jl-
Box is built around chemical mechanism files, using exist-
ing informatics software to parse chemical structures and
relationships from these files and then provide parameters
required for mixed-phase simulations. In this study we use
mechanisms from a subset and the complete Master Chemi-
cal Mechanism (MCM). Exploiting the ability to perform au-
tomatic differentiation of Jacobian matrices within Julia, we
profile the use of sparse linear solvers and pre-conditioners,
whilst also using a range of stiff solvers included within the
expanding ODE solver suite the Julia environment provides,
including the development of an adjoint model. Case studies
range from a single volatile organic compound (VOC) with
305 equations to a “full” complexity MCM mixed-phase sim-
ulation with 47 544 variables. Comparison with an existing

mixed-phase model shows significant improvements in per-
formance for multi-phase and mixed VOC simulations and
potential for developments in a number of areas.

1 Introduction

Mechanistic models of atmospheric aerosol particles are de-
signed, primarily, as a facility for quantifying the impact
of processes and chemical complexity on their physical and
chemical evolution. Depending on how aligned these models
are with the state of the science, they have been used for val-
idating or generating reduced-complexity schemes for use in
regional to global models (Zaveri et al., 2008; Riemer et al.,
2009; Amundson et al., 2006; Korhonen et al., 2004; Roldin
et al., 2014; Hallquist et al., 2009; Kokkola et al., 2018). This
is based on the evaluation that “full” complexity schemes are
too computationally expensive for use in large-scale models.
With this in mind, the community has developed a spectrum
of box models that focus on a particular process or experi-
mental facility (e.g. Riemer and Ault, 2019), or use a com-
bination of hybrid numerical methods to capture process de-
scriptions for use in regional to global models (e.g. Zaveri
et al., 2008; Kokkola et al., 2018). Recent studies are also
exploring coupling the latter with numerical techniques for
reducing systematic errors through assimilation of ambient
measurements (e.g. Sherwen et al., 2019).

With ongoing investments in atmospheric aerosol moni-
toring technologies, the research community continues to hy-
pothesise and identify new processes and molecular species
deemed important to improve our understanding of their im-
pacts. This continually expanding knowledge base of pro-

Published by Copernicus Publications on behalf of the European Geosciences Union.

2188 L. Huang and D. Topping: JlBox v1.1: a Julia-based multi-phase atmospheric chemistry box model

cesses and compounds, however, likewise requires us to ex-
pand our aerosol modelling frameworks to capture this in-
creased complexity. It also raises an important question about
the appropriate design of community-driven process mod-
els that can adapt to such increases in complexity, and also
about how we ensure our platforms exploit emerging compu-
tational platforms, if appropriate.

In this paper we present a new community atmospheric 0D
box model, JlBox, written in Julia. Whilst the first version of
JlBox, v1.1, has the same structure and automatic model gen-
eration approach as PyBox (Topping et al., 2018), we present
significant improvements in a number of areas. Julia is a rel-
atively new programming language, created with the under-
standing that “Scientific computing has traditionally required
the highest performance, yet domain experts have largely
moved to slower dynamic languages for daily work” (Ju-
lia Documentation: https://julia-doc.readthedocs.io/en/latest/
manual/introduction/, last access: 8 February 2021). Julia
promises computational performance close to that of For-
tran, for example, without sacrificing the flexibility offered
by languages such as Python (Perkel, 2019). In JlBox v1.1
we evaluate the performance of a one-language-driven sim-
ulation that still utilises automated property predictions pro-
vided by UManSysProp and other informatics suites (Top-
ping et al., 2018). The choice of programming language
when building new and sustainable model infrastructures is
clearly influenced by multiple factors. These include issues
around training, support and computational performance to
name a few. Python has seen a persistent increase in use
across the sciences, in part driven by the large ecosystem and
community-driven tools that surrounds it. This was the main
factor behind the creation of PyBox. Likewise, in this pa-
per we demonstrate that the growing ecosystem around Julia
offers a number of significant computational and numerical
benefits to tackle known challenges in creating aerosol mod-
els using a one-language approach. Specifically, we make use
of the ability to perform automatic differentiation of Julia
code using tools now available in that ecosystem. In JlBox
we demonstrate the usefulness of this capability when cou-
pling particle-phase models to a gas-phase model where de-
riving an analytical jacobian might be deemed too difficult.

In the following sections we describe the components in-
cluded within the first version of JlBox, JlBox v1.1. In Sect. 2
we briefly describe the theory on which JlBox is based, in-
cluding the equations that define implementation of the ad-
joint sensitivity studies. In Sect. 3 we discuss the code struc-
ture, including parsing algorithms for chemical mechanisms,
and the use of sparse linear solvers and pre-conditioners,
whilst also using a range of stiff solvers included within
the expanding ODE solver suite DifferentialEquations.jl. In
Sect. 4 we then demonstrate the computational performance
of JlBox relative to an existing community of gas-phase and
mixed-phase box models, looking at a range of mechanisms
from the Master Chemical Mechanism (MCM; Jenkin et al.,
1997, 2002). In Sect. 5 we discuss the relative merits of Jl-

Box in comparison with other models whilst presenting a
narrative on required future developments. We present JlBox
as a platform for a range of future developments, including
the addition of internal/external aerosol processes currently
not captured. It is our hope that the demonstration of Julia-
specific functionality in this study will facilitate this process.

2 Model description

The gas-phase reaction of chemicals in atmosphere follows
the gas kinetics equation:

d
dt
[Ci] = −

∑
j

rjSij , rj = kj
∏
∀i,Sij>0

[Ci]
Sij , (1)

where [Ci] is the concentration of compound i, rj is the re-
action rate of reaction j , kj is the corresponding reaction rate
coefficient, and Sij is the value of the stoichiometry matrix
for compound i and j . The above ordinary differential equa-
tion (ODE), Eq. (1), fully determines the concentrations of
gas-phase chemicals at any time given reaction coefficients
kj , a stoichiometry matrix {Sij } and initial values. All chem-
ical kinetic demonstrations in this study are provided by the
MCM (Jenkin et al., 1997, 2002), but the parsing scheme
allows for any mechanism provided in the standard Kinet-
ics PreProcessor (KPP) format (Damian et al., 2002). When
adding aerosol particles to the system, more interactions have
to be considered in order to predict the state of the sys-
tem, including concentrations of components in the gas and
particulate phase. In JlBox v1.1 we only consider the gas–
aerosol partitioning to a fully moving sectional size distribu-
tion, recognising the need to use hybrid sectional methods
when including coagulation (e.g. Kokkola et al., 2018). We
discuss these future developments in Sect. 5. We use bulk-
absorptive partitioning in v1.1 where gas-to-particle parti-
tioning is dictated by gas-phase abundance and equilibrium
vapour pressures above ideal droplet solutions. This process
is described by the growth–diffusion equation provided by
Jacobson (2005) (pages 543, 549, 557, 560).

d[Ci,k]
dt
= 4πRknkDeff

i,k

(
[Ci] − [C

s
i,k]
)
, (2)

[Cs
i,k] = exp

(
2mw,i

σRkρiR∗T

)
(3)

·
[Ci,k]

[Ccore,k]× core_diss+
∑
i[Ci,k]

ps
iR∗T

NA
,

Deff
i,k =

D∗i

1+Kn,i
(

1.33Kn,i+0.71
Kn,i+1 +

4
3

1−αi
αi

) , (4)

where [Ci,k] is the concentration of compound i component
in size bin k, [Cs

i,k] is the effective saturation vapour con-
centration over a curvature surface of size bin k (consider-
ing Kelvin effect), Deff

i,k is the effective molecular diffusion
coefficient, Rk is the size of particles in size bin k, nk the

Geosci. Model Dev., 14, 2187–2203, 2021 https://doi.org/10.5194/gmd-14-2187-2021

https://julia-doc.readthedocs.io/en/latest/manual/introduction/
https://julia-doc.readthedocs.io/en/latest/manual/introduction/

L. Huang and D. Topping: JlBox v1.1: a Julia-based multi-phase atmospheric chemistry box model 2189

respective number concentration of particles, [Ccore,k] is the
molar concentration of an assumed involatile core in v1.1 that
may dissociate into core_diss components. For example, for
an ammonium sulfate core, core_diss is set to 3.0, mw,i is
the molecular weight of condensate i, ρi is liquid-phase den-
sity, ps

i is pure component saturation vapour pressure, D∗i is
the molecular diffusion coefficient, Kn,i is Knudsen’s num-
ber, αi is accommodation coefficient, σ is the surface tension
of the droplet, R∗ is the universal gas constant, NA is Avo-
gadro’s number, and T is temperature.

