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Abstract. The availability of phosphorus (P) and nitrogen
(N) constrains the ability of ecosystems to use resources such
as light, water and carbon. In turn, nutrients impact the distri-
bution of productivity, ecosystem carbon turnovers and their
net exchange of CO, with the atmosphere in response to vari-
ation of environmental conditions in both space and time. In
this study, we evaluated the performance of the global ver-
sion of the land surface model ORCHIDEE-CNP (v1.2),
which explicitly simulates N and P biogeochemistry in ter-
restrial ecosystems coupled with carbon, water and energy
transfers. We used data from remote sensing, ground-based
measurement networks and ecological databases. Compo-
nents of the N and P cycle at different levels of aggrega-
tion (from local to global) are in good agreement with data-
driven estimates. When integrated for the period 1850 to
2017 forced with variable climate, rising CO; and land use
change, we show that ORCHIDEE-CNP underestimates the
land carbon sink in the Northern Hemisphere (NH) during
recent decades despite an a priori realistic gross primary pro-
ductivity (GPP) response to rising CO;. This result suggests

either that processes other than CO» fertilization, which are
omitted in ORCHIDEE-CNP such as changes in biomass
turnover, are predominant drivers of the northern land sink
and/or that the model parameterizations produce emerging
nutrient limitations on biomass growth that are too strict in
northern areas. In line with the latter, we identified biases in
the simulated large-scale patterns of leaf and soil stoichiom-
etry as well as plant P use efficiency, pointing towards P lim-
itations that are too severe towards the poles. Based on our
analysis of ecosystem resource use efficiencies and nutrient
cycling, we propose ways to address the model biases by giv-
ing priority to better representing processes of soil organic P
mineralization and soil inorganic P transformation, followed
by refining the biomass production efficiency under increas-
ing atmospheric CO», phenology dynamics and canopy light
absorption.
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1 Introduction

Nitrogen (N) and phosphorus (P) are key macronutrients that
control metabolic processes and plant growth and constrain
ecosystem-level productivity (Elser et al., 2007; Norby et al.,
2010; Cleveland et al., 2013). The amount and stability of
soil carbon (C) stock are also affected by N and P through
their regulating role in the mineralization of litter and soil or-
ganic matter (Girdenas et al., 2011; Melillo et al., 2011). The
availability of N and P is likely to limit future carbon storage
under climate change and rising atmospheric CO,. Empiri-
cal stoichiometry observations were applied in the posteriori
estimates of future carbon storage from land surface mod-
els (LSMs) lacking an explicit simulation of N and P bio-
geochemistry, which consistently led to an overestimation of
future carbon storage in LSMs (Hungate et al., 2003; Wang
and Houlton, 2009; Zaehle et al., 2015; Wieder et al., 2015).
Nevertheless, this approach has large uncertainties (Penuelas
etal., 2013; Sun et al., 2017) and relies on unproven assump-
tions (Brovkin and Goll, 2015).

An alternative is to directly represent the complex interac-
tions between N, P and carbon in an LSM. Several LSMs
incorporated different parameterizations of N interactions
(e.g., Thornton et al., 2007; Zaehle et al., 2014), but very few
global models have included P interactions. The few mod-
els accounting for P limitation in plant growth showed that
P availability limits primary productivity and carbon stocks
on highly weathered soils in the tropics (Wang et al., 2010;
Yang et al., 2014), and one study also suggested that P lim-
itations could also occur in the Northern Hemisphere in the
near future (Goll et al., 2012). Model representations of P
interactions are highly uncertain since the critical processes
are poorly constrained by current observational data. In par-
ticular, the desorption of P from soil mineral surfaces and the
enhancement of P availability for plants by phosphatase en-
zymes secreted by plant roots and microbes were identified
to be critical but poorly constrained (Fleischer et al., 2019).

Previous studies (Wang et al., 2010; Goll et al., 2012;
Yang et al., 2014; Thum et al., 2019) have suggested that
the inclusion of the phosphorus cycle improves model per-
formances with regard to reproducing observed C fluxes. But
adding new and uncertain P-related processes does not grant
an automatic improvement in an LSM in general. First, more
(nutrient-related) equations with more uncertain parameters
can result in less robust predictions. Second, models ignor-
ing nutrients were often calibrated on available carbon data
so that a new model with nutrients inevitably needs a param-
eter recalibration to reach similar performances as the same
model without nutrients. Third, for evaluating a large-scale
model resolving both nutrient and carbon biogeochemistry,
one needs specific nutrient-related datasets, which are more
scarce than classical biomass, productivity and soil carbon
data used for benchmarking carbon-only models.

The evaluation for N and P, together with carbon cycling in
global LSMs, remains very limited (Wang et al., 2010; Goll
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et al., 2012), but recent advances in ground-based measure-
ments, ecological datasets and process understanding have
made a better evaluation of C, N and P models feasible. The
available nutrient datasets have allowed for meta-analyses of
site-level nutrient fertilization experiments (e.g., Yuan and
Chen, 2015; Wright, 2019), data-driven assimilation schemes
to constrain nutrient budgets (Wang et al., 2018), new knowl-
edge about the critical P processes of sorption (Helfenstein
et al., 2018, 2020) and phosphatase-mediated mineralization
(Sun et al., 2020), global datasets of leaf nutrient content
(Butler et al., 2017), and empirical constraints on the CO;
fertilization effect on land carbon storage (Terrer et al., 2019;
Liu et al., 2019). In addition to direct comparison with nutri-
ent datasets, it is also possible to diagnose emerging model
responses in terms of ecosystem resource use efficiencies
(RUE) and confront them with observations for identifying
how ecosystems adjust and optimize nutrient, water, light
and carbon resource availabilities (Fernandez-Martinez et al.,
2014; Hodapp et al., 2019). In particular, modeled N and P
use efficiencies can be compared to observation-based esti-
mates at ecosystem scale (Gill and Finzi, 2016) and at biome
scale (Wang et al., 2018).

Here we evaluate the global cycles of C, N and P
in the nutrient-enabled version of the LSM ORCHIDEE,
ORCHIDEE-CNP (v1.2). The model has been previously
evaluated for tropical sites (Goll et al., 2017a, 2018) and for
coarse-scale global carbon fluxes and stocks using the In-
ternational Land Model Benchmarking system iLAMB by,
e.g., Friedlingstein et al. (2019). The results from this evalu-
ation showed a slightly worse performance for ORCHIDEE-
CNP (v.1.2) than the carbon-only version of ORCHIDEE,
which has been extensively calibrated (Friedlingstein et al.,
2019). In this study, we perform a detailed evaluation of
ORCHIDEE-CNP focusing on four ecosystem characteris-
tics that were found to be critical for the response of land
C cycling to increasing CO; and climate change: (1) vegeta-
tion resource use efficiencies, (2) the response of plant pro-
ductivity to increasing CO», (3) ecosystem N and P turnover
and openness, and (4) large-scale patterns of ecosystem sto-
ichiometries. Points (1) and (2) control the response of veg-
etation carbon storage operating on timescales of years to
decades, while points (3) and (4) control the carbon storage
potential on an ecosystem level, which determines the re-
sponse on much longer timescales. Further, the implications
of including nutrient cycles on the simulated land C cycling
are discussed.

2 Modeling
2.1 Model description
ORCHIDEE-CNP simulates the exchange of greenhouse

gases (i.e., carbon dioxide, nitrous oxide), water and energy
at the land surface and features a detailed representation of
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Figure 1. Schematic of C, N and P cycles considered in ORCHIDEE-CNP.

the root uptake of dissolved N and P, the allocation of N
and P among tissues, and the N and P turnover in litter and
soil organic matter (Goll et al., 2017a, 2018) (Fig. 1). In this
study, we present the first global application of the model
and an evaluation against global carbon and nutrient datasets.
ORCHIDEE-CNP simulates the cycles of C, N and P, which
are described in detail elsewhere (Krinner et al., 2005; Zaehle
and Friend, 2010; Goll et al., 2014, 2017a, 2018). We give a
brief overview here. P enters the ecosystem through release
from minerals into the soil solution, whereas N is biologi-
cally fixed from an ample reservoir of dinitrogen. Dissolved
nutrients are either taken up by vegetation, converted into soil
organic matter or absorbed onto soil particles. Losses occur
as leaching of dissolved nutrients, gaseous soil N emissions
or occlusion of P in secondary minerals. When nutrients are
taken up by vegetation they are either stored internally or
used to build new plant tissue driven by the availability of
C, N and P in vegetation. The nutrient concentration of plant
tissue varies within a prescribed range depending on the rel-
ative availability of C, N and P. Before plant tissue is shed,
depending on the tissue a fixed fraction of the nutrients is
recycled. The nutrients contained in dead plant tissue and or-
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ganic matter are mineralized and released back into the soil
solution. The model version applied in this study is based on
Goll et al. (2017a, 2018) and referred to as ORCHIDEE-CNP
v1.2. Major modifications compared to v1.1 are described as
follows (details can be found in Sect. S1 in the Supplement).

The original formulation of photosynthetic capacity in
ORCHIDEE-CNP v1.1 assumed leaf N to be the sole regula-
tor of leaf photosynthetic characteristics (Kattge et al., 2009).
Here, we applied a new empirical function that relates pho-
tosynthetic capacity to both the leaf N and P concentration
based on data from 451 species from 83 different plant fam-
ilies (D. S. Ellsworth et al., unpublished data). Leaf C:N: P
ratios that were prescribed in ORCHIDEE-CNP v1.1 a priori
in a narrow range specific to the plant functional type (PFT)
are now given a larger range common to all PFTs (Table S1),
allowing for the prediction of variation in leaf stoichiometry
across climate and soil gradients independently of the pre-
scribed vegetation (PFT) map.

