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Abstract. The present work analyzes the quality and re-
liability of an important class of general-purpose, second-
order accurate finite-volume (FV) solvers for the large-eddy
simulation of a neutrally stratified atmospheric boundary
layer (ABL) flow. The analysis is carried out within the
OpenFOAM® framework, which is based on a colocated
grid arrangement. A series of open-channel flow simulations
are carried out using a static Smagorinsky model for sub-
grid scale momentum fluxes in combination with an alge-
braic equilibrium wall-layer model. The sensitivity of the
solution to variations in numerical parameters such as grid
resolution (up to 1603 control volumes), numerical solvers,
and interpolation schemes for the discretization of nonlin-
ear terms is evaluated and results are contrasted against
those from a well-established mixed pseudospectral—finite-
difference code. Considered flow statistics include mean
streamwise velocity, resolved Reynolds stresses, velocity
skewness and kurtosis, velocity spectra, and two-point auto-
correlations. A quadrant analysis along with the examination
of the conditionally averaged flow field are performed to in-
vestigate the mechanisms responsible for momentum trans-
fer in the flow. It is found that at the selected grid resolutions,
the considered class of FV-based solvers yields a poorly cor-
related flow field and is not able to accurately capture the
dominant mechanisms responsible for momentum transport
in the ABL. Specifically, the predicted flow field lacks the
well-known sweep and ejection pairs organized side by side
along the cross-stream direction, which are representative of
a streamwise roll mode. This is especially true when using
linear interpolation schemes for the discretization of nonlin-
ear terms. This shortcoming leads to a misprediction of flow
statistics that are relevant for ABL flow applications and to

an enhanced sensitivity of the solution to variations in grid
resolution, thus calling for future research aimed at reducing
the impact of modeling and discretization errors.

1 Introduction

An accurate prediction of atmospheric boundary layer (ABL)
flows is of paramount importance across a wide range of
fields and applications, including weather forecasting, com-
plex terrain meteorology, agriculture, air quality modeling,
and wind energy (Whiteman, 2000; Fernando, 2010; Calaf
et al., 2010; Oke et al., 2017; Shaw et al., 2019).

Since the early work of Deardorff (1970), the large-eddy
simulation (LES) technique has spurred considerable in-
sight on the fundamental dynamics of ABL flow over rough
surfaces (Anderson and Meneveau, 2010; Salesky et al.,
2017; Momen et al., 2018), over and within plant and urban
canopies (Yue et al., 2007b; Bailey and Stoll, 2013; Pan et al.,
2014; Tseng et al., 2006; Bou-Zeid et al., 2009; Giometto
et al., 2017; Li and Bou-Zeid, 2019), and for wind energy
applications (Calaf et al., 2010; Abkar and Porté-Agel, 2013;
Stevens and Meneveau, 2017), amongst others.

The majority of the past work has relied on fully or
partially dealiased mixed pseudospectralfinite-difference
(PSFD) solvers — the go-to approach for LES studies since
the works of Moin et al. (1978) and Moeng (1984). Such
solvers are known to yield accurate flow fields up to the
LES cutoff frequency and to produce good results when used
in conjunction with dynamic subgrid scale (SGS) models
(Germano et al., 1991; Lilly, 1992). However, single domain
PSFD-based solvers are limited to regular domains, are not
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suitable for the simulation of nonperiodic flows, have sharp
variations in the flow field such as shocks or fluid—solid in-
terfaces in boundary layer flows, and are typically difficult to
parallelize owing to the global support of their spatial rep-
resentation (see, e.g., Margairaz et al., 2018). With the in-
creasing need to account for complex geometries and multi-
physics, several efforts have been devoted to the mitigation
of the aforementioned limitations (Fang et al., 2011; Li et al.,
2016; Chester et al., 2007). However, the solutions are often
ad hoc or validated only for specific applications, thus intro-
ducing a degree of uncertainty in model results that is hard
to quantify and generalize.

There is hence a growing interest from the ABL commu-
nity in LES solvers based on compact spatial schemes via
structured or unstructured meshes (Orlandi, 2000; Ferziger
and Peric, 2002). The parallelized large-eddy simulation
model (Raasch and Schroter, 2001; Maronga et al., 2015) and
the weather research and forecasting model (Skamarock and
Klemp, 2008; Powers et al., 2017) are prominent examples
of said efforts. Both the approaches are based on a high-
order finite-difference discretization, with nonlinear terms
approximated by using high-order upwind biased differenc-
ing schemes. The latter are suitable for LES in complex ge-
ometries with arbitrary grid stretching factors and outflow
boundary conditions (Beaudan and Moin, 1994; Mittal and
Moin, 1997) but are dissipative and do not strictly conserve
energy. On the other hand, if central schemes are used instead
for the evaluation of nonlinear terms, no numerical dissipa-
tion is introduced, but truncation errors can have an over-
whelming impact on the computed flow field (Ghosal, 1996;
Kravchenko and Moin, 1997). These limitations typically re-
sult in a strong sensitivity of the solution to properties of the
spatial discretization and numerical scheme (Meyers et al.,
2006, 2007; Meyers and Sagaut, 2007; Vuorinen et al., 2014;
Rezaeiravesh and Liefvendahl, 2018; Breuer, 1998; Montec-
chia et al., 2019). Further, truncation errors corrupt the high
wavenumber range of the solution, restricting the ability to
adopt dynamic LES closure models that make use of infor-
mation from the smallest resolved scales of motion to evalu-
ate the SGS diffusion (Germano et al., 1991). Notwithstand-
ing these limitations, central schemes have been heavily em-
ployed in the past in both the geophysical and engineering
flow communities and are the de facto standard in the wind
engineering community, where most of the numerical sim-
ulations are carried out using second-order accurate finite-
volume (FV)-based solvers (Stovall et al., 2010; Churchfield
etal., 2010; Balogh et al., 2012; Churchfield et al., 2013; Shi
and Yeo, 2016, 2017; Garcia-Sanchez et al., 2017; Garcia-
Sanchez and Gorlé, 2018).