As we have to keep track of the concentration of every
compound in every size bin, this significantly increases the
complexity of the ODE relative to the gas-phase model:

dy
dt
= f (y;p),y = (C1,C2, . . .,Cn;C1,1,C2,1, . . .,Cn,m), (5)

where y represents the states of the ODE, n is the number
of chemicals, m is the number of size bins, p is a vector of
parameters of the ODE, and f (y) is the RHS function implic-
itly defined by Eqs. (1) and (2). We extend the original ODE
state y with concentrations of each chemical on each size bin.
A simple schematic is provided in Fig. 1. Imagine there are
n= 800 components in the gas phase. In the configuration
displayed in Fig. 1, the first 800 cells hold the concentration
of each component in the gas phase. If our simulation has one
size bin, the proceeding cells hold the concentration of each
component in the condensed phase. If our simulation has two
size bins, the proceeding 800 cells hold the concentration
of each component in the second size bin and so on. The
gas-phase simulation of a mechanism with n= 800 chemi-
cals has to solve an ODE with 800 states, while the mixed-
phase simulation with m= 16 size bins will have 13 600
(= 800+ 800× 16) states. Meanwhile, the size of the Jaco-
bian matrix (required by implicit ODE solvers) will increase
in a quadratic way from 800× 800 to 13600× 13600.

Sensitivity analysis is useful when we need to investigate
how the model behaves when we perturb the model parame-
ters and initial values. One approach is to see how all the out-
puts change due to one perturbed value by simply subtracting
the original outputs from the perturbed outputs, or, in a local
sense, solving an ODE whose RHS is the partial derivative
of the respective parameter. However, this approach would
be very expensive when we want the sensitivity of a scalar
output with respect to all the parameters. This is often the
case when doing data assimilation. The adjoint method can
efficiently solve the problem. Imagine there is some scalar
function g(y), and we would like to compute its sensitivity
against some parameters p. Introducing the adjoint vector
λ(t) with the shape of g(y)’s gradient, the adjoint method
could compute this in two steps (Damian et al., 2002):

1. Solve the ODE Eq. (6) in a backward order.

2. Numerically integrate formula Eq. (7).

dλ
dt
=−

∂f (y;p)

∂y
λ, λ(tF)=

∂g

∂y
(tF) (6)

∂g

∂p
=

tF∫
t0

∂f (y;p)

∂p
λ(t)dt (7)

JlBox implements the adjoint sensitivity algorithm with
the help of an auto-generated Jacobian matrix ∂f (y;p)/∂y.
Users only need to supply the gradient function of the scalar
function with respect to ODE states ∂g/∂y as well as the
Jacobian function ∂f (y;p)/∂p of the RHS function with re-
spect to parameters so as to get the sensitivity of the scalar
function with respect to parameters ∂g/∂p at time tF. Both
are provided automatically through the automatic differenti-
ation provided by Julia.

3 Implementation

JlBox is written in pure Julia and is presently only dependent
on the UManSysProp Python package for parsing chemical
structures into objects for use with fundamental property cal-
culations during a pre-processing stage. The pre-processing
stage also includes extracting the rate function, stoichiometry
matrix and other parameters from a file that defines the chem-
ical mechanism using the common KPP format, followed by
a solution to the self-generated ODEs using implicit ODE
solvers. Specifically, the model consists of six parts:

1. Run a chemical mechanism parser.

2. Perform rate expression formulation and optimisation.

3. Perform RHS function formulation.

4. Create a Jacobian of RHS function.

5. Preparation and calculation for partitioning process.

6. Adjoint sensitivity analysis where required.

Figure 2 highlights the workflow of an implementation
of JlBox, used as either a forward or adjoint model. As de-
tailed in the section on Code availability, JlBox was designed
with both performance and ease of use in mind, where users
can download, install and test it as a package from the Julia
package manager in the command-line interface. To use the
model, one has to construct a configuration object containing
all the parameters and initial conditions that the model re-
quires and then supply it to JlBox’s run_simulation_*
function. The results are provided as a solution object from
DifferentialEquation.jl providing a state vector
at any time through interpolation (≥ 2 order), along with
the respective name vector. Examples can be found in the
example/ subfolder in the project repository which we re-
fer to in Sect. B.

https://doi.org/10.5194/gmd-14-2187-2021 Geosci. Model Dev., 14, 2187–2203, 2021

2190 L. Huang and D. Topping: JlBox v1.1: a Julia-based multi-phase atmospheric chemistry box model

Figure 1. Array layout for ODE states y in Eq. (5).

Figure 2. Schematic illustrating the structure of JlBox v1.1, whether in forward or adjoint configuration.

3.1 Mechanism parsing and property predictions

Like PyBox, JlBox builds the required equations to be solved
by reading a chemical mechanism file. In the examples pro-
vided here, we use mechanisms extracted from the Master
Chemical Mechanism (MCM) to build the intended model
for simulation. A preview of a mechanism file is given in
Listing 1.

There are two sections in each line of the mechanism file
separated by the : symbol: the first represents a single gas-
phase chemical reaction where reactants before the = symbol
will react with each other with a fixed ratio and produce the
products after the = symbol. For example, a A + b B =

c C + d D represents a units of A and b units of B will
react and produce c units of C and d units of D.

Upon reading each set of equations, JlBox will assign
unique numbers for reactants and products if encountered for
the first time; then it will fill in the stoichiometry matrix Sij
with stoichiometry coefficients where i is the number of the
equation (depicted at the beginning of each line) and j is
the number of the reactants and products. The stoichiome-
try matrix is firstly built as a list of triplets (i,j,Sij) for fast
insertion of elements, and then it is transformed into the com-
pressed sparse column (CSC) format, which is more memory
efficient for calculating the RHS of gas-kinetics.

Geosci. Model Dev., 14, 2187–2203, 2021 https://doi.org/10.5194/gmd-14-2187-2021

L. Huang and D. Topping: JlBox v1.1: a Julia-based multi-phase atmospheric chemistry box model 2191

Listing 1. Example of the MCM file.

The latter part of a line of the chemical mechanism file,
after the symbol :, represents the expression of reaction
rate coefficient kj (y;p). The expression consists of pre-
scribed combinations of basic arithmetic operators + - *
/ **, basic math functions, photolysis coefficients J(1),
. . . , J(61), ambient parameters and intermediate variables
which have explicit expressions determined by the chemi-
cal mechanism. The drawback of this approach is that pre-
processing is separated from simulation, and automatic code
generation could, in theory, introduce errors that are hard
to debug. However, such a drawback is avoided in JlBox
with the help of Julia’s meta-programming, which assem-
bles the function for calculating reaction rate coefficients
“on the fly”. Since the abstract representation of the func-
tion is in the tree format, JlBox also does constant fold-
ing optimisation to the function where expressions are re-
placed by their evaluated values if all of the values inside
the expressions are found to be constants. For example, the
expression 1.2*EXP(1000/TEMP) will be replaced by
34.340931863060504 given a constant temperature at
298.15 K. To further reduce computation, when a reaction
rate coefficient is constant, the related expression is deleted
from the function which is called at every time step to up-
date the coefficients, and the respective initial value of the
coefficient is set to be the constant.

The gas–aerosol partitioning process requires additional
pre-processing of several parameters of each compound re-
quired by the growth equation. These are listed in Eqs. (2) to
(4). Python packages UManSysProp (Topping et al., 2018)
and OpenBabel (O’Boyle et al., 2011) are called during the
pre-processing stage to calculate thermodynamic properties
required by those parameters.

3.2 Gas kinetics and gas–aerosol partitioning process

When solving the ODE, the RHS function of the gas-phase
kinetics firstly updates the non-constant rate coefficients
kj (y;p) and then constructs the reaction rate rj from concen-
trations of compounds [Ci], their stoichiometry matrix (Sij),
and rate coefficients kj .

rj = kj
∏
∀i,Sij>0

[Ci]
Sij (8)

Following this, the model calculates the rate of change
(loss/gain) of reactants and products in each equation and
sums the loss/gain of the same species across different equa-
tions using the following:

d
dt
[Ci] = −

∑
j

rjSij . (9)

There are two ways to implement this. The first projects
the structure to program instructions executed by the RHS
function. The second stores it as data and the RHS function
loops through the data to calculate the result.

