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Abstract. Ensemble prediction is an indispensable tool in
modern numerical weather prediction (NWP). Due to its
complex data flow, global medium-range ensemble predic-
tion has almost exclusively been carried out by operational
weather agencies to date. Thus, it has been very hard for
academia to contribute to this important branch of NWP re-
search using realistic weather models. In order to open en-
semble prediction research up to the wider research com-
munity, we have recreated all 50+ 1 operational IFS ensem-
ble initial states for OpenIFS CY43R3. The dataset (Ope-
nEnsemble 1.0) is available for use under a Creative Com-
mons licence and is downloadable from an https server. The
dataset covers 1 year (December 2016 to November 2017)
twice daily. Downloads in three model resolutions (TL159,
TL399, and TL639) are available to cover different research
needs. An open-source workflow manager, called OpenEPS,
is presented here and used to launch ensemble forecast ex-
periments from the perturbed initial conditions. The deter-
ministic and probabilistic forecast skill of OpenIFS (cycle
40R1) using this new set of initial states is comprehensively
evaluated. In addition, we present a case study of Typhoon
Damrey from year 2017 to illustrate the new potential of be-
ing able to run ensemble forecasts outside of major global
weather forecasting centres.

1 Introduction

The conventional method of predicting the future state of
the atmosphere is to make a single-model forecast from the
analysis which is the current best state estimate of the at-

mosphere. Due to limitations in observations and in the data
assimilation system, an unknown amount of uncertainty re-
mains in this state estimate. Moreover, the forecast model has
its own uncertainties (see e.g. Leutbecher and Palmer, 2008).
Ensemble forecast systems are designed to complement the
deterministic forecast by providing a set of alternative but
equally plausible future evolutions of the atmospheric state.
The spread of these forecasts can be interpreted, for instance,
in terms of the predictability of the current state, or as alter-
native forecasts.

For approximately the past 25 years, ensemble forecast-
ing research has primarily been carried out by major oper-
ational forecasting centres or academic institutions closely
collaborating with said centres. Without access to an ensem-
ble prediction system (EPS), the majority of academic re-
search on the topic has been limited to studying the end-
products, i.e. various aspects of ready-made ensemble fore-
casts, or using idealized modelling set-ups. Although a great
amount of progress has been made with respect to learn-
ing about and improving ensemble forecasts over the years,
many open research questions and technical development
possibilities still exist, for example (1) operational forecast-
ing centres constantly reassess current operational imple-
mentations of initial state uncertainty (see e.g. Lang et al.,
2015, 2019) and model uncertainty representations (see e.g.
Lock et al., 2019) as well as exploring completely new meth-
ods (see e.g. Ollinaho et al., 2017; Leutbecher et al., 2017;
Lang et al., 2021), (2) ensemble modelling studies of trop-
ical storms (see e.g. Lang et al., 2012) offer a unique way
to study forecast impacts of both initial state uncertainty and
model uncertainty representations, and (3) EPSs provide a
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potent way of automating the model tuning process (Ollinaho
et al., 2013, 2014; Tuppi et al., 2020).

This paper describes a new dataset of ensemble initial
states covering a 1-year period twice a day, starting from
1 December 2016, courtesy of the European Centre for
Medium-Range Weather Forecasts (ECMWF). The dataset,
OpenEnsemble 1.0, is freely usable under a Creative Com-
mons licence and can be downloaded from an https server
(for the foreseeable future; see details in Sect. 4). Although
the initial states are native to the OpenIFS model, there is
no technical reason why they could not also be used to ini-
tialize any other forecasting model. However, implementing
the initial states in such a fashion would likely not be a trivial
task, and there would likely be a longer spin-up period affect-
ing the forecast quality early on. We also present a workflow
manager, called OpenEPS, to run OpenIFS ensembles from
the new dataset. OpenEPS is also freely available under an
Apache 2.0 licence.

We hope that the OpenEnsemble dataset and the workflow
manager will enable the wider academic research commu-
nity to contribute to ensemble forecasting research with re-
alistic modelling tools. Additional new potential will also be
made available to a variety of applications. For example, re-
newable energy production is dependent on weather condi-
tions, such as cloudiness, wind speed, and icing. Increasing
demand has clearly exposed this sector to the potential ben-
efits of accurate weather forecasts. Utilizing ensemble fore-
casts in this context could reveal new sources of added value
for users (see e.g. Sperati et al., 2016; Rasku et al., 2020).
Ensemble forecasts are also important for flood-forecasting
applications (Smith et al., 2016). Lastly, the available un-
certainty information from ensemble forecasts has particu-
lar value for the prediction of extreme weather events, such
as extra-tropical and tropical storms (see Friederichs et al.,
2018, and references therein).

The dataset is aimed for use with the ECMWF OpenIFS
model, which is described in Sect. 2. We discuss the ini-
tial state perturbation strategies used by ECMWF in Sect. 3.
The dataset and instructions on how to use it are provided in
Sect. 4. The OpenEPS software as well as a set-up for test-
ing the dataset of initial states are described in Sect. 5. The
performance of an OpenIFS ensemble started from the initial
state perturbations is shown in Sect. 6.

2 ECMWF OpenIFS

The ECMWF Integrated Forecast System (IFS) was first used
for operational forecasting in March 1994. Since that time,
the IFS has been continually improved and its forecast per-
formance has been assessed. The relative contribution of
model improvements, the reduction in initial state error, and
the increased use of observations to the IFS forecast perfor-
mance is continuously monitored by ECMWF. Haiden et al.
(2017) provides a detailed report on the IFS forecast perfor-

mance for the IFS cycle 43R3, upon which the dataset de-
scribed here is based. A detailed and up-to-date record of
changes between IFS release cycles can be found in ECMWF
(2019a).

The ECMWF OpenIFS activity, launched in 2011, pro-
vides a portable version of the IFS to ECMWF member state
hydro-meteorological services, universities, and research in-
stitutes for research and education purposes for use on com-
puter systems external to ECMWF. It is used in a wide range
of studies, from teaching masters level courses to forecast-
ing extreme events and inclusion in coupled climate models.
As OpenIFS shares the same code base as IFS, the scien-
tific forecast capability of the two models is identical, and
the model description in this section applies equally to IFS
except where indicated. The OpenIFS model supports all res-
olutions up to the ECMWF operational resolution and en-
semble forecast capability. The ocean model, data assimila-
tion, and observation handling components of IFS are not
included in OpenIFS. A detailed scientific and technical de-
scription of IFS, applicable to OpenIFS, can be found in open
access scientific manuals available from the ECMWF web-
site (ECMWF, 2019b).