Motivated by the aforementioned needs, the present study
aims at characterizing the quality and reliability of an impor-
tant class of second-order accurate FV solvers for the LES
of neutrally stratified ABL flows. The analysis is conducted
in the open-channel flow setup (no Coriolis acceleration) via
the OpenFOAM® framework (Weller et al., 1998; De Vil-
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liers, 2006; Jasak et al., 2007). A suite of simulations is car-
ried out varying physical and numerical parameters, includ-
ing grid resolution (up to 160* control volumes), the numer-
ical solver, and interpolation schemes for the discretization
of the nonlinear term. Predictions from the FV solvers are
contrasted against the results from the Albertson and Par-
lange (1999) PSFD code in terms of flow statistics, including
mean streamwise velocity, resolved Reynolds stresses, two-
point velocity autocorrelations, and mechanisms supporting
momentum transport. The end goal is to provide a more nu-
anced understanding of the capabilities of general-purpose,
second-order, FV-based solvers in predicting ABL flow.

The work is organized as follows. Section 2 summarizes
the setup of the problem, the simulation database, and the
postprocessing procedure. Results are shown in Sect. 3 and
conclusions are drawn in Sect. 4. A further discussion on the
sensitivity of the solution to model constants, interpolation
schemes, and numerical solvers is provided in the Appendix.

2 Methodology
2.1 Governing equations and numerical schemes

We use index notation in a Cartesian reference system. The
spatially filtered Navier—Stokes equations are considered,
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where u; = (u, v, w) is the spatially filtered velocity field
along the streamwise (x), cross-stream (y), and vertical (z)
coordinate directions, respectively, ¢ is the time, p is the
constant fluid density (Boussinesq approximation), p = p +

%tkSkGS is a modified pressure term, t;; is the filtered viscous

stress tensor, and rs.GS’deV is the deviatoric part of the SGS
stress tensor. In addition, the term — % g—g is an imposed con-
stant pressure gradient driving the flow. The spatially filtered
viscous tensor is 7;; = —2vS;;, where v = const is the kine-
matic viscosity of the Newtonian fluid and S;; is the resolved
(in the LES sense) rate of strain tensor. For the SGS stress
tensor, the static Smagorinsky model is used,

fl.ﬁ.GS’deV = 205085, = —2(CsA)?|S]S;) 3)
where 1308 is the SGS eddy viscosity, Cs is the Smagorin-
sky coefficient (Smagorinsky, 1963), A = (AxAyAz)'3 is
a local length scale based on the volume of the computa-
tional cell (Scotti et al., 1993), and |S| =,/25;;S;; quan-
tifies the magnitude of the rate of strain. In the present
work, Cs = 0.1, unless otherwise specified. Note that dy-
namic Smagorinsky models are preferred to the static one
for the LES of ABL flows (Germano et al., 1991; Lilly,
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1992; Meneveau and Lund, 1997; Porté-Agel, 2004; Bou-
Zeid et al., 2005). Dynamic models evaluate SGS stresses
via first-principles-based constraints, feature improved dissi-
pation properties when compared to the static Smagorinsky
model (especially in the vicinity of solid boundaries), and
are free of explicit modeling parameters. The choice made in
the present study is motivated by problematics encountered
when using the available dynamic Lagrangian model in pre-
liminary tests. However, while SGS dissipation plays a cru-
cial role in PSFD solvers, truncation errors may overshadow
SGS stress contributions in the second-order FV-based ones
(Kravchenko and Moin, 1997). The static Smagorinsky SGS
model used herein might hence perform similarly to dynamic
SGS models for the considered flow setup. This conjecture is
supported by the results of Majander and Siikonen (2002).

The large scale separation between near-surface and outer-
layer energy-containing ABL motions poses stringent res-
olution requirements to numerical modelers, if all the en-
ergy containing motions have to be resolved. To reduce the
computational cost of such simulations, the near-surface re-
gion is typically bypassed and a phenomenological wall-
layer model is leveraged instead to account for the impact
of near-wall (inner-layer) dynamics on the outer-layer flow
(Piomelli, 2008; Bose and Park, 2018). This approach is re-
ferred to as wall-modeled large-eddy simulation (WMLES)
and is used herein. An algebraic wall-layer model for sur-
faces in a fully rough aerodynamic regime was implemented
based on the logarithmic equilibrium assumption, i.e.,

it = ”—*m(i) , (4)
K 20

where |it| = ~/u? + v? is the norm of the velocity at a certain
distance from the ground level, u, is the friction velocity (see
Sect. 2.2 for details), « is the von Karman constant, z is the
distance from the ground level, and z is the so-called aero-
dynamic roughness length, a length scale used to quantify
the drag of the underlying surface. In this work, the values
k =0.41 and zg = 0.1 m are set. The kinematic wall shear
stress is assumed to be proportional to the local velocity gra-
dient (Boussinesq hypothesis),

ou; .
TiZ,W:(v+Vt)8_Z|W9 l=-x9y7 (5)

where v; is the total eddy viscosity. Employing the no-slip
condition for the velocity field, the standard FV approxima-
tion of the shear stress at the wall gives (Mukha et al., 2019)

Ujc .
Tiw=@+v)i——, i=x,y, (6)
Az

where the subscript f is used to denote the evaluation at the
center of the wall face, the subscript ¢ denotes the evaluation
at the center of the wall-adjacent cell, and Az is the distance
from the wall. From the logarithmic law (Eq. 4) evaluated at
the first cell center, one can write u, = x|it|c/ ln(f—(f). Using
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the definition of friction velocity i, = /72, where 7y, is the
magnitude of the kinematic wall shear stress vector, along
with Eq. (5), and rearranging, the total eddy viscosity at the
wall can be written as

2

Kltt|c Az

<Az) .
In{ —
20

which is the formulation implemented herein. Note that
v+ v & v in the boundary layer flows in the fully rough
aerodynamic regime, so v could be neglected without loss
of accuracy.

