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Abstract. Monitoring the evolution of snowpack properties
in mountainous areas is crucial for avalanche hazard fore-
casting and water resources management. In situ and re-
motely sensed observations provide precious information on
the state of the snowpack but usually offer limited spatio-
temporal coverage of bulk or surface variables only. In par-
ticular, visible–near-infrared (Vis–NIR) reflectance observa-
tions can provide information about the snowpack surface
properties but are limited by terrain shading and clouds.
Snowpack modelling enables the estimation of any physi-
cal variable virtually anywhere, but it is affected by large
errors and uncertainties. Data assimilation offers a way to
combine both sources of information and to propagate infor-
mation from observed areas to non-observed areas. Here, we
present CrocO (Crocus-Observations), an ensemble data as-
similation system able to ingest any snowpack observation
(applied as a first step to the height of snow (HS) and Vis–
NIR reflectances) in a spatialised geometry. CrocO uses an
ensemble of snowpack simulations to represent modelling
uncertainties and a particle filter (PF) to reduce them. The
PF is prone to collapse when assimilating too many ob-
servations. Two variants of the PF were specifically imple-
mented to ensure that observational information is propa-
gated in space while tackling this issue. The global algo-
rithm ingests all available observations with an iterative in-
flation of observation errors, while the klocal algorithm is
a localised approach performing a selection of the observa-
tions to assimilate based on background correlation patterns.

Feasibility testing experiments are carried out in an identi-
cal twin experiment setup, with synthetic observations of HS
and Vis–NIR reflectances available in only one-sixth of the
simulation domain. Results show that compared against runs
without assimilation, analyses exhibit an average improve-
ment of the snow water equivalent continuous rank probabil-
ity score (CRPS) of 60 % when assimilating HS with a 40-
member ensemble and an average 20 % CRPS improvement
when assimilating reflectance with a 160-member ensemble.
Significant improvements are also obtained outside the ob-
servation domain. These promising results open a possibility
for the assimilation of real observations of reflectance or of
any snowpack observations in a spatialised context.

1 Introduction

Seasonal snowpack is an essential element of mountainous
areas. Monitoring the evolution of its physical properties
is essential to forecasting avalanche hazard (Morin et al.,
2020) and rain-on-snow-related floods (Pomeroy et al., 2016;
Würzer et al., 2016) as well as monitoring water resources
(Mankin et al., 2015). Observations alone are too scarce to
monitor snowpack conditions. In situ observations provide
precise observations of several key variables, but they lack
spatial representativeness and have poor spatial coverage.
Remote sensing of snowpack variables such as the height
of snow (HS; m), snow water equivalent (SWE; kgm−2),
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visible–near-infrared (Vis–NIR) reflectance and surface tem-
perature provides comprehensive information over large ar-
eas but usually has a limited temporal resolution for a small
set of variables. Furthermore, these observations are usu-
ally available in fractions of simulation domains only, even
for spaceborne data (Davaze et al., 2018; Veyssière et al.,
2019; Shaw et al., 2019). For instance, snowpack Vis–NIR
reflectances from moderate-resolution (250–500 m) satellites
such as MODIS and Sentinel-3 can help constrain snowpack
surface properties such as microphysical properties (charac-
terised by specific surface area – SSA; m2 kg−1) and light-
absorbing particle content (LAP; gg−1

snow) (Durand and Mar-
gulis, 2006; Dozier et al., 2009). However, in areas covered
by clouds or forests and/or affected by high sub-pixel vari-
ability (ridges, roughness, fractional snow cover) and shad-
ows, satellite retrievals are less accurate (Masson et al., 2018;
Lamare et al., 2020), and data should be filtered out (Cluzet
et al., 2020a). The higher resolution offered by products from
Landsat and Sentinel-2 might be an avenue to address this is-
sue (e.g. Masson et al., 2018; Aalstad et al., 2020), but at
these resolutions, reflectance retrievals are quite noisy due
to e.g. digital elevation model errors (Cluzet et al., 2020a).
Finally, note that pixel fractional snow cover (snow cover
fraction, SCF) can be accurately retrieved even from noisy
reflectances (Sirguey et al., 2009; Aalstad et al., 2020), but it
inherits spatio-temporal limitations. SCF informativeness is
also limited in deep snowpack conditions (De Lannoy et al.,
2012).

Snowpack models of different complexity offer exhaustive
spatial and temporal coverage (Krinner et al., 2018). They
are applied within several spatial configurations, including
the collection of points on regular or irregular grids (Morin
et al., 2020). In this paper, “spatialised” indistinctly refers to
any of these configurations. Detailed snowpack models are
the only ones able to assess avalanche hazard and monitor
water resources (Morin et al., 2020), but these applications
are limited by their considerable errors and uncertainties (Es-
sery et al., 2013; Lafaysse et al., 2017). In that context, com-
bining remote sensing observations with models through data
assimilation is an appealing solution (Largeron et al., 2020).
Indeed, data assimilation combines the spatial and tempo-
ral coverage of snowpack models with the available infor-
mation from observations in an optimal way. Assimilation
of optical reflectance could reduce modelled SWE errors by
up to a factor of 2 (Durand and Margulis, 2007; Charrois
et al., 2016), and preliminary studies show its potential for
spatialised assimilation (Cluzet et al., 2020a). Assimilation
of HS is very efficient in reducing modelled SWE errors
(Margulis et al., 2019). However, the limited spatial cover-
age of observations stresses the need for data assimilation
algorithms able to propagate snowpack observational infor-
mation into unobserved areas (Winstral et al., 2019; Cantet
et al., 2019; Largeron et al., 2020).

A particle filter with sequential importance resampling
(PF-SIR; Gordon et al., 1993; Van Leeuwen, 2009) is a

Bayesian ensemble data assimilation technique well suited to
snowpack modelling (Dechant and Moradkhani, 2011; Char-
rois et al., 2016; Magnusson et al., 2017; Piazzi et al., 2018;
Larue et al., 2018). PF-SIR is a sequential algorithm rely-
ing on an ensemble of model runs (particles) which repre-
sents the forecast uncertainty. At each observation date, the
prior (or background) composed of the particles is evaluated
against the observations. The analysis of PF-SIR (later on
PF) works in two steps. In a first step, so-called “importance
sampling”, the particles are weighted according to their dis-
tance to the observations (relative to the observation errors).
Then, a resampling of the particles is performed in order to
reduce the variance in the weights. The ensemble Kalman
filter (EnKF Evensen, 2003) has also been widely used for
snow cover data assimilation (e.g. Slater and Clark, 2006;
De Lannoy et al., 2012; Magnusson et al., 2014). However,
the PF is more adapted to models with a variable number of
numerical layers such as detailed snowpack models (Char-
rois et al., 2016).

The PF could be used in a spatialised context to propa-
gate information from observations as suggested by Largeron
et al. (2020) and Winstral et al. (2019). Contrary to the EnKF,
such applications are rare to date (e.g. Thirel et al., 2013;
Baba et al., 2018; Cantet et al., 2019). Indeed, spatialised
data assimilation with the PF is not straightforward because
of the degeneracy issue, i.e. only a few particles are repli-
cated in the analysis, often resulting in a poor representation
of the forecast uncertainties. Degeneracy can be mitigated by
increasing the number of particles, but the required popula-
tion scales exponentially with the number of observations si-
multaneously assimilated (Snyder et al., 2008). Furthermore,
an accurate representation of spatial error statistics by the en-
semble is essential for the success of the assimilation system.
To achieve that, the required ensemble size also scales expo-
nentially with the system dimension, an issue known as the
curse of dimensionality (Bengtsson et al., 2008). These is-
sues are severe drawbacks when considering applications of
the PF to large domains (i.e. implying a large number of ob-
servations and/or simulation points) with a reasonable num-
ber of particles (Stigter et al., 2017).

