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Abstract. In this paper, we present a new version of
PLUME-MoM, a 1-D integral volcanic plume model based
on the method of moments for the description of the poly-
dispersity in solid particles. The model describes the steady-
state dynamics of a plume in a 3-D coordinate system, and
a modification of the two-size moment (TSM) method is
adopted to describe changes in grain size distribution along
the plume, associated with particle loss from plume margins
and with particle aggregation. For this reason, the new ver-
sion is named PLUME-MoM-TSM. For the first time in a
plume model, the full Smoluchowski coagulation equation is
solved, allowing us to quantify the formation of aggregates
during the rise of the plume. In addition, PLUME-MOM-
TSM allows us to model the phase change of water, which
can be either magmatic, added at the vent as liquid from ex-
ternal sources, or incorporated through ingestion of moist at-
mospheric air. Finally, the code includes the possibility to
simulate the initial spreading of the umbrella cloud intruding
from the volcanic column into the atmosphere. A transient
shallow-water system of equations models the intrusive grav-
ity current, allowing computation of the upwind spreading.

The new model is applied first to the eruption of the Cal-
buco volcano in southern Chile in April 2015 and then to a
sensitivity analysis of the upwind spreading of the umbrella
cloud to mass flow rate and meteorological conditions (wind
speed and humidity). This analysis provides an analytical re-
lationship between the upwind spreading and some observ-
able characteristic of the volcanic column (height of the neu-
tral buoyancy level and plume bending), which can be used
to better link plume models and volcanic-ash transport and
dispersion models.

1 Introduction

In the last years, the simulation of ash dispersal in the atmo-
sphere has become an ordinary activity for volcanic obser-
vatories and meteorological offices. Volcanic ash represents
one of the major hazards associated with explosive eruptions,
affecting both the proximity of the volcanic vent, where it can
damage vegetation and infrastructures, and pose a health risk
to people, and the surrounding atmosphere, requiring effec-
tive and prompt actions to regulate flights near the ash plume
(Bonadonna et al., 2021).

In order to properly model the transport of ash and its
associated deposition on the ground, it is important to pro-
vide the correct inputs to volcanic-ash transport and dis-
persion (VATD) models, and so far the best approach has
been to use the output of numerical models simulating the
rise of volcanic columns up to the neutral buoyancy level,
where ash clouds transported by the wind spread in the at-
mosphere. Column models can be broadly categorized in
two classes: one-dimensional (1-D) integral models (Bursik,
2001; Mastin, 2007; Degruyter and Bonadonna, 2012; De-
venish, 2013; Woodhouse et al., 2013; de’ Michieli Vitturi
et al., 2015; Folch et al., 2016) and three-dimensional (3-
D) models (Oberhuber et al., 1998; Suzuki and Koyaguchi,
2009; Cerminara et al., 2016; Ongaro et al., 2007). A recent
intercomparison exercise (Costa et al., 2016) has shown that
1-D and 3-D models, notwithstanding that the formulations
are different, produce consistent predictions of some of the
more relevant quantities describing volcanic plumes, as, for
example, the neutral buoyancy level. For this reason, in oper-
ative contexts where multiple scenarios have to be considered
and the simulation time is an important constraint, 1-D mod-
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els are still preferred. This class of models is based on the
theory of turbulent buoyant plumes, as introduced by Morton
et al. (1956), and it has been first applied in the volcanic con-
text by Sparks (1986) and Woods (1988), who modeled the
rising plume as a homogeneous mixture of gas and ash par-
ticles. Later works incorporated additional processes, such
as the effects of moisture (Woods, 1993; Mastin, 2007) and
ambient wind (Bursik, 2001).

Despite the relatively high number of integral models de-
veloped in the past couple of decades, some important fea-
tures of volcanic plumes have been neglected so far, or
they have not been considered together in a single model.
Most notably, only a few models account for the thermo-
dynamic phase relations for water (Herzog et al., 1998). As
pointed out in several works (Koyaguchi and Woods, 1996;
Woods, 1993; Sparks et al., 1997; Mastin, 2007), the pres-
ence of water, coming both from entrainment during some
Surtseyan eruptions (Pdrarinsson, 1967) or from entrainment
of water-saturated air (Graf et al., 1999), and the thermody-
namics of condensation and evaporation, can strongly affect
the rise and collapse of strong volcanic plumes. Conversely,
in Woodhouse et al. (2013), it is shown that for small weak
plumes, the effect on height of external humidity entrained in
the eruption column is almost negligible when compared to
the role played by the uncertainty in parameters like source
buoyancy flux, atmospheric stratification, and wind.

