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Abstract. Aerosol forecasts by the European Centre for
Medium-Range Weather Forecasts (ECMWF) Integrated
Forecasting System aerosol module (IFS-AER) for the years
2016-2019 (cycles 41r1-46r1) are compared to vertical pro-
files of particle backscatter from the Deutscher Wetterdienst
(DWD) ceilometer network. The system has been developed
in the Copernicus Atmosphere Monitoring Service (CAMS)
and its precursors. The focus of this article is to evaluate the
realism of the vertical aerosol distribution from 0.4 to 8§ km
above ground, coded in the shape, bias and temporal varia-
tion of the profiles. The common physical quantity, the atten-
uated backscatter 8*(z), is directly measured and calculated
from the model mass mixing ratios of the different particle
types using the model’s inherent aerosol microphysical prop-
erties.

Pearson correlation coefficients of daily average simulated
and observed vertical profiles between » = 0.6-0.8 in sum-
mer and 0.7-0.95 in winter indicate that most of the verti-
cal structure is captured. It is governed by larger 8*(z) in
the mixing layer and comparably well captured with the suc-
cessive model versions. The aerosol load tends to be biased
high near the surface, underestimated in the mixing layer and
realistic at small background values in the undisturbed free
troposphere. A seasonal cycle of the bias below 1 km height
indicates that aerosol sources and/or lifetimes are overesti-
mated in summer and pollution episodes are not fully re-
solved in winter. Long-range transport of Saharan dust or fire
smoke is captured and timely, only the dispersion to smaller
scales is not resolved in detail. Over Germany, 8*(z) val-

ues from Saharan dust and sea salt are considerably overes-
timated. Differences between model and ceilometer profiles
are investigated using observed in situ mass concentrations
of organic matter (OM), black carbon, SO4, NO3, NHy and
proxies for mineral dust and sea salt near the surface. Ac-
cordingly, SO4 and OM sources as well as gas-to-particle
partitioning of the NO3;—NH4 system are too strong. The top
of the mixing layer on average appears too smooth and sev-
eral hundred meters too low in the model. Finally, a dis-
cussion is included of the considerable uncertainties in the
observations as well as the conversion from modeled to ob-
served physical quantities and from necessary adaptions of
varying resolutions and definitions.

1 Introduction

Aerosol particles play a key role in atmospheric processes,
and their manifold sources and transformations reflect in a
wide range of abundance as well as chemical and physi-
cal properties. Thus, the understanding of particles’ net ef-
fects on air quality, weather, climate and chemical budgets
still comprises significant uncertainties (Linares et al., 2009;
WMO, 2013; Baklanov et al., 2014). Particles affect cli-
mate and weather directly by light scattering and absorption
(Hansen et al., 1997; Ramanathan et al., 2007; WMO, 2013)
and indirectly by altering the formation and droplet size of
clouds (Lohmann et al., 2007) and via their impact on satu-
ration and vertical exchange (Ackerman et al., 2000). Due to
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land-use changes and increasing emissions of anthropogenic
gases and particles during the last century, aerosols consti-
tute and trigger severe pollution episodes and health haz-
ards (Galanter et al., 2000; Andreae and Merlet, 2001; Pérez
et al., 2012). In the lower troposphere, particle emissions and
heterogeneous chemical processes degrade health-related air
quality (Gilge et al., 2010; Karanasiou et al., 2012), but at the
same time particles mediate gas-to-particle conversion, scav-
enging and final removal of trace gases from the atmosphere
(Birmili et al., 2003; Kolb and et al, 2010).

Natural particle sources, too, dependent on season,
weather and region, may cause widespread socio-economical
and epidemiological impacts. Europe, for example, is
reached by Saharan dust (SD) many times per year (Ans-
mann and et al, 2003; Collaud-Coen et al., 2004; Papayannis
et al., 2008; Pey et al., 2013; Flentje et al., 2015) where, de-
creasing towards the north, it contributes between 5 %—30 %
to the total dry particle mass (Putaud et al., 2010). It trig-
gers cloud formation (Sassen et al., 2003; Lohmann et al.,
2007; Tegen and Schepanski, 2009) and summer smog (Or-
donez et al., 2010; Wang, 2010) and has been associated with
dispersion of bacteria like meningitis (Griffin, 2007; Karana-
siou et al., 2012). Volcanic eruptions may induce long-term
changes of radiation transfer (Jager, 2005), disturb flight traf-
fic (Flentje et al., 2010a; Schumann et al., 2011) and habit-
ability of adjacent regions and alter the chemical balance up
to the stratosphere. Domestic heating and open fires linked
to agriculture (~ 85 % globally; Andreae and Merlet, 2001),
drought or boreal burns (Damoah et al., 2004; Hyer et al.,
2007; Stohl et al., 2002) produce small-sized carbonaceous
particles which can be widely distributed and may pene-
trate deep into lungs and plant stomata (Kaiser et al., 2012).
Their fractal surfaces favor adsorption of harmful combus-
tion byproducts that may cause respiratory, allergic, cardio-
vascular and cancerous diseases (Molter et al., 2014).

Air-quality  regulations like European directive
2008/50/EG for PMjg/PM; 5 have therefore been en-
forced and are currently revised to tackle issues related
to carbonaceous fine (PM) and ultrafine (< 0.1 pm) par-
ticles (Linares et al., 2009). Design and control of these
legislations require modeling efforts to define their scope,
identify critical parameters and monitor the abundance of
aerosols and their role in weather, climate and air quality
(Stier et al., 2005; Morcrette et al., 2009; Grell et al., 2011;
Wang et al., 2011; Zhang et al., 2012; Baklanov et al., 2014).
Still the impacts on regional weather by mineral dust (Pérez
et al., 2006), sea salt (precursors) (O’Dowd et al., 1997) and
forest-fire particles (Andreae and Merlet, 2001; Stohl et al.,
2002; Andreae and Rosenfeld, 2008)) are a challenge for
atmospheric models due to uncertainties of optical properties
arising from assumptions on their physical and chemical
composition (Curci et al., 2015).

To this end, the Integrated Forecasting System (IFS) for
regional and global scales has been developed in the se-
ries of PROMOTE, GEMS, MACC I-III EU projects for
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the Copernicus Atmosphere Monitoring Service (CAMS;
https://atmosphere.copernicus.eu/charts/cams/, last access:
25 March 2021) at the European Centre for Medium-Range
Weather Forecasts (ECMWF) (Morcrette et al., 2009; Flem-
ming et al., 2017; Rémy et al., 2019). Significant progress has
been made with emission inventories (Granier et al., 2011;
EDGAR, 2013; Gidden et al., 2019), implemented source
functions (Dentener et al., 2006; Morcrette et al., 2009, 2011;
Spracklen et al., 2011) and the data assimilation (Benedetti
et al., 2009; Kaiser et al., 2012; Bocquet et al., 2015). Impor-
tant processes like water uptake and release by hygroscopic
fractions (Weingartner et al., 2002; Swietlicki et al., 2008;
Hong et al., 2014; Chan et al., 2018) have been included,
while the extension to water cloud formation, e.g., during
dust events, is still missing, though it regularly causes no-
ticeable prediction errors.

It is therefore essential to evaluate and improve the CAMS
model system with the aid of independent observations,
which is the mandate of (amongst others) the CAMS-84
validation team (Eskes et al., 2015). So far, model evalua-
tion concentrates on aerosol optical depth (AOD) (Holben
et al., 2001; Basart et al., 2012; Cesnulyte et al., 2014); how-
ever, this is limited to daytime (except a few moon radiome-
ters) and without resolving the vertical distribution. Regional
models mostly think and verify in terms of particulate mat-
ter mass concentration (PMjg or PM3 s), mostly without re-
solving composition and sizes of particles (Stidworthy et al.,
2018; Akritidis et al., 2018). Often, assessments of detailed
particle properties suffer from sparse or delayed observa-
tions, which however are already used to verify CAMS re-
analyses (Flemming et al., 2017; Inness et al., 2019), which
use nearly the same aerosol module. Only recently, evalua-
tion of vertical aerosol profiles started using research lidars
and ceilometers (Benedetti et al., 2009; Wiegner and Geil,
2012; Wiegner et al., 2014; Chan et al., 2018), whereby the
former are operated spatially sparse and temporally inter-
mittent, the latter have no independent capability to iden-
tify and quantify particles, and both at best capture part of
the surface layer. Yet, extended networks like the European
Aerosol Research Lidar Network (EARLINET), the German
(Ceilonet) and the European (E-PROFILE) ceilometer net-
works (cf. Global Aerosol Lidar Network (GALION), World
Meteorological Organization — Global Atmosphere Watch
(WMO-GAW) Report No. 178) are now in place and used.
As a byproduct, the height of the mixing layer (ML) can
be inferred from the profiles (Miinkel et al., 2007; Haeffelin
et al., 2012), which is used by aerosol and chemistry trans-
port models to constrain the vertical exchange and to scale
the dispersion of reactive gases and aerosols (Monks et al.,
2009) as well as greenhouse gas concentration budgets (Ger-
big et al., 2008).

The general approach in this article builds on the work
of Chan et al. (2018) but allows us to investigate addi-
tional model details beyond those discussed in there and
complements Flemming et al. (2017), Rémy et al. (2019).
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We primarily use attenuated backscatter f*(z) profiles from
the German ceilometer network to evaluate CAMS global
aerosol model forecasts. After brief overviews of the CAMS
model and potential and limitations of the ceilometer data,
we introduce the auxiliary data aiding the interpretation as
well as the concept and metrics to categorize the results in
Sect. 2. The results (Sect. 3) present complementary ways
to order the model-observation differences occurring with
respect to altitude, time and model configuration. Based on
this, we identify reasons for model deficiencies, possible im-
provements and parallels to previous evaluations in Sect. 4.
Key findings are summarized and an outlook is provided for
upcoming activities in Sect. 5.

2 Data sets and methodology
2.1 The CAMS aerosol model

The IFS aerosol module (IFS-AER) is described in Benedetti
et al. (2009), Morcrette et al. (2009) and Rémy et al. (2019).
Further information as well as analyses, forecasts, eval-
uation results and other products can be found at https:
/latmosphere.copernicus.eu/ (last access: 25 March 2021).
This article refers to the operational runs with assimilation
(ASM) from January 2016 (cycle 41r1) to December 2019
(cycle 46rl) and corresponding unconstrained control runs
(CTR) as listed in Table 1 and in Table 3 in Rémy et al.
(2019). The data were resampled from the reduced Gaus-
sian grid at T255 spectral resolution to 1.0° x 1.0° before
June 2016 and from T511 to 0.5° x 0.5° thereafter. Concep-
tually, regional models build on the global forecasts and re-
fine scales to a few kilometers but yet provide only aggre-
gated aerosol quantities (PM» s or PMjg) rather than spe-
ciated or direct backscatter output nor the information nec-
essary for conversion. The global aerosol model uses 14
prognostic variables: three size bins each of dust and sea
salt, hydrophilic/hydrophobic black carbon (BC), organic
matter (OM), sulfate (SO4) and, as of 9 July 2019 (cycle
46r1), also two size bins of nitrate (NO3) and ammonium
(NH4). MODIS AOD and, starting from cycle 45r1, the Po-
lar Multi-sensor Aerosol product (Popp, 2016) are assimi-
lated, optionally by 4D-Var (Benedetti et al., 2009) or the
3-D fields from the previous forecast. Due to an adverse ef-
fect on headline scores during tests with Cloud-Aerosol Li-
dar with Orthogonal Polarization (CALIOP) backscatter pro-
files (1D-Var), no aerosol profiles have been assimilated yet
(Benedetti et al., 2009). As described in detail by Granier
et al. (2011), EDGAR (2013) and Rémy et al. (2019) and
documented on the ECMWF website (https://confluence.
ecmwf.int/display/COPSRV/CAMS+Global/, last access:
25 March 2021), aerosol sources in IFS-AER con-
tinuously develop with emission inventories EDGAR,
MACCity(4+SOA), CAMS_GLOB_ANT/BIO vx.x (anthro-
pogenic/biogenic), stem from scaled fire emissions of the
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Global Fire Assimilation System (GFAS) (Kaiser et al.,
2012), or they are calculated from the meteorological fields
and surface conditions for dust, sea salt and biogenic parti-
cles. Volcanic emissions can be activated on demand. Hori-
zontal and vertical transport is based on the dynamics of the
ECMWF model, complemented by vertical diffusion or con-
vection, sedimentation and dry or wet deposition by large-
scale and convective precipitation. The most significant up-
grades are the increase of horizontal resolution from T255 to
T511 after June 2016, the switch to MACCity+SOA cou-
pling OM to CO emission (Spracklen et al., 2011) as of
February 2017, the increase of vertical resolution from 60
to 137 levels and the addition of NO3 and NHy as of cycle
46rl1 in July 2019; cf. Table 3 in Rémy et al. (2019).