In ORCHIDEE-CNP v1.1, an empirical function, f(Tsi),
was used to reduce biochemical mineralization and plant nu-
trient uptake at low soil temperature (Eq. 5 in Goll et al.,
2017a), which was adopted from the N-enabled version of

Geosci. Model Dev., 14, 1987-2010, 2021
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ORCHIDEE (Zaehle and Friend, 2010) to avoid an unre-
alistic accumulation of N within plants when temperatures
are low. We found that this function was not needed when
P uptake is accounted for and was thus removed. It should
be noted that this temperature dependence is different from
the one that describes the temperature dependence of soil or-
ganic matter (SOM) and litter decomposition. For grasslands
and croplands, we implemented root dormancy, which is trig-
gered by drought or low temperatures. During dormancy,
root maintenance respiration is reduced by 90 % following
Shane et al. (2009), but root acquisition of soil nutrients con-
tinues as long as root biomass exists (Malyshev and Henry,
2012). It should be noted that total root loss can occur for
extremely long droughts or cold periods when maintenance
respiration depletes root carbon.

Several parameters were recalibrated, i.e., the coefficient
relating maintenance respiration to biomass and the leaf to
sapwood ratio, or corrected in the case of the turnover of
sapwood for tropical evergreen broadleaf forest (TREBF)
and tropical rain-green broadleaf forest (TRDBF) to achieve
more realistic wood growth rates for those forests (not
shown). We also adjusted the recycling efficiency of nutri-
ents from the root ( ftlr\fms’root, ftfans’mm) and leaf ( ftlljins,leaf’

ftfans’ leaf) @ccording to data compilations from Freschet et
al. (2010) and Vergutz et al. (2012). The new values of
these parameters and their sources are given in Supplement
(Sect. S1).

2.2 Simulation setup

We performed a global simulation at 2° x 2° spatial resolu-
tion for the historical period (1700-2017) by adapting the
TRENDY version 6 protocol (Sitch et al., 2015; Le Quéré et
al., 2018). The simulation was performed using historical cli-
mate forcing, land cover changes and management (i.e., min-
eral fertilizer application, crop harvest; see Sect. 3.1.6), and
atmospheric CO; concentrations (S3-type simulation). Prior
to the historical simulation, we performed a model spin-up
to equilibrate the C, N and P pools and fluxes (Sect. S1A in
the Supplement) by forcing the model with cycled climate
forcing of 1901-1920 and the land cover map and land man-
agement corresponding to the year 1700. To disentangle the
effect of introducing nutrient cycles into ORCHIDEE, we
performed the same simulation with ORCHIDEE (revision
5375), which has no nutrient cycles and a comparable pa-
rameterization for other processes. ORCHIDEE was run at
a higher spatial resolution (0.5° x 0.5°) than ORCHIDEE-
CNP. Prior to the analysis, the data from ORCHIDEE were
remapped to the resolution of ORCHIDEE-CNP.

2.2.1 Meteorological data
The model was forced by CRU-JRA-55 meteorological data

provided at a spatial resolution of 0.5° x 0.5° and upscaled to
a resolution of 2° x 2°. These data comprise global 6-hourly
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climate forcing data providing observation-based tempera-
ture, precipitation and incoming surface radiation. They are
derived from Climatic Research Unit (CRU) TS3.1 monthly
data (Harris et al., 2014) and the Japanese 55-year Reanaly-
sis (JRA-55) data (Kobayashi et al., 2015), covering the pe-
riod 1901 to 2017. This climate dataset was provided by the
TRENDY v6 model intercomparison project (Le Quéré et al.,
2018).

2.2.2 Land cover

The historic land cover change maps were based on the Eu-
ropean Space Agency Climate Change Initiative (ESA-CCI)
land cover data (Bontemps et al., 2013). To be used by global
vegetation models like ORCHIDEE-CNP, ESA-CCI land
cover data were aggregated to 2° x 2° and grouped into PFTs
using the reclassification method from Poulter et al. (2011,
2015). The fraction of cropland and pasture in the PFT map
was further constrained by the cropland area and the sum of
pasture and rangeland area for the year 2010, respectively,
in the History Database of the Global Environment land use
dataset (HYDE 3.2; Klein Goldewijk et al., 2017a, b), which
were also aggregated to 2° x 2°. The above processes pro-
duced a reference ESA-CCI-based PFT map for the year
2010. The land use changes derived from Land-Use Har-
monization (LUH) v2 (http://luh.umd.edu/data.shtml, last ac-
cess: 3 September 2018; an update release of Hurtt et al.,
2011) were aggregated to 2° x 2° and then applied to this
reference PFT map to constrain the land cover changes of
forest, grassland, pasture and rangeland, and cropland during
the period 1700-2017 using the backward natural land cover
reconstruction method of Peng et al. (2017). As a result, a
set of historic PFT maps suitable for global vegetation mod-
els was established, distinguishing global land cover changes
for the period of 1700-2017 at 2° x 2° resolution.

2.2.3 Soil and lithology datasets

ORCHIDEE-CNP v1.2 is forced by information on soil tex-
ture, pH, bulk density and soil types (Goll et al., 2017a).
We used a global gridded map of three soil texture classes
from Zobler (1986) to derive soil-texture-specific parame-
ters for soil water capacity, hydraulic conductivity and ther-
mal conductivity. We used global gridded data on bulk den-
sity from the Harmonized World Soil Database (HWSD;
FAO/ITASA/ISRIC/ISSCAS/JRC, 2012) and soil pH from
the International Geosphere—Biosphere Programme Data In-
formation System Soil Data (Global Soil Data Task Group,
2000). Soil pH forcing maps are needed to simulate the dy-
namics of NH3 and N Hj{ in soil in ORCHIDEE (Zaehle and
Friend, 2010). We used a global gridded map with the dom-
inant soil orders (following the USDA Soil Taxonomy) at
1° x 1° resolution to derive soil-order-specific soil phospho-
rus sorption parameters (Goll et al., 2017a).

https://doi.org/10.5194/gmd-14-1987-2021


http://luh.umd.edu/data.shtml

Y. Sun et al.: ORCHIDEE-CNP v1.2 (r5986)

The release of P from chemical weathering of rocks is
computed dynamically following Goll et al. (2017a) and de-
pends on the lithology types and soil shielding (discontinua-
tion of the active soil zone from the bedrock) (Hartmann et
al., 2014). We used the global lithological map (GLiM) of
Hartmann and Moosdorf (2012) upscaled to 1° x 1° resolu-
tion, which accounts for the lithology fractional coverage of
16 classes on a sub-grid scale. We also used a spatially ex-
plicit map of soil shielding at 1° x 1° resolution (Hartmann
etal., 2014).

2.2.4 Atmospheric nitrogen and phosphorus deposition

Global gridded monthly atmospheric N and P deposition dur-
ing 1860-2017 was derived from a reconstruction based on
the global aerosol chemistry—climate model LMDZ-INCA
(Wang et al., 2017). LMDZ-INCA was driven by emission
data, which included sea salt and dust for P, primary bio-
genic aerosol particles for P, oceanic emissions for N (NH3),
vegetation emissions for N (NO), agricultural activities (in-
cluding fertilizer use and livestock) for N, and fuel combus-
tion for both N (NO, and NH,) and P. Reconstructions for
the years 1850, 1960, 1970, 1980 and 1990, as well as each
year from 1997 to 2013, were linearly interpolated to de-
rive a time series for 1850-2013. For the period before 1850,
we assumed N and P deposition rates of the year 1850. For
the period after 2013, we assumed rates of the year 2013. In
ORCHIDEE-CNP, atmospheric N and P deposition is added
to the respective soil mineral N and P pools without consid-
ering interception by the canopy.

2.2.5 Nutrient management

For croplands, we used yearly gridded mineral N and P fer-
tilizer application data from Lu and Tian (2017) available for
the period 1960 to 2017. This dataset is based on national-
level data on crop-specific fertilizer application amounts
from the International Fertilizer Industry Association (IFA)
and the FAO. N and P mineral fertilization between 1900
and 1959 was linearly extrapolated assuming that fertilizer
applications for 1900 are zero and that there were no N and
P fertilizers applied before 1900. For pasture, we used global
gridded datasets of mineral N fertilizer application rates from
Lu and Tian (2017), developed by combining country-level
statistics (FAO) and land use datasets (HYDE 3.2) (Xu et al.,
2019). For both cropland and pasture, N and P in mineral
fertilizer were assumed to go directly into soil mineral pools,
where all mineral N fertilizer was assumed to be in the form
of ammonium nitrate, with half of N as ammonium (NHI)
and half as nitrate (NO3').