Several solutions exist to tackle PF degeneracy. A first ap-
proach is to inflate the observation errors in the PF. The tol-
erance of the PF is increased, leading to more particles being
replicated. This approach is based on the fact that observation
error statistics (including sensor, retrieval and representative-
ness errors) are usually poorly known and underestimated. It
can also be used as a safeguard to prevent the PF from de-
generating on specific dates when observations are not com-
patible with the ensemble. PF inflation was successfully im-
plemented in point-scale simulations of the snowpack (Larue
et al., 2018). When dealing with a large number of obser-
vations, inflation might lead to degeneracy or null analysis
(posterior equal to the prior). In this work, we generalise over
space the inflation of Larue et al. (2018), trying to ingest all
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the observations into a single analysis over the domain in a
so-called global approach.

PF localisation is a more widespread alternative, tackling
degeneracy by reducing the number of observations that are
simultaneously assimilated by the PF (Poterjoy, 2016; Poter-
joy and Anderson, 2016; Penny and Miyoshi, 2016; Poter-
joy et al., 2019; italic notations are taken from the review
of Farchi and Bocquet, 2018). In this method, the simulation
domain is divided into blocks whereby different PF analyses
are performed considering a local subset of observations (do-
main) based on a localisation radius. This makes it possible
to constrain the model in locations that are not directly ob-
served but with nearby observations. Contrary to global ap-
proaches, localisation has the disadvantage of producing spa-
tially discontinuous analyses (each point receives a different
analysis). This issue can be mitigated in various ways (Poter-
joy, 2016; Farchi and Bocquet, 2018; Van Leeuwen et al.,
2019).

The underlying hypothesis of localisation is that model
points are independent beyond a certain distance; i.e. con-
straining one point with the observation from a point that is
too distant would be meaningless and likely degrade the anal-
ysis performance (Houtekamer and Mitchell, 1998). How-
ever, in the case of small simulation domains or modelled
systems driven by large-scale coherent causalities, large-
scale correlations (relative to the domain size) may be phys-
ically sound, and defining a localisation radius may be a dif-
ficult task. In order to address this issue, we developed a new
localisation approach called k localisation, whereby localisa-
tion domains are based on background correlation patterns.

These developments were implemented into CrocO
(Crocus-Observations), an ensemble data assimilation sys-
tem able to sequentially assimilate snowpack observations
with a PF in a spatialised context. CrocO can be implemented
in any geometry (e.g. within a distributed (gridded) frame-
work or any irregular spatial discretisation). Here, we ap-
ply CrocO in a semi-distributed framework, which is a con-
ceptual spatialised geometry used operationally by Météo-
France for avalanche hazard forecasting (Lafaysse et al.,
2013; Morin et al., 2020). This framework is similar to many
topographically based discretisations in hydrological models
(e.g. Clark et al., 2015). This setup enables us to account
for the snowpack variability induced by the topography at
the scale of a mountain range through meteorological condi-
tions (elevation controls the air temperature and precipitation
phase) and the snowpack radiative budget (also dependent on
the aspect and slope angle) (Durand et al., 1993).

CrocO uses an ensemble of stochastic perturbations from
the SAFRAN meteorological analysis (Durand et al., 1993;
Charrois et al., 2016) to force ESCROC (Ensemble System
CROCus; Lafaysse et al., 2017), the multi-physical version
of the Crocus snowpack model (Vionnet et al., 2012). The
ensemble setup accounts for the major sources of uncertain-
ties in snowpack modelling (Raleigh et al., 2015) and was

Figure 1. 3-D schematic view of the semi-distributed geometry, for
which the numbers represent the altitudes of the elevation bands
(m). From left to right, the three different mountains represent the
flat, 20 and 40◦ slopes.

formerly described and evaluated in semi-distributed geom-
etry by Cluzet et al. (2020a).

Inflation and k localisation were implemented into CrocO.
Here, we present CrocO and evaluate how it addresses the
issues of reflectance observation sparseness and PF degener-
acy in the context of snowpack modelling. This problem is
divided into two scientific questions. (1) Is CrocO PF able to
efficiently spread the information from sparse observations
in space without degenerating? (2) Is the spatial informa-
tion content of reflectance observations valuable for snow-
pack models? We assess these questions by evaluating the
performance of CrocO in modelling the SWE when assimi-
lating synthetic observations of HS and reflectance covering
only a portion of the domain.

Section 2 presents the CrocO system, i.e. the ensemble
modelling system and the PF algorithms. Section 3 intro-
duces the evaluation methodology. Subsequently, Sect. 4 as-
sesses the performance of CrocO, and Sect. 5 discusses the
results. Finally, Sect. 6 provides perspectives and research
directions.

2 Material and methods

2.1 Modelling geometry

Simulations are performed in semi-distributed geometry.
Mountain ranges such as the Alps are discretised into so-
called massifs of about 1000 km2 to account for regional
variability of meteorological conditions. Within each mas-
sif, topographically induced variability is taken into account
by running the model for a fixed set of topographic classes,
e.g. by 300 m elevation bands, for 0, 20 and 40◦ slopes and
eight aspects (see Fig. 1). This set enables us to reproduce
the main features of snowpack variability (e.g. Mary et al.,
2013).

In this study, we focus on the Grandes Rousses, a sin-
gle massif in the central French Alps. This area of about
500 km2 is represented by Npts = 187 independent topo-
graphic classes (see Fig. 1). In the following, specific topo-
graphic classes are denoted as elevation_aspect_slope; e.g.
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Figure 2. Workflow of CrocO ensemble data assimilation system
with four members. x̂0: initial state at time t0, Fi : forcing, Mi : ES-
CROC member, Xb: background state, xib: background particles,
Xa: analysis, xia: analysis particles, y: observation, t1 and t2: obser-
vation dates.

1800_N_40 stands for a 40◦ slope with a northern aspect at
1800 ma.s.l.

2.2 CrocO ensemble data assimilation setup

The ensemble data assimilation workflow of CrocO is rep-
resented in Fig. 2. In the following, only a short descrip-
tion of the system and its elements is provided. More de-
tails on the ensemble modelling setup are available in Cluzet
et al. (2020a). Information about its implementation into the
Météo-France high-performance computing (HPC) system
can be found in Appendix B1.

2.2.1 Ensemble of snowpack models

Crocus is a detailed snowpack model coupled with the
ground and atmosphere in the ISBA land surface model
(Interaction Soil–Biosphere–Atmosphere). It is embedded
within the SURFEX_v8.1 modelling platform (SURFace
EXternalisée; Masson et al., 2013). The TARTES opti-
cal scheme (Libois et al., 2013, 2015) represents Vis–NIR
spectral radiative transfer within the snowpack, driven by
snow metamorphism (Carmagnola et al., 2014) and light-
absorbing particle (LAP; gg−1

snow) deposition fluxes (Tuzet
et al., 2017). Moreover, TARTES computes the snowpack re-
flectance with a high spectral resolution, making the model
directly comparable to observations. As such, TARTES is
both a physical component of Crocus and an observation op-
erator.

ESCROC (Ensemble System CROCus; Lafaysse et al.,
2017), the multi-physical ensemble version of Crocus, is
used to account for snowpack modelling uncertainties. A ran-
dom draw among 1944 ESCROC multi-physics configura-
tions was performed and used in all the simulations and de-
noted (Mi)0<i≤Ne , with Ne being the ensemble size (e.g. 40
or 160 members; see Fig. 2). These configurations are con-
sidered equiprobable before any data assimilation.