Based on the 00:00 UTC analysis, 3-hourly profiles at
time steps of +3, +6, +9,...,+24h are extracted from 5d
forecast runs, making noticeable adaptations by the anal-
ysis/assimilation possible at 03:00 UTC each. Ceilometer
and model profiles as well as mixing layer height (MLH)
are based on altitude above ground and model geopotential
height, respectively. The vertical displacement between the
low-resolved model orography and real terrain height is only
relevant for steep stations sticking out far above the model
surface level, while over flat terrain this is below 100 m. In or-
der to translate the model state of the atmosphere into virtual
measurements, which can be directly compared to real obser-
vations, a so-called “forward operator” is applied to the IFS-
AER output. Here, the forward operator converts the mass
mixing ratios mp ; of 14 particle types to attenuated backscat-
ter $*(z) according to Eq. (1). This is chosen as a common
physical quantity rather than backscatter coefficients (z) be-
cause it is the primary measured variable from ceilometers
without assumptions involved, and the model contains all in-
formation to calculate it:

Z

B*(2) = B(z) exp{ —2 f o () ¥ n

0

Here, 8(z) and o (z) are the backscatter and extinction coef-
ficients, respectively. The further procedure as described in
detail by Chan et al. (2018) and look-up tables with conver-
sion coefficients are in Appendices A and C, respectively.

2.2 Ceilometer network

The German Meteorological Agency (Deutscher Wetterdi-
enst; DWD) operates a network of about 160 Lufft-CHM 15k
ceilometers (~60 in January 2016; Fig. 1) which pro-
vide operational profiles of the background- and range-
corrected raw signal P(z)z2 (Flentje et al., 2010a, b), avail-
able as QuickLooks at http://www.dwd.de/ceilomap/ (last
access: 25 March 2021) and the European E-PROFILE
(https://ceilometer.e-profile.eu/, last access: 25 March 2021).
CHM15k uses a diode-pumped Nd:YAG solid-state laser
emitting at 1064 nm and ranges up to maximum 15 km above
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Table 1. Specification of relevant CAMS model runs for changes by successive cycles (see https://atmosphere.copernicus.eu/node/326/, last
access: 25 March 2021) and specifically for cycle 46r1 https://atmosphere.copernicus.eu/node/472/ (last access: 25 March 2021), as described
in Table 3 in Rémy et al. (2019). ASM is like CTR but additionally uses 4D-Var assimilation.

Period IFS cycle

Horizontal resolution

Levels Important upgrades

T255-1.0° x 1.0°
T511-0.5° x 0.5°
T511-0.5° x 0.5°
T511-0.5° x 0.5°
T511-0.5° x 0.5°
T511-0.5° x 0.5°

01/16-05/16  41rl
06/26-01/17  41rl
02/17-09/17  43rl
10/17-05/18  43r3
06/18-06/19  45rl
07/19-12/19  4eérl

60
60  Horizontal resolution
60 MACCity+SOA, coupled OM to CO
60 SOy sources, dry deposition
60  Sea-salt sources, dry deposition
137  Vertical resolution, NO3 and NHy

ground. Typically, incomplete overlap in the near field and
low signal-to-noise ratio (SNR) in the far field limit the in-
ferable profile range to 0.3—8 km altitude Heese et al. (2010).
The ceilometers of the network are operationally calibrated
using the ToProf/E-PROFILE Rayleigh calibration routine
provided by MeteoSwiss. The Rayleigh method (Barrett and
Ben-Dov, 1967) is applicable under clear-sky and stable
aerosol conditions, whereby only nighttime data averaged
over 1-3h are used to avoid disturbance by background
light. Rayleigh scattering profiles are calculated from Na-
tional Centers for Environmental Prediction (NCEP) and the
National Center for Atmospheric Research (NCAR) reanaly-
sis data. Though the low sensitivity of the infrared (IR) wave-
length to small particles < 0.1 um limits Rayleigh calibration
capability, it offers large contrast (SNR) against molecular
scattering to track larger particles. System stability and out-
put power monitoring allows us to track the lidar constant
CL and transfer the calibrations to daytime profiles (Bock-
man et al.,, 2004; Heese et al., 2010; Wiegner and GeiB,
2012; Wiegner et al., 2014). Only stations with a sufficient
density of successful calibrations are considered. Attenuated
backscatter 8*(z) as a function of altitude z is then calculated
from the background corrected ceilometer signal power P(z)
with the calibration constant Cy_:
* P Zz

B (z) = o 2
The Cy, values are first cleaned for outliers (<>1.5 x 25th—
75th percentiles of 30d average), smoothed with a 30d run-
ning mean and finally interpolated to hourly values to be used
in Eq. (2). The typical precision of an individual calibration is
15 %20 %, while the actual error is smaller due to the tem-
poral smoothing. The accuracy of the retrieved backscatter
linearly depends on the accuracy of Cp. The monthly vari-
ation of Cr is usually less than 5% and the annual varia-
tion is 10 %—15 %. Finally, cloud-free attenuated backscat-
ter profiles are averaged within &1 h around the correspond-
ing model times. Profiles with precipitation, low clouds or
instrument operation flags are excluded from the evalua-
tion as far as possible but still cause occasional artifacts.
The most prominent feature in the backscatter profiles usu-
ally is the planetary boundary layer (PBL), here identified
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with the aerosol ML. Up to three aerosol layer-top heights
(MLHs), calculated by a wavelet algorithm (Teschke and
Ponitz, 2010), are reported by the instruments (see next sec-
tion). Often the uppermost may be identified with the MLH;
however, ambiguities in the MLH definition and the differ-
ent algorithms for its determination remain large (Haeffelin
etal., 2012).

2.3 Comparison of mixing layer height

The evaluated model MLH stems from the ECMWF IFS op-
erational forecast, archived at steps 3, 6,9, ...,24 h based on
daily 00:00 UTC analysis. The model determines the MLH at
the critical value of the bulk Richardson number (Ri = 0.25),
which characterizes the degree of turbulence (Richardson
et al., 2013). The vertical stability is estimated using the
difference between each level and the lowest level. Sev-
eral issues with this approach are described by, e.g., Engeln
and Teixeira (2013), related to the Richardson number being
based on ratios of both dynamic and thermodynamic vertical
gradients rather than those of temperature and/or humidity
as such, the use of dry variables in cloudy situations, and the
fact that the Richardson number as a measure of local tur-
bulence is often unable to properly characterize the turbulent
properties of convective boundary layers. Turbulent kinetic
energy, which could be used better, however, is rarely used
in global models and as such is not available (Engeln and
Teixeira, 2013).

The reference MLH observations are based on two ap-
proaches: visual inspection of daily 2-D time-height sec-
tions of 8*(z) and the aerosol layer output from the CHM 15k
firmware. The former is quite reliable but elaborate and re-
quires an experienced analysis of 2-D backscatter sections.
The latter is automated and unbiased but suffers from se-
vere inaccuracies and ambiguities and is mostly unrealistic in
cases with multiple layers, low clouds/fog, small aerosol gra-
dients, precipitation and long-range transport of dust, smoke,
etc. In principle, MLH detection is a pattern recognition
problem assuming that the vertical distribution of aerosol can
be used as a tracer for boundaries. This, however, is not al-
ways the case. The absolute value of the backscatter is typi-
cally not needed since the relevant information seems to be
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Figure 1. Lufft- CHM 15k ceilometer network of the Deutscher Wet-
terdienst (DWD) in 2020, color coded by the number of avail-
able calibrations per month. Pink dots denote stations without cal-
ibrated data. Near-real-time QuickLooks and metadata informa-
tion are available via http://www.dwd.de/ceilomap/ (last access:
25 March 2021).

coded in the gradient (but possibly of different orders) of
the backscatter profile (Teschke and Ponitz, 2010) and its
temporal development. The CHM 15k firmware calculates up
to three layers with quality flags from the range-corrected
signal (P(2)Z%) by means of a wavelet transform algorithm
(Teschke and Ponitz, 2010). Which of these corresponds to
the MLH, however, remains a decision according to speci-
ficity, temporal continuity and distinctness. In this respect,
Haeffelin et al. (2012) find in their analysis of limitations and
capabilities of existing mixing height retrieval techniques
“... no evidence that the first derivative, wavelet transform,
and two-dimensional derivative techniques result in different
skills to detect one or multiple significant aerosol gradients”.
While MLH reported by CHM15k definitely lacks reliability
even when robust metrics like maximum daily mixing layer
heights (MMLHs) are chosen, visual inspection of individual
cases illustrates why algorithms fail with ubiquitous complex
scenes and simultaneously provides reasonable estimates of
MMLH. The uncertainty of visually inferred MLH is about
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£+100 m, and no MLH <400 ma.g.l. can be detected due to
artifacts from the overlap correction. Given all these limita-
tions, the discussion of MLH is included in this article as it
is the most prominent feature in the vertical profile, but it is
not intended as a rigorous evaluation.

2.4 In situ measurements of particle composition and
sizes

To interpret the model-observation differences, in situ par-
ticle composition measurements are used from the Ger-
man GAW global station Hohenpei3enberg (HPB) (47.8° N,
11.0°E; 990ma.s.l.), (Flentje et al., 2015). The Hohen-
peiBienberg station is located on a pre-Alpine hill, sticking out
300 m above the surrounding forest and/or grassland and rep-
resents rural central European conditions. Particle composi-
tion observations stem from the quadrupole aerosol chemical
speciation monitor (Q-ACSM; Aerodyne Res. Inc., Billerica,
MA, USA; Ng et al., 2011) and quartz-/teflon-filter probes
analyzed for water-soluble ions with a DIONEX ICS 1000
(Henning et al., 2002) as detailed in Flentje et al. (2015).
Both measurements’ uncertainties are negligible for global
model evaluation. Only the model vertical level of correspon-
dence is not unambiguous to determine for mountain stations
sticking out from the model orography. The profile evalua-
tion circumvents this by excluding stations in steep terrain
and through the negligible effect of the orography at higher
altitudes. As a compromise for HPB (zops =995 ma.s.l.,
Zgeopot-model = 665 m) to capture both surface effects and am-
bient conditions at an elevated sampling level, we choose
L54-L60 and L127-L137 for the 60L and the 137L model
versions, respectively; see, e.g., Wagner et al. (2015). The
range of concentrations within these altitudes indicates the
uncertainty.