The first method is intended to statically figure out the
symbolic expressions of the loss and gain for each species as
combinations of rate coefficients and gas concentrations, and
to generate the RHS function line by line from the relevant
expressions. This method is straightforward and fast, espe-
cially for small cases. However, it consumes lots of memory
and time for compiling when the mechanism file is large (i.e.
> 1000 equations).

The other approach is to use spare matrix manipulation
because of the sparse structure of the stoichiometry ma-
trix in atmospheric chemical mechanisms. Considering equa-
tion numbers as columns, compounds numbers as rows and
signed stoichiometry (positive for products and negative for
reactants) as values, most columns of the stoichiometry ma-
trix have limited (usually ≤ 4) nonzero values because most
equations have a limited number of reactants and products.
Therefore, the accumulated rate of change of each compound
can be expressed as a sparse matrix–vector product of the
stoichiometry matrix and the rates of equations vector while
the rates of equations vector can be calculated by loops with
cached indices. This method has comparable speed to the
previous one and consumes much less memory when com-
piling and running.

The gas–aerosol partitioning component of JlBox simu-
lates the condensational growth of aerosols in discrete size

https://doi.org/10.5194/gmd-14-2187-2021 Geosci. Model Dev., 14, 2187–2203, 2021

2192 L. Huang and D. Topping: JlBox v1.1: a Julia-based multi-phase atmospheric chemistry box model

bins where each particle has the same size. Please note that
as we use a fully moving distribution in v1.1, when we fur-
ther refer to a size bin we retain a discrete representation with
no defined limits per bin.

4
3
πnkρkR

3
k =mk (10)

mk =mcore,k +
∑
i

mi,k

mi,k =
mw.i[Ci,k]

NA

ρk =

(∑
i

mi,k

mkρi
+
mcore,k

mkρcore

)−1

JlBox computes the rate of loss/gain for gas-phase and
condensed-phase substances through all size bins. Firstly, for
each size bin k, the corresponding concentrations of each
compound in the condensed phase {[Ci,k]|∀i} are summed.
Then the model calculates all the values required by the RHS
of Eq. (2). As we adopted the moving bin scheme in v1.1,
it keeps track of the bin sizes Rk as they grow during the
process following formulas Eq. (10) where for each size bin
k, mk denotes mass of all the particles, mi,k denotes con-
densed mass of compound i, mcore,k denotes the mass of in-
organic core of the particles, and ρcore denotes the density of
inorganic core. Finally, the rate of change of a given species
d[Ci,k]/dt is summed across all bins to give the correspond-
ing loss/gain of gas-phase concentrations according to con-
servation law.

d
dt
[Ci] = −

∑
j

rjSij −
∑
k

d

dt
[Ci,k] (11)

The combination of the gas-phase Eq. (9) and condensed-
phase Eq. (11) rate of change expressions provides the over-
all RHS function Eq. (5) of a multi-phase.

Please note we explicitly simulate the partitioning of wa-
ter between the gaseous and condensed phase following ev-
ery other condensate. We appreciate this may significantly
reduce the run-time of the box model. However, in this in-
stance we wish to retain the explicit nature of the partition-
ing process before applying any simplifications, as we briefly
discuss in Sect. 5.2

3.3 Numerical methods and automatic differentiation

JlBox uses the DifferentialEquations.jl
library to solve the ODE, assembling the
RHS function in a canonical way: function
dydt!(dydt::Array{<:Real,1},
y::Array{<:Real,1}, p::Dict , t::Real).
There is a variety of solvers (> 100) available in the
DifferentialEquations.jl package, from which
we generally choose semi-implicit/implicit solvers including
Rosenbrock, singly diagonally implicit Runge–Kutta and

backward differentiation formula (BDF) types of solvers
as our problem is numerically stiff. Most of the available
solvers are adaptive meaning that they would choose every
time step in an adaptive sense to achieve some absolute
and relative errors given by the user. Higher error tolerance
allows larger time steps, resulting in faster simulation time
and vice versa. The error tolerance could also influence
the convergence of fully implicit ODE solvers due to the
non-linear nature of the ODE, so it may fail to converge if
the tolerance is too high. Note that native Julia ODE solvers
in the OrdinaryDiffEq.jl sub-package make use of
the parallel (dense) linear solver while the CVODE_BDF
solver in Sundials.jl sub-package does not. This could
mean that the native TRBDF2 solver could be faster than
CVODE_BDF on multiprocessor machines, although they
adopt similar algorithms. This would need to be profiled
across a range of examples.

Since all the states in the ODE (Eqs. 1, 2) represent the at-
mospheric abundance of compounds in each phase, it is im-
portant to preserve the non-negativeness of those states. This
can be ensured by rejecting any states with negative figures
and shrinking the time step. Users can specify whether to en-
able it in the configure object, and it is only available in native
Julia solvers in the OrdinarDiffEq.jl subpackage.

The Jacobian matrix of the RHS ∂f (y;p)/∂y is needed in
implicit ODE solvers as well as in adjoint sensitivity analy-
sis. The accuracy of the Jacobian matrix, however, has vari-
able requirements in each case. For implicit ODE solvers,
when doing forward simulations, the accuracy of the matrix
only affects the rate of convergence instead of the accuracy of
the result. Some methods like BDF and Rosenbrock–Wanner,
by design, could tolerate inaccurate Jacobian matrices (Wan-
ner and Hairer, 1996, p114). Meanwhile, for adjoint sensi-
tivity analysis, accurate Jacobian matrices are needed as they
explicitly appear in the RHS function of Eq. (6).

JlBox implements an analytical Jacobian function for both
gas kinetics and the partitioning process as well as those
generated using finite differentiation and automatic differ-
entiation. Theoretically, an analytical Jacobian is the most
accurate and efficient approach but can be laborious to im-
plement due to the nature of the equations involved and
therefore error-prone due to manual imputation. The finite-
difference approximation can have low numerical accuracy
and high-performance costs due to multiple evaluations of
the RHS function, although it is the simplest to implement
and is applicable to most functions. Automatic differentiation
shares the advantages of both methods mentioned previously;
it has the convenience of automatically generating a Jaco-
bian matrix from the Julia-based model, much like the finite-
difference method, whilst retaining the accuracy of the ana-
lytical solution. Based on the fact that all programs are com-
binations of primitive instructions, an auto-differentiation li-
brary could generate the derivative of a program accord-
ing to the chain rule and predefined derivatives of primitive
instructions. The only limitation is that the RHS function

Geosci. Model Dev., 14, 2187–2203, 2021 https://doi.org/10.5194/gmd-14-2187-2021

L. Huang and D. Topping: JlBox v1.1: a Julia-based multi-phase atmospheric chemistry box model 2193

must be fully written in the Julia language, and this dictates
any additional work that might be required. JlBox uses the
ForwardDiff.jl library to perform auto-differentiation.
The library introduces the dual-number trick with the help of
Julia’s multiple dispatch mechanism.

To improve performance and reduce memory consump-
tion, JlBox has special treatments for computing the Ja-
cobian of mixed-phase RHS. Firstly, the gas kinetic part
∂fi/∂yj |1≤i,j≤n is produced analytically because it is sparse
and has simple analytical form, while auto-differentiation
tools will waste lots of memory and time as they treat it as
a dense matrix. Secondly, according to Eq. (11), one part of
the Jacobian could be expressed as the sum of another part:

∂fi

∂yj

∣∣1≤i≤n,n+1≤j≤n+nm
∣∣ (12)

=
∂

∂yj

(
−

∑
ni+1≤k≤(n+1)i

d
dt
yk

)

= −

∑
ni+1≤k≤(n+1)i

∂fk

∂yj
,

which could also reduce computation. We only have to com-
pute the Jacobian of Eq. (2) using methods mentioned previ-
ously. For comparison of performance and accuracy, JlBox
implements two auto-differentiated Jacobians for aerosol
processes called “coarse_seeding” and “fine_seeding” with
and without the optimisations mentioned above. According
to benchmark results presented in Appendix Table B1, it was
found those optimisations could significantly reduce memory
usage without effecting the performance.