2.2.2 Ensemble of meteorological forcings

Meteorological forcings are taken from the SAFRAN (Du-
rand et al., 1993) reanalysis, wherein forecasts from the
ARPEGE numerical weather prediction (NWP) model are
downscaled and adjusted with surface observations within
the massif area. They are combined with MOCAGE LAP
fluxes (Josse et al., 2004) interpolated at Col du Lautaret
(2058 ma.s.l., inside the Grandes Rousses) to constitute the
reference forcing dataset. Before the beginning of the simu-
lation, spatially homogeneous stochastic perturbations (e.g.
on a given date, the same perturbation parameter is applied
across the whole domain) with temporal autocorrelations are
applied to this forcing to generate an ensemble of forcings
(Fi)0<i≤Ne with the same procedure as described in Cluzet
et al. (2020a). More details on the perturbation procedure can
be found in Appendix A. At the beginning of the simulation,
each forcing Fi is associated with a random Mi ESCROC
configuration, and this relation is fixed during the whole sim-
ulation.

2.2.3 The particle filter in CrocO

The PF is applied sequentially for each observation date to
the background state vectors (soil and snowpack state vari-
ables, denoted BG in Fig. 2). Its analysis is an ensemble
of initial conditions used to propagate the model forward.
The algorithm is implemented into SODA (SURFEX Offline
Data Assimilation; Albergel et al., 2017), the data assimila-
tion module of SURFEX_v8.1, enabling a continuous execu-
tion sequence between ensemble propagation and analysis,
as depicted in Fig. 2.

2.3 The particle filter equations

On a given observation date, we consider a set of observed
variables available at several locations, totalling Ny different
observations.

– Each member xib of the background state Xb is pro-
jected into the observation space using the observation
operator h. In our case, h is just an orthogonal projec-
tion of theNy observations since HS and reflectance are
diagnosed within Crocus (see Sect. 2.2.1). The projec-
tion x̂ib = hx

i
b = (x̂

i
k)0<k≤Ny corresponds to the mod-

elled values at each observed variable and/or point.

– These Ny observations are collected in the vector y =

(yk)0<k≤Ny . The associated observation error covari-
ance matrix R (Eq. 1) is diagonal (e.g. observation er-
rors are assumed independent):

R= diag(σ 2
k ,0< k ≤Ny), (1)

where σ 2
k stands for the observation error variance of

observation k and depends only on the type of observa-
tion yk (e.g. HS or reflectance).
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Figure 3. Impact of the inflation (N∗eff = 7) vs. no inflation (N∗eff =
1) in the 1800_N_40 topographic class (not observed) when assim-
ilating HS of 2015_q80 with the global PF. (a) SWE minimum–
maximum envelopes as a function of time, (b) spread and (c) AEM.
Dashed lines represent the assimilation dates.

The PF analysis usually works in two steps.

1. Compute the particle weights wi as the normalised ob-
servation likelihood for each particle (Eq. 2):

wi =
e−

1
2 (y−x̂ib)

T R−1(y−x̂ib)∑Ne
k=1e

−
1
2 (y−x̂kb)

T R−1(y−x̂kb)
. (2)

2. Resample the particles based on their weights to build
the analysis vector Xa. Here, we apply the PF re-
sampling from Kitagawa (1996), which returns s =

(si)0<i≤Ne (si ∈ [1..Ne]), a sorted vector with duplica-
tions representing the particles to replicate.

A sample reordering step was added for numerical optimi-
sation with no expected influence on the PF behaviour (see
Appendix B2 for more details).

Two simple variants of this algorithm can be identified in
a spatialised context:

– for the global approach, perform one analysis over the
domain, putting all the available observations in y;

– for the rlocal approach, perform one analysis per model
point, assimilating only local observations if any. This
corresponds to a localised PF with a block and domain
size of 1.

2.3.1 Particle filter degeneracy

Degeneracy occurs when only a small fraction of the parti-
cles have non-negligible weights, resulting in a sample s for
which only a few different indices are present. It can be diag-
nosed from the weights using the effective sample size Neff
(Liu and Chen, 1995):

Neff =
1∑Ne

i=1(w
i)2
. (3)

With a degenerate sample, Neff & 1, and with innocuous
analysis (all particles are replicated) Neff =Ne.

A first approach to mitigate degeneracy is to use inflation.
This heuristic method iteratively inflates R values until the
effective sample size is large enough. Here, we develop a
variant from the Larue et al. (2018) method, which does not
explicitly rely on Neff (Eq. 3). Consider applying an inflation
factor 1

α
to R (0< α ≤ 1, with α = 1 being the value for no

inflation) and update Neff (Eqs. 2 and 3): Neff is naturally
a decreasing function of α (the more we inflate R the more
different particles will be replicated). The idea of our method
is to ensure that Neff exceeds a target value, N∗eff. If Neff <

N∗eff (degenerate case), we reduce α (inflate) untilNeff =N
∗

eff
using Algorithm 1. In the following, inflation is used in the
global and rlocal PF (see Sect. 2.2.3).

The core of Algorithm 1 is an hybrid bisection–secant
method to find the zero of f : α 7−→Neff(α)−N

∗

eff in [0,1].
It is inspired by the rtsafe algorithm (Press et al., 1992). The
guess function computes a new guess α2 to minimise f . Note
that in the unlikely case in which Algorithm 1 does not con-
verge, all the particles are replicated.

https://doi.org/10.5194/gmd-14-1595-2021 Geosci. Model Dev., 14, 1595–1614, 2021



1600 B. Cluzet et al.: CrocO

2.3.2 k localisation

In the k-localisation algorithm, degeneracy is mitigated by
reducing the number of observations that are simultaneously
assimilated. The PF analysis is applied to each simulation
point sequentially. In order to build the analysis at point n,
background correlations Bv are computed for each variable
v (e.g. HS or reflectance) between n and all the observed
points. In a first step, all observations from points exhibit-
ing substantial background correlations (see below for the
select_k_biggest function) are used. If the PF degenerates,
the number of observations is progressively decreased un-
til degeneracy is mitigated. As earlier, degeneracy is consid-
ered mitigated when Neff ≥N

∗

eff. This way, we ensure that a
maximal number of observations has been ingested by the PF
without degenerating.

In the case of degeneracy, the observation point display-
ing the lowest correlation is ruled out. The PF weights are
computed (Eq. 2), and a new effective sample size is derived
(Eq. 3). While the target sample size is not exceeded, this
selection proceeds iteratively. The notation k in k localisa-
tion refers to the number, k, of retained observations for each
variable. This approach is similar to the EnKF localisation
algorithm whereby the localisation domain is based on back-
ground correlations (Hamill et al., 2001).

The detailed k-localisation algorithm is described in Algo-
rithm 2, for which the following points apply.

– For each variable, the select_k_biggest method returns
the domain dv of up to k observed points (named p)
that are the most correlated (in absolute value) with n
and match the following criteria, which were adjusted
in preliminary experiments.

– In xiv , at least 10 % of members are defined in
both points. As reflectance is not defined when
there is no snow, spuriously high correlation can
be obtained when the computation of correlations
is based on a very low number of pairs.

– |Bv(n,p)|> 0.3. If the absolute correlation is too
low, it is likely that there is poor potential for the
distant observation to constrain the ensemble lo-
cally. In such a situation, it is better to reject the
observation from the local analysis. Negative en-
semble correlations can be physically sound, e.g.
after a rain-on-snow event between the HS of two
points separated by the rain–snow line. In such a sit-
uation, an HS observation of either point can hold
information on precipitation rates at both locations.
At the observed location, the PF will probably se-
lect the members with the most appropriate precip-
itation rates. This sample is likely to perform well
at both locations, so it can be used to constrain the
unobserved location.