2.5 Concept of evaluation

Given the complexity of spatiotemporal variations of 14 in-
teracting aerosol types in the IFS-AER model, it is important
to reduce the evaluation to a meaningful subset of metrics and
scores and adapt it to the information content of the observa-
tion data. This study focuses on the vertical aerosol distribu-
tion and the altitude dependence of the model—observation
differences (bias) from about 0.3 to 6 km above ground. Be-
low 0.3 km, the incomplete overlap cannot be corrected with
sufficient accuracy. Above 6 km, ceilometer data suffer in-
creasingly from low SNR and cloud artifacts. To avoid per-
turbation of our results by truncated profiles extending verti-
cally over less than 0.6 km or containing clouds and possibly
falling precipitation streaks, such profiles are excluded (see
Sect. 4.2). In the vertical, we distinguish between the surface
layer (SL) where the sources of most particles are, the ML
and the free troposphere (FT), where long-range transport
takes place. Model biases may indicate specific deficiencies
in the model but may also stem from uncertainties in the ob-
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servation data or the forward operator or arise from necessary
adaptions of the data sets (see Sect. 4.2).

While there are several options to discuss the agreement of
forecast and observed backscatter profiles, we use the follow-
ing metrics and scores: the correlation of model-observation
profiles evaluates their shape, i.e., efficiency and timeliness
of vertical/horizontal transport, injection heights, represen-
tation of the mixing layer and stratification. This is jointly
summarized in Taylor diagrams (Taylor, 2001) with the stan-
dard deviation coding the variance or amplitude of the pro-
files. The bias (as Mm~! sr—1) or modified normalized mean
bias (MNMB) (as a percentage) as a function of time and al-
titude evaluates the sources or sinks (strength) and physical
and chemical transformations, separately for ASM and CTR:

MNMB (z,1) = 100 2 N Masm,ctr(Zyti)_O(Zsti)
asm, ctr(Z, 1) = e

N i=0 Masm, ctr(2, 1) + O (2, 1;) ’

where Mysm, cr(z, %) and O(z,t;) denote modeled and ob-
served values at altitude z and time #;, respectively. Either
moving averages over selected altitude ranges (bias time se-
ries) or (e.g., monthly) averages resampled at the model lev-
els (bias profiles) are calculated.

The MNMB is used for comparability within CAMS, be-
cause it is better suited to verify aerosol and chemical species
concentrations compared to verifying standard meteorologi-
cal fields. Spatial or temporal variations can be much greater,
and the model biases are frequently much larger in mag-
nitude. Most importantly, typical concentrations vary quite
widely between different aerosol types, regions and heights,
and a given bias or error value can have a quite different sig-
nificance. It is useful therefore to consider bias and error met-
rics that are normalized with respect to observed concentra-
tions and hence can provide a consistent scale regardless of
pollutant type, altitude or region (see, e.g., Elguindi et al.,
2010, or Savage et al., 2013). Moreover, the MNMB is ro-
bust to outliers and converges to the normal bias for biases
approaching zero, while taking into account larger uncer-
tainties in the observations and the representativeness issue
when comparing coarse-resolved global models versus site-
specific station observations.

Taylor polar plots combine two statistical measures for
pairs of profiles, averaged over any optional period of time
(here daily means or medians) and over different stations:
the correlation of coincident pairs of modeled and observed
vertical profiles plotted along the azimuth, and the standard
deviation of model profiles normalized to the observation on
the x axis (Taylor, 2001). This means that correlation is cal-
culated over altitude ranges rather than periods of time. The
ideal agreement or the reference point (observation) is thus
located at the polar coordinate [1, 1]. It is worth noting that
the distance from the reference in Taylor polar plots corre-
sponds to the root-mean-square error (RMSE); thus, Tay-
lor plots powerfully display performance changes between
model versions in a strongly aggregated way.
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By considering mean and median values, the skills with
and without (peaks of) events are distinguished, the latter
representing more background conditions and less the inter-
annual variability of (mostly dust) events. Negative and pos-
itive biases are denoted as “low bias” or “high bias”, respec-
tively; their absolute amount is classified as large or small.
The relative data coverage of 3-hourly profiles from all sta-
tions remaining for evaluation is 93 %, 92 %, 89 %, 83 %,
71%, 46 % and 16 % at 0.4, 1, 2, 3, 4, 5 and 6 km above
ground, respectively.

3 Results
3.1 Bias and MNMB

Figure 2 shows the temporal evolution of bias (upper pan-
els) and MNMB (lower panels), each for ASM (red/orange)
and corresponding CTR (green/blue) around vertical model
levels spaced by 1km (0.4, 1,2, ...6 km above ground), each
averaged over +one model level. The data averaged over
21 German ceilometer stations become statistically sparse at
higher levels (> 6 km). A different perspective, transformed
to the whole vertical profiles of monthly mean and median
bias of B*(z), is shown in Fig. 3 and color coded by each
month for 2016 to 2019. Actual 8*(z) profiles are shown for
comparison in Figs. D1 to D4. The following results refer to
Figs. 2 and 3.

The bias of 8*(z) shows a clearly different behavior near
the surface, in the ML and the FT, with upward tendencies to-
ward the surface, low bulges in the ML, reaching up to ~ 0.5—
1 km in winter and ~ 1-2 km in summer, and enhanced vari-
ation related to irregular long-range transport, mostly of dust,
in the FT as shown in Fig. 3. Estimated error bars overlay-
ing the CTR profiles indicate the significance of the biases.
The low-bias dips above 6km are artifacts caused by cloud
boundaries not captured by the quality control. Due to events,
the mean bias is on average larger and scatters more than the
median, particularly in the FT, which holds little aerosol in
undisturbed situations. Throughout several months, Saharan
dust events cause a large high bias in the upper ML and the
FT. A positive impact of the assimilation is reflected by a
smaller and less variable bias in ASM than in CTR, as shown
in Fig. 2, where 7 d running means remove the tremendous
variability on daily timescales. Bias and MNMB tend to be
lower in CTR (blueish) than in ASM (reddish), particularly
at lower heights. ASM bias/sMNMB show less longer-term
variation with model changes and seasons and less vertical
spread. (Note that only ASM is used with cycle 41r1 before
June 2016.) MNMB is less sensitive to absolute 8*(z) and
thus more clearly shows phases of vertical association and
dissociation, and an overall downward trend in 2016-2018
of CTR MNMB turning into an increase in 2019. For ASM,
this variation is only evident in the FT. With cycle 46r1, bias
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Figure 2. The 7d running mean bias of 8*(z) from ASM (a) and CTR (b) combined from 21 German stations in 2016-2019. Same for
MNMB in panels (c) and (d). Colors refer to different altitudes above ground. Vertical black lines indicate major model updates as in Table 1.
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and MNMB in ASM and CTR are vertically closer associ-
ated.

Over the 4 years, monthly bias profiles have become more
variable, the means more than medians and CTR more than
ASM (Fig. 3). This may reflect changes to model source
strengths (see Table 1), larger errors during more frequent
events and a balancing impact of the assimilation, respec-
tively. This scatter is particularly observed in the ML where
model 8*(z) values are on average lower than observed un-
til July 2019 and higher thereafter. Particularly CTR shows
lower 8*(z) bias and MNMB around summers at low heights
(MNMB around —100 %), while ASM remains flatter thanks
to the assimilation (Fig. 2). SL biases stick out high (up to
0.3Mm~!sr=!) with cycle 41r1 T255 in spring 2016 and
with cycle 46r1 after July 2019 (up to 0.4 Mm~! sr=!). In be-
tween, they were smaller or negative as shown in Fig. 2 and
Table 2. A bias increase with cycle 46r1 at 0.4/1 kma.g. cor-
responds to overestimated NO3, NH4 and OM in the model,
as discussed with respect to GAW surface data in Sect. 3.3.

Though seasonal regularities are disturbed by five irreg-
ular model updates in the 2016-2019 period, biassMNMB
in ASM show opposing seasonal cycles in the lower
(0.4kma.g.) and the upper (2kma.g.) ML with ampli-
tudes of 0.2Mm~'sr™'/40% (summer maximum) and
0.1Mm !'sr=!'/70% (summer minimum), respectively
(Fig. 4). Figure 2 shows this particularly before cycle 4313 in
October 2017. The seasonal amplitude is small at the inter-
mediate level 1 kma.g. The summer minimum is evident up
to 3km (MNMB even to 4 kma.g.), while it is variable due to
Saharan dust events at 5 and 6kma.g. A weekly cycle is not
significant in the bias nor the MNMB, indicating a negligible
influence of short-term anthropogenic emissions which
are not captured by the inventories’ temporal resolution (1
month).

Periods with opposing high bias in SL or ML and low
bias in FT indicate vertical displacement of aerosol within
the profile. While expected within individual profiles, it of-
ten also lasts for longer periods, as shown in Fig. 2, e.g.,
in April-June 2016 and repeatedly until cycle 45r1 in mid-
2018, whereupon it largely disappears. Longer periods are
evident as oscillations even in the monthly mean profiles
in Fig. 3. The effect is more distinct for ASM and may be
attributed to adaptions by the assimilation of AOD which
adds no direct height information. Spatiotemporal shifts be-
tween the model and observations result in low-bias or high-
bias oscillations with time and mostly cancel out within a
day. The corresponding fractional skill score is discussed
in Sect. 3.4.2. Outstanding high-biased monthly profiles
(Figs. 3 and 2) or high-bias peaks are mostly related to Sa-
haran dust events, e.g., in April and June 2016, June, July
and October 2017, January and April 2018 and June—July
and October—December 2019 (see Sect. 3.4.1). However, oc-
casionally, SD particles induce cloud formation (e.g., 16-17
October 2017) which largely increases the $*(z) signal in
spite of the constant dust aerosol load (see Appendix B). Un-
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til this exceeds the 8*(z) threshold above which ceilometer
data are removed as clouds, such events produce a low bias.
Low biases also occur in the ML (1-2km lines in Fig. 2)
during smog periods, e.g., when transport of highly polluted
air from eastern Europe towards Germany (January 2017,
February/March 2018) is not captured by the model (low bias
of —0.3Mm !sr~!in February—March 2018; cf. Sect. 3.3).
At higher altitudes > 5 km, remaining cloud artifacts within
sparse data coverage (low SNR) cause sharp low-bias dips in
Fig. 2.