Another process that is frequently disregarded in the mod-
eling of volcanic plumes is solid particle aggregation (Brown
et al., 2012). So far, the number of works quantitatively de-
scribing aggregation processes in an eruption column is lim-
ited (Veitch and Woods, 2001; Textor et al., 2006b, a; Brown
et al., 2012; Folch et al., 2016; Kiinzli et al., 2018; Rossi
et al., 2018). This is because this process is quite complex,
from both physical and modeling perspectives, requiring a
careful treatment of the evolving grain size distribution. In
fact, aggregation leads to the formation, from fine ash, of
coarser particles, resulting in larger settling velocities than
the primary particles and thus with an increased fallout of
fine ash from the plume margins. A proper treatment of ag-
gregation is thus important to predict the effective grain size
distribution of solid particles reaching the neutral buoyancy
level and then advected by the wind into the atmosphere.

For sustained eruptions, when neutral buoyancy level is
reached, the eruptive mixture still has a vertical momentum,
allowing the column to further rise and then to collapse as
a gravity current spreading into the atmosphere (see Fig. 1).
During the eruption of Mount St. Helens on 18 May 1980,
this phenomenon was clear, and satellite data were used by
Sparks (1986) to validate a simple model of umbrella spread-
ing based on continuity of mass flow rate. For large mass
eruption rates, this spreading can lead to an important ra-
dial expansion, including upwind transport, which is some-
times omitted in numerical simulations making use of cou-
pled column and VATD models. In Costa et al. (2013), an
analytical model describing the spreading of the umbrella
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Figure 1. The 4 December 2015 paroxysm plume from Voragine
crater at Mt. Etna, as viewed from Cesaro (Messina) at 09:27 GMT.
Photo by Giuseppe Famiani. The volcanic column rose vertically
and then spread horizontally at the neutral buoyancy level in all the
directions.

cloud as a gravity current was coupled with an advection—
diffusion—sedimentation model, and the conditions under
which gravity-driven transport were analyzed. Baines (2013)
studied the dynamics of this gravitational spreading into a
density-stratified crossflow, deriving a semi-analytic model
able to produce a good description of the behavior of the ash
cloud in the proximity of intrusion from the column. A dif-
ferent approach to model the spreading of the umbrella cloud
is presented in Johnson et al. (2015) where, following the
work of Ungarish and Huppert (2002), the flow is modeled
as a transient shallow-layer gravity current subject to gravita-
tional forces and drag between the current and the surround-
ing atmosphere. The results of Johnson et al. (2015) show
that the current spreads in a different way from what was
suggested by simple scaling arguments in previous works,
such as that of Costa et al. (2013). The same approach is
used in Pouget et al. (2013, 2016), where the results of a
“shallow-water” model are compared with satellite observa-
tions in order to estimate growth rates and mass fluxes. More
recently, Folch et al. (2016) adopted a simple semi-empirical
model to describe the umbrella region, and their results are
qualitatively consistent with the results obtained with more
complex 3-D numerical codes (Costa et al., 2016). A simple
approach is also presented in Webster et al. (2020), where a
parameterization is used to model the lateral spread of the
umbrella and to correct the initial conditions for transport
and dispersion in the Lagrangian model NAME, resulting in
substantial improvements to ash cloud predictions for large
explosive eruptions.

In this work, we extend the original PLUME-MoM model,
which is the first volcanic plume model based on the method
of moments for the description of the polydispersity in solid
particles, by adding all the important features described
above: phase transition of water, particle aggregation, and
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umbrella cloud spreading. The model is first applied to the
April 2015 Calbuco eruption in Sect. 3.1, by comparing sim-
ulation results with observations to constrain some model
parameters. Then, in Sect. 3.2, a sensitivity analysis is per-
formed with the newly developed model in order to obtain
a relationship first between eruption parameters and the up-
wind spreading of the umbrella cloud first, and then between
the latter and other parameters characterizing the plume.