The OpenIFS model is a global model and uses a hydro-
static, spectral, semi-Lagrangian dynamical core for all fore-
cast resolutions, with prognostic equations for the horizon-
tal wind components (vorticity and divergence), temperature,
water vapour, and surface pressure. The horizontal resolution
is represented by both the spectral truncation wave number
(the number of retained waves in spectral space) and the res-
olution of the associated Gaussian grid. Model resolutions
are usually described using a Txxx notation, where xxx is the
number of retained waves in spectral representation. An ad-
ditional letter is used to describe the layout of the grid points
used to compute, for example, the physical parameterization
terms: TL is used to denote so-called ’linear’ grids where the
maximum wave number (shortest wave) is represented by the
spacing between two adjoining grid points; TCO is used to
denote the cubic-octahedral grid where the maximum wave
number is represented by four grid points. Both of these grids
use a reducing number of grid points along lines of latitude
approaching the poles (see Malardel et al., 2016, for more
details). OpenIFS based on IFS cycle 43R3 is the first with
the capability of using the TCO horizontal grid. The vertical
resolution varies smoothly with geometric height and is the
finest in the planetary boundary layer, becoming more coarse
towards the model top.

For a description of OpenIFS physical parameterizations,
we refer the reader to the ECMWF online documentation
(ECMWF, 2019b). OpenIFS contains the ECMWF wave
model (ecWAM; ECMWF, 2019c). The IFS and OpenIFS
models are normally run with ecWAM enabled to correctly
represent the sea-state roughness and its impact on the low-
est atmospheric layers, such as in momentum exchange.
The OpenIFS model also includes stochastic parametriza-

Geosci. Model Dev., 14, 2143–2160, 2021 https://doi.org/10.5194/gmd-14-2143-2021



P. Ollinaho et al.: Ensemble prediction using a new dataset of ECMWF initial states 2145

tion schemes of IFS to represent model error (see Leutbecher
et al., 2017, for an overview).

3 Initial state perturbations in the ECMWF ensemble

3.1 Singular vectors

Singular vectors (SV) represent the fastest-growing perturba-
tions to a weather forecast – called the trajectory – within a fi-
nite time interval (Lorenz, 1965; Buizza, 1994; Palmer et al.,
1998). In order to compute singular vectors, one linearizes
the governing equations around a given trajectory. The idea
behind using singular vector-based initial perturbations is
that these are the dynamically most relevant structures and,
hence, will dominate the forecast uncertainty (Ehrendorfer
and Tribbia, 1997; Leutbecher and Palmer, 2008; Leutbecher
and Lang, 2014). Here, growth is defined with respect to a
specific metric. The metric used at ECMWF is the so called
dry total energy norm (Leutbecher and Palmer, 2008), and
singular vectors are computed with an optimization interval
of 48 h and a spatial resolution of TL42 and 91 vertical lev-
els. Different sets of singular vectors are computed: the lead-
ing 50 singular vectors for the Northern and Southern hemi-
spheres and the leading 5 singular vectors for each active
tropical cyclone (see Buizza, 1994; Puri et al., 2001; Bark-
meijer et al., 2001; Leutbecher and Palmer, 2008, for details).
While singular vectors targeted at the extra-tropics are opti-
mized for the whole troposphere, singular vectors targeted at
tropical cyclones are optimized for growth below 500 hPa.

3.2 Ensemble of data assimilations

At ECMWF, an ensemble of 4D-Var data assimilations
(EDA, Buizza et al., 2008) is run to provide uncertainty esti-
mates for both the ensemble forecasts and the high-resolution
analysis. The EDA consists of a number of perturbed mem-
bers and one unperturbed control member. Originally it was
run with 10 perturbed members, but this changed in 2013
when the number of members was increased to 25. Recently
the number of members was increased again to 50 (Lang
et al., 2019). In this study, we make use of the EDA config-
uration with 25 perturbed members. For each EDA member
the observations and sea surface temperatures are perturbed
and the stochastically perturbed parameterization tendencies
(SPPT) scheme is used to simulate the impact of model error.

3.3 Construction of initial perturbations

Perturbations based on the EDA short-range background
forecasts are combined with singular vector-based perturba-
tions to build the initial conditions for the ECMWF ensemble
forecasts. EDA perturbations are derived by subtracting the
mean of the EDA from each EDA member, resulting in a to-
tal of 25 perturbations. In addition to the EDA perturbations,
25 singular vector-based perturbations are generated.

Each of the 25 singular vector perturbations is constructed
through a linear combination of the leading singular vectors
which are calculated separately for the Northern Hemisphere
(NH), the tropics (TR), and the Southern Hemisphere (SH).
As such, each of the 25 singular vector perturbations contain
some form of the calculated leading singular vectors in the
NH/TR/SH. This is done by scaling the leading singular vec-
tors by random numbers drawn from a multivariate Gaussian
distribution (see Leutbecher and Palmer, 2008; Leutbecher
and Lang, 2014).

The perturbations are centred on the high-resolution anal-
ysis and have a plus–minus symmetry, i.e. the initial con-
ditions of the first perturbed ensemble forecast member are
derived by adding the first EDA perturbation and the first
singular vector perturbation to the high-resolution analysis.
The initial conditions of the second perturbed ensemble fore-
cast member are then obtained by subtracting the first EDA
perturbation and the first singular vector perturbation from
the high-resolution analysis, and so on. Thus, the initial per-
turbations of the even ensemble members have the oppo-
site sign to the perturbations of the odd ensemble members.
This set-up makes it possible to distribute the 25 EDA per-
turbations between the 50 ensemble forecast members. The
plus–minus symmetry ensures that the mean of the perturbed
analyses equals the unperturbed control analysis. Note that
this is no longer the case from 2019 onwards in the oper-
ational ECMWF system. Following the introduction of the
50-member EDA the plus–minus symmetry is not required
anymore (Lang et al., 2019).

4 The dataset

Our dataset of ensemble initial states covers a 1-year period
from 1 December 2016 to 30 November 2017. The initial
states have been generated closely following what is done in
the ECMWF operational ensemble. We use IFS cycle 43R3,
which was operational from 11 July 2017 to 5 June 2018,
to generate the ensemble initial states. This model version
is also the basis for the OpenIFS release CY43R3v1. The
single major difference to the operational ensemble set-up is
that the highest model resolution available in OpenEnsemble
is TL639 (∼ 32 km; instead of TCO639; ∼ 18 km). The other
available resolutions provided in OpenEnsemble are TL399
(∼ 50 km) and TL159 (∼ 120 km).