3.2 Profile shape - correlation

The Pearson correlation coefficient (r) of model-observation
B*(z) profile pairs specifically quantifies the covariance of
vertical variability, i.e., the shape of the profiles, independent
of the bias. The ML and eventual particle plumes in the FT
govern this correlation. Again, elimination of clouds and the
overlap range is essential. Apart from large event-driven sit-
uational variability, the profile correlation exhibits no long-
term tendency but displays a clear seasonal cycle with better
agreement in winter and less in summer, as shown in Fig. 5.
Overlain in Fig. 5 are vertical lines indicating seasonally ir-
regular model upgrades and mean values over the IFS cy-
cle periods from Table 1. The mean correlations within the
IFS configuration periods do not vary significantly (cf. Ta-
ble 2), and their differences reflect the seasonal cycle rather
than indicating changes of the model performance. Individ-
ual (3-hourly) profile pairs or longer temporal averages have
been considered, whereby the former penalizes already small
time shifts or displacements (and yields lower r). Diurnal or
longer averages reduce influence from early/lagged transport
as well as the dominant diurnal cycle of the ML and are more
sensitive to irregular events. On a monthly basis, also me-
dian profiles are considered to evaluate specifically the model
background profile (Appendix D, Figs. D1-D4).

Generally, increasing correlation is found between IFS-
AER fields and individual station profiles, with longer aver-
aging times: while only 50 %—60 % of the observed 3-hourly
vertical variability is explained by IFS-AER (r3py =0.5-
0.6), the explained fraction increases to 70 %—80 % for di-
urnal average profiles (r14ry = 0.7-0.8) as shown in Fig. 5.
Thus, spatiotemporal aggregation defines the information
to be revealed. Aerosol changes are very often not timely
and/or (vertically) displaced on a timescale of a few hours,
but longer (or more extended) events and developments are
quite reliably captured by IFS-AER. This is particularly true
for Saharan dust transport where nearly all events are re-
produced but the large concentrations (large B*(z)) com-
bined with small-scale inhomogeneity give rise to larger un-
certainties as well (see Sect. 3.4.1). The middle panel of
Fig. 5 shows the variance and provides numbers of daily
average vertical profiles normalized to that of the observa-
tions as normalized standard deviation (NSD). The time se-
ries and Table 3 reveals marked differences between the IFS
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Figure 3. Monthly mean (left pair) and median (right pair) profiles of bias ASM/ceilometer (left) and CTR/ceilometer (right), combined
from 21 German stations in 2016-2019. At higher altitudes, the profiles are partly contaminated by remaining cloud artifacts.
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Table 2. Bias [Mm_l sr_l] and MNMB [%] of 8*(z) for ASM and CTR runs at 0.4, 1 and 4 km altitude above-ground averages within the

different model configurations of Table 1.

41rl (T255) 41rl1 (T511) 43r1 43r3 45r1 46r1
ASM bias
0.4km 0.04 -0.04 -0.07 -—-0.04 —0.11 0.2
1km —0.01 -0.08 -0.11 —-0.01 —0.12 0.02
4km 0.03 0.03 0.03 0.02 0.0 0.06
CTR bias
0.4km - —-0.16 —-0.21 —0.07 —0.21 0.09
1km - —-0.17 -022 -0.03 —0.23 —-0.06
4km - 0.01 -0.02 -0.01 -0-03 0.07
ASM MNMB
0.4km 5 —10 —-20 -8 -23 34
1km —6 —-15 -30 —4 —-33 1
4km 86 82 67 65 29 99
CTR MNMB
0.4km - —47 —68 —-20 —54 16
1 km - -57 —82 —18 —78 -20
4km - 34 -2 -6 —67 63

Bias Annual Variation 2016-2019
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Figure 4. Annual variation of bias and MNMB of g*(z) for ASM
and CTR (dashed) combined from 21 German stations in 2016—
2019.
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cycles, given for ASM/CTR, separately: profile variance ap-
proaches the observations (NSD = 0.97/0.93) during cycle
41r1 before June 2016 and NSD = 0.95/0.96 during cycle
46rl. Only about half the observed variance is simulated
during cycles 41r1 after July 2016 (NSD = 0.52/0.50), 43r1
(NSD = 0.46/0.45) and 45r1 (NSD = 0.51/0.52). Interme-
diate values (NSD = 0.67/0.78) are found during cycle 43r3.
A similar measure like NSD (analog to AOD bias) is the
vertically integrated *(z) bias. It is dominated by the ML
and/or events as in Fig. 2 but has the limitation that every
single profile has weather-dependent vertical extension. No
clear ruptures as for NSD appear at the model upgrade times
for the integrated 8*(z) diurnal profile bias in Fig. 5c. It is not
clear whether this can be interpreted in terms of model up-
grades where several adaptions of sources took place. For ex-
ample, sea salt as a large contributor to high 8*(z) bias in the
ML (Chan et al., 2018) was reduced inland after June 2018
by redistributing mass from fine to coarse particles (Rémy
et al., 2019). As of July 2019, NO3 and NH4 were added
and probably too much, as discussed in Sect. 3.3. On the
other hand, the substantial increase of the OM load in Febru-
ary 2017, clearly evident at the surface (Sect. 3.3) seemingly
did not affect the profile integral.

A more condensed way than Fig. 5 to descriptively visu-
alize performance changes between model versions is Taylor
polar plots, as displayed in Fig. 6 and explained in Sect. 2.5.
Here, the average performance during the six IFS-AER con-
figurations in Table 1 are summarized in terms of correla-
tion, normalized standard deviation and the plotting distance
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Figure 5. Pearson’s correlation coefficients (r; a), standard deviation normalized towards ceilometer observations (b) and integrated bias of
daily average B*(z) profiles of IFS-AER versus ceilometers for 2016-2019. Red crosses denote ASM; blue crosses denote the control run.
The 3 d moving average line and median values over the periods with constant model configurations are added.

towards the reference, i.e., the root mean square error (Tay-
lor, 2001). Accordingly, the model system has not system-
atically evolved towards improved representation of the pro-
file shape, though mean values around r1q1y = 0.7 are already
quite good. However, after some changes, finally the over-
all variance of the profile became nearly realistic on aver-
age after the implementation of NO3 and NHy and adaptions
to SOy, organics and dust in cycle 46r1 in July 2019. The
differences between ASM and CTR are small. It should be
noted that individual covariances of modeled and observed
profiles vary quite strongly with time and location/station,
meaning that many situations cannot be closely captured and
even the observations may partly not be representative due
to undetected artifacts (clouds, overlap correction, misalign-
ment, etc., not removed by the quality control).

https://doi.org/10.5194/gmd-14-1721-2021

3.3 Particle composition and size at surface level

To better understand the differences between modeled
and observed backscatter B*(z) profiles, near-surface
mass concentrations MC of the prognostic aerosols in
IFS-AER, namely PMjg, sulfate (SOg4), nitrate (NO3),
ammonium (NHg), BC and OM as well as qualitative
proxies for sea salt (SS) and mineral dust (MD) are
compared to surface in situ observations. All particle
concentrations are modeled and measured (in situ) in dry
state without hygroscopic water uptake. PMo is calcu-
lated from the model mass mixing ratio (mmr) according
to the formula used in IFS-AER (Rémy et al.,, 2019):
PMio=p([SS11/4.3 +[SS;]/4.3 + [MD1] + [MD;] +
0.4[MD3] + [OM] + [BC] + [SO4] + [NO31] 4 [NO3;2] +
[NH4]), whereby [X;] denotes the mmr of the ith size bin
of the size-resolved species and p is the density of air. The
“dust” variable is not directly measured but approximated by

Geosci. Model Dev., 14, 1721-1751, 2021
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Figure 6. Taylor plot combining Pearson’s correlation coefficients (azimuth) and standard deviation normalized towards ceilometer obser-
vations (radius) from daily average 8*(z) profiles of IFS-AER versus ceilometers for 2016-2019. (a) Median of all data; (b) mean over 221
Saharan dust days as defined in Sect. 3.4.1. Red dots denote ASM; blue dots denote the corresponding CTR. Note the different x and y axes.

MD = PMo —[OM] —[BC] — [NO3] — [NH4] — [SO4] — [C]]
and inferred on event basis to discuss contingency of events
in Sect. 3.4.1. Mineral dust sizes at HPB are mostly smaller
than 10 um and its composition is largely disjunct from the
other IFS-AER particle types. Chlorine (Cl) is used as a
proxy for NaCl in sea salt, stoichiometrically corrected for
the sodium Na portion (mn,/mc) =~ 22/35) and for =7 %
of additional minor components like SO4, Mg, Ca, etc. A
rigorous evaluation of composition-resolved MC is beyond
the scope of this article, but a sanity check with data from
the GAW global station (HPB) provides insight into the
representation of individual aerosol types.

As shown in Fig. 7, the dry surface mass concentra-
tion PMjo for ASM (10.3 pg/m®) and CTR (7.9 ug/m?)
roughly corresponds to HPB data (7.9 ug/m?). The assimila-
tion seems to bias surface concentrations a bit high. Species
are detailed in Table 3. PM approaches HPB data after the
increase of OM with cycle 43r1 (February 2017), though this
was partly compensated by a parallel decrease of SOy; it
is, however, overestimated as of cycle 46r1 after July 2019
due to the introduction of NOj3 and NHy, which are sim-
ulated roughly 3 pg/m? (~ 300 %) and 0.3 ug/m> (~ 60 %)
too high at HPB, respectively. Further changes with cycle
4313 (October 2017) synchronize the phase but exaggerate
the amplitude of the SO4 annual cycle which together with
the dominating high-biased contribution from OM causes
most of the PM|g overestimation near the surface in sum-
mers since 2018. After sulfate was reduced in cycle 43r3
and beyond (Rémy et al., 2019), SO4 in CTR agrees remark-
ably well with HPB, while summer concentrations are by 2—
4ug/m? too high in ASM. BC, which contributes only about
5 % in mass, has evolved quite realistically with a slightly
more decreasing trend in 2016-2019 than observed. Proba-
bly, emission inventories overestimate the decreasing trend
over Europe where the decline has leveled off in the last
decade.

Geosci. Model Dev., 14, 1721-1751, 2021

Total suspended sea salt is equally overestimated in ASM
and CTR with mean MC around 1.8 ug/m?, while the esti-
mated abundance at the far inland HPB site is only 0.02—
0.3 ug/m?3, however with large error bars of £0.3 ug/m® due
to the hard-to-sample coarse mode (5-20 um) which con-
tributes about 0.3 ug/m? to the SS concentration in the model.
The seasonal variation by roughly an order of magnitude
seems realistic. The large uncertainties and increases of bias
in the PBL associated with SS has already been discussed
in Chan et al. (2018). To this end, the above-mentioned ap-
proximation of SS via Cl has a negligible impact. The ob-
served dust proxy contributes only 4 %—6 % to the annual
average mass at HPB (Flentje et al., 2015). The seasonal-
ity is reproduced, but mean summer contributions around
10 ug/m? would require much more events than observed and
simulated, which confirms that dust concentrations are over-
estimated not only near the surface but also in the higher ML
and the FT, as noted in Sect. 3.1. The assimilation correc-
tion to dust MC of few pg/m? is too small. These results are
not affected by mass-to-backscatter conversion nor humidity
and, due to averaging over the lowest 300 m a.g., are not sen-
sitive to the model level selected to represent surface concen-
trations at HPB. The regional representativeness is limited to
rural central Europe (Putaud et al., 2010) where compara-
tively small concentrations prevail, as discussed in Sect. 4.

3.4 Long-range transport

The DWD ceilometer network follows the 3-D dispersion of
optically efficient particles like dust or smoke and is therefore
particularly suitable to verify the timeliness of long-range
aerosol transport in IFS-AER in a qualitative way. Against
this, automated rendering of 2-D time-height sections from
the ensemble of stations to evolving 3-D fields is a challenge
beyond the scope of this article, and advanced metrics like
fractions skill score (Roberts, 2008) still have to be adapted.
Simpler options are to compare time—height slices at fixed
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Table 3. Concentrations [p.lg/m3 ] of IFS-AER prognostic aerosols by ASM and CTR versus GAW in situ measurements at the Hohenpeiflen-
berg station, averaged over constant model configuration periods as defined in Table 1.