2 Model equations

In this section, we present the equations solved by PLUME-
MoM-TSM. First of all, the new formulation for the descrip-
tion of the particle size distribution, based on the method of
moments, is presented in Sect. 2.1. Then, in Sect. 2.2, the
steady transport equations for the plume are derived from
conservation principles (mass, momentum, and energy). The
equations for the phase transition of water and the shallow-
water equations describing the spreading of the umbrella
cloud are finally presented in Sect. 2.3 and 2.4, respectively.

2.1 Solid particle number density function

As previously stated, particle aggregation is a complex pro-
cess and its modeling requires an accurate description of the
particle size distribution within a column and of its changes
during the rise of the volcanic mixture. While particle fall-
out from the plume margin changes the size distribution but
does not modify the size spectrum, aggregation leads to the
formation of coarser particles, whose size was not present in
the initial size distribution erupted at the vent. Furthermore,
when a discretization in bins is employed to describe the vari-
ability in size, computational problems arise in the model-
ing of aggregation processes, because particles belonging to
two bins of the original distribution could form an aggregate
whose size is not represented in the chosen discretization. In
this work, we try to solve these problems in the description
and modeling of polydispersity in size of solid particles by
adopting the method of moments.

In the first version of PLUME-MoM (de’ Michieli Vitturi
et al., 2015), the quadrature method of moments (QMOM)
was used to model the polydispersity of tephra. According
to the QMOM (Marchisio et al., 2003; Marchisio and Fox,
2013; Colucci et al., 2017), the particle size distribution is ap-
proximated from the moments as a sum of Dirac delta func-
tions, which is particularly convenient for evaluating the in-
tegrals appearing in the closure terms of the moments trans-
port equations. When aggregation processes are considered,
QMOM provides an effective alternative to the sectional (or
“discrete”’) method, where the size spectrum is partitioned in
discrete bins. Its advantages are a limited number of variables
and the dynamic calculation of the more representative sizes
within the distribution. The main disadvantage is that, given
the moments of a distribution, it is not possible to retrieve
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the amount of mass associated with a size interval. This rep-
resents a problem when the output of a plume model is used
as input of a model for transport and deposition of ash in the
atmosphere.

To cope with this problem, we describe here a hybrid
method combining the advantages of the sectional and mo-
ment methods. With this hybrid approach, the size spectrum
is still partitioned in sections (or bins), and then the transport
equations for a limited number of moments for each section
are solved. The number density function (NDF) is then rep-
resented by using a piecewise reconstruction, continuous on
each section. Among these hybrid methods, in several engi-
neering contexts, like spray modeling, the two-size moment
(TSM) method has proven to produce good results for size
reduction simulations (i.e., evaporation) and for coalescence,
by using in each section a second-order accurate reconstruc-
tion of the NDF from the first two moments (Nguyen et al.,
2016), leading also to a good representation of the NDF with
a small number of sections. For this reason, TSM is a good
candidate for the modeling of the aggregation processes oc-
curring in the volcanic column. In this paper, we introduce
a modified version of the TSM method presented in Nguyen
et al. (2016). While in the original formulation the internal
variable is the size (described by the volume or the radius)
of the particles and in each section two moments of the size
distribution are used to reconstruct the NDF with a linear
function of the size (hence the name “two-size moment”),
here the NDF is defined as a function of particle mass. This
greatly simplifies the formulation when aggregation is con-
sidered: two particles of mass (M and M>, respectively) ag-
gregate in a new particle of mass (M = M + M>). In ad-
dition, while in Nguyen et al. (2016) for some section the
support of the linear reconstruction (the subset of the sec-
tion containing the elements which are not mapped to zero)
can be smaller than the section width (which means that the
existing particles size spectrum do not cover entirely the re-
spective section), we switch here from a linear reconstruction
to a power law in these sections, with zero value at one of the
boundaries of the section. The advantages of this approach
will be explained in detail in the following.