– The notation d represents the collection of domains dv .

– The extract_points function extracts d from y, x̂i and
R.

Geosci. Model Dev., 14, 1595–1614, 2021 https://doi.org/10.5194/gmd-14-1595-2021
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Table 1. Setup for the height of snow assimilation experiment.

PF algorithm Ne inflation N∗eff HS σ 2
o (m2)

rlocal 40 on 7 1.0× 10−2

global 40 on 7 1.0× 10−2

klocal 40 on (if k = 1) 7 5.0× 10−2

2.3.3 Particle filter and reflectance observations

Assimilating reflectance with the PF requires some adap-
tations. In Crocus, the TARTES optical scheme (see
Sect. 2.2.1) only provides snow reflectance, not all-surface
reflectance: no value for the surface reflectance is issued in
the absence of snow. Conversely, the weights of the parti-
cles are not defined in Eq. (2) if the members are snow-free.
These issues were roughly accommodated by setting the re-
flectances of snow-free members and observations to 0.2 (the
value of bare soil broadband albedo in the ISBA model) in
the PF for Eq. (2) (Sect. 2.2.3).

3 Evaluation strategy

Our strategy is to assess the performance of the analysis
by means of twin experiments, i.e. using synthetic observa-
tions (e.g. Reichle and Koster, 2003). The assimilation run
is compared to an identical run without assimilation (open-
loop run). Synthetic observations are extracted from a model
run and assimilated without adding any noise. These observa-
tions mimic real observations with perfect knowledge of the
true state. Analysis and open-loop experiments can therefore
be compared with this true state anywhere for any variable.
In a first step, this allows us to get rid of the error and bias
issues inherent in real observations (Cluzet et al., 2020a), a
reason why we did not add any noise to the synthetic obser-
vations as commonly done in twin experiments (Lahoz and
Menard, 2010). This way, we can focus on the following two
questions (see Sect. 1).

– Is CrocO PF able to efficiently spread the information
from sparse observations into space without degenerat-
ing?

– Is the spatial information content of reflectance a valu-
able source of information for snowpack models?

In order to disentangle these questions, we run baseline ex-
periments assimilating synthetic observations of HS, which
is strongly linked to SWE (Margulis et al., 2019). These ex-
periments are used to evaluate the PF algorithm efficiency
and as a baseline for synthetic reflectance assimilation ex-
periments evaluating the information content of reflectance.

Three different algorithms are evaluated: the global algo-
rithm (with inflation), the rlocal algorithm (with inflation)
and the k-localised algorithm klocal.

3.1 Experiments

3.1.1 Twin experiment setup

In our twin experiment setup, an open-loop ensemble is used
as a reference and to generate synthetic observations. Open-
loop simulations are carried out with CrocO for four con-
secutive winters (2013–2017) in the Grandes Rousses (see
Sect. 2.1) with 160 members. For each year, the average
of SWE over time and space is computed from each mem-
ber, and members corresponding to the 20th, 40th, 60th
and 80th percentiles of the ensemble are extracted to be
used as synthetic observations (denoted year_ppercentile,
e.g. 2014_p80). This method enables us to evaluate the ef-
ficiency of data assimilation experiments under contrasting
snow condition scenarios. Before any assimilation experi-
ment, the open-loop member (Fi−Mi couple in Fig. 2) used
as the true state is withdrawn and replaced by a new random
member.

The spatial coverage of synthetic observations was re-
duced, mimicking a typical reflectance mask. Synthetic ob-
servations were only available above an assumed constant
treeline at 1800 m (see Fig. 1) and not available for steep
slopes (over 20◦) and northern aspects (shadows, considering
a daily satellite pass around 10:00–11:00 UTC) for the whole
snow season. As a result, in this case, only 35 (over 187) to-
pographic classes are observed. Observation dates were cho-
sen corresponding to clear-sky days with a MODIS over-
pass, resulting in an approximately weekly frequency (e.g.
Revuelto et al., 2018; Cluzet et al., 2020a).

Reflectance is sensitive to the surface SSA and LAP (see
Sect. 1). A minimal set of two different bands is used, cor-
responding to MODIS sensor bands 4 (555 nm, sensitive to
SSA and LAP) and 5 (1240 nm, usually only sensitive to
SSA) (e.g. Fig. 2 of Cluzet et al., 2020a). Observation er-
ror variances are set to 1.0× 10−2 m2 for HS and 5.6× 10−4

and 2.0× 10−3 for band 4 and band 5 reflectance, respec-
tively (Wright et al., 2014). These values are only initial val-
ues for the inflation in the global and rlocal algorithms. Since
the klocal algorithm only uses inflation if k drops to 1 (see
Sect. 2.3.2), observation error variances are multiplied by a
factor of 5 to enable the klocal algorithm to ingest observa-
tions from several points.

In order to study the ability of the global, klocal and rlocal
algorithms to spread information in space, a first set of exper-
iments is conducted assimilating HS with 40 members (see
the setup in Table 1). In order to evaluate the algorithms’
ability to assimilate reflectance (band 4 and band 5) a second
set of experiments is conducted with other things being equal
(Table 2). The ensemble size is increased from 40 to 160 in
a third set of experiments assimilating reflectance in order to
analyse the influence of a larger ensemble on the algorithm
performance (Table 3). Note in Tables 1–3 that N∗eff is ad-
justed to the ensemble size in order to preserveNe/N

∗

eff ≈ 5–
7 following Larue et al. (2018).
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Table 2. Setup for the first reflectance assimilation experiment.

PF algorithm Ne Inflation N∗eff B4 σ 2
o B5 σ 2

o

rlocal 40 on 7 5.6× 10−4 2.0× 10−3

global 40 on 7 5.6× 10−4 2.0× 10−3

klocal 40 on (if k = 1) 7 2.8× 10−3 1.0× 10−2

Table 3. Setup for the second reflectance assimilation experiment.

PF algorithm Ne Inflation N∗eff B4 σ 2
o B5 σ 2

o

rlocal 160 on 25 5.6× 10−4 2.0× 10−3

global 160 on 25 5.6× 10−4 2.0× 10−3

klocal 160 on (if k = 1) 25 2.8× 10−3 1.0× 10−2

3.2 Evaluation scores

The performance of the assimilation and open-loop run is
evaluated against the synthetic truth using several scores. The
absolute error of the ensemble mean (AEM) and ensemble
spread σ are two common metrics of ensemble modelling.
Given an ensemble Em,c,t of Ne members m in topographic
class c at time t and the corresponding truth τc,t , the ensem-
ble mean is described by Eq. (4):

Ec,t =
1
Ne

Ne∑
m=1

Em,c,t , (4)

from which we can compute the AEM (Eq. 5) and the
spread (or dispersion) σ (Eq. 6):

AEMc,t = |Ec,t − τc,t | ∀(c, t) ∈ [1,Npts]× [1,Nt ] (5)

σc,t =

√√√√ 1
Ne

Ne∑
m=1

(Em,c,t −Ec,t )
2,

∀(c, t) ∈ [1,Npts]× [1,Nt ], (6)

where Nt is the number of evaluation time steps.
The continuous ranked probability score (CRPS; Eq. 7;

Matheson and Winkler, 1976) evaluates the reliability and
resolution of an ensemble based on a verification dataset. An
ensemble is reliable when events are forecast with the right
probability and has a good resolution when it is able to dis-
criminate distinct observed events. For a reliable system, the
resolution is equivalent to the sharpness, which is the spread
of the produced forecasts.