In the present work, the computational grid is colocated,
being the only colocated grid arrangement available within
the OpenFOAM® framework. Note that although advanta-
geous in complex domains when compared to staggered grids
(Ferziger and Peric, 2002), the colocated arrangement is
known to cause difficulties with pressure—velocity coupling,
hence requiring specific procedures to avoid oscillations in
the solution. OpenFOAM® offers the standard Rhie~Chow
correction (Rhie and Chow, 1983), which is known to neg-
atively affect the energy-conservation properties of central
schemes (Ferziger and Peric, 2002). In addition, when ap-
proximating the integrals over the surfaces bounding each
control volume (as a consequence of the Gauss divergence
theorem), the unknowns are evaluated at face centers and
are assumed to be constant at each face, yielding an over-
all second-order spatial accuracy (Churchfield et al., 2010).
Since the divergence form of the convective term is used in
combination with a low-order scheme over a nonstaggered
grid, the solution is inherently unstable (Kravchenko and
Moin, 1997). The present work makes use of the linear and
QUICK interpolation schemes (Ferziger and Peric, 2002) to
evaluate the unknowns at face centers (more details are pro-
vided in Sect. 2.2). The numerical solver is based on the
PISO algorithm (Issa, 1985) for the pressure—velocity calcu-
lation and on an implicit Adams—Moulton scheme for time
integration (Ferziger and Peric, 2002). In Appendix A2, the
performances of an alternative solver with a Runge—Kutta
time-advancement scheme and a projection method for the
pressure—velocity coupling (Vuorinen et al., 2014) are ana-
lyzed.

(M

Vi,f =

2.2 Problem setup

A series of WMLES of ABL flow (open-channel flow setup)
is performed. Tests are carried out in the domain [0, L] X
[0,Ly]x [0, L.] with Ly = 2h, Ly = 37h, L. = h, where
h = 1000m denotes the width of the open channel. Symme-
try is imposed at the top of the computational domain, no-slip
applies at the lower surface, and periodic boundary condi-
tions are enforced along each side. A kinematic pressure gra-
dient term —%% =1 m/s? drives the flow along the x coor-
dinate direction, yielding u, = 1 m/s. The kinematic viscos-
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ity is set to a nominal value of 1077 m? /s, which results in
an essentially inviscid flow.

The computational mesh is Cartesian, with a uniform sten-
cil along each direction. Three simulations are run over 643,
1283, and 160° control volumes, with the linear interpolation
scheme for the evaluation of the unknowns at the face cen-
ters (simulations FV64, FV128, and FV160, respectively).
Three additional simulations are run, at the same grid reso-
lutions, with the linear scheme for the approximation of ev-
ery term except for the nonlinear one, for which the QUICK
scheme is used instead (simulations FV64* FV128%*, and
FV160%*). The cases span different grid resolutions at the
same aspect ratio Ax/Az =2m. Note that the chosen grid
resolutions are in line with those typically used in studies
of ABL flow with the pseudospectral approach (see, e.g.,
Salesky et al., 2017). All the calculations satisfy the Courant—
Friedrichs—-Lewy (CFL) condition C<0.1, where C is the
Courant number. Runs are initialized from a fully developed
open-channel flow simulation in statistically steady state (dy-
namic equilibrium), and time integration is carried out for
100 eddy turnover times, where the eddy turnover time is
defined as h/u,. Flow statistics are the result of an averag-
ing procedure over the horizontal plane of statistical homo-
geneity of turbulence (xy) and in time over the last 60 eddy
turnover times. The procedure yields well-converged statis-
tics throughout the considered cases. In the following, the
horizontal and temporal averaging operation is denoted by
(). The results from the present study are contrasted against
the corresponding ones from the Albertson and Parlange
(1999) mixed PSFD code (simulations PSFD64, PSFD128,
and PSFD160). The code is based on an explicit second-order
accurate Adams—Bashforth scheme for time integration and
on a fractional-step method for solving the system of equa-
tions. Simulations from the PSFD solver are carried out us-
ing a static Smagorinsky SGS model with Cs = 0.1, a rough
wall-layer model with zop =0.1m, and C<0.1. A summary
of the runs is given in Table 1 along with the acronyms used
in this study.

3 Results

This section is devoted to the analysis of velocity central
moments (Sect. 3.1), spectra and spatial autocorrelations
(Sect. 3.2), and momentum transfer mechanisms (Sect. 3.3).

3.1 Mean velocity, Reynolds stresses, and higher-order
statistics

Figure 1 shows first- and second-order statistics for all the
considered cases. The mean streamwise velocity is shown
in Fig. la in a comparison with the phenomenological
logarithmic-layer profile. The velocity at the first two cell
centers off the wall is consistently underpredicted, whereas
a positive log-layer mismatch (LLM) is observed in the bulk
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of the flow (Kawai and Larsson, 2012). The LLM is partic-
ularly pronounced for the cases using the QUICK interpola-
tion scheme. This behavior could have been anticipated, as
the wall shear stress is evaluated using the instantaneous hor-
izontal velocity at the first cell center off the wall. A num-
ber of procedures has been proposed to alleviate the LLM,
including modifying the SGS stress model in the near-wall
region (Sullivan et al., 1994; Porté-Agel et al., 2000; Chow
et al., 2005; Wu and Meyers, 2013), shifting the matching
location further away from the wall (Kawai and Larsson,
2012), and carrying out a local horizontal/temporal filtering
operation (Bou-Zeid et al., 2005; Xiang et al., 2017). In pre-
liminary runs, the approach of Kawai and Larsson (2012)
was implemented in an attempt to alleviate the LLM. How-
ever, no apparent improvement was observed and the solu-
tion became very sensitive to grid resolution and matching
location. This finding suggests that alternative procedures
might need to be devised to overcome the LLM in ABL flow
simulations when using the considered class of FV solvers.
Note that profiles from the PSFD solver also feature a pos-
itive LLM in spite of a spatial, low-pass filtering operation
that is carried out on the horizontal velocity field before eval-
uating the surface shear stress (Bou-Zeid et al., 2005).