3.4 Sparse linear solvers and pre-conditioners

As the size of the Jacobian matrices grow quickly (O(n2))
following the growth of number of states n, it becomes in-
creasingly slow when simulating a multi-phase model on the
full MCM which has 47 544 states when using 16 size bins.
The majority of time is spent in solving the dense linear equa-
tion Mx = b where M= I− γ J, J is the Jacobian matrix, γ
is a scalar set by ODE solver, and x and b are some vectors.

Following the Kinetic PreProcessor (KPP) and AtChem
model approach (Sommariva et al., 2020; Damian et al.,
2002), as the Jacobian is quite sparse JlBox introduces
the option to use sparse linear solvers provided by
DifferentialEquations.jl. Specifically JlBox is
optimised for the iterative sparse linear solver GMRES in
CVODE_BDF by providing pre-conditioners which could
drastically reduce the number of iterations of iterative sparse
linear solvers like GMRES. Theoretically, a pre-conditioner
P is a rough approximation of the matrix M so that P−1M has
less condition number than M. It is “rough” in the sense that
the pre-condition process of solving P−1x = b is easier. In
practice, the pre-conditioner P is stored in lower–upper (LU)
factored form so that solving P−1x = b is a simple back sub-

stitution that sometimes needs to be updated to retain prox-
imity with the changing Jacobian.

In JlBox, the functions for solving P−1x = b and updat-
ing P are specified by “prec” and “psetup” arguments in-
side the CVODE_BDF solver. JlBox provides default prec
and psetup as a tri-diagonal pre-conditioner following
the approach used in AtChem (Sommariva et al., 2020). In
psetup, a full Jacobian is calculated in sparse format fol-
lowed by taking its tridiagonal values forming the approxi-
mated tridiagonal M. A LU factorisation is then calculated
using the Thomas algorithm and stored in a cache so that
prec can solve the linear equation quickly.

3.5 Adjoint sensitivity analysis

In this section we demonstrate the ability to build and de-
ploy an adjoint model. Using it to quantify sensitivity typ-
ically relies on experimental data and processes that will
be incorporated in future versions. Nonetheless, the exam-
ple given in Sect. 4.2 demonstrates the ability to evaluate
the sensitivity of predicted secondary organic aerosol to all
gas-phase kinetic coefficients. An adjoint sensitivity analysis
computes the derivatives of a scalar function g(y) of the ODE
states with respect to some parameters p of the RHS func-
tion f (y;p). The actual computation reformulates solving
the ODE Eq. (6) in a backward order and numerically inte-
grating formula Eq. (7). It is worth noting that the equation is
in the linear form, so using an implicit method that linearises
the RHS function like the Rosenbrock method may give a
good result. The Rosenbrock method explicitly includes the
Jacobian function as an estimation of the RHS function. In
this case, such an estimation is an exact representation which
enables longer time steps. The BDF may also benefit from
this for the same reason, with the number of Newton steps
reduced to one or two. As the Jacobian matrix is frequently
called, a fast and accurate Jacobian function is needed. With
this in mind, the special treatment of automatic differenti-
ation mentioned in Sect. 3.3 delivered a 10× improvement
in performance compared with the one that simply wraps the
RHS with the AD function. For the second step, we adopt the
adaptive Gauss–Kronrod quadrature to calculate the formula
accurately.

Solving the ODE Eq. (6) in a backward manner poses a
significant problem as we need to evaluate (an accurate) Ja-
cobian matrix in a backward order (from tF to t0) which re-
quires accessing the states y(t) at given time points in back-
ward order. The only way to achieve that is to store a se-
ries of states yi at some checkpoints ti . The stored states
alone are sufficient for using ODE solvers with a fixed time
step, but an adaptive ODE solver is needed for better er-
ror control which requires accessing y(t) at an arbitrary
time t . Thus we need to interpolate those states into dense
outputs. Since the time derivative of y is easily accessible
in the form of dy/dt = f (y), we can use Hermite inter-
polation or higher order interpolation to enhance the accu-

https://doi.org/10.5194/gmd-14-2187-2021 Geosci. Model Dev., 14, 2187–2203, 2021

2194 L. Huang and D. Topping: JlBox v1.1: a Julia-based multi-phase atmospheric chemistry box model

racy of the interpolation. JlBox utilises the solution object
of DifferentialEquations.jl (which internally im-
plements Hermite interpolation) to provide y(t) at any given
point t0 ≤ t ≤ tF.

4 Model output

The goal of JlBox is to provide a high-performance mech-
anistic atmospheric aerosol box model that also retains the
flexibility and usability of Python implementations, for ex-
ample. Not only should it have comparable performance,
if not run faster, than other models for a given scenario, it
should have the capacity for integrating benchmark chemi-
cal mechanisms with coupled aerosol process descriptions.
In this section we validate the output of JlBox against PyBox
since the model process representations are identical, whilst
also investigating the relative performance as the “size” of
the problem scales.

4.1 Verification against existing box models

To test the numerical correctness of JlBox, we ran our model
together with existing box model including PyBox and KPP
with identical scenarios. JlBox is designed as a more efficient
version of PyBox, so it is expected to have identical results
in both gas- and mixed-phase scenarios. Meanwhile, gas-
phase models constructed from the widely used KPP soft-
ware could provide some guarantee that the results from Jl-
Box is useful. However, aerosol processes are not available
in KPP; as a result we could only compare outputs of gas
kinetics. We prepared two test scenarios with gas-phase sim-
ulation only and multi-phase simulation. The settings of the
simulations are listed in Table 1. Additionally, in the multi-
phase simulation, we set the initial aerosol to be an ideal
representation of an ammonium sulfate solution satisfying a
lognormal size distribution with an average geometric mean
diameter of 0.2 micrometres and a standard deviation of 2.2,
discretised into 16 bins. The bins are linearly separated in
log-space where a fixed volume ratio between bins defines
the centre of the bin and bin width. The upper and lower
size range and required number of bins define the centre (ra-
dius) of each bin accordingly. The saturation vapour pressure
threshold of whether to include the gas-to-particle partition-
ing of a specific chemical is chosen to be 10−6 atm based
on an extremely low absorptive partitioning coefficient for a
wide range of pre-existing mass loadings. For all simulations
presented in this paper we use the vapour pressure technique
of Joback and Reid (1987). Whilst known to systematically
under predict saturation vapour pressures for species of at-
mospheric interest (Bilde et al., 2015), we use it for illustra-
tive purposes here, and any of the methods included within
UManSysProp can be called within JlBox. For gas-phase-
only simulations, we use α-pinene as an indicative VOC
degradation scheme. The simulations to compare JlBox with

Table 1. Initial conditions and solver configurations.

Mechanism α-Pinene subset of MCM

Initial condition 18 ppm ozone, 30 ppm α-pinene
Start time 12:00 GMT (noon)
Temperature 288.15 K

Simulation Gas phase only Mixed phase

Relative humidity Ignored 50 %
Simulation period 10 800 s 3600 s
No. of states 305 2801 (305+ 16× 156)
Absolute tolerance 10−3 10−2

Relative tolerance 10−6 10−4

PyBox and KPP are performed on a PC with a CPU of 8-core
AMD Ryzen 1700X at 3.6 GHz and 16 GB RAM.

Figure 3 clearly shows that JlBox and PyBox produced
identical results, as designed. Although very close, there is
around 1 % deviation between the KPP-generated model and
the other two models. A possible explanation includes dif-
ferences between ODE solvers as JlBox and PyBox used
CVODE while KPP used LSODEs. For mixed-phase simu-
lations, JlBox and PyBox again generate identical values for
secondary organic aerosol mass, as expected.

4.2 Evaluation of adjoint sensitivity analysis

A demonstration of an adjoint sensitivity analysis is con-
ducted to calculate the partial derivative of secondary organic
aerosol (SOA) mass at the end of the simulation with re-
spect to the rate coefficients of each equation in the mech-
anism. The configurations of the simulation are the same as
the mixed-phase α-pinene scenario (Table 1) presented in the
previous section.