Manure applications are also included as a model forcing,
given their significant input contribution to agricultural soils.
For cropland, we used gridded annual manure N application
data for the period 1860-2014 from Zhang et al. (2017) com-
piled and downscaled based on country-specific annual live-
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stock population data from FAOSTAT. For the period before
1860, we assumed N and P deposition rates of the year 1860.
For pasture, we used global gridded datasets of N manure
application rates from Lu and Tian (2017). The application
of manure P in cropland and pasture was derived from ma-
nure N assuming a manure P: N ratio of 0.2. This ratio is a
weighted value by the amount of manure N applied to soil
and derived from ruminants (14.4 TgN yr—!) and monogas-
tric animals (10.1 TgNyr~!) from FAOSTAT for the year
2000 with P:N ratios of 0.165 in ruminant manure (mean
of 0.15-0.18 from Lun et al., 2018) and 0.26 in monogas-
tric manure (mean of 0.24-0.28 from Lun et al., 2018). For
manure applied to cropland and pasture, we assumed a typ-
ical slurry application with 90 % of the N in the liquid part
of the slurry (like urine) going into the soil NH4* pool. For
the solid part of the slurry, we assumed it goes into a lit-
ter pool with a C: N ratio of 10: 1 following Soussana and
Lemaire (2014).

Mineral and manure N and P fertilizers in cropland were
applied at day of year (DOY) 120 for the Northern Hemi-
sphere (30-90° N), DOY 180 for tropical regions (30° N—
30°S) and DOY 240 for the Southern Hemisphere (30—
90° S).

3 Evaluation

We evaluated the performance of ORCHIDEE-CNP v1.2
based on four major aspects (Fig. 1). Firstly, we evaluated
the global C, N and P flows and storages. In the absence
of robust spatially resolved estimates of N and P fluxes, we
used the data-driven reconstruction of steady-state C, N and
P fluxes on the biome level from the Global Observation-
based Land-ecosystems Utilization Model of Carbon, Ni-
trogen and Phosphorus (GOLUM-CNP) v1.0 (Wang et al.,
2018) (Table 1). Secondly, we evaluated plant resource use
efficiencies (RUEs) of light, water, C, N and P on global
and biome scales. RUEs reflect how ecosystems adjust and
adapt to the availability of nutrient, water, light, and car-
bon resources (Ferndndez-Martinez et al., 2014; Hodapp et
al., 2019). For this, we used estimates from site measure-
ments and observation-based gridded datasets. Thirdly, we
evaluated the response of gross primary productivity (GPP)
to elevated CO, to assess the response of plant productiv-
ity to changing resource availability (i.e., CO;) and histor-
ical perturbation C fluxes. For this, we used observation-
based estimates (Ehlers et al., 2015; Campbell et al., 2017).
Fourthly, we evaluated large-scale patterns of vegetation and
soil N : P ratios as well as the N and P openness and turnover
rates on the ecosystem level to assess spatial variation in
nutrient limitation and the underlying drivers. For this, we
used estimates from GOLUM-CNP, site measurements and
observation-based gridded datasets (Kerkhoff et al., 2005;
McGroddy et al., 2004; Reich and Oleksyn, 2004; Tipping
et al., 2016; Butler et al., 2017; Wang et al., 2018). Finally,
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Table 1. Main information on datasets used for global evaluation of ORCHIDEE-CNP.

Dataset Variable Resolution  Period Uncertainties References
MODIS GPP, NPP, CUE 1km 2000-2015 Bias against local measure- Running et al. (2004);
ments for GPP and NPP Zhao et al. (2005);
Turner et al. (2006)
MTE GPP, WUE 0.5° 1982-2011 25 ensemble trees for GPP and  Jung et al. (2009, 2011)
ET
BESS GPP 0.5° 2001-2015 Bias against local measure- Ryuetal. (2012);
ments Jiang and Ryu (2016)
BETHY NPP 0.008° 2000-2009 - Tum et al. (2016);
WiBkirchen et al. (2013)
GIMMS NPP 0.5° 1982-2015  Using different climate inputs Smith et al. (2016)
TRENDY v6 NBP 0.5° 1959-2016 1o standard deviation Sitch et al. (2015)
JENA_inversion NBP 1° 1985-2016 - Rodenbeck et al. (2003)
CAMS inversion NBP 1.875° x 1979-2016 - Chevallier et al. (2005)
3.75°
CTracker inversion ~ NBP 1° 20012016 - van der Laan-Luijkx et al.
(2017)
Peng BNF BNF biome 20012009 - Peng et al. (2019)
Sullivan BNF BNF biome 1999, 2009 - Sullivan et al. (2014)
Mayorga N and P leaching polygon 2000 - Mayorga et al. (2010)
Helfenstein Ky soil order  — - Helfenstein et al. (2018)
Sun Pasae activity 10km - - Sun et al. (2020)
GOLUM-CNP C, N and P fluxes, 0.25° 20012010 - Wang et al. (2018)
N and P openness
and turnover rate,
PUE, NUE
Global SeaWiFS LUE 0.01° 19972006 - Gobron et al. (2006a, b)
Level-3 data and
MTE GPP
Butler Leaf N : P ratio 1km 100 estimates by Bayes” Butleretal. (2017)
method
Site leaf measure- Leaf N:P ratio site - - Kerkhoff et al. (2005);
ments McGroddy et al. (2004);
Reich and Oleksyn (2004)
Tipping SOM C, N and P site - - Tipping et al. (2016)
Site measurements ~ NUE and PUE site - - Gill and Finzi (2016)

of NUE and PUE

we showed the implications of ORCHIDEE-CNP for C cy-
cling by evaluating the spatiotemporal patterns of terrestrial
C fluxes and pools of the two versions of ORCHIDEE. For
this, we used observation-based products of GPP and atmo-
spheric inversions of the net land—atmosphere CO; flux ex-
cluding fossil fuel emissions (Table 1). Each dataset is sum-

Geosci. Model Dev., 14, 1987-2010, 2021

marized in Table 1 and described in detail in the Supplement.
All the gridded datasets with high spatial resolutions (Ta-
ble 1) were resampled to the 2° x 2° resolution of the model
output using area-weighted mean methods.

https://doi.org/10.5194/gmd-14-1987-2021
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3.1 Ecosystem productivity

Different data-driven maps of NPP and GPP based on remote
sensing and climate datasets were used (Table 1), thereby
accounting for the uncertainty of each product and for the
uncertainty from the spread between different products. Un-
certainties of each NPP and GPP product were derived ac-
cording to the original publications. We used a 20 % uncer-
tainty of gridded GPP from the Moderate Resolution Imaging
Spectroradiometer (MODIS) and the Breathing Earth Sys-
tem Simulator (BESS) (Sect. S1C in the Supplement; Turner
et al., 2006; Jiang and Ryu, 2016) at a 2° scale. This is a
coarse extrapolation of uncertainty reported at the grid cell
scale, since none of these products reported spatial error co-
variance information, allowing us to upscale this uncertainty
at 2° resolution. Further, for some products, uncertainty was
defined as the bias against local measurements (Turner et al.,
2006) and for others by using different climate input fields
(Table 1). For multi-tree ensemble (MTE) GPP (Table 1), we
used the spread (1o standard deviation) from an ensemble of
25 members produced by different machine-learning meth-
ods (Jung et al., 2009). For MODIS NPP (Table 1), we used
a 19 % uncertainty as assessed by Turner et al. (2006). For
BETHY NPP we do not have an uncertainty (Tum et al.,
2016). For Global Inventory Modeling and Mapping Stud-
ies (GIMMS) NPP (Table 1), we used the variance of three
sets of products (Table 1) based on different climate datasets
(Smith et al., 2016).

Two statistical indices were used to summarize the per-
formance of ORCHIDEE and ORCHIDEE-CNP with re-
spect to the interannual and seasonal variability of GPP and
the interannual variability of net biome productivity (NBP)
(Sect. 4.6): the coefficient of determination (R?) and relative
mean square deviation (rMSE). The rMSE is defined as

n
2
Z (Xmodel,j - Xref,j)
j=1
MSE = = — (1
Z (Xref,j - Xref,j)
j=1

Xmodel and Xy are values from models (i.e., ORCHIDEE
and ORCHIDEE-CNP) and referenced datasets (i.e., MTE
and BESS; Sect. S1C), respectively, and }A(ref, j is the mean
value across all years (for interannual variability evaluation)
or all months (for seasonality evaluation).

3.2 Resource use efficiencies

The definition of resource use efficiencies is explained in
Sect. 4.2. Observation-based light use efficiency (LUE) was
calculated using MTE GPP, downward shortwave radiation
from CRUJRA, and the fraction of absorbed photosynthet-
ically active radiation (fAPAR) from the Global SeaWiFS
Level-3 data (Gobron et al., 2006a, b). Uncertainty was de-
rived from 25 ensemble members of MTE GPP. Observation-
based water use efficiency (WUE) was calculated as the ratio
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between MTE GPP and MTE ET (Table 1); its uncertain-
ties were calculated using a Monte Carlo resampling proce-
dure in which 25 different members of GPP and ET were
randomly selected. Observation-based carbon use efficiency
(CUE) was calculated from the ratio of MODIS NPP to
MODIS GPP. It should be noted that MODIS NPP is based
on a calibrated version of the BIOME-BGC model (Turner
et al., 2006) so that CUE is not strictly an observation-based
quantity. CUE uncertainties were calculated using a Monte
Carlo method given 20 % and 19 % uncertainty for MODIS
GPP and NPP products at 2° resolution, respectively.