If we denote Fc,t the cumulative distribution function
(CDF) and Tc,t the corresponding truth CDF (Heaviside
function centred on the truth value), the CRPS is computed
at (c, t) following

CRPSc,t =
∫
R

(Fc,t (x)− Tc,t (x))2dx

∀(c, t) ∈ [1,Npts]× [1,Nt ]. (7)

In this work, the CRPSc,t value is averaged over time alone
or time and space depending on the desired level of aggrega-
tion.

The CRPS can be decomposed into two terms following
Candille et al. (2015):

CRPS= Reli+Resol, (8)

where Reli quantifies the reliability of the ensemble. The
associated skill scores (CRPSS and ReliS) can be used to
compare the performance of an ensemble E to a reference R,
here the open-loop run:

CRPSS(E)= 1−
CRPS(E)
CRPS(R)

. (9)

A skill score of 1 denotes a perfect score, 0 a neutral per-
formance and −∞ the worst achievable skill score.

4 Results

4.1 Preliminary results

4.1.1 Impact of the inflation

The inflation algorithm was introduced by Larue et al. (2018)
in point-scale simulations, but to the best of our knowledge,
it has never been applied in a spatialised context. Here we
evaluate its impact on the global algorithm by switching it
on and off. As an example, Fig. 3 shows the impact of in-
flation on SWE when assimilating the HS of 2015_p80 (as
defined in Sect. 3.1.1) member with the global algorithm in a
topographic class which is not observed (1800_N_40, as de-
fined in Sect. 2.1). This choice of member and topographic
class is representative of the impact of inflation on the global
algorithm.

In this case, both inflation (N∗eff = 7) and no inflation
(N∗eff = 1) lead to a significant reduction of the ensemble
spread compared with the open loop (Fig. 3b). From January
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2015 until the peak of SWE in mid-April 2015 (Fig. 3c), the
simulation with inflation has significantly lower errors than
without inflation and the open loop (10–20 vs. 60–80 and 30–
50 kgm−2, respectively), leading to better agreement with
the synthetic truth in the melting season (Fig. 3a). During the
melting season (mid-April 2015 onwards), the AEM of the
assimilation algorithms reaches a peak, coinciding with an
absence of observations. In comparison, the open-loop AEM
is smaller in the first part of the melting season, but the spread
is 3 times larger, making it almost uninformative. For sev-
eral analyses (21 November 2014 and 30 December 2014,
for example) the ensemble spread without inflation drops to
0, while its AEM strongly increases compared to the open
loop, suggesting that it is prone to degeneracy.

4.1.2 Correlation patterns

The klocal algorithm relies on background correlation pat-
terns to define localisation domains. To illustrate the poten-
tial of using such information in the PF, Fig. 4 shows the
correlation patterns of the 40-member open loop in an unob-
served topographic class (1800_N_40, red dot) in the mid-
winter (20 February 2015), several months after the snow
season onset. The assimilation variables exhibit strong but
contrasting correlation patterns. Band 4 (Fig. 4a) correla-
tions are generally high (0.6–1) and uniform. Many of the
observed classes (black dots) are strongly correlated with
the considered class. Similar results are obtained for HS
(Fig. 4c). Band 5 (Fig. 4b) exhibits substantial correlations,
in particular across slopes. However, they are more restricted
to the northern aspects, and only a few observed classes in the
eastern aspects are substantially correlated with the consid-
ered class. Note that negative correlations are evidenced with
some lower-altitude south-oriented topographic classes (e.g.
1500_S_40 in Fig. 4b). Finally, these patterns vary with time
but remain substantial along the whole season (not shown),
and increasing the ensemble size up to 160 leads to identical
patterns (not shown).

4.2 Results of the experiments

4.2.1 Assimilation of the height of snow

In a first step, assimilation of HS from the different synthetic
observation scenarios was conducted to serve as a refer-
ence for reflectance assimilation. Figure 5 shows the CRPSS
(Eq. 9, aggregated over time only) of the HS assimilation
with the three PF algorithms considering the synthetic mem-
ber 2013_q20 as a reference. Results for this specific syn-
thetic member were chosen here as a representative example
of the algorithm performance.

The rlocal performance compared with the open loop is
high (0.7–1) but limited to the observed classes (black dots)
since there is no spatial propagation in this algorithm. The
global and klocal algorithms have similar overall good per-

Figure 4. 20 February 2015 open-loop (40 members) Pearson corre-
lations between the domain points and the 1800_N_40 topographic
class (red dot) in band 4 (a), band 5 (b) and HS (c). Left bars show
the flat topographic classes in the associated elevation bands, while
pie plots show the 20 and 40◦ slope topographic classes, as depicted
in Fig. 1. Black dots denote the observed classes.

formance, managing to strongly reduce modelling uncertain-
ties except at very low altitudes (600–900 m) (skills of−0.2)
where snow does not usually last for more than a few weeks.

This behaviour may vary with the snow conditions, i.e. be-
tween the different assimilated synthetic observation scenar-
ios and from one year to another. In order to generalise this
result, Fig. 6 shows the CRPS and Reli (aggregated over time
and space) of the different algorithms for the 16 synthetic
observation scenarios and differentiated between observed
and unobserved classes. CRPS and reliability are consider-
ably reduced compared with the open loop (by a factor of
2–3 and 4–5, respectively) for all the algorithms in the ob-
served classes. This suggests that the PF manages to reduce
the spread of the ensemble while reducing its errors. In the
unobserved classes, the gain is almost as good (CRPSS of
0.6) except for the rlocal algorithm, which is identical to the
open loop as expected. No significant difference in skill is
obtained between the global and klocal algorithms.

4.2.2 Assimilation of reflectance

Optical reflectance is a promising assimilation variable due
to its extended availability in satellite observations, but as-
similation of raw reflectance products is not expected to con-
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Figure 5. CRPSS of SWE for the rlocal (a), global (b) and klo-
cal (c) algorithms assimilating the HS of 2013_p20 synthetic obser-
vation scenario. The score is computed for the whole snow season
for each topographic class. Black dots denote the observed classes.

strain bulk variables like SWE or HS as much as HS assim-
ilation. In order to assess this difference, we conduct assim-
ilation of reflectance only in the same setup as in Sect. 4.2.1
with all other things being equal.

Figure 7 shows the performance of the reflectance as-
similation for the 16 synthetic observation scenarios with
40 members (filled boxes). The different algorithms only lead
to moderate improvements in CRPS (median CRPSS of 0–
0.2, median ReliS of 0.2–0.4). Moreover, the global and klo-
cal algorithms frequently degrade the performance, suggest-
ing that this configuration is not robust.

Suspecting that 40 members are insufficient to properly
represent the multivariate probability density function of re-
flectance and other model variables, the ensemble size was
increased to 160 (hatched boxes), leading to marked im-
provements in the performance and robustness of the algo-
rithms (median CRPSS of 0.2, median Reli of 0.4–0.6). The
reliability of the global algorithm is significantly improved
compared to the klocal algorithm.

Figure 8 shows the spatial performance of the different al-
gorithms for member 2016_p60. Spatial patterns similar to
the HS assimilation are found. The rlocal performance is lim-
ited to the observed classes, while global and klocal manage
to improve the simulations across aspects and slopes. How-
ever, skill scores are lower than for HS (0.2–0.5), and the

Figure 6. Box plots of SWE CRPS (a, b) and Reli (e, f) for the
different algorithms for the 16 different synthetic observation sce-
narios, separated between observed (a, c, e, g) and not observed (b,
d, f, h) classes. Panels (c, d) and (g, h) show the associated skill
scores.

performance of all algorithms is poor in the classes that are
farther away from the observations, i.e. at lower elevations
(600–900 m) and in some of the high-altitude steep north-
ern classes (e.g. 2100_N_40 in Fig. 8b and c). Finally, note
that slight degradations of performance can sometimes be ev-
idenced, even in the observed classes, for all the algorithms
(e.g. in flat conditions at 3300 m in Fig. 8a for the rlocal, not
evidenced by this example for the other algorithms).