41r1 (T255)

41r1 (T511) 43rl 43r3 45r1 46r1

ASM PM o 11.61
CTR PM 10.43
GAW PM 7.74
ASM OM 1.01
CTR OM 0.94
GAW OM 2.52
ASM BC 0.54
CTR BC 0.50
GAW BC 0.35
ASM SOy 5.60
CTR SO4 4.60
GAW SO4 0.81
ASM NO3 -
CTR NO3 -
GAW NO3 0.70
ASM NHy -
CTR NHy -
GAW NH4 0.47
ASM SS 2.38
CTR SS 2.25
GAW SS 0.17
ASM DU 4.34
CTR DU 4.31
GAW DU 1.94

691 940 11.30 10.71 13.76
555 637 10.06 6.92 11.36
833 790 8.20 8.37 5.81
1.50 4.08 5.93 6.06 4.74
090 2.18 4.17 3.46 2.87
263 271 2.63 3.10 1.79
0.61 056 033 030  0.18
049 020 036 0.15 0.11
047 035 046  0.39 0.30
3.02 1.80 1.03 1.97 1.04
146 070  0.78 0.78 0.40
072 082 0.86 1.00  0.51

- - - 321 3.95

- - - 3.63 3.85
122 095 1.67 1.53 0.81
- - - 072 088
0.80  0.87

0.62 0.60 0.92 0.89 0.45
135 214 2.52 1.22 1.24
1.32 216 2.60 1.13 1.20
0.13  0.14 0.19 0.14 0.13
141 242 2.82 2.44 6.04
248 290 3.90 2.71 6.84
2778 2.28 1.58 2.69 1.79

locations (stations), analyze representative cases or evaluate
the representation of events qualitatively. In aged air masses
far from the sources, chemical transformations slow down
and transport of particle layers/plumes becomes more pas-
sive. This reflects in wide consistency of aerosol fields in the
IFS model with large-scale dynamical structures in the mid-
dle and upper troposphere (e.g., Flentje et al., 2005).

3.4.1 Mineral dust

The previous sections showed that Saharan dust loads over
Germany are overestimated at the surface and throughout
the profile. The realistic seasonality (Fig. 7) and the rea-
sonable correlation (Fig. 5) however suggest that time and
also vertical position of SD plumes are mostly captured
in IFS-AER, as long as the scales are sufficiently large. It
can further be shown that IFS-AER forecasts have a high
score in capturing or reliably excluding significant Saha-
ran dust days (SDDs), which are inferred from the observa-
tions by visual inspection of 2-D network composite plots
and backward trajectories and from the model by choos-
ing a reasonable threshold for maximum dust AOD within
a box of 1° x 1° around selected ceilometer stations. Defin-
ing days with maximum AODss50pm dust > 0.03 (maximum
AODs550 nm,dust < 0.001) as SDDs (non-SDDs) in the model
and within the inherent uncertainties of type identification,
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these threshold yield “excess” and “miss” rates near zero,
221 “hit” days and 271 zeroes. Hits (zeroes) are SDDs (clear
days) identified in both data sets; “excess” SDDs are simu-
lated but not observed and “misses” denote observed SDDs
that are not reproduced by IFS-AER. Due to the uncertain
identification of faint aerosol layers based on ceilometers
and trajectories, the majority (two-thirds) of days in between
these thresholds remain unclassified. This is, however, no se-
vere limitation to this analysis, which is meant to confirm
qualitatively the high reliability of the forecasts with respect
to decided SDDs and non-SDDs.

As several improvements were made to emission, size dis-
tribution and (wet) deposition of dust (Rémy et al., 2019), a
Taylor diagram for the subset of SDDs with modeled maxi-
mum AODs50 nm,dust > 0.03 in Fig. 6 shows the development
of dust simulation by IFS-AER during the 2016-2019 pe-
riod. On SDDs, the correlation of profiles (shapes) is lower
(r =0.4-0.6 instead of r = 0.6-0.8), while standard devia-
tion (coding the amplitude of 8*(z)) is higher. The first in-
dicates spatiotemporal or vertical shifts of layers/plumes, the
latter reflects overestimation of dust concentrations but is not
directly scaled to the SD bias due to the large influence of
the ML on the profile. These findings confirm the analysis
by Rémy et al. (2019) who state a good capability to repro-
duce dust events as detected by Aerosol Robotic Network
(AERONET) station data (Holben et al., 2001). According

Geosci. Model Dev., 14, 1721-1751, 2021
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Figure 7. Comparison of mass concentrations averaged over IFS levels L54-L60/L127-L137 for L60/L137 model versions and measured
by ACSM and filter probes at the Hohenpeiflenberg GAW station for 2016-2019. From the top left to the bottom right: PM g, OM, BC, SOy,
NO3 and NHy, chlorine, sea-salt and dust proxies as described in the text. Vertical black lines indicate major model updates as in Table 1.

Note the different y ranges!

to the different trajectories, the long-range transport pathway
(via the Atlantic, Mediterranean, etc.) does not effect the ac-
curacy of timing/positioning of plumes, while the scale re-
duction during regional stirring and dispersion is the main
reason degrading the representation of the vertical profile
shape.

3.4.2 Fractions skill score

The penalizing of slightly vertically displaced aerosol lay-
ers yielding a low or even anti-correlation in Sect. 3.2 hints
to the fact that a useful assessment of the positioning (in
space and time) of an aerosol plume requires not only a ref-
erence to point locations but also to their vicinity. Such a
skill score shall distinguish nearly correct positioned features
from deviations by a bigger margin. An approach to quan-
tify the degree of overlap of simulated and observed aerosol
structures is the fractions skill score (FSS; Roberts, 2008;
Skok and Roberts, 2016). The perceived accuracy increases
with larger scales, longer averaging, elimination of outliers,
etc. Thus, reasonable scales must be analyzed to balance the
processes of interest and the useful level of detail to be no-
tified. For example, small (subgrid)-scale structures appear

Geosci. Model Dev., 14, 1721-1751, 2021

randomly displaced or missed because the information con-
tent of the model fields does not match the resolution of
the observations, which the other way round, are not rep-
resentative for the model grid box. For profile correlation,
the usefulness threshold of scales is for IFS-AER presently
of the order of 0.5d and 100 km. An approach towards FSS
would be to draw polygons either outlining the boundary of
an individual SD plume observed at a given time at differ-
ent ceilometer stations or, alternatively, refer to the overlap
of plumes in time-height sections at individual stations. An-
other metric to quantify the model performance for coherent
plumes in a quasi-stationary flow is the relative deviation of
arrival/departure times of plumes/layers at station positions
in model and observation as visualized in Fig. 8 for the SD
plume on 16 October 2017. Composite bullets with color-
coded arrival times observed in 2-D B*(z) ceilometer sec-
tions (outer ring) and corresponding model fields (inner bul-
let) illustrate the slightly delayed arrival (0—1 h) of the model
plume in western Germany, its catchup in the middle and
again lagged arrival (0-2h) in the eastern part. The uncer-
tainty of determination is about 1 h. This plume was neither
observed nor simulated in the very south of Germany.
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Figure 8. Arrival time of individual SD plume on 16 October 2017,
color coded by the hour of day, as measured by ceilometer (outer
ring) and IFS-AER (inner bullet). Missing data are in white: the
selected plume did not reach the southernmost part of Germany or
arrival could not be identified due to low clouds.

4 Discussion and conclusions

Thorough evaluations of IFS-AER operational forecasts
are regularly published in near-real time or in retro-
spective validation reports on the CAMS website (http:
//macc-rag-op.meteo.fr/, https://atmosphere.copernicus.eu/
eqa-reports-global-services/, last access: January 2021), as
presented by Eskes et al. (2015). In these, the realism of
the vertical profile has not yet received much attention, al-
though it may be relevant for aircraft guidance around vol-
canic ash layers, in cases of visibility reduction during Sa-
haran dust events, for the cloud formation potential, weather
and radiation transfer or the dispersion of severe pollution
events. Our focus on the vertical aerosol distribution com-
plements evaluations based on AOD columns (Rémy et al.,
2019; Gueymard and Yang, 2020) and surface in situ mea-
surements (e.g., https://atmosphere.copernicus.eu/index.php/
regional-services/, last access: January 2021). It extends our
study by Chan et al. (2018) (CH18) from the surface layer
up to the mid-troposphere. Yet, our results are shown to be
consistent with previous verifications. The vertical profile of
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B*(z) bias allows a more detailed understanding of the height
dependence of sources and sinks, vertical transport and redis-
tribution of particles as well as temporal shifts in the model
as FT biases are governed by long-range transport rather than
by surface drag and convection in the mixing layer. Verifi-
cations of IFS-AER reanalyses reported by Flemming et al.
(2017), Inness et al. (2019) and Wagner et al. (2021) are in
many respects representative for the operational forecasts.

Compared to our first study by CHI18, covering the pe-
riod September 2015—August 2016, we use the 4-year pe-
riod of 2016-2019 with an overlap of 8§ months, and we use
data from 21 instead of 12 ceilometer stations and all evalu-
able altitudes. As no clear dependence of performance on the
distance to model grid points was found in CH18, and the
spatial resolution was increased from T255/L60 (= 1° x 1°)
to T5S11/L60 (= 0.5° x 0.5°) during cycle 41rl in July 2016,
we drop the constraint to stations within 20 km around model
grid points. Again 8*(z) is used as this is the primary mea-
sured quantity of ceilometers that can be rigorously calcu-
lated from the IFS-AER output. The small high bias with
large standard deviation of 1.5 times the model average
found by CHI18 for near-surface-integrated (0.2—1km alti-
tude) B*(z) is confirmed by our analysis at the lowest se-
lected levels at 0.4 and 1kma.g., as listed in Table 2. The
larger overestimation of B*(z) associated with higher sea-
salt-relative contributions is in CH18 partly (~ 10 % of total
B*(z)) attributed to the utilized hygroscopic growth scheme
from the Optical Properties of Aerosols and Clouds (OPAC)
database (Hess et al., 1998) and is not elaborated further in
this study. Sea salt over continental Europe remains consid-
erably overestimated (see Sect. 3.3) in all seasons as changes
to the sea-salt emission scheme, e.g., coming in with cycle
45r1 (June 2018), still primarily aim to reduce the global low
bias of sea-salt abundance dominated by oceans. Concurrent
substantial increases of sea-salt particle sizes and sinks (wet
deposition) likely reduce sea-salt mass concentrations further
inland, apparent as steps at HPB in Fig. 7 but are either not
efficient enough or still not the governing processes. As in
Chan et al. (2018), underestimated near-surface 8*(z) val-
ues are partly linked to unresolved local or regional scale
(e.g., January—February 2017) emission events that reach up
to 2-3kma.g. (Fig. 2). Being stronger and more frequent in
winter (Fig. 4), they contain much ammonium and nitrate
(as NH4NO3) in the ML, which had not been included in
the model by that time (Sect. 3.3). Increase of OM emis-
sions in February 2017 (&30 %-60% of aerosol mass in
the rural central European ML) and addition of nitrate and
ammonium in July 2019 (= 10 %-30 % of aerosol mass as
NH4NO3 or NH4(SOy4),) clearly tuned the model towards
observed concentrations/8*(z) and notably reduced the cor-
rection by the assimilation (Figs. 2 and 5). Similarly low
MNMB in PM;(y was found for this event by Rémy et al.
(2019).