The results presented in Table 2 highlighted the top 10 (in
terms of absolute magnitude) estimated deviations of SOA
mass dSOA under a 1 % change of rate coefficients because
the derivate itself (dSOA/dratecoeff) is not comparable due
to different units involved. The reactions between α-pinene
and ozone have the most substantial effect. The order of the
equations simply highlights the flow of α-pinene to its sub-
sequent products. This could be attributed to the fact that the
system has not reached the equilibrium state (also illustrated
in the growth of SOA mass in Fig. 3). Another interesting
point is that competing reactions have similar sensitivities
but opposite signs to the reactions of APINOOB, APINOOA,
and APINENE+OH. The competing reactions between α-
pinene and ozone is an outlier with a ratio of 5 between the
two. A plausible explanation is that for those reactions with
opposite sensitivities, the products of one leads to little or
no SOA while the other contributes more, so when the for-
mer reaction is accelerated due to its perturbed rate coeffi-
cient, it reduces the ability of the latter reaction to produce
SOA. As a result, the two reactions have opposite sensitiv-

Geosci. Model Dev., 14, 2187–2203, 2021 https://doi.org/10.5194/gmd-14-2187-2021

L. Huang and D. Topping: JlBox v1.1: a Julia-based multi-phase atmospheric chemistry box model 2195

Figure 3. Comparison of gas-only (a) and multi-phase (b) simulation.

ities. For the reactions of APINENE and O3, it is possible
that the APINOOA and APINOOB pathways both produce
SOA, and the first produces more than the second one. When
the rate coefficient of the second reaction is increased, the
decrease in SOA due to less APINOOA does not offset the
increase in SOA due to more APINOOB, which leads to a
smaller but still positive sensitivity of SOA. As we state ear-
lier, a deeper analysis with alternative options for saturation
vapour pressures and process inclusion may reveal important
dependencies.

4.3 Performance on large-scale problems

In this section we demonstrate the performance of JlBox
on “large-scale” problems where both KPP and PyBox fail
to solve due to constraints imposed by the model work-
flow and language dependencies as shown in Appendix B.
We define “large-scale” problems as those beyond single
VOCs or gas-phase-only simulations. Equipped with a sparse
linear solver and auto-generated tridiagonal preconditioner,
JlBox is ideal for simulating larger mechanisms than we
present above. With this in mind, the largest possible mecha-
nism accessible from the MCM suite is selected, which con-
tains 16 701 chemical equations and 5832 species. Moreover,
we performed 72 h mixed-phase simulations with 16 mov-
ing bins. This means that JlBox has to solve a system of
stiff ODEs of 47 544 variables that requires solving matrices
of 47544× 47544 at each time step. The initial conditions
are taken from an existing representative chamber study on
mixed VOC systems (Couvidat et al., 2018, Tables 1 and 2)
(see Appendix A) with 16 experiments in two sets. We use
average values of temperature where ranges are provided.
In addition, instead of using the relative humidity selected
in those studies, we performed perturbed simulations with
a low-relative-humidity (RH) scenario (10 %) and high-RH
scenario (80 %) respectively to investigate possible depen-
dence on stiffness according to variable partitioning from the
gas to the condensed phase. All the simulations were exe-
cuted on the ETH Zurich Euler cluster, requesting 4 cores

and 7 GB memory each to exploit parallelism between differ-
ent initial conditions. This was chosen as a PC would have to
run them in sequential order making it too time consuming.

The elapsed time taken by JlBox is plotted in Fig. 4. The
average time is around 7 h which is approximately 1/10 of
simulation time. In addition, the maximum memory con-
sumption is 8216 MB and average consumption is 4273 MB.
This represents a significant reduction when compared to
the memory required to store a Jacobian matrix in a dense
double-precision format. Note that the Euler cluster pro-
vides three types of CPU nodes equipped with Intel XeonE3
1585Lv5, XeonGold 6150 and AMD EPYC 7742 and the
simulation jobs are distributed to all three kinds of node.
Although XeonE3 has better single-core performance com-
pared to the other two, the time variations between different
scenarios far exceeds the variations due to the difference in
processors.

Figure 5 shows the generation of SOA mass in the 72 h
period. JlBox captures a diurnal change of photolysis rate as
is depicted in experiment A. We remind the reader that we
have no depositional loss, or variable emissions, and that we
are using the boiling point method of Joback and Reid (1987)
for estimating saturation vapour pressures. We also present a
time series plot (Fig. 6) for experiment A1 with the high-
RH scenario. Small size bins went through condensational
growths within this first few hours as expected from the gas–
aerosol partitioning process.

5 Discussion

5.1 Comparison with other models

JlBox is developed based on the PyBox model (Topping
et al., 2018): they have similar structures, rely on the same
methods for calculating pure component properties and pro-
vide almost identical results. Despite these similarities, we
feel JlBox has made significant improvements over PyBox in
terms of readability, functionality, scalability and efficiency

https://doi.org/10.5194/gmd-14-2187-2021 Geosci. Model Dev., 14, 2187–2203, 2021

2196 L. Huang and D. Topping: JlBox v1.1: a Julia-based multi-phase atmospheric chemistry box model

Table 2. Sensitivities of SOA mass with respect to gas-phase rate coefficients. The units of the last two columns depend on the number of
reactants.

Reaction dSOA (µgm−3) dSOA/dratecoeff Rate coeff.

APINENE+O3 = APINOOA 0.157379287 3.003× 1017 5.240× 10−17

APINENE+O3 = APINOOB 0.032264464 9.236× 1016 3.493× 10−17

APINOOB= C96O2+OH+CO 0.006269052 1.254× 10−6 5.000× 105

APINOOB= APINBOO −0.00626905 −1.254× 10−6 5.000× 105

APINOOA= C109O2+OH 0.005857979 1.302× 10−6 4.500× 105

APINOOA= C107O2+OH −0.00585798 −1.065× 10−6 5.500× 105

C107O2= C107OH 0.005301915 −1.257× 102 4.218× 10−3

APINENE+OH= APINBO2 0.005155068 2.643× 1010 1.950× 10−11

APINAO2= APINBOH 0.005082219 8.207× 102 6.192× 10−4

APINENE+OH= APINCO2 −0.00460746 −1.112× 1011 4.144× 10−12

Figure 4. Elapsed time of 72 h mixed-phase simulations. The initial conditions used for each case are listed in Appendix A.

from both a programming and algorithmic sense (Table 3).
The Julia programming language makes the most signifi-
cant contribution to those improvements in that it promises
a high-performance environment, close to Fortran, without
sacrificing the flexibility of Python. For example, the directly
translated partitioning code in JlBox can run at a compara-
ble speed to the individual Fortran routines in PyBox, and
the multiple dispatching mechanism makes it trivial for im-
plementing the automatic differentiation. As a result, JlBox
elegantly solves the “two-language problem” without com-
promising anything by writing everything in Julia. It spares
users from editing “code in code” like PyBox and makes it
easier to maintain the code base and to extend the model.
The homogeneous code base of JlBox also enables a conve-
nient migration to other devices like GPUs considering there
is already a GPU backend for Julia.

As for algorithmic advances, the automatic differentiation
method for generating Jacobian matrices is not only the most
effective addition but also a fundamental one. It is an accurate
and convenient way to calculate the Jacobian matrix which
only requires an RHS function fully written in Julia. With Ja-
cobian matrices available, the number of RHS evaluations is
dramatically reduced since the implicit ODE solver no longer
needs to estimate the Jacobian matrix using finite differences.
Also, without automatic differentiation, it will not be so easy

to build the adjoint model of a fully coupled process model
which explicitly requires the Jacobian matrix for the entire
model, let alone to extend the model with more processes.
Besides, the adaptation of sparse matrices for gas kinetics
reduced the compilation cost to a small constant value en-
abling the JlBox to simulate large-scale mechanisms such as
the entire MCM, which for PyBox typically remains limited
by memory.

Compared to other models like KPP (Damian et al., 2002)
and AtChem (Sommariva et al., 2020), JlBox is unique due
to its ability to perform coupled mixed-phase simulation ef-
ficiently, especially on large mechanisms such as the full
MCM where the vanilla KPP variant often fails to compile.
JlBox is written in pure standard Julia without any string ma-
nipulation to codes, in contrast to KPP and AtChem, which
enables full IDE support making it more developer friendly.

5.2 Future development

There are a number of processes and algorithmic implemen-
tations not included in this version of JlBox that would be
useful for further use in a scientific capacity. These include
coagulation, hybrid sectional methods and auto-oxidation
products schemes to name a few (Ehn et al., 2014; Hallquist
et al., 2009; Riemer et al., 2009). As we state earlier, the

Geosci. Model Dev., 14, 2187–2203, 2021 https://doi.org/10.5194/gmd-14-2187-2021

L. Huang and D. Topping: JlBox v1.1: a Julia-based multi-phase atmospheric chemistry box model 2197

Figure 5. Time series plot of SOA mass from the same case studies used in profiling total simulation time. In this study, as noted in the
text, we use a predictive technique that under-predicts the saturation vapour pressure to create the maximum number of viable condensing
products.