The vertical structure of turbulence intensities is also
shown in Fig. 1, where (‘)i{Ms denotes the root mean square
(RMS) of the fluctuations. Profiles from the FV-based solver
start off relatively slow at the wall when compared to those
from the PSFD-based solver and to the reference profile from
Hultmark et al. (2013). This behavior is due to a combination
of SGS and discretization errors, which damp the energy of
high-wavenumber modes and whose accurate quantification
remains an open challenge in LES (see, e.g., Meyers et al.,
2006; Meyers and Sagaut, 2007; Meyers et al., 2007). Fur-
ther aloft, upy (Wgys) features relatively stronger (weaker)
peak values when compared to the corresponding PSFD pro-
file, the overprediction (underprediction) being more appar-
ent in the simulations with the QUICK scheme. The over-
shoot in the peak of up,q is a well-known problem of FV-
based WMLES (Bae et al., 2018). Lack of energy redistri-
bution via pressure fluctuation from shear generated up)q
to Uy and Wiy is the root cause of said behavior, and
possible mitigation strategies include allowing for wall tran-
spiration (Bose and Moin, 2014). Grid refinement shifts the
velocity RMS peaks closer to the surface and increases the
magnitude of the velocity RMS therein, but leads to no im-
provement in the max(ugy) and only marginally improves
the estimation of the max(wﬁMS). A quantitative measure of
the relative error on ug) With respect to the reference profile
”;zMs,ref from Hultmark et al. (2013) in the zo/h <z/h <
0.4 interval is shown in Table 2. The FV-based solver per-
forms worse than the PSFD-based one and the convergence is
not monotonic. Note that nonmonotonic convergence is rel-
atively common in LES at relatively coarse resolutions and
is due to the interaction between discretization and model-
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Table 1. Tabulated list of cases.

Simulation FV64 FVI28 FVIGOD FV64* FV128* FV160* PSFD64  PSFDI28  PSFDI160
Ny xNyxN; 643 128 160> 643 1283 1603 64° 1283 1603
Numerical solver FV ~ FV FV FV+QUICK FV+QUICK FV+QUICK PSFD  PSFD PSFD

0.4
0.3}
Ny
? 0.2¢
1072} e
— 01y
10_3 R [:SFDlSO O N )
10 20 15 0 0.5 1

{u) /u.

Upns/ Us

Vpnis/ Us Wins/ Us

Figure 1. Vertical structure of mean streamwise velocity (u)/us (a), streamwise velocity RMS ”%MS /us (b), cross-stream velocity RMS
U{{MS /us (c), and vertical velocity RMS wﬁMS /us (d). The red line in (a) denotes the reference logarithmic profile and the red line in (b) is

a reference profile from Hultmark et al. (2013).

ing errors, whose impact on the solution cannot be a priori
quantified (Meyers et al., 2007).

Skewness and kurtosis of the streamwise velocity (S, and
K., respectively) are shown in Fig. 2. The profiles of S,
obtained with the FV-based solver and the QUICK scheme
as well as those obtained with the PSFD-based solver are
in good agreement with experimental results from Monty
et al. (2009), here taken as a reference. On the contrary, the
FV-based solver overpredicts S, when the linear interpola-
tion scheme is used, with the skewness remaining positive
throughout the whole extent of the surface layer. Note that
a positive skewness of streamwise velocity represents a flow
field where negative fluctuations are more likely to happen
than the corresponding positive ones. The kurtosis obtained
with the FV-based solver is consistently overpredicted, rep-
resenting a flow field populated by a greater number of ex-
treme events. Again, profiles from all cases feature a non-
monotonic convergence to the reference ones, as shown in
Table 3, where the relative error on skewness and kurtosis
with respect to the measurements from Monty et al. (2009) is
reported in the interval zg/h <z/h <0.4.

3.2 Spectra and autocorrelations

One-dimensional spectra of streamwise velocity fluctuations
(Eyy) are shown in Fig. 3a. The profiles are contrasted
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against the phenomenological production range and inertial
subrange power-law profiles (k~! and k=>/3, respectively).
Predictions from the PSFD-based solver feature a relatively
good agreement with the phenomenological power-law pro-
file, especially at high grid resolution. For example, the cases
PSFD128 and PSFD160 exhibit a slope of —1.2 in the pro-
duction range (here defined as k,z < 1). Profiles from the
FV-based solver, on the contrary, exhibit strong sensitivity to
grid resolution and are unable to capture the expected power-
law behavior. In the production range, velocity spectra from
the FV solver start off relatively shallow at small wavenum-
ber, especially when using the linear scheme. A narrow band
can be identified where E,, ~ (kyz)~!, followed by a rapid
decay in energy density — the decay being particularly pro-
nounced when using the QUICK interpolation scheme be-
cause of the associated numerical dissipation. Overall, the
energy density in the production range and in the inertial
subrange is not well captured by the FV-based solver and
grid refinement does not help circumvent this limitation, at
least at the considered resolutions. The authors note that this
fact might limit the use of dynamic procedures based on the
Germano et al. (1991) identity. A further characterization of
the energy distribution in the wavenumber space is given in
Fig. 3b, where premultiplied velocity spectra ky E, 1} 2 are
shown. The usual reason for considering these quantities is
to create a plot in semi-log scale where equal areas under

Geosci. Model Dev., 14, 1409-1426, 2021
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Table 2. Relative error on the turbulence intensities ”"‘i%MS - "‘i{MS efllz2/1 |”i{MS refll2 W.r.t. the reference profile from Hultmark et al.