The most relevant changes between this model version and
the currently operational ECMWF version (CY46R1) that
affect the ensemble initial states arise from changes to the
model uncertainty representations (see Lock et al., 2019) and
from the removal of the plus–minus symmetry. On top of this
list, a number of changes have been introduced to the IFS
model, the IFS data assimilation process, and the number of
observations used in data assimilation. These all will natu-
rally also affect the ensemble initial states, due to direct or
indirect contributions.
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Table 1. Description of the OpenIFS and ecWAM initialization files.

OpenIFS date specific Representation of fields Suffix

(1) ICMGG....INIUA GG : Gaussian grid. INIUA : upper-air model-level variables.
(2) ICMGG....INIT GG : Gaussian grid. INIT : surface-level variables only.
(3) ICMCL....INIT CL : climatological fields. INIT : initial and time-varying forcing fields.
(4) ICMSH....INIT SH : spherical harmonics INIT : model-level variables.

OpenIFS common Explanation

(5) fort.4 Fortran namelist with variables to control model
(6) rtables Fortran namelist defining the grid resolutions for the radiation scheme.
(7) vtables Fortran namelist defining the coefficients for the vertical resolutions.
(8) ifsdata Contains GRIB files for the various long-lived gases and aerosol climatologies used by the model.

ecWAM date specific Explanation

(9) cdwavein Initial value of the drag coefficient.
(10) sfcwindin Initial value of 10 m horizontal wind components and sea ice fraction.
(11) specwavein Initial wave spectra.
(12) uwavein Initial value of wind speed.

ecWAM common Explanation

(13) wam_grid_tables Wave model grid and tables: the wave model uses this external file to define its grid. The wave model grid
is different from that of the atmosphere in IFS which obtains the grid definition from the ICM input files.

(14) wam_subgrid_[0–2] Information for model advection, including sub-grid parameterization: pre-computed impact of sub-grid
bathymetry on wave propagation.

(15) wam_namelist Fortran namelist file for the wave model.

In order to run the OpenIFS forecast model, multiple ini-
tialization files are needed, and these are listed in Table 1
along with an explanation of the function of the file. The
initialization beginning with “ICM” are the initial files for
the upper-air variables, surface variables, and climatologi-
cal forcing in the atmospheric part of the model. The four
dots (....) in these files are replaced by a four-letter exper-
iment identifier of your own choosing. In the OpenEnsem-
ble files this identifier is “oifs”. The ICMGG....INIUA
files contain upper-air model-level variables on a Gaus-
sian grid. ICMSH....INIT files contain model-level vari-
ables in spherical harmonics representation. ICMGG....INIT
files contain surface-level variables on a Gaussian grid. The
ICMCL....INIT files contain climatological surface fields for
albedo at different radiation wave lengths, leaf area indexes,
soil temperature, and sea ice area fraction. For a detailed
description of the contents of each file, we refer the reader
to Appendix A. In addition to these four date-specific files,
OpenIFS requires static climatological files for radiation cal-
culations and text Fortran namelists defining the supported
grid resolutions for the radiation scheme and the vertical hy-
brid sigma coordinates. In order to utilize ecWAM, a sepa-
rate set of wave model input files and namelists is required.
The OpenEnsemble dataset contains files 1–4, and an exam-
ple of file 5 is also provided. Files 6–8 can be obtained from
the ECMWF anonymous ftp server (ftp://ftp.ecmwf.int/pub/
openifs/ifsdata/, last access: 11 March 2021). The additional

files needed to enable ecWAM are also provided in Ope-
nEnsemble 1.0 (files 9–15).

The OpenIFS date-specific data (files 1–4) are tarred,
gzipped, and packed such that a single tarz file contains all
initial states (control state and perturbed initial states) for a
given date and time (00:00 and 12:00 UTC). The files are in
the following form: “YYYYMMDDHH.tarz”. Furthermore,
the data are arranged into separate directories for the three
available resolutions:

1. https://a3s.fi/oifs-t159/YYYYMMDDHH.tgz (last ac-
cess: 11 March 2021) (∼ 1.4 GB per file);

2. https://a3s.fi/oifs-t399/YYYYMMDDHH.tgz (last ac-
cess: 11 March 2021) (∼ 7.9 GB per file);

3. https://a3s.fi/oifs-t639/YYYYMMDDHH.tgz (last ac-
cess: 11 March 2021) (∼ 19.5 GB per file).

Additionally, example OpenIFS namelists for CY43R3
and the ecWAM common and date-specific files can be
downloaded from

1. https://a3s.fi/oifs-tRES/fort.4_namelist_example (last
access: 11 March 2021),

2. https://a3s.fi/wam/oifs_cy43r3_tRES_wam_common.
tgz(last access: 11 March 2021),

3. https://a3s.fi/wam/oifs_cy43r3_tRES_wam_inifiles_
YYYYMM.tgz (last access: 11 March 2021).
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Here, RES is replaced by the required resolution
(159/399/639), and YYYYMM is replaced by year
and month. Note that the ecWAM date-specific files (6) are
packed into month-long tarz files.

Table 2 lists the types of files a single OpenIFS date-
specific tarz file consists of. In each tarz file there are a set
of 50 different perturbation files as well files 1–4 listed in
Table 1 for running an unperturbed control experiment. The
perturbation files follow the IFS naming convention: (1) pan
– perturbed analysis (EDA perturbations), (2) psu – perturbed
surface (EDA perturbations), (3) pua – perturbed upper air
(UA) file (EDA+SV perturbations), and (4) pert – raw SV
perturbations.

The last four files in Table 2 contain different forms
of initial state perturbations. pan_NNN files can be used
to replace ICMGG....INIUA and are constructed as high-
resolution analysis± EDA perturbations. psu_NNN files can
be used to replace ICMGG....INIT files and contain initial
states with EDA perturbations. pua_NNN files can be used
to replace ICMSH....INIT and contain the final spherical har-
monics representation of an initial state containing both EDA
and SV perturbations. And finally, pert_NNN files contain
raw SV perturbations in spherical harmonics. These can be
used to decompose the ICMSH....INIT file into SV and EDA
parts.