4 Results

4.1 Carbon, nitrogen, and phosphorus flows and
storages

We compared the simulated fluxes of C, N and P within nat-
ural ecosystems for the period 2001-2010 to the data-driven
estimates from GOLUM-CNP (Table 1; Sect. S1B in Supple-
ment) on the global scale and for natural ecosystems at biome
scale. Modeled global C, N and P fluxes in ORCHIDEE-CNP
are comparable with the estimates by GOLUM-CNP (Fig. 2).
One exception is that ORCHIDEE-CNP simulates a fourfold
lower P leaching from soils (3.7 4£9.7mgPm~2yr~!) than
GOLUM-CNP (23mgPm~2yr~!) (Fig. 2), which mainly
occurs in forest ecosystems (Fig. S1). Note that GOLUM-
CNP presents the steady-state C, N and P cycles in natural
biomes, omitting human perturbations that have strongly al-
tered the flows of C, N and P during the recent past. The im-
pact of such perturbations on the nutrient flows are analyzed
in detail in Sects. S2 and S3 in the Supplement.

In terms of C and nutrient storages, ORCHIDEE-CNP
simulated comparable soil C, N and P storage (soil organic
matter and litter) but higher vegetation C, N and P than
GOLUM-CNP. Detailed comparisons for the spatial pattern
of soil organic carbon (SOC) and forest aboveground C
against observation-based datasets can be found in Figs. S2
and S3.

4.2 Resource use efficiencies

Here we evaluate the resource use efficiencies of GPP for
light (L), water (W), C, N and P defined by

GPP
LUE= ——, 2
f APAR x PAR
GPP
WUE = —, 3)
ET
CUE — GPP @
~ GPP’
GPP
NUE= —, &)
N
GPP
PUE= —, (6)
Fp
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Figure 2. Flowchart of mean flows and storages per area of C, N and P (gC gfl, N g71 ,Pm2 yrfl) in natural biomes for GOLUM-CNP
and ORCHIDEE-CNP. GOLUM-CNP stands for Global Observation-based Land-ecosystems Utilization Model of Carbon, Nitrogen and
Phosphorus (GOLUM-CNP) v1.0, which is a data-driven model of steady-state C, N and P cycles for present-day (2001-2016) conditions.
C, N and P losses via fire in ORCHIDEE-CNP are ignored. Numbers in square brackets indicate the standard deviations to account for the

spatial spread of C, N and P fluxes.

where GPP is the annual gross primary productivity
(gCm~2yr~ 1), fAPAR the fraction of absorbed photosyn-
thetically active radiation (%), PAR the annual photosynthet-
ically active radiation (Wm™2yr~!), ET the annual evapo-
transpiration (mmm~2 yr~!), and Fy and Fp the total N up-
take (Nm~2yr~!) and P uptake by plants (gPm~2yr~ 1),
respectively. We calculated fAPAR in ORCHIDEE-CNP and
ORCHIDEE as a function of leaf area index (LAI): fA-
PAR =1 —exp(—0.5-LAI) (Ito et al., 2004).

Compared to observed LUE (Sect. S1E in the Supple-
ment), ORCHIDEE-CNP modeled median values at the
biome level are generally lower but still within the ranges of
uncertainties of observation-based datasets (Sect. 3.2) except
for tropical (TRF) and temperate deciduous forest (TEDF).
In comparison to ORCHIDEE, ORCHIDEE-CNP simulated
LUEs closer to observations for four out of six biomes
(TECF, BOCF, TEG, TRG) (Fig. 3a).

Compared to observed WUE, the ORCHIDEE and
ORCHIDEE-CNP simulated values fall within the uncer-
tainty range of observations (Fig. 3b). However, the WUE

Geosci. Model Dev., 14, 1987-2010, 2021

values from ORCHIDEE-CNP are on the high end of the
range for temperate conifers (TECF) and BOCF and on the
low end for temperate and tropical grasslands (TEG and
TRG). The highest median WUEs were correctly simulated
in temperate forests by ORCHIDEE-CNP (Fig. 3b), but the
lowest WUE values were simulated in temperate instead of
tropical forests.

Compared with observed CUE, ORCHIDEE-CNP sim-
ulated comparable values for TEDF and TECF but lower
values for TRF, BOCF and grasslands. Both ORCHIDEE-
CNP and ORCHIDEE cannot capture the increase in CUE
from tropical to boreal forests apparent in the observation-
based products (Fig. 3c) and in measurements from for-
est sites (Piao et al., 2010). In comparison to ORCHIDEE,
ORCHIDEE-CNP simulated CUEs closer to observations for
four out of six biomes (TEDF, TECF, BOCF, TEG) with re-
spect to the median and spread.

Consistent with site observations of NUE from Gill and
Finzi (2016) and GOLUM-CNP outputs, ORCHIDEE-CNP
correctly simulated the high values of TECF and the low val-
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Figure 3. Comparison of annual use efficiencies of light (LUE),
water (WUE) and carbon (CUE) between ORCHIDEE-CNP, OR-
CHIDEE and satellite-based estimations for six biomes: tropical
rainforest (TRF), temperate deciduous forest (TEDF), temperate
conifer forest (TECF), boreal conifer forest (BOCF), temperate
grass (TEG) and tropical grass (TRG). The whiskers indicate the in-
terquartile (box) and 95 % confidence intervals (dashed lines). Grey
boxes indicate the satellite-based estimations (referenced). The grey
shaded areas indicate the uncertainties of resource use efficiencies
given by referenced estimations, which involve uncertainties for
multi-estimations and spatial variability for each estimation.

ues of tropical forests (Fig. 4a). However, compared with site
observations of PUE from Gill and Finzi (2016), showing a
PUE decrease from tropical to boreal regions, ORCHIDEE-
CNP simulated a rather flat value (Fig. 4b). This suggests
a P limitation that is too strong in high-latitude ecosystems,
consistent with the fact that the model underestimates peak
northern GPP and the northern land sink (Sect. 4.6). Never-
theless, the model-simulated PUE values fall in the range of
GOLUM-CNP estimates. Tropical C4 grasslands have higher
simulated NUE and PUE than temperate C3 grasslands, con-
sistent with GOLUM-CNP (Fig. 4).

4.3 CO; fertilization effect
We compare the simulated response of plant productivity to
increasing CO» during the historical period (i.e., CO; fertil-

ization effect Ecoy) with observation-based estimates for Cj
plants from the historical change in deuterium isotopomers
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in leaf herbarium samples (Ehlers et al., 2015). For global
(C3 and C4) vegetation we compare to indirect evidence from
carbonyl sulfide (COS) atmospheric ice-core observations
(Campbell et al., 2017). The CO, fertilization effect is de-
fined here by the GPP ratio (Eco,):

_ GPP36
~ GPPay’

)

COy

where GPPyog indicates pre-industrial GPP (gCm~2yr~!)
under a CO, concentration of 296 ppm and GPP39s under a
current CO, concentration of 396 ppm. Those CO; concen-
trations of 296 and 396 ppm correspond to tropospheric mix-
ing ratios of COy in the years ~ 1900 and 2013, respectively,
similar to values used for estimating the response of GPP to
a ~ 100 ppm CO; increase in Ehlers et al. (2015) and Camp-
bell et al. (2017).

Modeled Eco, by ORCHIDEE-CNP of natural biomes
ranges between 1.0 and 1.3 for most regions (Fig. 5a),
slightly lower than global Eco, derived from COS of 1.26—
1.36 (Campbell et al., 2017). Modeled Eco, values for C;
plants (Figs. 5c, S4) are also consistent with Eco, from
herbarium samples (Ehlers et al., 2015), equal to 1.23. When
compared to ORCHIDEE without nutrient cycles, we found
that ORCHIDEE-CNP simulates smaller and more realistic
values of Eco, (Fig. 5c, d) but with lower values in bo-
real regions that could not be checked against observations
(Fig. S5).

4.4 Ecosystem nutrient openness and nutrient turnover

Nutrients taken up by plants are either recycled within the
ecosystem or acquired from external sources (P weathering
of primary and secondary minerals, atmospheric N and P de-
position, biological nitrogen fixation — BNF, and N and P
fertilizer addition to cultivated lands). Wang et al. (2018) cal-
culated an indicator of the openness of N and P cycling in
natural ecosystems as the ratio of external inputs of N and P
into the ecosystem to the total amount of N and P that plants
use for GPP. Similarly, we diagnosed the openness for N and
P (On and Op) from the ORCHIDEE-CNP output by

Ix

Oy = ———,
F, + RSB,

®)

where I, is the annual external nutrient input (g X m=2 yr—1),
F, the annual plant uptake of soil nutrients (g X m~2yr~!)
and RSB, the flux of nutrients recycled within plants
(g Xm~2yr~) by foliar nutrient resorption prior to leaf
shedding. External nutrient inputs include atmospheric N de-
position and BNF, as well as P deposition and P release from
rock weathering.

Modeled Oyn in natural biomes by ORCHIDEE-CNP
showed only a small variance across the globe, whereas
GOLUM-CNP predicts a higher Oy in tropical and temper-
ate regions than in boreal regions (Fig. 6a, b). Op values

Geosci. Model Dev., 14, 1987-2010, 2021
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Figure 4. Violin plots of nitrogen use efficiency (NUE; a) and phosphorus use efficiency (PUE; b) by ORCHIDEE-CNP, GOLUM-CNP and
observations (Gill and Finzi, 2018) for six biomes: tropical rainforest (TRF), temperate deciduous forest (TEDF), temperate conifer forest
(TECF), boreal conifer forest (BOCF), temperate grass (TEG) and tropical grass (TRG). Open circles are the medians of all grid cells within
each biome, with balloons representing the probability density distribution of each value. Black whiskers indicate the interquartile.