The starting point of the TSM method is the partition of
the size spectrum into n sections (or bins). Here, given a
maximum size ¢y and a size increment A¢, we define a
uniform partition ¢; = ¢o+iA¢, i =0,...,ng, in the non-
dimensional Krumbein ¢ scale:

) 1000- D {
¢ = —logy Dy 1
where D is the diameter of the particle expressed in meters,
and Dy is a reference diameter, equal to 1 mm (to make the
equation dimensionally consistent). Given the particles’ den-
sity p = p(¢) and their sphericity, it is possible to associate
to each size of the original partition ¢; the corresponding par-
ticle mass m; and thus to obtain a partition of the particles’
mass spectrum in ng sections corresponding to the n¢ bins in
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the Krumbein scale. In this way, the internal variable char-
acterizing the variability of the particle population becomes
the mass, and its variability can be characterized by the solid
particles’ number density function (NDF), here denoted by
n(m, x, t). This function, which is formally a mass distribu-
tion, represents the number of solid particles per unit volume
of the gas—particle mixture in the infinitesimal mass interval
[m; m + dm] at the location x in space and at time ¢ (accord-
ing to this definition, the number density function n(m, x, t)
has units L=3 M_l). With this choice, when we integrate the
number density function in a fixed control volume V and over
a mass interval [m, my], we obtain the number of particles
in V at time ¢t with mass between m and m>.

We introduce the following notation for the jth moment of
the number density function 7:

+00
) = / n(m, x, ymidm. @
0

We observe that in the notation of the moment on the left-
hand side of the equation we dropped the explicit dependence
from x and ¢. Also in the rest of the paper, for the sake of sim-
plicity, we will use without ambiguity the notation without x
and ¢ to denote the moments, even when they vary in space
and time.

One important property of the NDF that is adopted is that
its moments correspond to quantities that have meaningful
physical interpretations and are therefore, at least in prin-
ciple, directly measurable in the field, as well as in experi-
ments. For example, we observe that the moment of order 0,
m©, represents the total number of solid particles per unit
volume of the mixture, while the moment of order 1, m(,
represents the total mass of solid particles per unit volume
of the gas—particle mixture, i.e., the bulk density of the solid
particles, here denoted by plf . From a physical point of view,
these moments are commonly the main variables of inter-
est, since when there is no aggregation the global moment of
order 0 is conserved, while with aggregation the global mo-
ment of order 1 is conserved. In addition, dividing the first
moment by the average solid particle density, we obtain the
volume fraction of particles with respect to the volume of the
gas—particle mixture.

As previously stated, the mass spectrum is partitioned in n
sections, and we can define the local moments of orders 0 and
1 on the kth section defined by the mass interval [m_1, my]:

mp

Ni(x,t) = / n(m,x,t)dm, My (x,t)

mi—1

my

= / n(m,x,t)ymdm. 3)

mi—1

Also in this case, the local moments have an important phys-
ical interpretation. In fact, the local moments of order 1 M
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represent the mass within each mass section per unit vol-
ume of the mixture, and thus, when normalized, they give
the total grain size distribution. Solving appropriate transport
equation for the moments My allows one to describe the evo-
Iution of the total grain size distribution within the plume.
We observe that, conversely to the global moment of order
1, the local moments of order 1 are not conserved by aggre-
gation, because mass moves from sections corresponding to
finer particles to sections corresponding to coarser ones.

The local moments of other quantities v (m) which depend
on particle mass, as, for example, the density, or the settling
velocity, can be defined in terms of the continuous number
density function n(m) as

my
v = f W (m)m' n(m)dm. )

1

m@®

My
This term has the same units of i/ (m) and represents its in-
tegral average, weighted differently according to the order of
the moment. For example, W;E represents the average of ¢
in the mass interval [my_1,my] weighted by the number of
solid particles, while w,gl represents a mass-weighted aver-
age in the same interval.