These files can be used to form four different kinds of ini-
tial states for experimentations, which are listed in Table 3.
Control forecasts and SV+EDA perturbed forecasts can be
initialized directly from the provided files. For EDA-only or
SV-only perturbations, some file operations are required. In
order to get initial states with EDA-only perturbations, the
pert file needs to be subtracted from the pua file. An exam-
ple of how to do this using Climate Data Operators (CDO;
Schulzweida, 2019) software is given in Appendix B. The
file manipulation is always subtraction: the plus–minus sym-
metry is built into the files, i.e. pert_001 and pert_002 will
be identical fields with different signs. For SV-only pertur-
bations, the control state should be used, and the pert files
should be added to the ICMSH....INIT files. Again, the same
procedure with grid point conversion and plus–minus sym-
metry applies here. The workflow shown in Appendix B can
be applied here with minor modifications. Note that OpenIFS
expects to find the files 1–4 listed in Table 1, so the initial
files must be renamed or linked accordingly when running
forecasts.

When using ecWAM with OpenIFS (the recommended
configuration), the ecWAM date-specific files (9–12 in Ta-
ble 1) and ecWAM common files (13–15 in Table 1) should
be linked to the forecast run folder as well.

5 Running ensembles from the dataset

5.1 Workflow manager – OpenEPS

In order to run large ensembles of a forecast model, a work-
flow manager is essential. For this purpose, we use a simple
yet efficient software called OpenEPS here. We want to em-
phasize that the dataset of initial states provided is not tied to
this (or any) software. OpenEPS is mostly written in Bash but
utilizes GNU Make to handle parallel job executions in high-
performance computing (HPC), Linux cluster, or laptop en-
vironments. The software is freely available under an Apache
2.0 licence (https://github.com/pirkkao/OpenEPS, last ac-
cess: 12 March 2021). Instructions on how to use the soft-
ware, as well as a few example cases, are provided with the
software download. Nonetheless, we will provide a concise
description of the OpenEPS software here, as the workflow
would be similar with any workflow manager. The general
workflow is handled as follows:

0. set up a computing-environment-specific file containing
various architecture settings;

1. choose the experiment specifications (resolution, num-
ber of ensemble members, computing resources, etc.);

2. run OpenEPS, which will

– construct the required path structure for the experi-
ment,

– generate run configurations (fort.4) for OpenIFS,

– link the full initial states or generate a set of ini-
tial states from the dataset (SV only, EDA only, or
change amplitudes of the perturbations) for the first
ensemble initialization date,

– reserve run resources for the model execution and
submit the batch job (if run on an HPC);

3. run OpenIFS model forecasts for the given date with the
available resources;

4. once all ensemble member forecasts are complete, exe-
cute one or more of the following

– post-process model outputs,

– run additional tasks e.g. algorithmic model tuning;

5. link or generate initial states for the next date;

6. go back to step 3 until all dates have been cycled
through.

Step 0 only needs to be completed once for each unique
computing environment. In the current HPC implementation,
OpenEPS reserves all of the desired computing resources at
the same time. For example, if the user wanted to run a total
of five ensemble members, each to be executed concurrently
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Table 2. Files contained in a tarz file for a given date and time. RES is replaced with the spherical truncation number, i.e. 159/399/639.

File name Corresponds to Contained perturbation structures

ggmlRES ICMGG....INIUA
ICMGGoifsINIT ICMGG....INIT
ICMCLoifsINIT.1 ICMCL....INIT
ICMSHoifsINIT ICMSH....INIT

pan_[001-050] ICMGG....INIUA EDA perturbed fields
psu_[001-050] ICMGG....INIT EDA perturbed fields
pua_[001-050] ICMSH....INIT EDA+SV perturbed fields
pert_[001-050] Raw SV perturbation fields

Table 3. Types of initial states that can be constructed from the dataset.

Type Files needed Required file operations

Control/deterministic ggmlRES Use as ICMGG....INIUA
forecast ICMGGoifsINIT Use as ICMGG....INIT

ICMSHoifsINIT Use as ICMSH....INIT

EDA+SV perturbations pan_NNN Use as ICMGG....INIUA
psu_NNN Use as ICMGG....INIT
pua_NNN Use as ICMSH....INIT

EDA only pan_NNN Use as ICMGG....INIUA
psu_NNN Use as ICMGG....INIT
pua_NNN, pert_NNN Subtract the fields, use as ICMSH....INIT

SV only ggmlRES Use as ICMGG....INIUA
ICMGGoifsINIT Use as ICMGG....INIT
ICMSHoifsINIT, pert_NNN Sum the fields, use as ICMSH....INIT

and each using 20 cores, this would mean submitting a batch
job requesting a reservation of 100 cores for a time slot of
N minutes. If the user wanted to run 50 ensemble members
in total following the previous set-up, OpenEPS would com-
pute these in 10 consecutive batches within the same batch
reservation. Instead of reserving 100 cores for N minutes,
the cores would now be reserved for N · 10 min. One could
also naturally increase the amount of computing resources in
order to keep the execution time to a minimum, i.e. reserve
100 · 10 cores for N minutes.

It is also possible to do online post-processing within the
workflow, i.e. run scripts to manipulate each model forecast
after they are finished. Note that, due to the nature of the
HPC implementation, this means that all of the reserved re-
sources might be sitting idle while this is happening. Usually
the computing resources required for model forecast calcu-
lations are much larger than those used in post-processing
the output, so caution is advised here. We recommend using
this option only when online post-processing is required as
part of the workflow, such as in algorithmic model tuning.
Also, as manipulation of the initial state files is resource de-
manding, it is highly advisable that modifications to the ini-
tial states (separation of SV and EDA parts for example) are

done as a separate task before the actual model integrations.
The workflow for this is also supported in OpenEPS.

5.2 Forecast model set-up

Although the initial states have been generated using IFS ver-
sion CY43R3, we use the OpenIFS version matching IFS
CY40R1 as the forecast model here. This is due to prac-
tical reasons: at the time of writing this paper, the match-
ing cycle for OpenIFS (CY43R3v1) was still in preparation.
We foresee that the forecast model difference will affect the
testing somewhat, mainly due to differing analysis and fore-
cast biases, i.e. the analysis bias is affected by the model cy-
cle; hence, a CY43R3 analysis and CY43R3 forecast model
will have more similar biases than a CY43R3 analysis and a
CY40R1 forecast model. This will result in potentially better
scores when the analysis and forecast are created by the same
cycle. The forecasting skill in early forecast lead times might
also be somewhat degraded due to a stronger than usual spin-
up effect. However, we still feel confident that the forecast
skill evaluation is of value despite the forecast model differ-
ences. A number of physical parametrization and model dy-
namics changes happened between CY40R1 and CY43R3;

Geosci. Model Dev., 14, 2143–2160, 2021 https://doi.org/10.5194/gmd-14-2143-2021



P. Ollinaho et al.: Ensemble prediction using a new dataset of ECMWF initial states 2149

Table 4. Experiments conducted for this study. The experiment
name includes the resolution used as well as the type of initial state
perturbations (pert) used. The ensemble sizes, the number of ensem-
ble initialization dates, and notes regarding the specific experiments
are also given.