(2013) in the interval zg/h <z/h < 0.4.

Simulation FV64 FV128 FV160

FV64*

FV128* FV160* PSFD64 PSFD128 PSFDI160

Relative error on ”%MS 0.23 0.17 0.17 0.28

0.20 0.20 0.10 0.05 0.07

(a)

0.4

-0.5 0 0.5 1
Suu

0.4

0.3

0.2

0.1

Figure 2. Vertical structure of skewness of streamwise velocity (a) and kurtosis of streamwise velocity (b). Lines are defined in Fig. 1. The
red x-marks denote the measurements from Monty et al. (2009), digitalized by the authors.

the profiles correspond to equal energy. In addition, premul-
tiplied spectra provide information on the coherence of the
flow, in particular on the so-called large and very large scale
motions (LSMs and VLSMs, respectively). These structures
are responsible for carrying more than half of the kinetic
energy and Reynolds shear stress and are a persistent fea-
ture of the surface and outer layers of both aerodynamically
smooth and rough walls (Kim and Adrian, 1999; Balakumar
and Adrian, 2007; Monty et al., 2007; Hutchins and Maru-
sic, 2007; Fang and Porté-Agel, 2015). The current domain
is of modest dimensions and is able to accommodate only
LSMs (Lozano-Duran and Jiménez, 2014), which are iden-
tified in premultiplied spectra by a local maximum at the
streamwise wavenumber k, / h = 1. The location of the peaks
from the FV-based solver with linear interpolation scheme
shifts toward higher wavenumber with grid refinement, with
a maximum at ky/h =~ 4 for the FV160 case. This fact sig-
nals a flow field where the streamwise extent of energetic
modes (a.k.a., coherent structures) reduces as the grid is re-
fined. On the contrary, the FV-based solver in combination
with the QUICK scheme predicts the peak in premultiplied
energy density at the expected wavenumber, hence suggest-
ing that this approach is able to capture LSMs. The PSFD-
based solver features a peak at the expected wavenumber
(ky = 1) only at the lowest resolution (PSFD64). Profiles
from the higher-resolution cases feature high energy densi-
ties at the lowest wavenumber, highlighting an artificial “pe-
riodization” of energy-containing structures in the stream-
wise direction. This behavior is linked to the limited horizon-
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tal extent of the computational domain. The authors have in-
deed verified that a larger domain (twice as large along each
horizontal direction) enables one to capture LSMs with the
PSFD solver at resolutions matching the one of the PSFD128
case (not shown). A corresponding single run was carried out
with the FV solver over the said larger domain and premulti-
plied spectra were found to be in good agreement with those
presented herein, supporting the conjecture that the proposed
domain size suffices to capture the range of variability of FV
solvers for the problem under consideration.

To gain better insight on the spatial coherence of the flow
field, the contour lines of the two-dimensional autocorrela-
tion of the streamwise velocity R2D in the xy plane are shown
in Fig. 4. The R2D = 0.1 contour is often used to identify the
boundaries of coherent structures populating the flow field.
The contours from the FV-based solver with linear scheme
(Figs. 4a, d) are representative of a poorly correlated flow
field with a streamwise extent of the R2D = 0.1 contour of
0.5k and 0.1% along the streamwise and cross-stream direc-
tions, respectively. On the contrary, the contours from the
FV-based solver with the QUICK scheme (Fig. 4b, e) depict
a flow field characterized by larger spatial autocorrelation,
in line with results from the PSFD-based solver. Note that
the flow statistics presented above should not be impacted
by the fact that the current domain size prevents some of
the contour lines (simulations FV64*, FV160*, PSFD64, and
PSFD160) from closing, as discussed in Lozano-Durdn and
Jiménez (2014).
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Table 3. Relative error on skewness ||Syy — Syu,meas!|;2/!|Suu,meas!|; 2 and kurtosis || Kyy — Kyu,meas!| ;2 /11 Kuu,meas||; 2 W.r.t. the mea-

surements from Monty et al. (2009) in the interval zo/h < z/h < 0.4.

Simulation FV64 FVI28 FV160 FVe4* FV128* FV160* PSFD64 PSFD128 PSFD160
Relative error on Sy, 1.63 1.77 1.81 0.86 0.75 0.71 0.51 0.57 0.68
Relative error on K,;;,  0.28 0.25 0.25 0.23 0.16 0.15 0.11 0.05 0.04
(a) (b)
0.4 :

10°
kyz

kyh

Figure 3. (a) Normalized one-dimensional spectra of streamwise velocity at z/h =~ 0.1. The solid red line depicts the (ky 21 production
range and (kyz) ™/ 3 inertial subrange scaling. All other lines as in Fig. 1. (b) Premultiplied one-dimensional spectra of streamwise velocity

atz/h~0.1.