Vertically displaced aerosol layers (often SD) causing low-
bias or high-bias oscillations (Figs. 3 and 2) cancel out in ver-
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tically integrated backscatter (Fig. 5) and AOD (not shown)
but degrade the profile correlation and are mostly not reduced
by the assimilation. As described by Benedetti et al. (2009),
the IFS-AER 4D-Var assimilation scheme based on AOD
columns could add vertical aerosol information by adaptions
to the vertical temperature, humidity or wind profiles, but the
effect, e.g., by optimizing wind shears, seems not specific
enough to improve the simulated aerosol profile in ASM rel-
ative to CTR. Generally, performance changes of IFS-AER
with height are linked to specific processes.

Surface layer. Regional sources typically have the largest
effect to the lowest part of the profile. In the near-surface
layer, the observed high bias of NO3 mass concentrations re-
sults from too efficient gas-to-particle partitioning, i.e., fine-
mode NOj3 production from HNO3 neutralization by NHj3,
followed by temperature-dependent dissociation to NO3 and
NHy. Secondly, remaining HNO3 may heterogeneously pro-
duce coarse NO3 on SS or dust particles (Rémy et al., 2019),
but this process is of minor relevance in central Europe where
fine-mode nitrate has a roughly 5 times larger mass concen-
tration than coarse-mode nitrate. NH4 is simulated at com-
parable concentrations as observed at HPB, while NOs is
about 4 times as high. For fine-mode NO3, the most effi-
cient sink near the surface, probably underestimated, is dry
deposition (Zhang et al., 2012), while sedimentation of small
particles should be slow and is disabled in the model. Below-
cloud wet deposition (washout) should affect the whole pro-
file rather than only the surface where the high-bias tendency
toward the ground is found (Sect. 3.2). The increase of res-
olution from 1 to 0.5° in June 2016 excluded Munich from
the HPB grid box, which may contribute to the marked de-
crease of PM|o and SO4 around this time as in Fig. 7. Since
then, it should be representative of HPB including only small
surrounding towns and rural area. A particular value of the
assessment with respect to mass lies in its independence
from hygroscopic growth with humidity and any mass-to-
optical conversions, which have a particularly large impact
on SO4 and OM (Hong et al., 2014). The general bias in-
crease towards the surface evident in Fig. 3 may be caused by
too-slow vertical transport of surface emissions along with
overestimated sources. SOy is overestimated in ASM in sum-
mer, while typical central European surface concentrations
in winter are met (Fig. 7). Together with dust, this causes
most of the bias’ seasonal cycle in Fig. 4. The reason for the
worsening mass input at surface level by the assimilation is
not clear. OM has been a few ug/m?> too high during all sea-
sons since February 2017. BC shows a step down with cycle
43r1 in February 2017 and (except January/February 2017) a
further downward tendency until 2019 at realistic concentra-
tions in ASM. Emission inventories thus seem to capture the
decrease of anthropogenic emissions during the last decade,
but as for SO4 the assimilation seems to add too much mass
and may disturb the realistic partitioning between anthro-
pogenic and biogenic OM. Overall, average MNMB in the
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SL ranges from —23 %-34 % for ASM and from —68 %—
16 % for CTR.

Mixing layer. Against overestimation of mass concentra-
tions and B*(z) near the surface, the aerosol load in the ML
tends to be biased low. Main reasons may be sources or de-
layed vertical transport from the surface. Further, the forward
operator, including mass-to-volume conversion, presently
uses particle densities of the pure materials, not taking into
account possible porosity of dry atmospheric particles en-
closing air due to coagulation and variable internal mixing
(Winkler et al., 1981). If the model assumed larger bulk den-
sities than particles actually have, the equivalent volumes
were calculated too small and optical properties would be
underestimated, because they depend strongly on the particle
size. The density of accumulation-mode particles, composed
of hydrophilic and hydrophobic materials could be overes-
timated by up to a factor of 1.5, which transfers to a factor
of 1.3 in the optically relevant surface area. Secondly, the MLL
top is too smooth which means the capping transport bar-
rier at the ML top seems less effective in the model, diluting
higher ML concentrations with cleaner FT air. This aerosol
mass would be missing in the ML, yielding a too-low ampli-
tude (coded in the standard deviation) of the model compared
to observations (reference) in the Taylor plots, too. Geomet-
rically, however, the ML height on average seems reasonable
(cf. Sect. 4.1). The monthly mean beta-star profiles suggest
that aerosol mass, added to the column by the assimilation,
results in overall higher aerosol load than in the control runs
until July 2019, but the assimilation does not sharpen the
transition from the PBL to lower values in the FT. Though
it must be noted that averaging may considerably smooth the
ML top by mere variation of PBL heights. Average MNMBs
in the ML are mostly negative between 1% to —33 % for
ASM and —18 % to —82 % for CTR.

Free troposphere. The FT background might be biased
slightly high due to the weak transport barrier, mass attri-
bution by the assimilation or irregular transport of Saharan
dust, which (as in CH18) is found to be overestimated over
Germany by typically a factor of 2 or more all the time. CH18
calculated that accounting for non-spherical particles, using
conversion coefficients based on T-matrix calculations rather
than Mie theory, would reduce 8*(z) by 15 %—45 %. This re-
duction arises from the modification of the phase function
by non-sphericity, coded in the lidar ratio (LR), and not the
specific extinction and thus does not transfer to AOD. In or-
der to reduce the high dust bias in the model, the dust source
size distribution after cycle 43rl was modified to distribute
less mass into the fine (8 % to 5 %) and more mass into the
super-coarse bin (61 % to 83 %) which has a shorter lifetime
due to faster sedimentation (Rémy et al., 2019). An accord-
ing dust reduction, however, cannot be seen over Germany
in the mass concentrations of the dust proxy in Fig. 7, which
is independent from uncertainties in the mass-to-8*(z) con-
version. Monthly median bias in the FT is mostly not sig-
nificant and < 0.1 Mm~! sr~!; average MNMB ranges from

https://doi.org/10.5194/gmd-14-1721-2021



H. Flentje et al.: CAMS aerosol profile evaluation

29 %-99 % for ASM and from —67 %—-63 % for CTR. That
the observed inflation of the 8*(z) signal on 17 October 2017
(Sect. B) marks the onset of water cloud formation, seems
plausible. The temporary factor of 10 increase of *(z) (~
1x107% >~ 1.2x1073; Fig. B2) roughly corresponds to
a significant visual range reduction by an order of magni-
tude (to ~ 1km assuming a lidar ratio near 30 sr). On the
other hand, a mature water cloud would block the lidar beam
and any signal from above (Fig. B1, ~04:00-07:00 UTC),
which seems to be the case at some stations further north (not
shown). Alternatively, the passage of a shallow plume with
10 times higher concentration would have to be diagnosed
which would be rather untypical. Unfortunately, satellite im-
agery provides only blurred pictures due to optically dense
smoke layers above. In all, the unambiguous identification of
particle-induced cloud formation is a challenge in the obser-
vations as well as it is for a model to simulate hygroscopic
growth near saturation.

An extended smoke layer that arrived early on 17 Octo-
ber 2017 few kilometers above the dust plume in a strong
southwesterly flow around 8—10 km altitude from Portugal is
clearly evident in Terra/MODIS reflectance imagery (https://
worldview.earthdata.nasa.gov/, last access: 25 March 2021),
in the northern German ceilometers and in organic mat-
ter fields of IFS-AER. With small vertical wind shear, the
simulated smoke curtain tilted downward by ~2° lat/long
from NW (8-10km) to SE (<2km) and was passively ad-
vected northeastward across north Germany. Its passage over
the ceilometer stations is reproduced in detail by IFS-AER
(not shown), except that the observations show a 1 km thin
streamer reaching down to 3.5 km, where it is too thick and
reaches too far down in the model (2 km), likely due to the
resolution. This comparison confirms the behavior found for
previous fire cases that IFS-AER forecasts are able to repro-
duce many details of smoke plumes qualitatively but that the
simulated shape and position become uncertain when smaller
scales develop (Kaiser et al., 2012). It also confirms that in-
jection heights and long-range transport in the model are
quite realistic. The fact that 8*(z) of the smoke plume is con-
siderably underestimated may be due to the model resolution
but also to emission strengths and heights that are inferred
from fire radiative power measurements and converted into
convective updraft.

4.1 Mixing layer height

The MLH characterizes the ML in many respects, as it is
closely related to important variables like water vapor, cloud
cover, heat fluxes and vertical transport as well as contami-
nant dispersion (Engeln and Teixeira, 2013; Li et al., 2020).
It is, however, challenging to infer operationally (Haeffelin
et al., 2012). The physical correspondence between observed
aerosol gradients and turbulence (Ri > 0.25) excludes con-
ditions with vertical shear (generating vertical aerosol gra-
dients), fog, clouds, precipitation or aerosol plumes. This
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leaves only 5 %—10% of all days left; SD alone excludes
more than 220 of 1461 d. After such filtering, the correla-
tion of automatically reported and manually derived MMLH
for the mid-German region around Alfeld (52.0° N, 9.8° E)
is medium to low (r = 0.31), including few outliers. In the
long term, model-diagnosed MMLH height from ECMWF’s
numerical weather prediction (NWP) model and visually de-
rived MMLH are however strongly correlated (r = 0.66), as
shown in Fig. 9.

In the presence of large variability, the model generally
underestimates the MMLH by —200 to —600 m in 2016 and
2017, by 0 to —300m with cycle 43r3 after October 2017
and is biased low between —200 and —500m during cy-
cle 46rl after July 2019. In Fig. 10, a composite contour-
bullet plot of IFS MLH with superimposed station values
from 20 March 2019 illustrates the behavior of MMLH for
a calm day with undisturbed ML development over large
parts of Germany. Here, IFS-AER is able to reproduce the
NW-to-SE increase of the MMLH related to the transit from
low to higher pressure. Few stations sticking out with specif-
ically high or low MMLH probably exhibit local influence
like heat-island effects over large cities (e.g., “lei” indi-
cates Leipzig), where the residual layer remained high and
convective during the night. Over isolated mountains (e.g.,
Brocken/Torfhaus — the deep blue dot near 51° N, 10.5° E),
the ML top may not follow the steep terrain and local MLH
above ground will be too low. It turns out that rigid checks
of station characteristics, data quality and outliers are nec-
essary before operational MLH data from ceilometers (or li-
dars) may be used to constrain and evaluate models.