Table 3. Comparison between JlBox and PyBox.

PyBox JlBox Advantage of JlBox

Language Python and Numba or Fortran Pure Julia Less code, easier to maintain
and extend

Parallelization OpenMP Parallel Linear Solver N/A

Code generation Printing string Meta-programming: generating
the abstract syntax tree (AST)

Free syntax check, less human
error, easier to maintain

Gas kinetics Static code generation Sparse matrix manipulation Much less compiling time,
much less memory consump-
tion

Property calculation Python code calling
UManSysprop

Translated Julia code calling
UManSysprop (Python library)

N/A

Partitioning Fortran code Translated Julia code Simpler automatic differentia-
tion

RHS function Python code calling
Fortran/Numba

Julia code Faster, less memory consump-
tion

ODE solver CVODE_BDF CVODE_BDF or native solvers More selections and faster

Sparse Jacobian N/A Support with GMRES linear
solver

Enable large-scale mixed-phase
simulation

Jacobian matrix Handwritten Fortran code for
gas kinetics

Handwritten/automatic differ-
entiated/finite differentiated
Jacobian for gas kinetics and
partitioning, automatic/finite
differentiation can be applied
to any additional modules

Less human error, much eas-
ier to extend the model, faster
mixed-phase simulation, en-
abling local sensitivity analysis
based on a Jacobian

Sensitivity analysis N/A Adjoint sensitivity analysis Adjoint sensitivity analysis

purpose of this development stage was to create and pro-
file the first Julia implementation of an aerosol box model
for the scientific community that would demonstrably ex-
ploit the exciting potential this emerging language has to
offer. In version 1.0 we provide a fully coupled model. We

could, and will, provide options for implementing simplified
approaches to aerosol process, such as operator splitting, and
assume instantaneous equilibration for water in a range of
sub-saturated humid conditions. Indeed, these methods have
proven to provide robust mechanisms for mitigating compu-

https://doi.org/10.5194/gmd-14-2187-2021 Geosci. Model Dev., 14, 2187–2203, 2021

2198 L. Huang and D. Topping: JlBox v1.1: a Julia-based multi-phase atmospheric chemistry box model

Figure 6. Time series plot of size bins for experiment A1 with the
high-RH scenario.

tational efficiency barriers if implemented correctly. How-
ever, our ethos with JlBox is to build and develop a plat-
form for a benchmark community box model that exploits
the aforementioned benefits that Julia provides. This includes
the ability to exploit existing and emerging hardware and
software platforms as we try to tackle the growing chem-
ical and process complexity associated with aerosol evolu-
tion. We hope that, with version 1.0, the community can help
develop and expand this new framework.

Quantifying the importance, or not, of process and chem-
ical complexity requires a multifaceted approach. With the
proliferation of data-science-driven approaches across most
scientific domains, Reichstein et al. (2019) note that the next
generation of earth system models are likely to merge ma-
chine learning (ML) and traditional process-driven models
to attempt to solve the aforementioned challenges in com-
plexity whilst exploiting the rich and growing datasets of
global observations. Julia is being used in the development
of ML frameworks, with libraries such as Flux-ML enabling
researchers to embed process-driven models within the back
propagation pipeline (Innes, 2018). This opens up the possi-
bility to develop observation-driven parameterisations in hy-
brid mechanistic-ML frameworks, which helps with the issue
around provenance in ML parameterisation developments.

JlBox will continually grow and we encourage uptake and
further developments.

Geosci. Model Dev., 14, 2187–2203, 2021 https://doi.org/10.5194/gmd-14-2187-2021

L. Huang and D. Topping: JlBox v1.1: a Julia-based multi-phase atmospheric chemistry box model 2199

Appendix A: Initial condition of Sect. 4.3

Table A1. Initial condition for anthropogenic VOC experiments from Couvidat et al. (2018). Concentrations in ppb, temperature (T) in
Kelvin and relative humidity in %.

Experiment Toluene o-Xylene TMB Octane NO NO2 HONO T RH

A1 102 22 153 85 19 0 99 299–305 10–16
A2 200 49 300 155 23 0 75 302–305 9–18
A3 48 11 106 42 23 0 71 302–307 6–14
A4 98 24 160 79 37 0 156 297–307 6–13
A5 97 21 146 81 4 8 52 297–308 7–14
A6 93 22 146 78 21 0 94 300–308 0.4
A7 107 26 160 89 21 0 89 306–309 7–10
A8 116 29 19 10 57 0 119 302–305 15–18
A9 81 21 118 65 31 0 90 299–303 28–37

Table A2. Initial condition for biogenic VOC experiments from Couvidat et al. (2018). Concentrations in ppb, temperature (T) in Kelvin and
relative humidity in %.

Experiment Isoprene α-Pinene Limonene NO NO2 HONO SO2 T RH

B1 107 66 58 34 128 99 0 302–307 0.5–3
B2 92 50 50 48 0 87 0 298–300 30–26
B3 122 71 40 41 0 53 0 297–300 19–22
B4 0 63 65 32 0 101 0 294–298 8–13
B5 99 59 53 150 0 307 0 295–297 8–11
B6 87 50 51 244 89 40 513 295–300 15–19
B7 55 79 76 198 0 165 461 302–305 20–30

https://doi.org/10.5194/gmd-14-2187-2021 Geosci. Model Dev., 14, 2187–2203, 2021

2200 L. Huang and D. Topping: JlBox v1.1: a Julia-based multi-phase atmospheric chemistry box model

Appendix B: Performance benchmarking

In Table B1, we measured the elapsed time and total allo-
cated memory of simulations using varying ODE solvers and
techniques of computing the Jacobian matrix mentioned in
Sect. 3.3. We chose two ODE solvers: CVODE_BDF and
TRBDF2. CVODE_BDF is part of the Sundials suite devel-
oped by Lawrence Livermore National Laboratory. It is a
widely used high-performance ODE solver suitable for large-
scale stiff ODE problems. TRBDF2 is a Julia-native library
implemented in OrdinaryDiffEq.jl. It uses the clas-
sical TRBDF2 scheme (Hosea and Shampine, 1996) while
benefiting from a high-performance linear solver provided
by the Julia community.

In Table B2 the elapsed time of PyBox, JlBox and KPP are
measured, with initial conditions and parameters in Sects. 4.1
and 4.2. We fine tuned JlBox on its ODE solver options to
achieve the best performance. For the APINENE mechanism,
CVODE with dense Jacobian was found to be the fastest on
the gas-phase-only simulations, CVODE with sparse Jaco-
bian was fastest for the multi-phase simulation, while the
Julia-native TRBDF2 solver runs better on the adjoint sen-
sitivity analysis. For the full MCM, due to memory restric-
tions, the only practical option is to use the CVODE ODE
solver with the FGMRES sparse linear solver.

As shown in Fig. 6, we conducted simulations with vary-
ing size bins and mechanism complexity to further illustrate
the scaling property of JlBox compared with PyBox. We built
simulations around two additional mechanisms that represent
beta-caryophyllene and limonene (referred to using identi-
fiers BCARY and LIMONENE respectively), which are sub-
sets of the full MCM. The configurations of simulations are
set to be identical to those provided in Table 1. The results in
Table B2 and Fig. 6 show that the sparse multi-phase JlBox
(referred to as “JlBox sparse”) performs much better than
PyBox, especially for large simulations, because the perfor-
mance reliance on using a sparse Jacobian scales roughly
linearly with the number of size bins.The same is not true
when using a dense Jacobian within JlBox (referred to as “Jl-
Box dense”). For gas-phase-only simulations, interestingly
the simulation overhead of JlBox is larger than PyBox for
simulations of a single VOC but outperforms PyBox when
simulating the entire MCM. Indeed, in this scenario, PyBox
ran out of memory in our simulations.

Geosci. Model Dev., 14, 2187–2203, 2021 https://doi.org/10.5194/gmd-14-2187-2021

L. Huang and D. Topping: JlBox v1.1: a Julia-based multi-phase atmospheric chemistry box model 2201

Table B1. Elapsed time and total allocated memory of the multi-phase APINENE simulation in Sect. 4.1 with different ODE solvers and
Jacobian matrix evaluation techniques.