(b) ORCHIDEE: ALL

2000 i
& o

(a) ORCHIDEE-CNP: ALL 20
T

1600 25

"
" o - eIl
. . J .
1200 % . O 1200 _
) - « B
4 .
- p M .
2/ L] o 4
2 -
. - .

20

-2
GPPg. (9C m™)

0 400 800 1200 1600 2000 0 400 800 1200 1600 2000
-2 -2

GPP296 (gC m™) GPP296 (gC m™)

(c) ORCHIDEE-CNP: C3 (d) ORCHIDEE: C3

[ 400 800 1200 1600 2000 0 400 800 1200 1600 2000

GPP,_ (gCm?) GPP,g, (gCm?)

296 (

Figure 5. Comparisons between pre-industrial GPP with an atmo-
spheric CO; concentration of 296 ppm (GPP5g¢) and current GPP
with an atmospheric CO;, concentration of 396 ppm (GPP39¢) for
all natural plants (a, b) and natural C3 plants (¢, d) by ORCHIDEE-
CNP (a, ¢) and ORCHIDEE (b, d). The color scale shows the point
density. Different point densities and patch sizes for ORCHIDEE
and ORCHIDEE-CNP are due to the different spatial resolution
(2° x 2° for ORCHIDEE-CNP and 0.5° x 0.5° for ORCHIDEE).
The ratio between GPP394 and GPP,gq indicates the CO; fertiliza-
tion effects (Ec(, ). Green dashed areas indicate the observed Eco,
from the Campbell et al. (2017) COS records. Pink lines indicate the
observed Eco, from Ehlers et al. (2015).
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are below 15 % in ORCHIDEE-CNP for most biomes, of
a similar order of magnitude as in GOLUM-CNP (Fig. 6c,
d). ORCHIDEE-CNP simulates a lower Oy in tropical nat-
ural biomes than GOLUM-CNP, which is mainly due to
lower but more realistic tropical BNF in ORCHIDEE-CNP
compared to GOLUM-CNP (Sect. S4 in the Supplement).
ORCHIDEE-CNP simulates a higher Ox in high-latitude
grassland (Fig. 6a, b) than GOLUM-CNP, which is due to
overestimation of BNF in NH in ORCHIDEE-CNP (Sect. S4
in the Supplement). Modeled Op in natural biomes by
ORCHIDEE-CNP compares well with GOLUM-CNP ex-
cept for central Africa (Fig. 6¢, d). This is primarily because
ORCHIDEE-CNP used a lower P deposition forcing than
GOLUM-CNP.

Residence time quantifies the average time it takes for an
N (or P) molecule to enter and leave the ecosystem (7n and
7p). In this study, we adopted the approach of Carvalhais et
al. (2014) for the carbon residence time. We define the resi-
dence time of N and P as the ratio of total respective nutrient
stock in the ecosystem to their respective total input flux:

5
ZNi +Ninorg
i=1
S 9
N= TNy + BNF ©)

5
Z Pi + Pinorg
i=1

wP=——"""—,
1:)d‘i‘Pw

(10)
where N; indicates the N mass (g N'm~2) in organic matter
pools i (with i = plant, litter, SOM pools), Ninorg is the sum
of all inorganic N pools, and Ng and BNF are N deposition
and biological N fixation rates, respectively (gNm~2yr~!).
Similarly, P; is the P mass (g P m~2) in organic matter pools,
Pinorg the sum of inorganic P pools, and P4 and Py, are
P deposition and P weathering release rates, respectively
(gPm~2yr ")
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Figure 7. Violin plots of the residence time of (a) N and (b) P cycles for six biomes: tropical rainforest (TRF), temperate deciduous forest
(TEDF), temperate coniferous forest (TECF), boreal coniferous forest (BOCF), temperate grass (TEG) and tropical grass (TRG). Open
circles are the medians of all grid cells within each biome, with balloons representing the probability density distribution of each value.

Black whiskers indicate the interquartile.

Modeled median 7y of natural biomes in ORCHIDEE-
CNP varies between 56 and 1585 years, while 7p varies
within a large range of 101 to 223870 years (Fig. 7).
ORCHIDEE-CNP captured the order of magnitude of
and tp for forests found in GOLUM-CNP. Longer me-
dian v (1585 years) and 7p (1223870 years) are simu-
lated for boreal forest compared to temperate and tropi-
cal forests (251-794 years for ty and 891-7080 years for
tp) and grassland (56-158 years for ty and 101-468 years
for p) by ORCHIDEE-CNP, consistent with results from
GOLUM-CNP. However, for grasslands, simulated tn (56-
158 years) and 7p (101-468 years) are 5—11-fold shorter than
in GOLUM-CNP (Fig. 7).
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4.5 Stoichiometry
4.5.1 Foliar stoichiometry

Leaf N:P ratios for natural biomes predicted by
ORCHIDEE-CNP vary between 15 and 25 (Fig. 8a).
The observed decline in median leaf N:P ratios with
increasing latitude was not reproduced by the model
(Sect. S1E1 in the Supplement; Fig. 8e), although the
modeled latitudinal distribution of leaf N : P ratios remained
within the 10-90th quantiles of the site-level data (Kerkhoff
et al., 2005; McGroddy et al., 2004; Reich and Oleksyn,
2004). Further, the simulated leaf N:P ratios fall within
the interquartile of upscaled site measurements by Butler

Geosci. Model Dev., 14, 1987-2010, 2021
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Figure 8. Comparisons of the leaf N : P ratio between ORCHIDEE-CNP, data-driven estimates and observations. (a) The global pattern of
the mean leaf N: P ratio over 2001-2016 for ORCHIDEE and (b) for mean leaf N: P in Butler et al. (2017). Panels (¢) and (d) are the
25th and 75th percentile, respectively, of the leaf N: P ratio by Butler et al. (2017). Dots in (a) indicate the area with a leaf N:P ratio
from ORCHIDEE-CNP falling into the 25th—75th percentiles of the Butler et al. (2017) estimation. (d) The latitude distributions of the leaf
N : P ratio for ORCHIDEE-CNP, the Butler et al. (2017) estimation and site measurements. Red shared area indicates the uncertainty from
latitudinal spreads of the leaf N : P ratio for ORCHIDEE-CNP. The grey shaded area indicates the uncertainty from both the estimations and
latitudinal spreads for Butler et al. (2017). Blue and yellow lines indicate the 10th and 90th percentiles, respectively, of measured leaf N : P

ratios in each bin of 3° latitude.

et al. (2017) for most of the globe, with the exception of
regions north of 55° N where leaf N : P ratios are outside the
observation-based range, suggesting a P constraint relative
to N that is too strong (Fig. 8).

4.5.2 Soil stoichiometry

Here we evaluate the modeled C: N, C:P and N:P ratios
of soil organic matter for different biomes against data from
the large compilation of measurements for soils (0-60cm
depth) by Tipping et al. (2016). Modeled C:N ratios fall
into much more narrow ranges (7.8-11.8 for the widest in-
terquartile range) compared to the observations (11.1-20.5;
Fig. 9a) as a result of prescribing constant C:N ratios in
ORCHIDEE-CNP (Goll et al., 2017a). SOM P content varies
in ORCHIDEE-CNP as a consequence of varying biochemi-
cal phosphorus mineralization rates (Sect. S7), and thus C: P
and N : P ratios of SOM show pronounced variation in space.
ORCHIDEE-CNP simulates comparable N : P ratios as mea-
surements in terms of both the median value and distribu-
tions for tropical forests, but it overestimates the observed
N:P ratios by 108 %-327 % in temperate forest, tropical

Geosci. Model Dev., 14, 1987-2010, 2021

and temperate grassland soils (Fig. 9b, c). The higher ob-
served C:P and N:P in forest compared to grassland soils
are not captured by ORCHIDEE-CNP (Fig. 9b, c¢). We also
compared ORCHIDEE-CNP N :P ratios to the results of
GOLUM-CNP, which were based on data from Zechmeister-
Boltenstern et al. (2015) that are more limited than Tipping et
al. (2016), and found an overestimation for temperate forests,
tropical forests and temperate grasslands.

4.6 Nutrient effects on carbon cycling

We analyze the performance of ORCHIDEE-CNP v1.2 and
ORCHIDEE without nutrient cycles with respect to the spa-
tiotemporal patterns of GPP, NPP and net biome productivity.

Global GPP and NPP simulated by ORCHIDEE-CNP av-
eraged over the period 2001-2010 are 119 and 48 PgCyr—!,
respectively, which are both within ranges of the data-driven
products listed in Table 1 (Sect. S1C in the Supplement; Ta-
ble S2). GPP and NPP simulated by ORCHIDEE-CNP are
lower than those simulated by ORCHIDEE (140 PgC yr~!
for GPP and 60 PgCyr~! for NPP). The values from OR-
CHIDEE are on the high end of the range of estimates from

https://doi.org/10.5194/gmd-14-1987-2021
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Figure 9. C:N, C:P and N:P ratios of soil organic matter
by ORCHIDEE-CNP and plot-level measurements by Tipping et
al. (2016) for four biomes: tropical forest (TRF), temperate for-
est (TEF), tropical grass (TRG) and temperate grass (TEG). Soil
C:N: P ratios for ORCHIDEE-CNP are calculated for the total soil
pool and include soil passive, slow and active pools, while mea-
surements by Tipping et al. (2016) are for soils of 0-60 cm depth.
The letters “a”, “b” and “c” indicate the significance of differences
among biomes from the analysis of variance (ANOVA).

the data-driven products in Table 1. ORCHIDEE-CNP sim-
ulated comparable GPP values for most parts of the globe
(Fig. S6a) and comparable NPP values for most of the north-
ern high latitudes (Fig. S6b), which lie within the range given
by the data-driven products.