The one-dimensional spatial autocorrelation (R,;,), shown
in Fig. 5 along the streamwise and cross-stream directions,
further corroborates the above findings. From Fig. 5a it is
apparent that the extension of the selected domain does not
enable the flow to become completely uncorrelated in the
streamwise direction for the PSFD solver and for the FV
solver using QUICK; R, remains finite in the available r, / h
range across resolutions. On the other hand, profiles from
the FV-based solver using the linear interpolation rapidly de-
cay towards zero. Along the cross-stream direction (Fig. 5b),
profiles from the PSFD-based solver feature the expected
negative lobes, highlighting the presence of high- and low-
momentum streamwise-elongated streaks flanking each other
in the said direction. This behavior is in line with findings
from previous studies on the coherence of wall-bounded tur-
bulence and with standard turbulence theory. Profiles from
the FV-based solver exhibit a similar profile, albeit featur-
ing a more rapid decay and less prominent negative lobes,
especially for the high-resolution cases using the linear in-
terpolation scheme. A quantitative measure of the coherence
of the flow field is provided in Table 4, where the integral
lengths A, , and A, , are reported for all the considered
cases and compared against direct numerical simulations of
a channel flow at Re; = 2000 from Sillero et al. (2014). The
integral lengths in Table 4 are evaluated at z/h = 0.15 since
the data from Sillero et al. (2014) are available at this height.
Although A, , might not be meaningful across the consid-
ered cases, owing to the lack of a zero crossing of the auto-
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correlation function, it is apparent that the FV-based solver
underestimates the integral lengths when compared to the
PSFD cases and the reference DNS values, especially when
the linear interpolation scheme is used.

Instantaneous snapshots of streamwise velocity fluctua-
tions over a horizontal plane support the above findings (see
Fig. 6). Artificially periodized, streamwise-elongated bulges
of uniform high and low momentum are indeed apparent in
the snapshots from the PSFD-based solver (Fig. 6¢, f). On the
contrary, the instantaneous streamwise velocity field from the
FV solver is populated by smaller regions of uniform mo-
mentum, especially when using the linear scheme, and the
size of energetic structures diminishes with increasing grid
resolution (see, e.g., Fig. 6a, d).

3.3 Momentum transfer mechanisms

This section is devoted to the analysis of momentum transfer
mechanisms in the ABL with a focus on quadrant analysis
(Lu and Willmarth, 1973) and on statistics of conditionally
averaged flow fields.

The quadrant hole analysis is a technique based on the de-
composition of the velocity fluctuations into four quadrants:
the first and third quadrants, outward interactions (u' > 0,
w’ > 0) and inward interactions (u’ <0, w’ < 0), respec-
tively, are negative contributions to the momentum flux,
whereas the second and fourth quadrants, a.k.a. ejections of
low-speed fluid outward from the wall (u’ < 0, w’ > 0) and

Geosci. Model Dev., 14, 1409-1426, 2021
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Figure 4. Contours of two-dimensional spatial autocorrelation of streamwise velocity at height z//4 ~ 0.1 from the simulations FV64 (a),
FV64* (b), PSFD64 (c), FV160 (d), FV160* (e), and PSFD160 (f). Contour levels from 0.1 to 0.9 with increments of 0.1.

(a)

ry/h

Figure 5. One-dimensional spatial autocorrelation of streamwise velocity at height z/ 2 & 0.1 along the streamwise direction (a) and along

the cross-stream direction (b). Lines as in Fig. 1.

sweeps of high-speed fluid toward the wall (1’ > 0, w’ < 0),
represent positive contributions. A range of flow statistics can
be defined based on this decomposition and used to provide
insight on the mechanisms supporting momentum transfer in
the ABL.

Figure 7 features the quadrant-hole analysis, where the no-
tation is the same as in Yue et al. (2007a), with H being the
hole size, S; g the resolved Reynolds shear stress contribu-
tion to the ith quadrant at hole size H, and Sijj y 1s the cor-
responding quadrant fraction. Stress fractions are presented
for values of the hole size H ranging from O to 8, where
larger hole sizes correspond to contributions to the resolved

Geosci. Model Dev., 14, 1409-1426, 2021

Reynolds shear stress from more extreme events. Clearly, the
FV-based solver with the linear scheme underpredicts ejec-
tions (Fig. 7a), outward interactions (Fig. 7b), and inward
interactions (Fig. 7¢), and overpredicts sweeps at large hole
size H (Fig. 7d). On the contrary, the FV solver with the
QUICK scheme underpredicts all the profiles except for the
ejections, which are captured fairly well instead (see Fig. 7a).
Note that ejections are violent events, concentrated over a
very thin region in the cross-stream direction of the ABL
(Fang and Porté-Agel, 2015).

To gain insight on the vertical structure of momentum
transfer mechanisms, the exuberance ratio and the ratio of

https://doi.org/10.5194/gmd-14-1409-2021
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Table 4. Integral lengths at height z/h ~ 0.15.

Simulation FV64 FV128 FV160 FV64* FVI28* FV160* PSFD64 PSFD128 PSFD160 Sillero et al. (2014)
Arou/h 0.23 0.12 0.11 0.82 0.59 0.59 1.28 1.50 1.45 2.14
Aryu/h 0.04 0.03 0.03 0.10 0.08 0.08 0.14 0.15 0.14 0.20

G0

: ?.". ud

Figure 6. Instantaneous snapshots of normalized streamwise velocity fluctuations at z/ /4 ~ 0.1 from the simulations FV64 (a), FV64* (b),
PSFD64 (c), FV160 (d), FV160* (e), and PSFD160 (f). The normalized velocity fluctuation is defined as (u — (u)xy)/ux, where averages
(and fluctuations therefrom) are evaluated in space over the selected horizontal plane.

sweeps to ejections are analyzed in the following. Figure 8a
shows the exuberance ratio, defined as the ratio of nega-
tive to positive contributions to the momentum flux, (S0 +
S3.0)/(S2,0+ S4.0) (Shaw et al., 1983). The exuberance ratios
from the PSFD-based solver are larger in absolute value than
the correspondent ones from the FV-based solver across the
whole surface layer except very close to the surface. Profiles
highlight that outward and inward interactions have a signif-
icant impact on the resolved Reynolds stress in the PSFD-
based solver, whereas the flow simulated with the FV-based
solver is characterized by a predominance of sweeps and
ejections. This behavior is consistent throughout the ABL.
Figure 8b shows the ratio of sweeps to ejections at the low-
est portion of the ABL (z/h < 0.4). Profiles obtained with
the QUICK scheme are in line with predictions from the
PSFD-based solver and with findings from measurements of
surface-layer flow over rough surfaces, where ejections are
identified as the dominant momentum transport mechanism
in the ABL (Raupach et al., 1991). On the contrary, the FV-
based solver with a linear scheme tends to favor sweeps over
ejections as the mechanisms for momentum transfer in the
surface layer.