Elapsed time (seconds)/total allocated memory

Jacobian type TRBDF2 CVODE

Fine seeding 38.8/2.82 GB 340/1.30 GB
Coarse seeding 40.3/8.62 GB 350/14.8 GB
Fine analytical 35.8/2.66 GB 390/1.43 GB
Coarse analytical 40.5/2.58 GB 357/721 MB
Finite difference 48.4/13.1 GB 393/25.5 GB

Table B2. Performance comparison of PyBox, JlBox and KPP based on elapsed time of forward and adjoint simulation in Sects. 4.1 and 4.2
and simulation of full MCM with the same initial condition.

Elapsed time (seconds)

Mechanism, simulation type PyBox JlBox JlBox adjoint KPP

APINENE, gas only 0.3 4.5 N/A 0.5
APINENE, mixed phase 230 37 45 N/A
Full MCM, gas only out of memory 60 N/A failed to compile
Full MCM, mixed phase out of memory 1199 > 10000 N/A

Figure B1. Performance comparison between JlBox and PyBox with different numbers of size bins and mechanisms.

https://doi.org/10.5194/gmd-14-2187-2021 Geosci. Model Dev., 14, 2187–2203, 2021

2202 L. Huang and D. Topping: JlBox v1.1: a Julia-based multi-phase atmospheric chemistry box model

Code availability. The exact code for JlBox v1.1 used in this paper
can be found on Zenodo at https://doi.org/10.5281/zenodo.4519192
(Huang, 2021a). The generated KPP α-pinene model can be found
at https://doi.org/10.5281/zenodo.4075632 (Huang, 2020). The Jl-
Box project GitHub page can be found at https://github.com/
huanglangwen/JlBox (Huang, 2021b). We also provide scripts for
building Docker containers to build and run the exact versions
of PyBox (v1.0.1), KPP (v2.1) and JlBox (v1.1) to reproduce
results provided in this paper. This includes the use of Uman-
SysProp (v1.01) and OpenBabel (v2.4.1). Those scripts can be
found at https://github.com/huanglangwen/reproduce_model (last
access: 8 February 2021), with instructions on how replicate
the simulations conducted in this paper. The full specification
of dependencies of JlBox used in this paper can be found in
jlbox\manifest_details.txt in that repository. An archived copy of
the same repository and information can be found on Zenodo at
https://doi.org/10.5281/zenodo.4543713 (Huang, 2021c). JlBox is
an open-source model, licensed under a GPL v3.0. It has been de-
veloped to ensure compatibility with Julia v1, Sundials.jl and Ordi-
naryDiffEq.jl where detailed dependency information is available
in the reproduction repository. As noted on the project GitHub
page, JlBox can also be installed through the Julia package man-
ager which deals with all required dependencies. The PyBox project
page can be found at https://doi.org/10.5281/zenodo.1345005
(Topping, 2021) (https://github.com/loftytopping/PyBox, last ac-
cess: 8 February 2021). PyBox is an open-source model, li-
censed under GPL v3.0. The KPP project page can be found
at http://people.cs.vt.edu/asandu/Software/Kpp/ (last access: 16
February 2021). KPP is an open-source project, licensed un-
der GPL v2.0. The UmanSysProp project page can be found
at https://doi.org/10.5281/zenodo.4110145 (Shelley and Topping,
2021) (https://github.com/loftytopping/UmanSysProp_public, last
access: 8 February 2021). UManSysProp is an open-source project,
licensed under GPL v3.0.

Author contributions. JlBox was written and evaluated by LH. DT
provided guidance on comparisons with PyBox, including mapping
the same structure to JlBox, and helped in the effective design and
sustainability of JlBox.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This work was supported by the EPSRC
UKCRIC Manchester Urban Observatory (University of Manch-
ester) (grant number: EP/P016782/1). The authors would like to ac-
knowledge the assistance given by Research IT at the University of
Manchester. The authors would also like to acknowledge the ETH
Zurich Euler cluster for supporting large-scale simulations.

Financial support. This research has been supported by the En-
gineering and Physical Sciences Research Council (grant no.
EP/P016782/1).

Review statement. This paper was edited by Sylwester Arabas and
reviewed by two anonymous referees.

References

Amundson, N. R., Caboussat, A., He, J. W., Martynenko, A. V.,
Savarin, V. B., Seinfeld, J. H., and Yoo, K. Y.: A new inor-
ganic atmospheric aerosol phase equilibrium model (UHAERO),
Atmos. Chem. Phys., 6, 975–992, https://doi.org/10.5194/acp-6-
975-2006, 2006.

Bilde, M., Barsanti, K., Booth, M., Cappa, C. D., Donahue, N. M.,
Emanuelsson, E. U., McFiggans, G., Krieger, U. K., Marcolli, C.,
Topping, D., Ziemann, P., Barley, M., Clegg, S., Dennis-Smither,
B., Hallquist, M., Hallquist, Å. M., Khlystov, A., Kulmala, M.,
Mogensen, D., Percival, C. J., Pope, F., Reid, J. P., Ribeiro Da
Silva, M. A., Rosenoern, T., Salo, K., Soonsin, V. P., Yli-Juuti,
T., Prisle, N. L., Pagels, J., Rarey, J., Zardini, A. A., and Riip-
inen, I.: Saturation Vapor Pressures and Transition Enthalpies
of Low-Volatility Organic Molecules of Atmospheric Relevance:
From Dicarboxylic Acids to Complex Mixtures, Chem. Rev.,
115, 4115–4156, https://doi.org/10.1021/cr5005502, 2015.

Couvidat, F., Vivanco, M. G., and Bessagnet, B.: Simulating
secondary organic aerosol from anthropogenic and biogenic
precursors: comparison to outdoor chamber experiments, ef-
fect of oligomerization on SOA formation and reactive up-
take of aldehydes, Atmos. Chem. Phys., 18, 15743–15766,
https://doi.org/10.5194/acp-18-15743-2018, 2018.

Damian, V., Sandu, A., Damian, M., Potra, F., and Carmichael,
G. R.: The kinetic preprocessor KPP - A software environ-
ment for solving chemical kinetics, Computers and Chemi-
cal Engineering, 26, 1567–1579, https://doi.org/10.1016/S0098-
1354(02)00128-X, 2002.

Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H.,
Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B.,
Lopez-Hilfiker, F., Andres, S., Acir, I. H., Rissanen, M., Joki-
nen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J.,
Nieminen, T., Kurtén, T., Nielsen, L. B., Jørgensen, S., Kjaer-
gaard, H. G., Canagaratna, M., Maso, M. D., Berndt, T., Petäjä,
T., Wahner, A., Kerminen, V. M., Kulmala, M., Worsnop,
D. R., Wildt, J., and Mentel, T. F.: A large source of low-
volatility secondary organic aerosol, Nature, 506, 476–479,
https://doi.org/10.1038/nature13032, 2014.

Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simp-
son, D., Claeys, M., Dommen, J., Donahue, N. M., George, C.,
Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T.,
Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-
Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T. F., Monod,
A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigiel-
ski, R., and Wildt, J.: The formation, properties and impact of
secondary organic aerosol: current and emerging issues, Atmos.
Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-
2009, 2009.

Hosea, M. and Shampine, L.: Analysis and implementation of
TR-BDF2, in: Method of Lines for Time-Dependent Problems,
Appl. Numer. Math., 20, 21–37, https://doi.org/10.1016/0168-
9274(95)00115-8, 1996.

Huang, L.: KPP archived generated schema for APINENE v0.1,
Zenodo, https://doi.org/10.5281/zenodo.4075632, 2020.