Interannual and seasonal variations of GPP reflect the re-
sponse of ecosystems to interannual or seasonal climatic
variability, as well as the effects of natural (e.g., fires, wind
throw, insect outbreaks and storms) and anthropogenic dis-
turbances (e.g., land management and land cover change)
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(Anav et al., 2015). Regarding the interannual anomalies
of de-trended GPP (GPPjy) for the period 2001-2011, es-
timations on a global scale from ORCHIDEE-CNP show
rather good correlation with the observation-driven model
BESS GPP (R% = 0.71) but not with MTE GPP (R%Z = 0.11)
(Fig. 10a). ORCHIDEE performs somewhat worse on a
global scale than ORCHIDEE-CNP, primarily due to its low
performance in the NH. We find that inclusion of nutrients
in ORCHIDEE leads to a lower model prediction error on a
global scale and for all latitudinal bands irrespective of the
observation-based product (Fig. 10a).

Regarding the seasonal variation of GPP over the period
2001-2011, the predictions of ORCHIDEE-CNP are in good
agreement with observation-based estimates and show no
significant differences when compared to ORCHIDEE, ex-
cept for tropical regions (Fig. 10b). Here, the model errors
in seasonal variations of GPP are substantially larger for
ORCHIDEE-CNP than for ORCHIDEE (Fig. 10b).

Net biome productivity (NBP) is defined as the net C
exchange between the atmosphere and the terrestrial bio-
sphere, which is the sum of net primary productivity, het-
erotrophic respiration and emissions due to disturbances;
positive values denote a land carbon sink. Compared to
the three sets of atmospheric inversions (CAMS, JENA
and CTracker), ORCHIDEE(-CNP) performs slightly worse
than the mean of predictions from 16 land surface mod-
els from TRENDY ensembles (v6) (Fig. 10c). ORCHIDEE-
CNP shows a worse performance in interannual variability
of NBP than ORCHIDEE when compared against inversion
datasets at global scale and for the Northern Hemisphere.
However, ORCHIDEE-CNP improved the performance of
the interannual variability of NBP against inversion datasets
relative to ORCHIDEE for tropical regions (higher R? and
lower rMSE), with closer or even better fitness against in-
version datasets than the mean value of TRENDY ensemble
models (Fig. 10c).

5 Discussion

We performed a detailed evaluation of ORCHIDEE-CNP in
terms of four nutrient-related ecosystem properties that con-
trol ecosystem gas exchanges and carbon storage: vegetation
resource use efficiencies, CO, fertilization effect, ecosystem
N and P turnover and openness, and large-scale pattern of
ecosystem stoichiometries.

We find that the inclusion of nutrients tends to lead to im-
provements in simulated resource use efficiency of plant re-
sources (light, carbon, water) on a biome scale (Sect. 5.1).
In line with changes in resource use efficiency, the sensitiv-
ity of GPP to variations in climate is improved, leading to
improved interannual variation in GPP, in particular for the
Northern Hemisphere (Sect. 5.5). In addition, the response
of GPP to an increasing atmospheric CO, concentration is
improved (Sect. 5.2). However, model biases in C fluxes re-
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Figure 10. The performances of ORCHIDEE and ORCHIDEE-CNP on the interannual variability of de-trended anomalies of GPP dur-
ing 2001-2010 (a), the seasonal variability of mean GPP across 2001-2010 (b), and the interannual variability of net biome productivity
(NBP) (¢). Two statistics were used to represent the model performance: coefficient of determination (R?) and relative mean square deviation
(rtMSE). For (a) and (b), the evaluations are for the globe, the Northern Hemisphere (30-90° N; NH), the northern tropics (0-30° N; NT),
the southern tropics (0-30° S; ST) and the Southern Hemisphere (30-90° S; SH). Two sets of observation-based GPP products (BESS GPP
and MTE GPP) were used for the comparison. For (c), the evaluations are for the globe, the Northern Hemisphere (30-90° N, NH), the
tropics (30° S-30° N) and the Southern Hemisphere (30-90° S; SH). The mean value across TRENDY ensemble models (v6) and three sets
of NBP from inversion datasets were used as the reference database for the comparison with different available periods (TRENDY Ensemble:

1959-2016; CAMS: 1979-2016; JENA: 1985-2016; CTracker: 2001-2016).

mained or increased, for example, in the NBP of the North-
ern Hemisphere. The analysis of nutrient use efficiencies
(Sect. 5.1), stoichiometry (Sect. 5.4), and ecosystem open-
ness and turnover of nutrients (Sect. 5.3) reveals biases in bo-
real regions that might be related to issues with soil organic
matter accumulation that is too strong and the dependency
of photosynthesis on leaf nutrients in needleleaf PFTs. On a
seasonal scale, we found a general deterioration of the sim-
ulated seasonal cycle of GPP due to the inclusion of nutrient
cycles (Sect. 5.5).

In the following, we discuss in more detail the model per-
formance with respect to nutrient cycles and their effects on
simulated C fluxes, and we propose ways to address model
biases.

5.1 Inclusion of nutrient cycling improves use
efficiencies of other plant resources

Resource use efficiency (RUE) is an ecological concept that
measures the proportion of supplied resources that support
plant productivity; i.e., it relates realized to potential produc-
tivity (Hadapp et al., 2019). It is therefore a critical ecosys-
tem property that relates resource availability to ecosystem
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productivity, as well as being affected by resource availabil-
ity.

With the inclusion of the additional plant resources nitro-
gen and phosphorus, changes in the simulated vegetation use
efficiencies of resources like water (WUE), light (LUE) and
carbon (CUE) are expected. Indeed, the annual use efficien-
cies on the biome scale differ between ORCHIDEE-CNP and
ORCHIDEE. In comparison to observation-based estimates,
the inclusion of nutrient cycles tends to improve simulated
LUE and CUE and WUE (Fig. 3).

Both ORCHIDEE-CNP and ORCHIDEE generally under-
estimate annual LUE for forest biomes (Fig. 3a), which is due
to a high bias in fAPAR in both models (28 %—380 % for OR-
CHIDEE and 80 %—-173 % for ORCHIDEE-CNP) (Fig. S4a,
b). Although the bias in LUE for TRF is higher, the bias in
GPP is largely reduced, whereas the bias in fAPAR is simi-
lar in ORCHIDEE-CNP compared to ORCHIDEE (Fig. S4a,
b), indicating general issues in ORCHIDEE with respect to
how light is transferred within the canopy in tropical forest.
Both versions assume a constant canopy light extinction co-
efficient of 0.5, omitting variations among biomes due their
distinctive canopy architectures (Ito et al., 2004). Improving
this part of the model requires a canopy light transfer scheme
that better accounts for canopy structure (Naudts et al., 2015)
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and the inclusion of different light components including dif-
fuse incoming, scattered and direct light (Zhang et al., 2020).

ORCHIDEE-CNP simulated a lower WUE than OR-
CHIDEE with the exception of coniferous biomes (Fig. 3b).
The improvement of WUE in TRF is related to improve-
ments in GPP and ET, while the overestimation of WUE
in coniferous-dominated biomes by ORCHIDEE-CNP is re-
lated to an overestimation of GPP (Fig. S4c). The latter is
likely a result of the application of a relationship between
photosynthetic capacity and the leaf nutrient concentration,
which is based on measurements from broadleaf species for
all PFTs. Kattge et al. (2009) showed that coniferous PFTs
have a ~40 % lower carboxylation capacity for a given leaf
nitrogen concentration than other PFTs. The omission of this
could explain the bias in coniferous GPP in ORCHIDEE-
CNP. Uncertainties in evaluation datasets hamper a more
detailed evaluation of the variations of WUE among biome
types.

We found that the inclusion of nutrient cycles improved
the spatial variability in simulated CUE, but general biases
remain (Fig. 3c), and uncertainties in observation-based es-
timates are large. Improvements are mainly found in tem-
perate biomes (TEDF, TECF and TEG), indicating that the
allocation of GPP to respiration and biomass growth, which
is controlled by nutrient availability, works reasonably well.
ORCHIDEE-CNP underestimates CUE for tropical biomes
(TRF and TRG) more strongly than ORCHIDEE, despite
substantially reduced biases in NPP and GPP (Fig. S4d).
However, we should be cautious in drawing conclusions con-
sidering the large uncertainty in MODIS CUE (He et al,,
2018).

NUE and PUE on the biome scale compare well to esti-
mates (Fig. 4), indicating that ORCHIDEE-CNP is able to
simulate the coupling strength between C, N and P cycles.
However, ORCHIDEE-CNP underestimates PUE in tropical
forests. A sensitivity analysis by GOLUM-CNP indicated
that NUE and PUE were most sensitive to the NPP alloca-
tion fractions (especially to woody biomass) and foliar sto-
ichiometry (Wang et al., 2018). Therefore, we attribute the
biases in PUE to the biases in foliar stoichiometry (Fig. 8)
and to issues in plant internal P allocation in ORCHIDEE-
CNP (Fig. S1).