To conclude the analysis on the mechanisms responsible
for momentum transfer, velocity statistics from a condition-

https://doi.org/10.5194/gmd-14-1409-2021

ally averaged flow field are discussed next. The approach of
Fang and Porté-Agel (2015) is adopted to compute the con-
ditionally averaged flow field, where the conditional event
is a positive streamwise velocity fluctuation at Ax/h =0,
Ay/h =0, and z/h =0.5. Figure 9 features a pseudocolor
and vector plot of the conditionally averaged velocity field
in a cross-stream vertical plane for selected cases, whereas
Fig. 10 displays a three-dimensional isosurface thereof. The
flow structure in the equilibrium surface layer is known to
be characterized by counter-rotating rolls and low- and high-
momentum streamwise-elongated streaks flanking each other
in the cross-stream direction. Rolls and streaks are indeed
the dominant flow mechanism responsible for tangential
Reynolds stress (Ganapatisubramani et al., 2003; Lozano-
Durén et al., 2012). As apparent from Fig. 9, the PSFD con-
ditionally averaged velocity field exhibits counter-rotating
patterns associated with positive and negative streamwise
velocity fluctuations (corresponding to the aforementioned
streaks). Throughout the ABL, the roll modes feature a di-
ameter that is consistent with findings from the literature
(d = h). Moreover, positive and negative velocity fluctua-
tions are approximately of the same magnitude (= u,). From
Fig. 10, it is apparent that the considered isosurfaces extend
about 44 along the streamwise direction. Quite surprisingly,

Geosci. Model Dev., 14, 1409-1426, 2021
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(b)

Figure 7. Stress fractions at z/h & 0.1. The profiles are normalized so that the sum of the stress fractions for H = 0 is unity across the cases.

Lines are defined in Fig. 1.
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Figure 8. Vertical structure of event ratios: (a) ratio of negative to positive contributions to the momentum flux; (b) ratio of sweeps to

ejections. Lines as in Fig. 1.

the FV-based solver is not able to predict the roll modes, irre-
spective of the interpolation scheme and grid resolution, and
severely underpredicts the magnitude of the low-momentum
streaks. Further, Figs. 9 and 10 both depict a FV condition-
ally averaged flow field that is poorly correlated along the
cross-stream and streamwise directions, resulting in signifi-
cantly smaller momentum-carrying structures. This fact sup-
ports previous findings from the two-dimensional spatial au-
tocorrelation (Fig. 4). The lack of roll modes implies that the
FV-based solvers used here are not able to capture the fun-
damental mechanism supporting momentum transfer in the
ABL, at least at the considered grid resolutions. This limita-
tion is likely to be the root cause of several of the observed

Geosci. Model Dev., 14, 1409-1426, 2021

problematics associated with the FV-solver solution, includ-
ing the relatively high (low) streamwise-velocity skewness
when using linear (QUICK) schemes (see Fig. 2,a) and the
observed imbalance between sweeps and ejections (Figs. 1
and 8).

4 Conclusions

The present work provides insight on the quality and relia-
bility of an important class of general-purpose, second-order
accurate FV-based solvers for the wall-modeled LES of neu-
trally stratified ABL flow. The considered FV-based solvers

https://doi.org/10.5194/gmd-14-1409-2021



B. Giacomini and M. G. Giometto: On the suitability of general-purpose finite-volume solvers 1419

0.8 = : 1 .08 R s 1
s |F s E
0.2 N b -1 0.2F — T — -1
-2 0 2 -2 0 2
Ay/h Ay/h

Ay/h

Figure 9. Visualization of the conditionally averaged velocity field in the cross-stream vertical plane at Ax/h = 0 from simulations FV64 (a),
FV64* (b), PSFD64 (c), FV160 (d), FV160* (e), and PSFD160 (f). The conditional event is a positive streamwise velocity fluctuation at
Ax/h=0, Ay/h=0, and z/h =0.5. Colors are used to represent the magnitude of the streamwise component and vectors denote the

cross-stream and vertical components.
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Figure 10. Conditionally averaged flow field from simulations FV64 (a), FV64* (b), PSFD64 (c), FV160 (d), FV160* (e), and PSFD160 (f).
The conditional average is computed as in Fig. 9. Red isosurfaces show positive fluctuations (> 0.7, top; > 0.65, bottom); blue isosurfaces

show negative fluctuations (< —0.55, top; < —0.5, bottom).

are part of the OpenFOAM® framework, make use of the
divergence form for the nonlinear term, and are based on a
colocated grid arrangement.

A suite of simulations was carried out in an open-channel
flow setup, varying the grid resolution up to 160> control
volumes, the interpolation schemes for the discretization of
the nonlinear term, the value of the Smagorinsky coeffi-
cient, the pressure-velocity coupling method, and the time-
advancement scheme. Several flow statistics were contrasted
against profiles from a well-established PSFD-based solver
and against experimental measurements when these were
available. Considered flow statistics include mean velocity,
turbulence intensities, velocity skewness and kurtosis, veloc-
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ity spectra, and spatial autocorrelations. An analysis of mech-
anisms supporting momentum transfer in the flow field was
also proposed. The main findings are summarized below.

With the exception of the FV solver with the projection
method and the Runge—Kutta time-advancement scheme,
mean velocity profiles from the PSFD and FV solvers all
feature a positive LLM. Existing techniques to alleviate this
limitation led to no apparent improvement, thus calling for
alternative approaches.