4.2 Uncertainties and limitations

The overall uncertainty of our results is mainly limited by
the conversion of model mass mixing ratios to 8*(z), the un-
certainty of the ceilometer observations and the resampling
over different horizontal and vertical resolutions. The for-
mer includes estimates of particle shape, densities, mixing
and hygroscopic state, as well as meteorological conversions
as described in Chan et al. (2018) and updated in Sect. 2.1.
The uncertainties inherent in the observations are discussed
in Sect. 2.2. Of these, clearly the lower and upper altitude
ranges of the profiles are affected by the incomplete over-
lap of laser-beam and receiver field of view and low SNR
as well as contamination by clouds, respectively. At the low-
est considered altitude (400 ma.g.), the signal is typically at
~ 10 %-20 % of its full-overlap value, which can reasonably
be corrected by a sin?-like step function. The crucial degra-
dation of the SNR is a result of clouds, precipitation and
the r 2 decrease with distance. Within the evaluated range
from 0.4—6 km, however, the combined uncertainty due to
these contributions mostly is small compared to the model-
observation biases in question. Due to the typical half-daily
timescale of transport precision (cf. Sect. 3.2), also the dis-
tance from the model grid points seems negligible. Many of
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Figure 9. Maximum daily mixing layer height a.g. (MMLH) observed by the German ceilometers and extracted from the ECMWF NWP
model for the period January 2016—December 2019. Different colors refer to model MMLH at different stations (colors shift from green to
red because the number of stations increases over the years). The dots and the solid black line pick out the MMLH inferred around Alfeld
(52.0°N, 9.9° E) manually from the daily ceilometer time—height plots and from the model fields, respectively.

the results, however, are sensitive to the applied scales, and
some examples have been discussed where the increased hor-
izontal (June 2018) and vertical (July 2019) resolution led to
better matches between observed and forecast structures. It
has to be kept in mind that the relatively coarser global fields
of the CAMS system are intended to serve as boundary con-
ditions for nested regional models which refine the aerosol
distributions down to scales of a few kilometers.

As there was no *(z) output available from IFS-AER be-
fore cycle 45r1 (October 2017), for consistency, we use the
same lidar forward operator over the whole period to calcu-
late 8*(z) from the model mass mixing ratios, as described
in Chan et al. (2018). Minor modifications were necessary to
integrate the higher resolution and additional species (NO3,
NHa4) as of July 2019. It uses their precalculated look-up ta-
ble, slightly adapted to IFS-AER values and modified to ad-
ditionally handle NO3 and NH4 (cf. Tables C1-C3). Since
October 2017, lidar output has been available from the IFS
archive. Results from both emulators compare well for dust,
but for other components like sea salt somewhat different
B*(z) profiles are calculated. Possible reasons may be the
handling of hygroscopic growth near saturation, the disre-
gard of (however small) absorption by trace gases at 1064 nm
and a different effective resolution of the model fields result-
ing from both lidar emulators. A direct comparison of the
B*(z) (from ground) product retrieved from the IFS and that
calculated from the model mass mixing ratios according to
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Chan et al. (2018) reveals that the IFS 8*(z) product is pro-
vided with a different effective resolution then the mmr fields
used here. The gradients thus appearing at the boundaries of
aerosol structures cause deviating results depending on the
specific time and location of the comparison. For longer av-
erages, as mostly discussed in this article, these differences
largely cancel out.

5 Summary

The assessment of IFS-AER vertical aerosol distributions
with calibrated ceilometer profiles over Germany (central
Europe) generally confirms the realistic reproduction of the
vertical aerosol variability in terms of attenuated backscat-
ter 8*(z). The shape of the profile, dominated by the ML and
occasionally by long-range transport particles, is largely cap-
tured, as indicated by high covariance of daily average pro-
files with Pearson’s r & 0.6-0.95; however, no clear impact
of the assimilation is found. In summer, the agreement of
profile shapes is worse due to vertical shifts or untimely long-
range transport to which r is quite sensitive. A systematic
high- or low-bias regularity is found in the lower part of the
profile, meaning a high bias (overestimation) near the ground
versus low bias in the mixing layer. It is attributed to over-
estimated sources at the surface, likely in combination with
too-slow vertical transport and probably a too-weak transport
barrier at the top of the ML, where the large aerosol gradient
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Figure 10. Map of maximum daily MLH as simulated by IFS-AER
(filled contours) with MMLH at German ceilometer network sta-
tions for 20 March 2019, overlain as correspondingly color-coded
bullets.

is not fully captured. The low aerosol background in the FT
is usually reproduced. Also captured are plumes and layers
from long-range transport of Saharan dust and fire smoke,
although B*(z) of dust is overestimated over Germany by a
factor of 2 or more, and small-scale structures evolving dur-
ing the dispersion of these layers cannot be resolved at the
present model resolution.

Comparison to dry-state aerosol in situ observations sug-
gests that SO4 and OM sources as well as gas-to-particle par-
titioning of the NO3—NHy system are too strong, while black
carbon load and trend are realistic near the surface. With re-
spect to the discussed metrics, no consistent development
is evident due to the five model upgrades during the eval-
uated period. The vertically integrated 8*(z), which codes
similar information to AOD, consistently with these previ-
ous findings shows a bias near zero for cycles 43rl (until
May 2016) and 46r1 (after July 2019) and slightly negative
in between. The MNMB, which is less dependent on abso-
lute values, reveals lower values in the more relevant (for air
quality) surface and mixing layer and a general increase to-
ward higher levels. Over the whole period, the bias of 8*(z)
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exhibits seasonal cycles at the lower levels due to overes-
timation of SO4 and OM sources/lifetimes in summer and
under-representation of severe pollution episodes in winter.

Finally, we demonstrated that ceilometer networks offer
several options to check the realism of mixing layer heights
in atmospheric numerical models. Though we confined to
manual analysis of a representative region, we could pro-
vide confidence that the annual cycle and the maximum daily
height of the ML can be reproduced within several hundred
meters vertically by the IFS-AER model.

In the future, the regional extension of this assessment
to larger parts of Europe and the combination of ceilome-
ter networks’ spatiotemporal coverage with the higher accu-
racy and particle identification capability of Sun photometers
(AERONET) and multi-wavelength depolarization (Raman)
lidars will significantly reduce the uncertainties remaining in
this study. Complementing CAMS activities, also for eval-
uation of the particle composition using European in situ
network data, have already started. A robust discussion of
boundary layer heights will benefit more from further im-
provements to the algorithms than from improved profile data
quality.

Geosci. Model Dev., 14, 1721-1751, 2021
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Appendix A: Attenuated backscatter from model mass
mixing ratios — forward operator

A forward operator is applied to translate the model state of
the atmosphere into virtual measurements, which can be di-
rectly compared to real observations. To this end, model mmr
values are converted to attenuated backscatter 8*(z) accord-
ing to Eq. (1) by first calculating mass concentrations cp ;
from mmr by multiplication with the air density i as shown
in Eq. (A1).

p,i (2) = air(2) mpi(z) for i =1,2,...,14 (A1)

Then the particle extinction coefficient op; and the parti-
cle backscatter coefficient By ; of each particle type i have
been precalculated using appropriate particle size distribu-
tions dN(r)/dr and humidity-dependent particle refractive
indices n as applied in IFS-AER (Chan et al., 2018). For
consistency with the current implementation of the aerosols
in the IFS model, Mie scattering theory has been applied for
all particles. Model mass concentrations are then converted
to extinction coefficients by means of the specific (mass) ex-
tinction coefficient G; ; (unit: m?/ Q).

oF, = bl (A2)

Equation (A2) is applied separately to each size and hu-
midity bin of the humidity-dependent and size-segregated
particle types. For convenience, the lidar ratio Sp; is com-
monly used to calculate particle backscatter coefficients from
extinction coefficients.

0p,i (2)
,Bp,i (2)
With this definition, the extinction and backscatter

coefficients of each particle type are determined from
Egs. (A4), (AS).

Sp.i(2) = (A3)

Op,i = Cp,i O‘: ; (A4)
o,
N

ﬂp,i = Cp,i <_> (A5)
Sp.

The contribution from air molecules is calculated accord-
ing to Rayleigh theory using the following approximation for
the molecular extinction coefficient oy, (in km™!):

om(z,A) =8.022 x 10_4Qair(Z) )\—4.08’

with the air density given in kg/m> and the wavelength A in
um. The profile of g, is taken from the IFS. The molecular
lidar ratio Sy, is known to be Sy = om/Bm = 87 /3. To in-
crease computational efficiency, the precalculated values of
a: i» Sp,i(z) as well as @qir are stored in a look-up archive,
as displayed in Tables C1-C3. In order to calculate the to-
tal 8*(z), according to Eq. (A6), the contributions from all
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particle types are summed up to yield the (total) backscatter
coefficient:

14
/3 = ,Bm"‘Z,Bp,i-

i=1

Finally, the attenuation is applied to B(z) to calculate

B*(2):
Z
B* ()= B(2) exp | —2 / o)z V. (A6)

0

Appendix B: Cloud formation due to SD

Though Saharan dust transport is realistic in IFS-AER on
spatiotemporal scales >100km and > 0.5 d, the dust load is
mostly overestimated. Occasionally, however, 8*(z) of dust
plumes is apparently underestimated because dust particles
rapidly grow by water uptake and observed 8*(z) changes
though the dust mass concentration itself remains constant.
Though the ability of (coated) mineral dust to foster cloud
formation is well known, its simulation is still a challenge
(Sassen et al., 2003; Ansmann et al., 2005; Bangert et al.,
2012). For example, on 16 and 17 October 2017, a Saha-
ran dust plume swayed eastward over northwestern Germany,
shown in detail for Aachen in Fig. B1. On both days, simi-
lar dust loads, converted to similar 8*(z), are simulated by
the model, but on 16 October observed B*(z) values were
as usual less than half of those modeled, while on 17 Oc-
tober hygroscopic growth or incipient cloud formation tem-
porarily multiplied the optical signal 10-fold (8*(2)max =
1.2x 107 Mm™! sr’l), while the dust mass concentration
according to the continuity of the $*(z) signal and its devel-
opment a few hours later and its development at neighboring
stations did not change (Fig. B2). As hygroscopic growth is
included in the IFS-AER model but cloud formation by con-
densation nuclei is not, this process may significantly distort
average biases of 8*(z) during SDDs as well as precipitation
and radiation transfer (indirect aerosol effect) in the model.
It further illustrates how errors may be introduced by con-
versions of the primary model parameters (mass mixing ra-
tio) to observed S*(z). On 17 October 2017, also biomass
burning aerosol released by forest fires in the north of Por-
tugal was observed over north Germany as a shallow layer
descending from initially 8—10 km (~ 03:00 UTC at Putbus)
to 4-5 km altitude around noon. Observed B8*(z) ranges from
0.1-1 x 107> Mm~! sr~!. At the time of incipient cloud for-
mation, this layer still was clearly separated from the Saharan
dust layer below and thus could not influence this process.
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Figure B2. Profiles of 8*(z) from the ceilometer near Aachen on 16 (15:00, 21:00 UTC) and 17 (03:00, 09:00, 15:00, 21:00 UTC) Octo-
ber 2017 from IFS-AER and ceilometer. The dashed black line is calculated with the DWD forward operator (FO); the green line is calculated
using the ECMWEF FO, retrieved as “attenuated backscatter from ground” from the MARS archive. Onset of cloud formation occurs in the
SD air mass on early 17 October. Colored profiles show the contributions of individual aerosol types.
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Appendix C: Look-up tables for forward operator

The aerosol optical and microphysical properties used for
converting model mmr values to attenuated backscatter 8*(z)
(the “forward operator” or “lidar emulator”) are listed in the
following tables. Values refer to 1064 nm used by CHM15k
ceilometers.

Table C1. Microphysical properties of aerosols assumed for conversion of model mass mixing ratios to 8*(z) at 1064 nm.