5.2 Inclusion of nutrient cycling improves CO,
fertilization effect

The effect of CO, fertilization on terrestrial ecosystem pro-
ductivity is thought to be the dominant driver behind the cur-
rent land carbon sink. The strength of the fertilization ef-
fect on GPP differs strongly between LSMs (Friedlingstein
et al., 2014). We used proxies of the historical increase in
GPP for an indirect model evaluation of the CO; fertilization
effect from COS and deuterium measurements of herbarium
samples (Ehlers et al., 2015; Campbell et al., 2017), and we
found that ORCHIDEE-CNP has smaller and more realistic
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Eco, than the same model without nutrients (Fig. 5), in par-
ticular for C3 plants and in boreal regions (Fig. S5). Both
ORCHIDEE-CNP and ORCHIDEE simulated an Eco, for
Cy4 grass of ~ 1, as the carboxylation of C4 plants is weakly
influenced by elevated CO, (Osmond et al., 1982; Pearcy and
Ehleringer, 1984; Bowes, 1993). This indicates that the inclu-
sion of N and P constraints on GPP leads to a more realistic
CO,, fertilization effect in ORCHIDEE-CNP.

5.3 Ecosystem nutrient turnover and openness
indicates model biases in boreal phosphorus
availability

The capacity of ecosystems to sequester and store additional
carbon depends on their ability to supply nutrients for the
buildup of organic matter. Enhanced internal nutrient recy-
cling and the accumulation of nutrients over time in ecosys-
tems are theoretically possible mechanisms through which
nutrients can be supplied. Therefore, it is important for sim-
ulating changes in land carbon storage on decadal timescales
and longer that models capture the dependency of ecosystem
production to external nutrient sources (i.e., openness of N
and P cycles) (Cleveland et al., 2013) and the residence time
of nutrients within ecosystems. Besides being related to each
other, openness and residence times are also related to the
inflows and outflows of nutrients (Egs. 9 and 10) as well as
the turnover time of nutrients in specific ecosystem compart-
ments.

We find that ORCHIDEE-CNP simulates the openness of
nutrient cycles, including differences among biomes that are
close to estimates from the model-data fusion framework
GOLUM-CNP (Fig. 6; Sect. 4.4). There are differences in
the openness of N (Oy) in tropical natural biomes and the
openness of P (Op) in central Africa, which are related to
lower but more realistic tropical BNF in ORCHIDEE-CNP
(Sect. S4) and a difference in the prescribed P deposition
compared to GOLUM-CNP. Simulated nutrient losses due to
aquatic transport are generally in good agreement with inde-
pendent estimates (Sect. S5).

Residence times of N and P (zy and 7p) in ORCHIDEE-
CNP compare generally well to estimates from GOLUM-
CNP: ORCHIDEE-CNP simulates shorter tny and p in
tropical and temperate biomes compared to boreal ones,
in line with GOLUM-CNP (Fig. 7). This indicates that
ORCHIDEE-CNP is able to reproduce large-scale patterns
in the nutrient residence time of biomes, with one excep-
tion. In boreal regions, we find that ORCHIDEE-CNP simu-
lates higher tp for BOCF due to the higher standing P stocks
of biomass and soil organic matter than in GOLUM-CNP
(Fig. S1). This indicates that ORCHIDEE-CNP is likely un-
derestimating P availability in boreal regions. The underly-
ing processes of biochemical P mineralization (Sect. S7) and
sorption of P to soil particles (Sect. S6) are reasonably well
captured in ORCHIDEE-CNP.
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5.4 Model biases in stoichiometry indicate need for
refinement of process representation

Leaf and soil stoichiometry are key indexes to characterize
the relative ecosystem N and P limitation (e.g., Giisewell,
2004). Measurements show a decrease in foliar N : P ratios
from low to high latitudes in natural ecosystems (McGroddy
et al., 2004; Reich and Oleksyn, 2004; Kerkhoff et al., 2005).
This is seen as evidence for tropical vegetation being gener-
ally more P- than N-limited, in contrast to extratropical veg-
etation (Reich and Oleksyn, 2004). The observed trend of
foliar N : P ratios was not reproduced by ORCHIDEE-CNP
(Fig. 8), which simulated a flat foliar N : P latitudinal profile.
In contrast to the majority of global models, wherein leaf
N: P ratios are either prescribed (Goll et al., 2012) or vary
within a PFT-specific range (Wang et al., 2010), we conser-
vatively assumed a globally uniform range to let the model
freely calculate leaf N : P stoichiometry. It is not trivial to pin
down the failure of the model to capture the latitudinal trend
in leaf N: P ratios, which could be due to (1) omitted vari-
ability in leaf P resorption efficiencies, which varies among
biomes between 46 % and 66.6 % (Reed et al., 2012) but was
set to 65 % in ORCHIDEE-CNP, (2) the simplistic parame-
terization of nutrient investment into different plant tissues,
(3) and the omission of the diversity of nutrient acquisition
pathways (e.g., mycorrhizal association) and rooting strate-
gies (Warren et al., 2015). Testing new formulations for plant
growth based on optimality principles (Kvaki¢ et al., 2020)
and the refinement of nutrient acquisition pathways (Sulman
et al., 2017) are ways forward to improve the model.

Regarding soil stoichiometry, measurements show that
tropical biomes have lower soil C:N and higher soil C:P
and soil N : P than temperate biomes (Tipping et al., 2016),
echoing the pattern of leaf stoichiometry. ORCHIDEE-CNP
fails to capture these patterns (Fig. 9). Modeled soil N : P and
C: P for tropical forests are comparable to measurements but
are too low in temperate forest, tropical forest and temperate
grass, which is most likely related to a nutrient immobiliza-
tion that is too strong in accumulating soil organic matter
(Figs. S1); this tends to push systems into P limitation rather
than N limitation as Oy is larger than Op (Fig. 6). In gen-
eral, the spread in soil P concentration is well represented
by ORCHIDEE-CNP. The rudimentary representation of or-
ganic matter decomposition and the lack of nutrient effects
on decomposer carbon use efficiency (see Zhang et al., 2018,
for possible improvements; Sect. 5.5) are likely contributing
to the biases. New developments, including explicit repre-
sentation of decomposer communities and soil organic mat-
ter stabilization (Zhang et al., 2020), will be included in the
next model version.

5.5 Nutrient effects on carbon cycling

In the following we discuss the implications for the simulated
carbon fluxes of changes in plant resource use efficiencies
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and the sensitivity of plant productivity to increasing CO;
due to the inclusion of nutrient cycles. We link biases in the
simulated carbon fluxes to biases in nutrient cycling, which
allows us to prioritize follow-up model development.

5.5.1 Inclusion of nutrient cycling improves the
interannual variability of GPP

To what extent nutrient effects on vegetation affect the sen-
sitivity of ecosystem CO» fluxes to climatic variation is un-
clear (Goll et al., 2018). For instance, drought can reduce
nutrient use by decreasing GPP, but it also slows down de-
composition, which supplies nutrients for plant uptake. Fur-
ther, N : P stoichiometry is also strongly modified by drought
and warming towards increased N : P in whole plant biomass
(Yuan and Chen, 2015). Here we found that the inclusion of
N and P cycles in ORCHIDEE affects the interannual vari-
ability of GPP for all vegetation types. In ORCHIDEE-CNP,
the interannual variation (IAV) of GPP is better correlated
with that of observation-based datasets than in ORCHIDEE
globally and for the NH, but less correlated for other regions
(Fig. 10a). Observation-based GPP estimates are uncertain,
as some of them ignore soil-moisture-induced reductions of
GPP during drought (Stocker et al., 2019), as well as soil
thaw and snow-related effects (Jiang and Ryu, 2016). Thus,
at the moment, it is difficult to falsify one model version over
another and to constrain nutrient effects on the variation of
GPP based on current observation-based GPP.

In order to further explore the underlying reasons for the
general improvement in the IAV of GPP due to the inclusion
of nutrient cycles, we analyzed the sensitivity of GPP anoma-
lies to anomalies of temperature (St), precipitation (Sp) and
shortwave radiation (Sgr), all with mean annual values (Sect.
S1I). We found that Sp by ORCHIDEE-CNP compares well
with BESS GPP and MTE GPP, while it is overestimated in
ORCHIDEE (Figs. S7 and S8). Thus, the difference in Sp is
likely the major reason for the differences in IAV in NH be-
tween model versions, as St and Sg show only minor differ-
ences there. This provides confidence that the improvement
in TAV of GPP in the NH is due to an improved sensitiv-
ity towards a climatic driver (i.e., Sp). For tropical regions,
ORCHIDEE-CNP simulates more realistic Sp but higher bi-
ases in SR than in ORCHIDEE, while observation-based es-
timates of St disagree on the sign and model versions show
only minor differences (Fig. S7). Therefore, the deterioration
of the TAV of tropical GPP by the inclusion of nutrient cycles
is likely caused by enhanced biases in Sg due to a lowering
of LUE of GPP (Sects. 4.2 and 5.1).