Near-surface streamwise velocity fluctuations are consis-
tently overpredicted by both the PSFD and FV solvers, irre-
spective of the grid resolution. The overshoot is particularly
pronounced for the cases based on the QUICK interpolation

Geosci. Model Dev., 14, 1409-1426, 2021
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scheme. This behavior can be related to a deficit of pressure
redistribution in the budget equations for the velocity vari-
ances, which results in a pile-up of shear-generated stream-
wise velocity fluctuations and deficit in the vertical and cross-
stream velocity fluctuation components.

The interpolation scheme used for the discretization of the
nonlinear term plays a role in determining the remaining flow
statistics. Specifically, FV solvers with a linear interpolation
scheme lead to

— a positive streamwise velocity skewness throughout the
surface layer, which is at odds with experimental find-
ings;

— a severe overprediction of the streamwise velocity kur-
tosis;

— apoorly correlated streamwise velocity field in the hor-
izontal directions, especially at high grid resolutions;

— asevere underprediction of outward and inward interac-
tions and ejection events;

— a lack of organized high- and low-momentum streaks
and associated roll modes in the conditionally averaged
flow field.

Grid resolution either does not affect the above quantities or
leads to larger departures from the expected behavior. The
QUICK scheme, on the other hand, leads to

— an improved prediction of the streamwise velocity
skewness and kurtosis, especially as the grid stencil is
reduced;

— astreamwise velocity field that is more correlated along
the horizontal directions, but integral length scales re-
main only a fraction of those from the PSFD and refer-
ence DNS results;

— an underprediction of inward and outward interactions;

— a lack of organized high- and low-momentum streaks
and associated roll modes in the conditionally averaged
flow field.

To summarize, the considered class of FV-based solvers pre-
dicts a flow field that is less correlated than the one obtained
with the PSFD solver and does not capture the salient mecha-
nisms responsible for momentum transfer in the ABL, at least
at the considered grid resolutions. These limitations appear
to be the root cause of many of the observed discrepancies
between FV flow statistics and the corresponding PSFD or
experimental ones, including the mispredicted streamwise-
velocity skewness (Fig. 2a), the imbalance between sweeps
and ejections (Figs. 1 and 8), and the overall sensitivity of
flow statistics to variations in the grid resolution. Higher grid
resolutions might help alleviate some of these shortcomings,

Geosci. Model Dev., 14, 1409-1426, 2021

but given that grid resolutions used herein are state-of-the-
art for general-purpose FV-based solvers and that computing
power increases relatively slowly with time (Moore, 1965),
the aforementioned limitations are likely to persist for years
to come, thus introducing a degree of uncertainty in model
results that needs to be addressed. These limitations call for
research aimed at reducing the impact of discretization errors
in this class of solvers, or for alternative approaches such as
using discretizations based on staggered grid arrangements
and higher-order spatial discretization schemes.

https://doi.org/10.5194/gmd-14-1409-2021
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Appendix A served near-surface peaks (Fig. A3b) whereas wg)q is over-
predicted above z/h = 0.15 (Fig. A3c).
Al Smagorinsky constant

We here test the sensitivity of selected flow statistics to vari-
ations in the Smagorinsky constant Cs. The values Cs = 0.1,
Cs =0.12, Cs =0.14, Cs = 0.16, and Cs = 0.1678 (the de-
fault value in OpenFOAM®) are considered, and all tests are
carried out at 64% control volumes.

As shown in Fig. Ala, the Smagorinsky constant has a rel-
atively important and nonmonotonic impact on the mean ve-
locity profile. The case at Cs = 0.1 results in the largest posi-
tive LLM, in agreement with the predictions from the PSFD-
based solver, whereas the cases at larger Cg exhibit a smaller,
albeit still positive, LLM. The Smagorinsky coefficient also
has a discernible impact on the velocity RMSs. Specifically,
as Cg is increased, the magnitude of the near-surface maxi-
mum for both upy¢ (Fig. Alb) and wp,,s (Fig. Alc) is re-
duced, and the location of the maximum is shifted away from
the surface — possibly the result of a higher near-surface en-
ergy dissipation. In addition, larger values of Cs yield a more
apparent departure from the corresponding profiles obtained
with the PSFD-based solver.

The one-dimensional spectra (Fig. A2a) show that larger
values of the Smagorinsky coefficient result in a more rapid
decay of energy density and in a shift of profiles toward
the inertial subrange. No value of the Smagorinsky coef-
ficient seems suitable for capturing the k' power law in
the production range of turbulence. Increasing Cs leads to
a modest improvement in the two-point autocorrelation pro-
files (Fig. A2b, c).

A2 Solvers

The performance of an alternative solver within the
OpenFOAM® framework is considered here, and the re-
sults are contrasted against those previously shown (obtained
with the PISO algorithm in combination with an Adams—
Moulton time-advancement scheme). The solver is based on
a projection method coupled with the Runge—Kutta 4 time-
advancement scheme (Ferziger and Peric, 2002). Details on
the implementation can be found in Vuorinen et al. (2015).
The performances of the two solvers are compared at mod-
erate Reynolds number in Vuorinen et al. (2014), where it
is pointed out that the projection method coupled with the
Runge—Kutta 4 time-advancement scheme provides similar
results at lower computational cost. In the following, the per-
formances of the solver are tested for the considered ABL
flow. Two grid resolutions are considered based on 64> (case
FV64RKp) and 1283 (case FV128RKp) control volumes.
The vertical profile of the mean streamwise velocity is
shown in Fig. A3a. The use of the projection Runge—Kutta
4 solver leads to an underprediction of the velocity at the
wall as for the simulations FV64 and FV128, but no apparent
LLM in the surface layer. ug),q exhibits the previously ob-
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