5 Discussion

In this section, we discuss the performance of CrocO PF al-
gorithms using the assimilation of HS and consider the po-
tential of the assimilation of reflectance in view of assimilat-
ing real data.

5.1 Tackling particle filter degeneracy

Because they assimilate several observations at the same
time, global and klocal approaches could be prone to PF
degeneracy. However, they almost never degrade the per-
formances when assimilating HS in a variety of years and
synthetic observation scenario percentiles (Fig. 6). This sug-
gests that inflating the observation errors (as demonstrated
by Larue et al., 2018, a result we have generalised in space)
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Figure 7. Same as Fig. 6 for reflectance with 40 members (filled)
and 160 members (hatched).

Figure 8. Same as Fig. 5 for the assimilation of the reflectance of
the 2016_p60 synthetic observation scenario.

and exploiting background correlations to reduce the num-
ber of assimilated observations are two efficient approaches
to tackle degeneracy.

In several cases though, strong degradation of the score
occurs when assimilating reflectance (Fig. 7), which could
either be attributed to an algorithmic failure in the PF or an
intrinsic lack of informativeness of reflectance in some sit-
uations. Based on the good behaviour of the algorithm with
HS, and because by construction, the global and klocal algo-
rithms cannot lead to a degenerate PF sample, we consider
this to come from the reflectance itself (this point will be fur-
ther discussed in the following sections).

Beyond tackling degeneracy, the global and klocal algo-
rithms also beat the rlocal approach on Reli and CRPSS
(Figs. 7 and 8). This suggests that assimilating multiple ob-
servations increases the quality of the PF analysis, even lo-
cally. More precisely, most of the improvement is due to the
Reli term of the CRPS. This property is crucial for ensem-
ble modelling because it ensures that events are forecasted
with the right frequency. However, this is not sufficient; e.g.
the climatology has perfect reliability but is not informative
at all. Successful assimilation manages to improve general
metrics such as the CRPS while improving the reliability. For
this aspect, the global and klocal algorithms have a satisfying
performance.

5.2 Propagating the observation information

Having sparse observations is one of the most challenging is-
sues for data assimilation systems of snowpack observations
(Magnusson et al., 2014; Largeron et al., 2020). In our par-
tially observed synthetic setup, the global and klocal PF vari-
ants developed here efficiently propagate the observational
information to the unobserved classes with a generally better
performance than the open-loop and rlocal approach in the
unobserved classes when assimilating HS (Fig. 5).

The algorithms’ performance is particularly good across
aspects and slopes, with only a few steep northern as-
pect slopes exhibiting neutral to poor performances (Figs. 5
and 8). This suggests that southern aspect and flat classes are
informative for the majority of the simulation domain. Con-
versely, considering that there are strong background corre-
lations between the western and eastern sides of the domain,
we can speculate that observing either side could yield over-
all good results.

In these figures, propagation of the information is lim-
ited towards lower elevation (600–1200 m). At such eleva-
tions, the snow cover is usually intermittent and a good
discrimination of the precipitation phase is crucial. The PF
does this indirectly through HS and reflectance observations
because rain causes a decrease in HS through compaction
and melting, while band 4 and band 5 reflectances also de-
crease because of quick isothermal metamorphism (i.e. the
surface SSA decreases). However, in our setup, the lowest
observed elevation is 1800 m; therefore, indirect observation
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of the rain–snow line positioning under this level is not possi-
ble, potentially explaining the moderate performance of the
PF there. In that case, assimilation of snow cover fraction
might be the best solution; since the snowpack is intermittent
there, the informativeness of this variable is maximal (Aal-
stad et al., 2018).

The global and klocal algorithms exhibit strong perfor-
mances when assimilating HS (Fig. 5). HS is closely linked
to the SWE (by the bulk density), and the interest of this
variable for data assimilation is clear (Margulis et al., 2019).
Here, it should be kept in mind that HS assimilation is used
as a baseline experiment to evaluate the algorithms and put
reflectance assimilation into perspective. The prescribed HS
observation errors (σ0= 0.1 m) are not necessarily realis-
tic. They should be adapted to the nature of the HS sensor.
For example, spaceborne HS observation errors are typically
larger (e.g. Eberhard et al., 2020; Deschamps-Berger et al.,
2020). The assimilation of such observations would proba-
bly yield lower improvements.

Though the performance is lower for reflectance than in
our HS experiments, it remains considerable and in line
with previous results on point simulations (Charrois et al.,
2016), with an average score improvement of 20 %–40 %.
This study quite surprisingly suggests that reflectance infor-
mation can be spread from southern slopes to the northern
ones, although in many situations, the snowpack evolves in
different ways for these two aspects. For example, in sunny
conditions, melt and wet metamorphism will cause a drop
in reflectance on southern slopes, while reflectance will not
evolve much on northern slopes. Such a phenomenon could
explain why low background correlations between south-
ern and northern aspects are exhibited in band 5 (Fig. 4),
which is the most sensitive to surface metamorphism through
SSA. This example shows that band 5 reflectance observa-
tions on southern slopes are not necessarily informative for
band 5 reflectance values in the northern aspect per se on
every date. On average, however, the positive impact of re-
flectance observations suggests that they enable the PF to re-
ject the ensemble members with inadequate meteorological
forcings (snowfall or cloud cover would lead to wrong re-
flectance values) or multi-physical parameterisations (influ-
encing e.g. the surface metamorphism), thus correcting the
ensemble in the whole domain. These insights are consistent
with the study of Winstral et al. (2019), wherein in situ obser-
vations are used to correct meteorological forcing parameters
across large simulation domains.

Regarding the observations, our study has some method-
ological limits, however. Observation errors are very roughly
prescribed, and the assimilated observations are not cor-
rupted as usually done in synthetic experiments (e.g. Du-
rand and Margulis, 2006). These choices were motivated by
the fact that very little is known about the spatial correlation
of reflectance observation errors in a semi-distributed setting
(e.g. Cluzet et al., 2020a). In a recently submitted paper, the
impact of random and systematic errors in reflectance obser-

vations on point-scale assimilation experiments is thoroughly
investigated (Revuelto et al., 2021). Efforts to better charac-
terise the spatial structure of these observation errors should
be conducted in future work.

5.3 Towards the assimilation of real observations of
reflectance

Reflectance is an appealing variable for snowpack mod-
elling because of its sensitivity to snowpack surface prop-
erties (Dozier et al., 2009) and the abundance of moderate-
to high-resolution spaceborne sensors (MODIS, Sentinel-2–
3, VIIRS, Landsat) providing us with a handful of observa-
tions to assimilate, contrary to HS. The potential for assim-
ilation of SCF, which is retrieved from reflectances, is clear
(Margulis et al., 2016; Aalstad et al., 2018; Alonso-Gónzalez
et al., 2020). This study demonstrates the potential of the PF
to spread information and assimilate raw reflectances with
a positive impact (Sect. 5.2). Yet, assimilating real observa-
tions of reflectance is another challenge for two reasons.

First, spaceborne reflectance observations are generally
noisy and biased (e.g. Cluzet et al., 2020a). Satellite retrievals
could be improved in the future (Kokhanovsky et al., 2019;
Lamare et al., 2020), and Cluzet et al. (2020a) showed that
assimilating ratios of reflectance could be a workaround to
tackle this issue. In the near-infrared, the signal-to-noise ra-
tio of reflectance observations might be sufficient to con-
strain the surface microphysical properties (Durand and Mar-
gulis, 2007; Mary et al., 2013), whereas the required accu-
racy for visible reflectance retrievals to remain informative
on snowpack light-absorbing particles content is high (War-
ren, 2013), and it has yet to be proved whether either ap-
proach can achieve this requirement.