Aerosol Relative humidity Density ~ Growth factor Spec. ext. cross  Lidarratio  Single scattering
type % (op, g/cm3) section o (m2/g) Sp (s1) albedo (wq)
Sea salt (0.03-0.5) 0 2.160 1.00 0.127 21.72 0.998902
Sea salt (0.03-0.5) 10 1.821 1.12 0.127 21.72 0.998959
Sea salt (0.03-0.5) 20 1.603 1.24 0.127 21.72 0.998983
Sea salt (0.03-0.5) 30 1.455 1.37 0.127 21.72 0.99899
Sea salt (0.03-0.5) 40 1.352 1.49 0.810 56.33 0.998968
Sea salt (0.03-0.5) 50 1.278 1.61 1.146 56.94 0.999596
Sea salt (0.03-0.5) 60 1.232 1.71 1.542 58.65 0.999659
Sea salt (0.03-0.5) 70 1.196 1.81 2.140 65.49 0.999717
Sea salt (0.03-0.5) 80 1.147 1.99 3.234 75.81 0.999779
Sea salt (0.03-0.5) 85 1.111 2.19 3.878 76.0978 0.999807
Sea salt (0.03-0.5) 90 1.086 2.38 4.862 73.3724 0.999846
Sea salt (0.03-0.5) 95 1.047 291 9.632 78.4961 0.99989
Sea salt (0.5-5) 0 2.160 1.00 0.145 10.1023 0.992657
Sea salt (0.5-5) 10 1.821 1.12 0.145 10.1023 0.991804
Sea salt (0.5-5) 20 1.603 1.24 0.145 10.1023 0.990984
Sea salt (0.5-5) 30 1.455 1.37 0.145 10.1023 0.990086
Sea salt (0.5-5) 40 1.352 1.49 0.302 13.7809 0.989224
Sea salt (0.5-5) 50 1.278 1.61 0.354 14.3385 0.995823
Sea salt (0.5-5) 60 1.232 1.71 0.407 14.748 0.996317
Sea salt (0.5-5) 70 1.196 1.81 0.470 14.7443 0.996842
Sea salt (0.5-5) 80 1.147 1.99 0.570 14.6123 0.997375
Sea salt (0.5-5) 85 1.111 2.19 0.651 15.1343 0.997644
Sea salt (0.5-5) 90 1.086 2.38 0.792 18.6968 0.998097
Sea salt (0.5-5) 95 1.047 291 1.140 15.678 0.998713
Sea salt (5-20) 0 2.160 1.00 0.041 18.2163 0.978392
Sea salt (5-20) 10 1.821 1.12 0.041 18.2163 0.976231
Sea salt (5-20) 20 1.603 1.24 0.041 18.2163 0.973844
Sea salt (5-20) 30 1.455 1.37 0.041 18.2163 0.971703
Sea salt (5-20) 40 1.352 1.49 0.082 14.3399 0.969431
Sea salt (5-20) 50 1.278 1.61 0.095 14.3044 0.987793
Sea salt (5-20) 60 1.232 1.71 0.108 14.4325 0.989233
Sea salt (5-20) 70 1.196 1.81 0.127 14.8442 0.990821
Sea salt (5-20) 80 1.147 1.99 0.153 15.3336 0.992415
Sea salt (5-20) 85 1.111 2.19 0.175 17.2092 0.993225
Sea salt (5-20) 90 1.086 2.38 0.214 9.5161 0.994551
Sea salt (5-20) 95 1.047 291 0.316 8.2696 0.996283
Dust (0.03-0.55) 0 2.610 1.00 1.496 78.5535 0.996971
Dust (0.55-0.9) 0 2.610 1.00 1.611 48.6388 0.996741
Dust (0.9-20) 0 2.610 1.00 0.445 13.3959 0.987986

(a) Sea-salt aerosols are represented in the model by three size bins with bin limits set to 0.03-0.5 um (bin 1), 0.5-5 um (bin 2) and 5-20 um (bin 3). (b) Dust aerosols are
represented in the model by three size bins with bin limits set to 0.03-0.55 um (bin 1), 0.55-0.90 um (bin 2) and 0.90-20.00 um (bin 3). (c) A bimodal log-normal size
distribution is assumed for sea-salt aerosols, with ry = 0.1002 and 1.002 um and og = 1.9 and 2.0. A monomodal size distribution is assumed for dust. The number
concentrations N1 and Ny of the first and second modes are 70 and 3 em™!, respectively. Note that density of hydrophilic aerosol changes with the hygroscopic growth
of particles.
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Table C2. Microphysical properties of aerosols assumed for conversion of model mass mixing ratios to 8*(z) at 1064 nm.

1743

Aerosol Relative humidity Density ~ Growth factor Spec. ext. cross  Lidarratio  Single scattering
type % (op, g/cm3) section o (mz/g) Sp (sr) albedo (wq)
Organic matter (hydrophobic) 0 1.769 1.00 0.768 34.15 1
Organic matter (hydrophobic) 10 1.769 1.00 0.768 34.15 1
Organic matter (hydrophobic) 20 1.769 1.00 0.768 34.15 1
Organic matter (hydrophobic) 30 1.769 1.00 0.768 34.15 1
Organic matter (hydrophobic) 40 1.769 1.00 0.768 34.15 1
Organic matter (hydrophobic) 50 1.769 1.00 0.768 34.15 1
Organic matter (hydrophobic) 60 1.769 1.00 0.768 34.15 1
Organic matter (hydrophobic) 70 1.769 1.00 0.768 34.15 1
Organic matter (hydrophobic) 80 1.769 1.00 0.768 34.15 1
Organic matter (hydrophobic) 85 1.769 1.00 0.768 34.15 1
Organic matter (hydrophobic) 90 1.769 1.00 0.768 34.15 1
Organic matter (hydrophobic) 95 1.769 1.00 0.768 34.15 1
Organic matter (hydrophilic) 0 1.769 1.00 0.768 34.15 1
Organic matter (hydrophilic) 10 1.607 1.08 0.768 34.15 1
Organic matter (hydrophilic) 20 1.488 1.16 0.768 34.15 1
Organic matter (hydrophilic) 30 1.397 1.25 0.768 34.15 1
Organic matter (hydrophilic) 40 1.328 1.33 1.112 39.78 1
Organic matter (hydrophilic) 50 1.274 1.41 1.289 41.33 1
Organic matter (hydrophilic) 60 1.233 1.49 1.531 43.22 1
Organic matter (hydrophilic) 70 1.199 1.57 1.891 45.71 1
Organic matter (hydrophilic) 80 1.157 1.70 2.542 49.47 1
Organic matter (hydrophilic) 85 1.128 1.82 3.158 52.398 1
Organic matter (hydrophilic) 90 1.105 1.94 4.329 56.95 1
Organic matter (hydrophilic) 95 1.065 227 8.267 66.875 1
Black carbon (hydrophobic) 0 1.000 1.00 3.898 168.265 0.0837982
Black carbon (hydrophilic) 0 1.000 1.00 3.898 168.265 0.0837982
Sulfate 0 1.769 1.00 1.060 34.14 1
Sulfate 10 1.769 1.08 1.060 34.14 1
Sulfate 20 1.769 1.16 1.060 34.14 1
Sulfate 30 1.769 1.25 1.060 34.14 1
Sulfate 40 1.430 1.33 1.540 39.75 1
Sulfate 50 1.390 1.41 1.783 41.29 1
Sulfate 60 1.349 1.49 2.117 43.18 1
Sulfate 70 1.302 1.57 2.615 45.658 1
Sulfate 80 1.245 1.70 3.516 49.394 1
Sulfate 85 1.210 1.82 4.368 52.311 1
Sulfate 90 1.165 1.94 5.988 56.839 1
Sulfate 95 1.101 2.27 11.436 66.8957 1
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Table C3. Microphysical properties of aerosols assumed for conversion of model mass mixing ratios to 8*(z) at 1064 nm.

Aerosol Relative humidity Density ~ Growth factor Spec. ext. cross  Lidar ratio  Single scattering
type % (op, g/cm3) section o (m2/g) Sp (s1) albedo (wq)
Nitrate (fine) 0 1.769 1.00 0.232 33.5 1
Nitrate (fine) 10 1.769 1.00 0.232 33.5 1
Nitrate (fine) 20 1.769 1.00 0.232 33.5 1
Nitrate (fine) 30 1.769 1.00 0.232 33.5 1
Nitrate (fine) 40 1.430 1.10 0.351 36.3 1
Nitrate (fine) 50 1.390 1.20 0.412 39.3 1
Nitrate (fine) 60 1.349 1.25 0.498 40.8 1
Nitrate (fine) 70 1.302 1.30 0.632 423 1
Nitrate (fine) 80 1.245 1.35 0.895 439 1
Nitrate (fine) 85 1.210 1.50 1.097 48.5 1
Nitrate (fine) 90 1.165 1.70 1.518 54.8 1
Nitrate (fine) 95 1.101 2.10 3.121 66.4 1
Nitrate (coarse) 0 1.769 1.00 0.355 18 1
Nitrate (coarse) 10 1.769 1.00 0.355 12.6 1
Nitrate (coarse) 20 1.769 1.00 0.355 11.3 1
Nitrate (coarse) 30 1.769 1.00 0.355 11.3 1
Nitrate (coarse) 40 1.430 1.10 0.443 11.9 1
Nitrate (coarse) 50 1.390 1.20 0.555 12.6 1
Nitrate (coarse) 60 1.349 1.25 0.623 14.1 1
Nitrate (coarse) 70 1.302 1.30 0.697 159 1
Nitrate (coarse) 80 1.245 1.35 0.780 17.1 1
Nitrate (coarse) 85 1.210 1.50 1.093 18 1
Nitrate (coarse) 90 1.165 1.70 1.682 19 1
Nitrate (coarse) 95 1.101 2.10 3.651 18.7 1
Ammonium 0 1.769 1.00 0.212 34.1 1
Ammonium 10 1.769 1.00 0.254 34.1 1
Ammonium 20 1.769 1.00 0.300 34.1 1
Ammonium 30 1.769 1.00 0.350 34.1 1
Ammonium 40 1.430 1.17 0.376 39.8 1
Ammonium 50 1.390 1.22 0.403 41.3 1
Ammonium 60 1.349 1.28 0.460 43.2 1
Ammonium 70 1.302 1.36 0.520 45.7 1
Ammonium 80 1.245 1.49 0.583 49.2 1
Ammonium 85 1.210 1.58 0.650 52.6 1
Ammonium 90 1.165 1.73 0.794 57.6 1
Ammonium 95 1.101 2.09 0.952 67.9 1
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Appendix D: Monthly mean profiles

In order to illustrate the shapes of the actual vertical 8*(z)
profiles from the model (ASM and CTR) and the ceilome-
ters, the 48 individual monthly average profiles are given in
Figs. D1, D2, D3 and D4.
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Figure D1. Monthly median profiles 2016 from the ceilometer (black), ASM (red) and control run (blue).
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Figure D2. Monthly median profiles 2017 from the ceilometer (black), ASM (red) and control run (blue). The median profile from the IFS
forward operator is added as a dashed red line.
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Figure D3. Monthly median profiles 2018 from the ceilometer (black), ASM (red) and control run (blue). The median profile from the IFS
forward operator (available as of October 2017) is added as a dashed red line.
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Figure D4. Monthly median profiles 2019 from the ceilometer (black), ASM (red) and control run (blue). The median profile from the IFS
forward operator is added as a dashed red line.
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