5.5.2 Inclusion of nutrient cycling deteriorates
phenology and seasonality of GPP

The performance in reproducing seasonal variations of GPP

was deteriorated by the inclusion of N and P nutrient cycles
in ORCHIDEE (Fig. 10b). We found that biases in GPP are
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related to biases in the seasonality of the LAI introduced in
ORCHIDEE-CNP (Figs. S9a and S10a). For the NH, the de-
layed increase in LAI in ORCHIDEE-CNP could be partly
caused by nutrient shortage during the first half of the grow-
ing season, as indicated by the increasing leaf nutrient con-
centration throughout the growing season (Fig. S11). Sev-
eral factors could lead to a supply of nutrients that is too
low at the beginning of the growing season: an insufficient
internal plant nutrient reserve due to resorption of nutrients
that is too low prior to leaf shedding or an underestima-
tion of nutrient uptake during the dormant season, an insuf-
ficient investment into root growth to acquire nutrients, and
an overestimation of soil nutrient losses during the dormant
season leaving the soil nutrient depleted at the beginning of
the growing season. Many of the related processes (e.g., root
phenology, mineralization, nutrient resorption, growth allo-
cation) are only rudimentarily represented. For tropical re-
gions, ORCHIDEE-CNP simulates a quasi-flat seasonal cy-
cle of GPP, in contrast to a peak of GPP during the wet season
in MTE GPP and BESS GPP, which is correctly captured by
ORCHIDEE (Fig. S9b, c). The reduction of seasonal GPP
in ORCHIDEE-CNP compared to ORCHIDEE is more pro-
nounced in the dry season (~ 100 g C m~2) than in the wet
season (Fig. S9b, c), concurrent with a larger reduction of
LAI in the dry season (Fig. S10b, c). Tropical phenology
is currently only rudimentarily represented in ORCHIDEE(-
CNP) (Chen et al., 2020), causing a suboptimal allocation of
nutrients to leaves that could cause the biases in the seasonal
cycle of GPP and LAI. Model-data assimilation of phenol-
ogy (Williams et al., 2009; MacBean et al., 2018; Bacour et
al., 2019) and efforts to better characterize processes related
to plant resource investment into different tissues and sym-
bioses (Prentice et al., 2015; Warren et al., 2015; Jiang et al.,
2019) as well as leaf age effects during the year for evergreen
forests (Chen et al., 2020) should help to reduce tropical phe-
nology biases in future versions of ORCHIDEE-CNP.

5.5.3 Inclusion of nutrient cycling leads to an
underestimation of the land carbon sink

Current LSMs unanimously conclude that CO; fertilization
is the main driver of the land carbon sink and its trend
(Friedlingstein et al., 2014), but it remains unclear to what
extent other drivers (i.e., climate change, land management,
nutrient deposition) contribute to the sink as well. Also,
it remains unclear how commonly omitted dynamics (cli-
mate and management induced effects on tree mortality, nu-
trients) lead to overestimation of the contribution of CO;
fertilization in models (Ellsworth et al., 2017; Fleischer et
al., 2019). ORCHIDEE-CNP simulates a land carbon sink
over the past decades that is lower than other dynamic
global vegetation models (DGVMs) and atmospheric inver-
sions (Fig. S12), despite the fact that the response of GPP to
CO; in ORCHIDEE-CNP is in line with proxy data (Fig. 5;
Sect. 5.2). In particular, the NH carbon sink, which has per-
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sistently increased over the last 50 years (Ciais et al., 2019),
is strongly underestimated. The few Free Air Carbon En-
richment (FACE) studies that have experimentally applied
elevated CO; levels in mature stands found no increase in
biomass production (Bader et al., 2013; Klein et al., 2016;
Korner et al., 2005; Sigurdsson et al., 2013; Ellsworth et
al., 2017); thus, an increase in GPP does not necessarily
translate into an increase in biomass production, whereas in
most DGVMs wherein mortality is constant and growth fol-
lows GPP, biomass production is inevitably coupled to GPP.
Based on upscaling of data from FACE experiments, Ter-
rer et al. (2019) suggested that the effect of elevated CO,
on biomass may be severely overestimated (on average by
a factor of 3.6) in LSMs that ignore nutrients. It would be
tempting to conclude from this study that ORCHIDEE-CNP
is “right” in its underestimation of the carbon sink, whereas
other models are “wrong” because they miss processes such
as forest regrowth (Pugh et al., 2019) from, e.g., decreased
harvesting pressure (Ciais et al., 2008) and thus have a realis-
tic NH land sink for the wrong reasons. We also showed that
ORCHIDEE-CNP underestimates peak GPP (Fig. S12b) and
overestimates P limitations in the NH (Sect. 5.1, 5.3 and 5.4);
thus, another explanation is that the NH sink in this study is
too low because of P limitations that are too strong in this
region. These two hypotheses explaining why we underesti-
mate the NH sink (missing forest regrowth vs. overly strong
nutrient limitations in the NH) are examined below.

The overly small NH carbon sink in ORCHIDEE-CNP
may be explained by an immobilization of nutrients that
is too strong in accumulating nutrient-rich organic matter,
which leads to a reduction of plant-available nutrients, the so-
called “progressive nutrient limitation” proposed by Luo et
al. (2004), and subsequently to reduced biomass production.
The amount of accumulated N and P immobilized into SOM
in the NH during 1850-2016 reaches up to 75.3 g N'm~2 and
2.4 gPm™2, respectively, which is twice as much as the ac-
cumulated respective nutrient inputs to ecosystems in this re-
gion during the same period (37.8gNm~2 and 1.6 gPm~2;
Figs. S13 and S14). This suggests a strong progressive nu-
trient limitation in the model. The omission of nutrient con-
trols on litter and SOM decomposition in the soil module of
ORCHIDEE-CNP could have favored the immobilization of
nutrients in accumulating SOM (Zhang et al., 2018). Microbe
incubation and N fertilization experiments showed that a low
availability of nutrients can hamper the buildup of SOM as
more carbon gets respired by decomposers due to elevated
energetic requirements of processing low-quality substrate
(Recous et al., 1995; Janssens et al., 2010; Allison et al.,
2009) and overall lower microbial activity (Wang et al., 2011;
Knorr et al., 2005). Uncertainties with respect to the capabil-
ity of ecosystems to up-regulate P mineralization when P be-
comes scarce could have contributed to the decline in plant-
available nutrients with increasing SOM stocks. The inclu-
sion of nutrient effects on decomposition and microbial dy-
namics in ORCHIDEE-CNP is ongoing (Zhang et al., 2018,
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2020), but the lack of quantification of the ability of ecosys-
tems to enhance P recycling hampers model developments.

The overly small NH carbon sink in ORCHIDEE-CNP
may also be explained by the lack of representation of ef-
fects of forest age and management on biomass turnover and
biomass production efficiency (i.e., CUE). Pugh et al. (2019)
found that old-growth forests in the NH have a much smaller
C sink than regrowing forests (< 0.1 PgCyr~!' compared to
0.86 PgCyr~!) for the period 2001-2010. Forest manage-
ment effects on biomass production efficiency and biomass
turnover are only rudimentarily represented in ORCHIDEE(-
CNP). ORCHIDEE-CNP prescribes constant tree mortality
rates (i.e., the fraction of total carbon in wood lost to lit-
ter), whereas in reality tree mortality rates change with man-
agement and climate conditions (Peng et al., 2011). More-
over, ORCHIDEE(-CNP) omits the effect of forest age on
C uptake. Compared to data-driven estimates for C storage
(Sect. S1G and S1H), ORCHIDEE-CNP simulates a higher
global aboveground forest biomass (387 Pg C; 283 Pg C for
GlobBiomass, Santoro, 2018; 221 PgC for GEOCARBON,
Operational Global Carbon Observing System, Avitabile
et al.,, 2016; Fig. S2) but lower global soil organic car-
bon (801 PgC; 4387 Pg C for Soilgrids, Hengl et al., 2017;
1680 Pg C for GSDE — Global Soil Dataset for use in Earth
system models, Shangguan et al., 2014; Fig. S3).

6 Concluding remarks

In this study, we evaluated the performance of ORCHIDEE-
CNP and found that the model has sufficient skills in cap-
turing observed patterns in (1) vegetation resource use effi-
ciencies, (2) CO, vegetation fertilization, (3) ecosystem N
and P openness and turnover, and (4) leaf and soil stoichiom-
etry. The inclusion of nutrients improves the simulation of
the sensitivity of plant productivity to increasing CO; and to
interannual variation in precipitation. However, the nutrient-
enabled version cannot capture the current land carbon sink
in the NH. This suggests that either the land carbon sink
might be less a consequence of the CO; fertilization effect
than of other processes that are currently not well resolved in
global models (e.g., biomass turnover, land management) or
that ORCHIDEE-CNP underestimates the ability of ecosys-
tems to circumvent nutrient constraints on biomass built up
under elevated CO,. We propose the following focus to im-
prove ORCHIDEE in the next model versions: (1) refine
the canopy light absorption processes; (2) use model-data
assimilation frameworks (like ORCHIDAS) to better cali-
brate root phenology, mineralization, nutrient resorption and
growth allocation; (3) better represent soil processes related
to decomposition, stabilization of soil organic matter (e.g.,
Zhang et al., 2018, 2020) and inorganic P transformation
(e.g., Helfenstein et al., 2020); and (4) refine the dynamics
of biomass turnover and biomass production efficiency, in-
cluding effects of forest management and climate. Continued
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improvements of nutrient cycle representations will further
reduce uncertainties in predicting the land carbon sink under
climate change and rising atmospheric CO».

Code and data availability. The source code is freely avail-
able online via the following address: http://forge.ipsl.jussieu.
fr/orchidee/wiki/GroupActivities/CodeAvalaibilityPublication/
ORCHIDEE-CN-P_v1.2_r5986 (last access: 8§ May 2020, Goll,
2020). Please contact the corresponding author if you plan an
application of the model and envisage longer-term scientific
collaboration.

Primary data and scripts used in the analysis and other supple-
mentary information that may be useful in reproducing the authors’
work can be obtained at https://doi.org/10.17632/t54v9zcgbf.1 (Sun
et al., 2020).
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