Second, in this twin experiment framework, spatial pat-
terns of the synthetic observations are likely compatible with
the ensemble since they come from the same modelling sys-
tem. This may not be the case in reality, therefore making
it more difficult to assimilate, and we refer to this issue as
model or ensemble realism.

We must assess the strengths and weaknesses of the global
and klocal approaches by addressing those two issues. The
global algorithm assumes that a global optimum can be found
across the whole domain; e.g. the information from the dif-
ferent observations is consistent and can be ingested in one
block by the PF. With this strategy, the degeneracy due to
the size of the observation vector is efficiently mitigated by
the inflation algorithm as discussed in Sect. 5.1. The klocal
approach considers only a fraction of the observation infor-
mation to be relevant to constrain the model state at a given
location. This algorithm tries to ingest as much information
as possible while rejecting observations coming from snow-
pack conditions that are too statistically different. As a con-
sequence, because we do not account for the real spatial pat-
terns of observation errors and because we work in a twin
experiment setup, a global optimum for the whole domain
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can exist and can be found by the global algorithm. This
might be a reason why it beats the klocal approach (Figs. 6
and 7). In the real world, from the model point of view, there
might be contradictory information among the observations
that would be difficult to disentangle with a global strategy.
The klocal algorithm could be more suited to this situation
because it looks for local optima based on the assumption
that background correlations are a realistic representation of
modelling errors.

These background correlation structures could be overes-
timated by the ensemble, and tests with real observations are
necessary. Strong band 4 correlations (Fig. 4a) might be due
to the spatially homogeneous perturbations of LAP fluxes
used to force the simulations (see Sect. 2.2.2), a key driver
of this variable, and because the same snow model config-
uration is applied for a given member across the simula-
tion domain. Several studies suggest that LAP fluxes vary
with elevation and other topographic parameters (de Maga-
lhães et al., 2019; Sabatier et al., 2020), but to date no reli-
able model of such processes has been developed for com-
plex terrain. In such a context, assuming uniform LAP forc-
ing seems a reasonable compromise. Strong and almost uni-
form HS correlations (Fig. 4b) might be caused by the spa-
tial homogeneity of precipitation perturbations and because
we do not account for e.g. wind drift, intra-massif hetero-
geneity of meteorological conditions and gravitational redis-
tribution of snow (Wayand et al., 2018). Despite this semi-
distributed framework suffering from obvious limitations, the
potential for high-resolution snowpack modelling (Vionnet
et al., 2020; Fiddes et al., 2019; Marsh et al., 2020) is ham-
pered by large errors of NWP models in mountainous areas
(e.g. Nousu et al., 2019).

In the future, improving the ability of ensemble correla-
tions to represent modelling errors could make the spreading
of information an even more challenging task with the klocal
algorithm. But significant potential should remain for infor-
mation propagation, as suggested by results at larger scales
(Magnusson et al., 2014; Cantet et al., 2019). The potential
decorrelation of topographic classes would also impact the
global algorithm. In an unobserved class, constraining the
state of the snowpack with information from areas that are
not linked to it would likely degrade the forecasting skill,
as suggested by the poor performance of the algorithms at
low altitudes (Figs. 5 and 8). In contrast, applying CrocO
over larger domains (e.g. distributed simulations or a collec-
tion of semi-distributed massifs) would probably see the klo-
cal algorithm outperform the global. The increased domain
size would make it less plausible to find a global optimum
over the domain, whereas spatial flexibility would be an as-
set of the klocal algorithm. Finally, in the case of modelled
coupling between simulation points (e.g. snow drift), which
was not the case here, the spatial discontinuities of the klocal
analyses (see Sect. 1) might be a drawback compared to the
global approach. Spatial discontinuities may also be revealed
as impractical for the interpretation of individual simulation

Figure 9. Same as Fig. 5 for the assimilation of HS of the 2016_p60
synthetic observation scenario in the 1200–2400 m flat classes.

outputs by snow forecasters. The klocal approach is likely
to reduce these discontinuities compared to the rlocal be-
cause similar locations will be treated with similar analyses
(i.e. based on similar sets of observations). This issue could
be partly mitigated by e.g. state–block–domain approaches
(Farchi and Bocquet, 2018).

5.4 Outlook for ensemble modelling and data
assimilation

In the snowpack modelling community, ensemble modelling
is a powerful tool to represent modelling uncertainties (Ver-
nay et al., 2015; Richter et al., 2020) and for data assimilation
(Essery et al., 2013; Lafaysse et al., 2017; Piazzi et al., 2018;
Aalstad et al., 2018). This study offers a novel approach
to extract valuable information on the snowpack spatial be-
haviour from spatial correlation patterns of the ensemble.
These patterns could be used to diagnose links between lo-
cations, transfer information between areas or assess the rep-
resentativeness of point simulations. More broadly, ensem-
ble background correlations have long been exploited in the
NWP and oceanographic communities to refine modelling
error representation, which led to significant improvements
in the data assimilation systems (Evensen, 2003; Buehner,
2005).

Ensembles might open a possibility for the assimilation of
point-scale observations or sparse remotely sensed observa-
tions into spatialised simulations of the snowpack, as sug-
gested by Winstral et al. (2019) and the present work. For in-
stance, there are numerous snow gauges and snow pit obser-
vations at ski resorts in the French Alps. These data could be
assimilated to correct the ensemble in spatialised simulations
(Winstral et al., 2019). The spatial pattern of assimilated ob-
servations in the experiments of Sect. 4 does not correspond
to the real-life spatial coverage of these kinds of observa-
tions. To give insight into their potential, we also applied our
methodology to assimilate only five synthetic HS observa-
tions with the global PF in the 1200 to 2400 m flat classes.
The results are shown in Fig. 9. The assimilation improves
the performance in all aspects and slopes. Naturally, this suf-
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fers from the same limitation as discussed in Sect. 5.3, not to
mention the limited spatial representativeness of in situ ob-
servations, but it shows some potential for this idea.

In that way, a more rational use of the available ob-
servations could be implemented towards a new ensemble
data assimilation system. In the present CrocO system, the
SAFRAN reanalysis only assimilates weather station infor-
mation (precipitation phase, temperature, wind) and makes
no use of the numerous snow observations available. Here,
snow observations are assimilated by the PF but are not used
to correct meteorological forcings (only snow variables; see
Fig. 2). In a new ensemble data assimilation system, within
CrocO, the SAFRAN meteorological analysis could be by-
passed, with the PF directly operating on both the meteoro-
logical and snowpack variables through a more comprehen-
sive and coupled strategy.

6 Conclusions

In this study, we introduced CrocO, a new ensemble data as-
similation system able to reduce the errors of a spatialised
snowpack model in locations that are not observed. The
ensemble is built by a combination of meteorological and
multi-physical ensembles to represent modelling uncertain-
ties. A particle filter assimilates observations of HS and re-
flectance. We developed two variants of the PF using infla-
tion or k localisation in order to spread the information from
partial observations of the system, without degeneracy of
the PF. In the framework of synthetic experiments, we have
shown in particular the following:

1. these variants are able to ingest numerous observations
without degeneracy;

2. an efficient spreading of the observational informa-
tion towards the unobserved areas is achieved with the
global and klocal approaches; and

3. reflectance assimilation leads to an overall 20 % im-
provement in CRPS and 60 % in reliability.