Name Ensemble Dates Notes
size

TL159-SV 50 46 SV pert only
TL159-EDA 50 46 EDA pert only
TL159-BOTH 50 46 EDA and SV pert

TL159-SV+ 8 46 SV pert multiplied by 1.2
TL159-EDA+ 8 46 EDA pert multiplied by 1.2
TL159-BOTH+ 8 46 EDA and SV pert multiplied

individually by 1.2

TL399-SV 20 46 SV pert only
TL399-EDA 20 46 EDA pert only
TL399-BOTH 50 46 EDA and SV pert

TL639-SV 20 46 SV pert only
TL639-EDA 20 46 EDA pert only
TL639-BOTH 20 46 EDA and SV pert

we refer interested readers to the ECMWF OpenIFS and IFS
websites (ECMWF, 2020a, 2019a, b).

5.3 Experiment set-up

We have run a number of experiments in order to assess
how well the initial state perturbations fare with OpenIFS;
these are listed in Table 4. The experiments cover the three
horizontal resolutions provided: TL159 (∼ 120 km), TL399
(∼ 50 km), and TL639 (∼ 32 km). Also, the different initial
perturbation types (SV and EDA) were tested separately and
together in order to illustrate the efficiencies of the perturba-
tions in generating ensemble spread with the OpenIFS set-
up. All of the experiments were run without any model un-
certainty representations. We want to note that the decision
to include the ecWAM initial states in this release version
of the OpenEnsemble dataset came during the review pro-
cess. Therefore, the experiments shown here were run with-
out ecWAM activated.

Running large numbers of ensemble forecasts requires
substantial computational resources. Leutbecher (2019)
demonstrated that the number of ensemble start dates is much
more important than the size of the ensemble for extracting
the mean probabilistic skill of the system. Thus, we keep the
number of start dates high but decrease the ensemble size
for the higher resolutions in order to save computational re-
sources: only the TL159 experiments and the basic set-up for
TL399 were run with the full 50 ensemble members. TL399
experiments testing the effect of the initial state perturbation
methods individually were run with a reduced ensemble size
of 20 members as were all of the TL639 experiments. Using
fair scores, we will showcase (in Sect. 6.2) that the ensemble

size chosen here is indeed more than enough to extract the
probabilistic skill of the system.

An additional set of experiments with TL159 resolution
was also run in which the amplitudes of SV and EDA pertur-
bations were inflated by multiplying the perturbation fields
with a constant number. This exercise aimed to demonstrate
how the initial state amplitudes can be used to tune the
ensemble skill. In the combined perturbations experiment
(BOTH+), both of the perturbation types were increased in-
dividually and then added together. These experiments used
an ensemble size of eight members.

6 Ensemble forecast skill evaluation

6.1 Ensemble mean RMSE and ensemble spread

It is common to assess the skill of an ensemble by calculating
the ensemble mean root-mean-squared error (RMSE) and the
ensemble standard deviation (ensemble spread). The former
measures how accurate the ensemble mean is, i.e. how near
the mean of the ensemble forecasts is to analysis fields or ob-
servations; the latter verifies whether the ensemble forecasts
simulated a wide enough range of possible atmospheric states
to reflect the error characteristics of the ensemble mean. Ide-
ally, one would want the ensemble mean RMSE to be as
small as possible and the spread to be equal to the ensem-
ble mean RMSE on average over many cases and within
sampling uncertainty caused by a finite number of cases and
ensemble members (see Leutbecher and Palmer, 2008, for
an in-depth discussion). Here, we use operational ECMWF
analyses truncated to a 1◦ × 1◦ regular grid from the forecast
period as the truth. The operational analyses are available at
a 6-hourly interval instead of the 12-hourly interval available
through OpenEnsemble 1.0. We want to note that the oper-
ational ECMWF analyses covering the same time period as
OpenEnsemble 1.0 use two different IFS versions: CY43r1
is used until 10 July 2017 and CY43r3 is used from 11 July
onwards. Thus, even when using OpenIFS version CY43r3
to generate forecasts from OpenEnsemble 1.0, verification
scores calculated with operational ECMWF analyses might
appear somewhat degraded due to differences in the under-
lying model version. The model output is interpolated to a
1◦× 1◦ regular grid before any other post-processing is done.

In Fig. 1, the ensemble mean RMSE (solid) and ensemble
spread (dashed) are shown for the first three TL159 exper-
iments (SV, EDA, and BOTH). Figure 1a represents scores
for the Northern Hemisphere (NH), and Fig. 1b represents
scores for the tropics (TR). The EDA perturbations produce
more ensemble spread than the SV perturbations in both the
NH and TR. It is also quite evident that including both of
the perturbations further improves the ensemble spread, i.e.
it moves closer to the ensemble mean RMSE. Both kinds of
perturbations also improve the forecast skill of the system
when compared with a control run without any perturbations
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Figure 1. Ensemble mean RMSE (solid) and ensemble spread (dashed) of temperature at 850 hPa as a function of forecast lead time up to
240 h for a TL159 model resolution with 50 ensemble members. The mean is calculated over 46 start dates. The experiments included are as
follows: only SV perturbations (cyan), only EDA perturbations (blue), and both SV and EDA perturbations (violet). Also shown here is the
unperturbed control member RMSE (black). Panel (a) shows the Northern Hemisphere, and panel (b) shows the tropics.

(black line). Interestingly, the EDA perturbations do not re-
ally start to grow before a forecast length of 48 h in the NH
and 96 h in the TR. The added benefit of having both of the
perturbation types active at the same time can also be ob-
served in the mean forecast skill beyond forecast lead times
of 5 (8) d in the NH (TR). The behaviour with respect to the
types of initial state perturbations is similar at resolutions of
TL399 and TL639 (not shown).

An increased horizontal resolution leads to a much im-
proved system forecast skill, as can be seen in Fig. 2 where
the experiments with both SV and EDA perturbations ac-
tive are plotted for all three resolutions. For both TL399 and
TL639 resolutions, this is due to both a larger spread and an
improved forecast skill of the ensemble. Note that there is
a sampling difference between the two lower-resolution ex-
periments and the TL639 experiment: the former two cases
have 50 ensemble members, whereas the latter case has 20.
Ideally, one should account for the finite number of members
when comparing ensemble spread and error (see Leutbecher
and Palmer, 2008).