Geosci. Model Dev., 14, 2187–2203, 2021 https://doi.org/10.5194/gmd-14-2187-2021

https://doi.org/10.5281/zenodo.4519192
https://doi.org/10.5281/zenodo.4075632
https://github.com/huanglangwen/JlBox
https://github.com/huanglangwen/JlBox
https://github.com/huanglangwen/reproduce_model
https://doi.org/10.5281/zenodo.4543713
https://doi.org/10.5281/zenodo.1345005
https://github.com/loftytopping/PyBox
http://people.cs.vt.edu/asandu/Software/Kpp/
https://doi.org/10.5281/zenodo.4110145
https://github.com/loftytopping/UmanSysProp_public
https://doi.org/10.5194/acp-6-975-2006
https://doi.org/10.5194/acp-6-975-2006
https://doi.org/10.1021/cr5005502
https://doi.org/10.5194/acp-18-15743-2018
https://doi.org/10.1016/S0098-1354(02)00128-X
https://doi.org/10.1016/S0098-1354(02)00128-X
https://doi.org/10.1038/nature13032
https://doi.org/10.5194/acp-9-5155-2009
https://doi.org/10.5194/acp-9-5155-2009
https://doi.org/10.1016/0168-9274(95)00115-8
https://doi.org/10.1016/0168-9274(95)00115-8
https://doi.org/10.5281/zenodo.4075632

L. Huang and D. Topping: JlBox v1.1: a Julia-based multi-phase atmospheric chemistry box model 2203

Huang, L.: JlBox v1.1, Zenodo,
https://doi.org/10.5281/zenodo.4519192, 2021a.

Huang, L.: JlBox project Github repository, GitHub, https://github.
com/huanglangwen/JlBox (last access: 8 February 2021), 2021b.

Huang, L.: Files to reproduce JlBoxv1.1, v0.2, project Github
repository, Zenodo, https://doi.org/10.5281/zenodo.4543713,
2021c.

Innes, M.: Flux: Elegant machine learning with Ju-
lia, Journal of Open Source Software, 3, 602,
https://doi.org/10.21105/joss.00602, 2018.

Jacobson, M. Z.: Fundamentals of atmospheric modeling second
edition, Cambridge University Press, second edn., Cambridge
UK, https://doi.org/10.1017/CBO9781139165389, 2005.

Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropo-
spheric degradation of volatile organic compounds: A proto-
col for mechanism development, Atmos. Environ., 31, 81–104,
https://doi.org/10.1016/S1352-2310(96)00105-7, 1997.

Jenkin, M. E., Saunders, S. M., Derwent, R. G., and Pilling, M. J.:
Development of a reduced speciated VOC degradation mecha-
nism for use in ozone models, Atmos. Environ., 36, 4725–4734,
https://doi.org/10.1016/S1352-2310(02)00563-0, 2002.

Joback, K. G. and Reid, R. C.: Estimation of Pure-Component
Properties from Group-Contributions, Chem Eng. Commun., 57,
233–243, https://doi.org/10.1080/00986448708960487, 1987.

Kokkola, H., Kühn, T., Laakso, A., Bergman, T., Lehtinen, K.
E. J., Mielonen, T., Arola, A., Stadtler, S., Korhonen, H., Fer-
rachat, S., Lohmann, U., Neubauer, D., Tegen, I., Siegenthaler-
Le Drian, C., Schultz, M. G., Bey, I., Stier, P., Daskalakis,
N., Heald, C. L., and Romakkaniemi, S.: SALSA2.0: The sec-
tional aerosol module of the aerosol–chemistry–climate model
ECHAM6.3.0-HAM2.3-MOZ1.0, Geosci. Model Dev., 11,
3833–3863, https://doi.org/10.5194/gmd-11-3833-2018, 2018.

Korhonen, H., Lehtinen, K. E. J., and Kulmala, M.: Multi-
component aerosol dynamics model UHMA: model devel-
opment and validation, Atmos. Chem. Phys., 4, 757–771,
https://doi.org/10.5194/acp-4-757-2004, 2004.

O’Boyle, N. M., Banck, M., James, C. A., Morley, C.,
Vandermeersch, T., and Hutchison, G. R.: Open Babel:
An Open chemical toolbox, J. Cheminformatics, 3, 33,
https://doi.org/10.1186/1758-2946-3-33, 2011.

Perkel, J. M.: Julia: come for the syntax, stay for the speed,
Nature Toolbox, 572, 141–142, https://doi.org/10.1038/d41586-
019-02310-3, 2019.

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler,
J., Carvalhais, N., and Prabhat, P.: Deep learning and process
understanding for data-driven Earth system science, Nature, 566,
195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019.

Riemer, N. and Ault, A.: The Diversity and Com-
plexity of Atmospheric Aerosol, Eos, 100,
https://doi.org/10.1029/2019eo124333, 2019.

Riemer, N., West, M., Zaveri, R. A., and Easter, R. C.: Sim-
ulating the evolution of soot mixing state with a particle-
resolved aerosol model, J. Geophys. Res.-Atmos., 114, D09202,
https://doi.org/10.1029/2008JD011073, 2009.

Roldin, P., Eriksson, A. C., Nordin, E. Z., Hermansson, E., Mo-
gensen, D., Rusanen, A., Boy, M., Swietlicki, E., Svennings-
son, B., Zelenyuk, A., and Pagels, J.: Modelling non-equilibrium
secondary organic aerosol formation and evaporation with the
aerosol dynamics, gas- and particle-phase chemistry kinetic mul-
tilayer model ADCHAM, Atmos. Chem. Phys., 14, 7953–7993,
https://doi.org/10.5194/acp-14-7953-2014, 2014.

Shelley, P. and Topping, D.: loftytopping/UManSysProp_public:
Base version, Zenodo, https://doi.org/10.5281/zenodo.4110145,
2021.

Sherwen, T., Chance, R. J., Tinel, L., Ellis, D., Evans, M. J.,
and Carpenter, L. J.: A machine-learning-based global sea-
surface iodide distribution, Earth Syst. Sci. Data, 11, 1239–1262,
https://doi.org/10.5194/essd-11-1239-2019, 2019.

Sommariva, R., Cox, S., Martin, C., Borońska, K., Young, J., Ji-
mack, P. K., Pilling, M. J., Matthaios, V. N., Nelson, B. S., New-
land, M. J., Panagi, M., Bloss, W. J., Monks, P. S., and Rickard,
A. R.: AtChem (version 1), an open-source box model for the
Master Chemical Mechanism, Geosci. Model Dev., 13, 169–183,
https://doi.org/10.5194/gmd-13-169-2020, 2020.

Topping, D.: PyBox base model archive, Zenodo,
https://doi.org/10.5281/zenodo.1345005, 2021.

Topping, D., Connolly, P., and Reid, J.: PyBox: An auto-
mated box-model generator for atmospheric chemistry and
aerosol simulations., Journal of Open Source Software, 3, 755,
https://doi.org/10.21105/joss.00755, 2018.

Wanner, G. and Hairer, E.: Solving ordinary differential equations
II, Springer, Berlin, Heidelberg, 1996.

Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.:
Model for Simulating Aerosol Interactions and Chem-
istry (MOSAIC), J. Geophys. Res.-Atmos., 113, D13204,
https://doi.org/10.1029/2007JD008782, 2008.

https://doi.org/10.5194/gmd-14-2187-2021 Geosci. Model Dev., 14, 2187–2203, 2021

https://doi.org/10.5281/zenodo.4519192
https://github.com/huanglangwen/JlBox
https://github.com/huanglangwen/JlBox
https://doi.org/10.5281/zenodo.4543713
https://doi.org/10.21105/joss.00602
https://doi.org/10.1017/CBO9781139165389
https://doi.org/10.1016/S1352-2310(96)00105-7
https://doi.org/10.1016/S1352-2310(02)00563-0
https://doi.org/10.1080/00986448708960487
https://doi.org/10.5194/gmd-11-3833-2018
https://doi.org/10.5194/acp-4-757-2004
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1038/d41586-019-02310-3
https://doi.org/10.1038/d41586-019-02310-3
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1029/2019eo124333
https://doi.org/10.1029/2008JD011073
https://doi.org/10.5194/acp-14-7953-2014
https://doi.org/10.5281/zenodo.4110145
https://doi.org/10.5194/essd-11-1239-2019
https://doi.org/10.5194/gmd-13-169-2020
https://doi.org/10.5281/zenodo.1345005
https://doi.org/10.21105/joss.00755
https://doi.org/10.1029/2007JD008782

	Abstract
	Introduction
	Model description
	Implementation
	Mechanism parsing and property predictions
	Gas kinetics and gas–aerosol partitioning process
	Numerical methods and automatic differentiation
	Sparse linear solvers and pre-conditioners
	Adjoint sensitivity analysis

	Model output
	Verification against existing box models
	Evaluation of adjoint sensitivity analysis
	Performance on large-scale problems

	Discussion
	Comparison with other models
	Future development

	Appendix A: Initial condition of Sect. 4.3
	Appendix B: Performance benchmarking
	Code availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