We suggest that this approach could be used in any spa-
tialised framework to assimilate sparse observations from
e.g. networks of in situ snowpack observations. Beyond
the snowpack modelling community, the inflation and k-
localisation strategies could help address the problem of par-
tially observed systems. This work is also a first step to-
wards the operational assimilation of reflectance in a semi-
distributed context. To reach that goal, biases of reflectance
retrievals should be studied and observation error structures
duly quantified. Snow cover fraction would be a good com-
panion variable to jointly assimilate with reflectances, requir-
ing the use of an appropriate observation operator. Extending
the simulation domain to several massifs would allow the ex-
change of information between neighbouring massifs with
the klocal algorithm.
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Appendix A: Stochastic perturbations of the forcings

The stochastic perturbation procedure of the forcings is intro-
duced in Sect. 2.2.2 and is identical to Charrois et al. (2016)
for the meteorological parameters and Cluzet et al. (2020a)
for the light-absorbing particle (LAP) fluxes. For a given date
and forcing variable, perturbation values are the same for
all the points in space (no spatial autocorrelation is consid-
ered), as SAFRAN semi-distributed massifs have a limited
spatial extent (about 1000 km2). Precipitation, incoming ra-
diation, wind speed and air temperature from SAFRAN are
perturbed with temporally autocorrelated stochastic param-
eters. The precipitation, incoming shortwave radiation, and
wind speed are perturbed with multiplicative noise. Long-
wave radiation and air temperature are perturbed with addi-
tive noise.

For meteorological variables, the perturbation vector V is
built as follows:

V (t)= φV (t − 1)+ ε(t), (A1)

where φ = e−dt/τ , with dt the forcing time step, τ the decor-
relation time (h) and ε a normal law of mean 0 and vari-
ance σ 2(1−φ2). Parameter values for each variable are de-
scribed in Table A1. The significantly high autocorrelation
time of precipitation, 1500 h, was tuned to roughly adjust the
ensemble spread to the observed intra-massif variability of
yearly accumulated precipitation. Note that the precipitation
phase is adjusted with the perturbed air temperature to ensure
physical consistency. Further details on the procedure can be
found in Charrois et al. (2016).

Regarding LAP fluxes, dry and wet black carbon and min-
eral dust deposition fluxes from MOCAGE are perturbed
with a random factor which is constant throughout the year.
Each member has a single multiplicative factor following a
log-normal law of mean µ and variance σ (see Table A2).
The mean of black carbon random perturbations was adjusted
based on comparisons between simulations and field obser-
vations at Col du Lautaret, a mountain pass within the con-
sidered SAFRAN massif.

Table A1. Perturbation parameters for the meteorological variables.

Variable Perturbation σ τ (h)

Precipitation (kgm−2 h−1) Multiplicative 0.7 1500
Shortwave radiation (W m−2) Multiplicative 0.7 3
Wind speed (unitms−1) Multiplicative 0.6 100
Longwave radiation (W m−2) Additive 24.5 Wm−2 30
Air temperature (K) Additive 1.08 K 15

Table A2. Perturbation parameters for the LAP fluxes.

Variable µ σ

BC (wet and dry) (kgm−2 h−1) −2 1
Dust (wet and dry) (kgm−2 h−1) 0 1

Appendix B: Complements on the implementation

B1 Technical implementation and code performance

CrocO is implemented within the Météo-France HPC (high-
performance computing) environment, enabling us to fully
parallelise the ensemble (one core per member) and bridge
the gap with operational applications (Lafaysse et al., 2013;
Morin et al., 2020). This implementation is strongly parallel.
As an example, the execution time of a 1-year assimilation
run of 187 model points with 160 members on four nodes of
40 cores each lasts only 2 h. The PF is a lightweight algo-
rithm, and most of the computational burden is due to the
propagation of the ensemble and input/output (I/O). Also
note that no significant difference in execution time can be
noted between the different PF algorithms.

B2 PF sample reordering

As mentioned in Sect. 2.3, a reordering step was imple-
mented after the PF resampling from Kitagawa (1996) for
practical reasons.

– (3) From s, build s̃ such that all elements of the unique
values of s lie in the position given by their value. Ex-
ample with 16 particles:

s = [1,1,2,3,3,3,8,8,9,9,9,9,9,16,16,16]

⇒ s̃= [1,2,3,1,3,3,8,8,9,9,9,9,9,16,16,16].

Indeed, I/O represents a bottleneck in the PF. When build-
ing the analysis Xa, the background Xb is already loaded in
memory. Since Xa is just a reordering of Xb columns based
on s, a reordering of s avoids building a copy of Xb. This
way, Xa is built by an online modification of Xb using two
pointers. Reordering is a growing consideration in the PF
community (Farchi and Bocquet, 2018).
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Code availability. The Crocus snowpack model (including all
physical options of the ESCROC system) and the particle filter al-
gorithm are developed in the framework of the open-source SUR-
FEX project. The source files of SURFEX code are provided at
https://doi.org/10.5281/zenodo.3774861 (Cluzet et al., 2020b) to
guarantee the permanent reproducibility of results. However, we
recommend that potential future users and developers access the
code from its Git repository (http://git.umr-cnrm.fr/git/Surfex_Git2.
git, last access: 15 April 2020) to benefit from all tools of code man-
agement (history management, bug fixes, documentation, interface
for technical support, etc.). This requires a quick registration, and
the procedure is described at https://opensource.cnrm-game-meteo.
fr/projects/snowtools/wiki/Procedure_for_new_users (last access:
4 January 2021). The version used in this work is tagged as
CrocO_v1.0.

Python software called CrocO_toolbox was specifically devel-
oped in order to pre-process, post-process and launch CrocO ex-
periments. It is available on GitHub (https://github.com/bertrandcz/
CrocO, release v1.0 of the master branch, last access: 4 May 2020)
along with documentation.

The article version of CrocO_toolbox is archived at
https://doi.org/10.5281/zenodo.3784980 (Cluzet, 2020). This
software strongly relies on two external Python projects ensuring
file management between the different steps of a simulation
and the interface with the Météo-France HPC system (including
parallelisation and data storage): snowtools and vortex. Their
sources are available at https://doi.org/10.5281/zenodo.3774861
(Cluzet et al., 2020b) (same archive as SURFEX) to guar-
antee the permanent reproducibility of results. However, as
for the SURFEX project and for the same reasons, it is rec-
ommended to access snowtools code from its Git repository
(https://git.umr-cnrm.fr/git/snowtools_git.git, last access: 4 May
2020). The version used in this work is also tagged as CrocO_v1.0.
The vortex project gathers all environment-specific codes of
Météo-France modelling systems relative to its HPC system. For
this project, only the sources specific to this article’s simulations are
provided. Common object inheritance is based on vortex version
1.6.1. The version used in this work is also tagged as CrocO_v1.0
in the vortex Git repository.

Because these software programmes could not be applied outside
the Météo-France HPC environment, CrocO Python software offers
the possibility to run CrocO simulations locally. This functionality
was not used here due to the high numerical cost of our simulations,
which required the use of the Météo-France HPC environment.

Data availability. Input and output data necessary to repro-
duce the simulations and figures in this paper are provided
at https://doi.org/10.5281/zenodo.3775007 (Cluzet et al., 2020c).
This archive includes the SAFRAN reanalyses (also available at
https://doi.org/10.25326/37, Vernay et al., 2021), MOCAGE forc-
ings, namelists, configuration files and spin-up files necessary to
reproduce the simulations. Raw model outputs can be provided on
request, but since they can be up to 500+GB, only post-processed
simulation outputs are provided in this archive, along with scores
and scripts to reproduce the figures in the paper.
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