6.2 Fair continuous ranked probability score (CRPS)

Fair versions of probabilistic skill scores indicate how the
system would have scored if it had had an infinite number of
ensemble members1. Leutbecher (2019) illustrated how a fair

1In statistical terms, a fair score is a score that evaluates the un-
derlying distribution from which the ensemble members are a ran-
dom draw (Ferro, 2014)

version of the continuous ranked probability score (CRPS)
can be constructed and also explored how many ensemble
members are required to calculate a representative fair CRPS.
The recommended ensemble size was set to be four to eight
members for scientific testing. Figure 3a shows the regular
CRPS calculated for ensembles of various sizes. Figure 3b
shows the fair CRPS values for the same experiments. The
smaller ensembles are constructed from the 50-member en-
semble. A mathematical prerequisite for calculating the fair
CRPS is that the ensemble members need to be exchange-
able, which is not fulfilled in the ECMWF ensemble under
this initial state construction style, where the SV and EDA
perturbations are used with plus–minus symmetry (see Leut-
becher, 2019). Note that this is no longer the case from 2019
onwards in the ECMWF operational ensemble configuration.
Therefore, the smaller ensembles here are either constructed
from odd or even ensemble members, which fulfils the pre-
requisite. As per construction, the regular CRPS is lower (i.e.
better) for an ensemble with more members than for an en-
semble with fewer members (Fig. 3). But, the fair version of
the score gives near-identical results for the different ensem-
ble sizes. This allows us to meaningfully compare different
configurations.

Figure 4a and b show fair CRPS for all of the experiments
using standard initial state perturbation amplitudes. Addi-
tionally, Fig. 4c and d show pairwise fair CRPS differences
with 95 % confidence intervals (calculated via bootstrapping)
between the TL639 EDA+SV experiment and selected ex-
periments. Using only SV perturbations results in less skil-
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Figure 2. Ensemble mean RMSE (solid) and ensemble spread (dashed) of temperature at 850 hPa as a function of forecast lead time up to
240 h. The mean is calculated over 46 start dates. All experiments contain SV and EDA perturbations: TL159 (green; 50 members), TL399
(teal; 50 members), and TL639 (violet; 20 members). Panel (a) shows the Northern Hemisphere, and panel (b) shows the tropics.

Figure 3. CPRS (a) and fair CRPS (b) of temperature at 850 hPa as a function of forecast lead time, up to 240 h. The mean is calculated over
46 start dates. Both panels show the TL159-resolution scores for the Northern Hemisphere, with different colours and line styles representing
the various ensemble sizes used to calculate the scores: 50 (continuous black), 20 (dashed green), 12 (dot-dashed blue), 10 (dotted pink), and
8 (dotted red).
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Figure 4. Fair CRPS as a function of forecast lead time, up to 240 h, for the Northern Hemisphere (a) and the tropics (b). The mean is
calculated over 46 start dates. Fair CRPS difference to the TL639 EDA+SV experiment with 95 % confidence intervals for the Northern
Hemisphere (c) and the tropics (d). Scores for eight-member ensembles with various resolutions and perturbation methods: TL159 (green),
TL399 (cyan), TL639 (violet), SV perturbations only (dot-dashed), EDA perturbations only (dashed), and both SV and EDA perturbations
(solid).

ful ensembles than using only EDA perturbations; this is in
line with the findings of Buizza et al. (2008) and Lang et al.
(2012). Noticeably, a TL159 resolution with EDA perturba-
tions scores better in the tropics than TL639 with only SV
perturbations active for forecast lead times shorter than about
168 h. The SV perturbations in the tropics only consist of
perturbations around active tropical cyclones; thus, it is ex-
pected that the SV perturbations will result in a higher fair
CRPS than the EDA perturbations in the tropics. Nonethe-
less, having SV perturbations active on top of EDA perturba-
tions brings clear value to all the resolutions in both the NH
and TR. Interestingly, when comparing the EDA+SV exper-

iments for the different resolutions, TL159 scores the best
whereas TL639 scores the worst for the 0th time step of the
model integration. This is likely caused by analysis and fore-
cast model version differences.

The SV perturbation amplitude is a tuning parameter of
the ensemble (Leutbecher and Palmer, 2008; Leutbecher and
Lang, 2014). Figure 5 illustrates the sensitivity of the TL159-
resolution ensemble to a change in the initial perturbation
amplitude. There is a noticeable increase in skill beyond a
12 h forecast lead time in the NH when increasing the EDA
perturbation amplitudes by a factor of 1.2. Increasing the SV
perturbation amplitudes results in an increase in skill for all
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Figure 5. Fair CRPS as a function of forecast lead time, up to 240 h, for the Northern Hemisphere (a) and the tropics (b). The mean is
calculated over 46 start dates. Fair CRPS difference to EDA+SV experiment with 95% confidence intervals for the Northern Hemisphere (c)
and the tropics (d). Scores for eight-member ensembles with a TL159 resolution using various perturbation methods: SV perturbations only
(dashed), EDA perturbations only (dot-dashed), and both SV and EDA perturbations (solid). Normal amplitude initial state perturbations
(green) and initial state perturbations increased by a factor of 1.2 (orange/brown). The TL399 experiment with both SV and EDA perturbations
(black dashed) is drawn for reference (a, b).

forecast lead times. In the TR, the increase in skill becomes
noticeable beyond a forecast lead time of 12 h (48 h) for EDA
(SV) perturbations.

We have focused on showing the forecast skill of tem-
perature at 850 hPa over the NH and the TR. The results
from other model variables (geopotential at 500 hPa, winds at
200 and 850 hPa) show very similar behaviour (not shown).
Moreover, the Southern Hemisphere forecast skill is very
much like that in the NH (not shown).

The following case study is aimed at illustrating the use-
fulness of the new dataset and the OpenEPS repository. We

want to emphasize that the goal here is not to dissect how
the ensemble behaved or what caused the differences in the
forecasts, but to give an idea of how running ensembles can
provide plenty of insights that are normally unavailable from
a single-model forecast.

Typhoon Damrey started as a tropical depression in the
Philippine archipelago on 31 October 2017. After moving
across the open sea to the west of the Philippines, it started to
rapidly intensify and reached its peak strength on 3 Novem-
ber (the control forecast initial state for MSLP and 200 hPa
wind vectors for 2 November at 12:00 UTC is illustrated in

https://doi.org/10.5194/gmd-14-2143-2021 Geosci. Model Dev., 14, 2143–2160, 2021



2154 P. Ollinaho et al.: Ensemble prediction using a new dataset of ECMWF initial states

Figure 6. Ensemble mean sea level pressure (MSLP; violet contour lines) and ensemble spread (coloured contours) at a TL639 resolution.
The 0 h forecast was initialized on 2 November at 12:00 UTC. The observed track of Typhoon Damrey between 2 November at 12:00 UTC
and 4 November at 00:00 UTC (red line).

Figure 7. Ensemble mean MSLP (violet contour lines) and ensemble spread (coloured contours) at a TL639 resolution. The 36 h forecast
was initialized on 2 November at 12:00 UTC. The observed track of Typhoon Damrey between 2 November at 12:00 UTC and 4 November
at 00:00 UTC (red line).

Appendix C Fig. C1). The typhoon made a landfall in Viet-
nam the following day and caused severe damage and loss
of life (see e.g. GFDRR, 2018). A report on the operational
forecasting performance of the event can be found in the
ECMWF Severe Event Catalogue (ECMWF, 2020b).

We use our dataset to launch a 20-member OpenIFS en-
semble starting from 2 November at 12:00 UTC with both
SV and EDA perturbations active and a TL639 resolution.
The ensemble mean MSLP and ensemble spread for the 0th
time step of the ensemble forecast is shown in Fig. 6. The
observed track of Typhoon Damrey is also plotted (red). No-
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tably, the largest differences in the initial states are focused
on the southern side of the typhoon core (MSLP minimum).
Large differences can also be observed in the east–west struc-
ture of the typhoon. Lang et al. (2012) showed how especially
the SV perturbations can rapidly alter the location and inten-
sity of a tropical cyclone (TC). Model forecast differences
(due to the initial state perturbations) after a 36 h forecast
lead time are shown in Fig. 7. The ensemble mean as well
as the majority of the ensemble members place the landfall
location too far south and propagate the typhoon core too
slowly (too far east). The exact location and timing of the ty-
phoon landfall are, however, within the likely solutions from
the ensemble.

These kind of case studies using ensembles could be used
to study various mechanics of the model and answer the fol-
lowing questions:

– Was there already something incorrect in the TC struc-
ture in the unperturbed initial state?

– Did some initial state perturbations correct this and
make an impact on the TC forecast?

– Were local perturbations to the typhoon core essential
or was it perhaps more important to get the mean flow
forcing right?

– Would activation of the OpenIFS wave model improve
all of the forecasts due to an improved representation of
momentum exchange between the ocean surface and the
atmosphere?

7 Discussion and conclusions

In this paper, we have introduced a dataset of ensemble ini-
tial states covering a 1-year period from 1 December 2016
to 30 November 2017. The initial states have been generated
closely following what is done operationally in the ECMWF
ensemble and are based on ECMWF IFS cycle 43R3. Three
horizontal resolutions are provided for 50+1 ensemble mem-
bers: TL159 (∼ 120 km), TL399 (∼ 50 km), and TL639 (∼
32 km). The provided files can be used to construct three
types of initial states: (1) both SV and EDA perturbations
(as in the operational ECMWF ensemble), (2) SV-only per-
turbations, and (3) EDA-only perturbations. The dataset is
available for download from an https server under a Creative
Commons licence.

In order to showcase the average forecast skill of the
dataset, we ran forecast experiments covering all three hor-
izontal resolutions and all three different initial perturbation
types. The experiments were run with OpenIFS CY40R1 (the
newest OpenIFS version available at the time of writing). We
used an open-source workflow manager, called OpenEPS, to
manage the ensemble workflow on an HPC.

For all resolutions, SV perturbations generate the least
spread in the ensemble. Nonetheless, having SV perturba-

tions active on top of EDA perturbations clearly brings value
to the forecast skill of the system. All perturbation types in-
crease the accuracy of the ensemble mean when compared
against a control forecast initialized from an unperturbed
analysis state. We have also tested the impact of inflating the
amplitudes of the initial state perturbations. Increasing the
amplitudes of the initial state perturbations result in an in-
crease in the forecast skill of the system, demonstrating that
inflation tuning of the initial conditions can improve proba-
bilistic skill. Activating ecWAM when running OpenIFS de-
grades some skill scores in the TR (not shown). This is a
known issue in IFS and has been fixed gradually over the
newer operational IFS cycles (Jean Bidlot, personal com-
munication, 2021). Despite the unfavourable effect on the
skill of some variables in the TR, we highly recommend run-
ning OpenIFS with ecWAM activated, as including the wave
model is known to especially improve forecasts of extra-
tropical and tropical cyclones.

Inspection of especially the lowest-resolution experiments
reveals that all of the ensembles are under-dispersive, i.e. the
ensemble spread is much smaller than the ensemble mean
RMSE. Also, the EDA perturbations in the tropics do not
grow during the first 96 h of the forecasts. This is expected as
our ensemble configuration is missing a model uncertainty
representation. In operational ensemble configurations, hav-
ing one or more model uncertainty representations has been
essential in both improving the accuracy of the ensemble
mean as well as increasing the spread of the ensemble. As-
sessing the ensemble skill when one or multiple model un-
certainty representations are active on top of the initial state
perturbations is something that the authors will proceed to
work on next. The OpenIFS release based on IFS CY43R3
includes the stochastically perturbed parameterization ten-
dencies (SPPT) scheme (Buizza et al., 2008), the stochas-
tic kinetic energy backscatter (SKEB) scheme (Berner et al.,
2009), and an early version of the stochastically perturbed
parametrizations (SPP) scheme (Ollinaho et al., 2017). To
assess the skill of ensemble forecasts, it is also important to
take biases, analysis uncertainty, and observation errors into
account (Yamaguchi et al., 2016). This is something that we
plan to do in the future.

We have also briefly demonstrated the potential of using
ensemble forecasts in case studies. Typhoon Damrey, which
caused severe damage in Vietnam in 2017, was simulated by
generating a 20-member ensemble with a TL639 resolution
initialized from our dataset of initial state perturbations.

We hope that the meteorological research community will
find this dataset and the OpenEPS repository useful in striv-
ing towards more realistic experimentation in ensemble fore-
casting.
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Appendix A: Variables contained in initial state files

Table A1. Surface-level variables on a Gaussian reduced grid in the ICMGGoifsINIT file. WMO stands for World Meteorological Organiza-
tion.

Variable short name Variable WMO code Description

stl1-4 var139, 170, 183, 236 Soil temperature level 1–4
swvl1-4 var39, 40, 41, 42 Volumetric soil water layer 1–4
sd var141 Snow depth
src var198 Skin reservoir content
skt var235 Skin temperature
ci var31 Sea ice area fraction
tsn var238 Temperature of snow layer
asn var32 Snow albedo
rsn var33 Snow density
sst var34 Sea surface temperature
istl1-4 var35, 36, 37, 38 Ice temperature layer 1–4
chnk var148 Charnock
lsm var172 Land–sea mask
sr var173 Surface roughness
al var174 Albedo
sdor var160 Standard deviation of orography
isor var161 Anisotropy of sub-grid-scale orography
anor var162 Angle of sub-grid-scale orography
slor var163 Slope of sub-grid-scale orography
lsrh var234 Logarithm of surface roughness length for heat
cvh var28 High vegetation cover
cvl var27 Low vegetation cover
tvh var30 Type of high vegetation
tvl var29 Type of low vegetation
sdfor var74 Standard deviation of filtered sub-grid orography
alnid var18 Near-infrared albedo for diffuse radiation

Table A2. Model-level variables in spherical harmonics representation in the ICMSHoifsINIT file.

Variable short name Variable WMO code Description

t var130 Temperature
vo var138 Vorticity
d var155 Divergence
lnsp var152 Logarithm of surface pressure
z var129 Geopotential

Table A3. Model-level variables on a Gaussian reduced grid in the ICMGGoifsINIUA file.

Variable short name Variable WMO code Description

q var133 Specific humidity
clwc var246 Specific cloud liquid water content
ciwc var247 Specific cloud ice water content
cc var248 Fraction of cloud cover
cswc var76 Specific snow water content
crwc var75 Specific rain water content
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Appendix B: Example of manipulating files in spherical
harmonics with CDO

The following gives an example of a workflow in Bash
shell with Climate Data Operators (CDO; Schulzweida,
2019; available at https://code.mpimet.mpg.de/projects/cdo,
last access: 21 April 2021) when constructing EDA-only ini-
tial state perturbations to replace ICMSHoifsINIT. Note that
the field subtraction can be done in spherical harmonics rep-
resentation as well as in grid point space.

1. Convert to grid point representation (cdo -sp2gpl
<input file> <output file>)

cdo -sp2gpl ICMSHoifsINIT gg_ctrl
cdo -sp2gpl pua_001 gg_eda+sv
cdo -sp2gp pert_001 gg_sv

2. Separate the variable fields (multi-field subtraction not
supported)(cdo -selvar,<field names> <input file>
<output file>)

cdo -selvar,t gg_eda+sv gg_eda+sv_t
cdo -selvar,d gg_eda+sv gg_eda+sv_d
cdo -selvar,vo gg_eda+sv gg_eda+sv_vo
cdo -selvar,lnsp gg_eda+sv gg_eda+sv_lnsp
cdo -selvar,z gg_eda+sv gg_eda+sv_z

cdo -selvar,t gg_sv gg_sv_t
cdo -selvar,d gg_sv gg_sv_d
cdo -selvar,vo gg_sv gg_sv_vo
cdo -selvar,lnsp gg_sv gg_sv_lnsp

3. Change resolution of SV perturbations to match the
other fields (cdo -genbil,<grid> <input file> <output
file> is used to first generate interpolation weights;
cdo -remap,<grid>,<weights> <input file> <output
file> then does the interpolation applying these
weights.)
cdo -genbil,gg_eda+sv_t gg_sv_t grid
cdo -remap,gg_eda+sv_t,grid gg_sv_t gg_sv_t_hr
cdo -remap,gg_eda+sv_t,grid gg_sv_d gg_sv_d_hr
cdo -remap,gg_eda+sv_t,grid gg_sv_vo
gg_sv_vo_hr
cdo -remap,gg_eda+sv_t,grid gg_sv_lnsp
gg_sv_lnsp_hr

4. Remove SVs
cdo -sub gg_eda+sv_t gg_sv_t_hr gg_eda_t
cdo -sub gg_eda+sv_d gg_sv_d_hr gg_eda_d
cdo -sub gg_eda+sv_vo gg_sv_vo_hr gg_eda_vo
cdo -sub gg_eda+sv_lnsp gg_sv_lnsp_hr
gg_eda_lnsp

5. Merge variables and transform back into spherical har-
monics
cdo -merge gg_eda_t gg_eda_vo gg_eda_d
gg_eda_lnsp gg_eda_z gg_eda
cdo -add gg_ctrl gg_eda gg_final
cdo -gp2spl gg_final ICMSHoifsINIT
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Appendix C: Application to case studies: an example
from forecasting a tropical cyclone

Figure C1. Ensemble mean initial state for MSLP (coloured contours) and 200 hPa wind vectors (blue barbs) at a TL639 resolution on
2 November at 12:00 UTC.
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Code and data availability. A software licencing agreement with
ECMWF is required to access the OpenIFS source distribution;
despite the name, it is not provided under any form of open-
source software licence. Licence agreements are free, limited to
non-commercial use, forbid any real-time forecasting, and must be
signed by research or educational organizations. Personal licences
are not provided. OpenIFS cannot be used to produce nor dissemi-
nate real-time forecast products. ECMWF has limited resources to
provide support; therefore, it may temporarily cease issuing new
licences if it is deemed difficult to provide a satisfactory level of
support. Provision of an OpenIFS software licence does not include
access to ECMWF computers nor the ECMWF data archive (other
than public datasets).

Other ECMWF software required for use with OpenIFS, such as
ecCodes, is available as open-source software using the Apache2
licence and can be downloaded from the ECMWF GitHub reposi-
tory (see https://github.com/ecmwf, last access: 21 April 2021). The
OpenIFS common files can be downloaded from ftp://ftp.ecmwf.int/
pub/openifs/ifsdata/ (last access: 11 March 2021).

OpenEPS software is freely available under an Apache 2.0 li-
cence. The version used in this paper can be downloaded from
https://doi.org/10.5281/zenodo.3759127 (Ollinaho, 2020a). The lat-
est development versions, including (among other improvements)
support for ecWAM activation, are available from https://github.
com/pirkkao/OpenEPS (last access: 12 March 2021).

Post-processing scripts used for this study can be found
at https://doi.org/10.5281/zenodo.4001495 (Ollinaho, 2020b). The
scripts for calculating the skill scores and plotting are also avail-
able: https://doi.org/10.5281/zenodo.4001516 (Ollinaho, 2020c).

The dataset described here will be available for the foreseeable
future through the https server described in this paper. The ECMWF
analysis states used to calculate the skill scores are available through
the ECMWF MARS archive for registered users; these states can
also be made available upon request from the corresponding author.
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