When the moments of the number density function n are
known for each section but not the actual expression of 7, the
integral in Eq. (4) must be approximated with a quadrature
formula. To do this, we need the “weights” and the “nodes”
(or “abscissae”) of the quadrature. Here, we use an approach
based on the Gauss—Legendre quadrature, which can be writ-
ten as

1
n
/ Fdx Y o f (), (5)
e i=1

where the ith node x; is the ith root of the Legendre polyno-
mial P, (x) and the weights w; are given by the Abramowitz—
Stegun 1972 formula (Abramowitz and Stegun, 1965). This
n-points quadrature formula is exact for polynomials of de-
gree 2n — 1 or less. From these quadrature nodes and weights
defined for the standard interval [—1, 1], it is possible to com-
pute the nodes and weights for the integral over the interval

[mg—1, mg]:

mig n
f FOOdx ~ Y i f (Fai). 6)
my_y i=1
where
Wk,i = D= Mkt w;
’ 2
g = T LT ™

With this approach, when the integrand of Eq. (4) changes
(for example, because the number density function, i.e., the
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mass distribution, changes in space or time), there is no need
to re-evaluate the quadrature nodes and weights, which de-
pend only on the interval and can be computed in advance.
The only thing to update is the value of the integrand at
the quadrature points. In the TSM approach, as presented
in Nguyen et al. (2016), the number density function 1 (m)
is approximated in each section by a linear function. Here,
non-linear approximations =~ 1jg (m) of the number density
function are considered. On each section k, a continuous re-
construction is assumed:

Mk (m), ®)

where three possible continuous reconstructions are used for
each 7y (m), as illustrated in Fig. 2:

n(m)|me[mk_1,mk] = ﬁk(m) ~

1k (m)
— Yk
I:/gk (%) ] l[mk,l,mk](m)

= I:ak + (ﬂk - O5k) s ] l[mk,l,mk](m) CASE 2 (9)

mg—mg—|

_ Yk
[k ()™ | gy o)

The parameters o, B (representing the values of the re-
constructed function at my_1 and my), and y; are computed
in order to have

CASE 1

CASE 3

A0 =N, 7Y =M. (10)

In this way, the domain of each function 7 (m) is always the
whole kth section, and there is no need to update the quadra-
ture nodes. Further details on the selection of the case and
the computation of the parameters oy and S are given in
Appendix A.

So far, we presented the TSM approach for a single family
of particles. When more than one particle family is consid-
ered (for example, if we consider aggregation and we want
to distinguish between aggregated and non-aggregated parti-
cles), the subscript i, is used to distinguish the different num-
ber density functions n;,(m),ip =1,...,np, where np is the

number of particles families. Slmllarly, the notation m(j )

introduced for the jth moment of the ipth number dens1ty
function, and the notations Ni, .k and Mi, i for the number
and mass of particles of the ipth family in the kth section,
respectively.

2.2 Plume equations

In this section, we present the set of conservation equations
describing the steady rise (d /dt = 0) of the volcanic mix-
ture through the atmosphere. The model we present, based
on the buoyant plume theory of Morton et al. (1956), is a 1-
D integral model where plume properties are averaged over
cross-sections. As in Bursik (2001), the model assumes a ho-
mogeneous mixture of different phases with thermal and me-
chanical equilibrium among all of them. In this version of the
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model, in addition to air and solid particles, we also explic-
itly model the presence of water, which can be in gas, liquid,
or solid state, and the presence of additional volcanic gases,
such as CO; and SO; (transported as passive components).
The equation set for the plume rise model is solved in a 3-D
coordinate system (x, y, z) centered horizontally at the plume
base location and vertically at the sea level. The plume is as-
sumed with a circular section with radius r, parallel to the
horizontal plane (x, y) and orthogonal to the vertical coordi-
nate z (see Fig. 3).

In the (x, y, z) coordinate system, we denote u, v, and
w as the three components of plume velocity, and Uy =
~/u? +v2 4 w? its magnitude. Furthermore, we define ¢ as
the angle between the axial direction and the horizontal
plane, for which the following relationship holds:

w
VuZ 02

We also consider the presence of a horizontal atmospheric
wind, with velocity components u,, v,, and magnitude Upn.
Because of the wind, the location of the centers of the hor-
izontal sections, which defines the plume centerline, can be
bent, and the following equations hold for the centerline co-
ordinates xg, ys, Zs:

tan¢ =

dx u  dys v dzg
—_— ===, = =uw. (11)
dz w dz w dz

When more than one particle family is considered, they
are denoted by the subscript i, =1, ...,n,; in addition, if ag-
gregation is considered, we use the first np, — 1 indexes for
the original particles and the last one for the aggregated par-
ticles. With this notation, for the particles with mass m of the
family i},, we can write the following equation for the verti-
cal mass flux through a horizontal cross-section of the plume
(see Fig. 3):

d
oz (miom. 7 w) = —2wrpwi, (m)-miy (m.2) + 83,0 (12)

where both the plume radius r and the vertical component
of the plume axial velocity w vary with the vertical coordi-
nate z. Equation (12) describes the variation with the vertical
coordinate z of the mass flux of particles of size m, due to
fallout of tephra (first term on the right-hand side) and aggre-
gation (second term on the right-hand side, S;,). Here, w;, (-)
is the particle settling velocity (see Appendix B2) and the co-
efficient p, which is a function of the radial entrainment coef-
ficient o, expresses the probability that an individual particle
will fall out of the plume (Bursik et al., 1992):

2
. (1+§a>2—1. )
(1+8) +1
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CASE 1
power law
P

particle number
density function

' CASE 3
iy power law
==

linear

Figure 2. Piecewise reconstruction of the number density function from the local moments. The values of the first two moments in each
section (plotted on the two bar plots on the left) are used for the reconstruction of the piecewise continuous density function. The function is

linear in the internal sections and a power law at the boundaries.

2
neutral buoyancy __
Ty 7 level /
——

IS
z (km)

X (k) 10

Figure 3. Schematic view of the plume. The dashed line represents
the centerline of the plume. The horizontal circles indicate the sec-
tions over which plume variables are averaged. The green circle rep-
resents the plume section at the neutral boundary level.

The last term on the right-hand side of Eq. (12) repre-
sents the aggregation term which, following Smoluchowski
(1917), can be written as

np +00
Sip(m, 2)=—ar* Y (m,,(m,z) / ﬂ(z,m,m’)mp(m’,z)dm/)
0

Ip=1

ip=1,....np—1 (14)
5 p  Mp 1 "

Sup(m,2) =7r Y (Y Efﬂ(z,m—m’,m/mp
=1 kp=1""7

(m - m/v Z)nkp (m/’ Z)dm/

+00
—nnp(m,Z)/ﬂ(z,m,m/)nzp(m/,Z)dm/), (15)
0
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where B(z,m, m’) is the aggregation (or coagulation) kernel
describing the rate at which a particle of mass m aggregate
with a particle of mass m’. The equations state that the ag-
gregation of particles of mass m and m’, forming a particle of
mass m +m’, are proportional to the number density of parti-
cles of such masses (1(m) and n(m’)) and to the aggregation
kernel. The negative term on the right-hand side of the first
equation represents the loss of solid particles of the original
families due to aggregation. The positive term on the right-
hand side of the second equation represents the increased
number of particles of mass m at the vertical coordinate z
due to aggregation of smaller particles. The aggregation ker-
nel can be defined as the product of two quantities: the “colli-
sion frequency” between particles of mass m and m’ and the
“efficiency of aggregation” (i.e., the probability of particles
of mass m coalescing with particles of mass m’ when collid-
ing). In PLUME-MoM-TSM, several aggregation kernels are
implemented, from simple constant kernels to more complex
formulations describing wet aggregation, where the collision
frequency depends on particles properties (size, density) and
the efficiency of aggregation depends on the amount of water
in the mixture (see Appendix B3).

Let us consider now a mass interval €2, which can be the
whole solid particle mass spectrum or a smaller subset, as
the kth section for the family i,, defined by [m,'p,k_l, mip’k].
Multiplying Eq. (12) by m' and integrating over €2, we obtain
the following differential equations for the moments:

d/ @ > @) @), o)
£< i, wr ) = —2rpwl.p m, —i—Sl.p , (16)
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where the last term is defined by

+00
8 = nﬂZ]/mW¢ma{/ﬂmmmm%
0

=1

(m', z)dm’dm)

ip=1,...,np,—1 an
ilp
(’)—anZ(Z //(m—l—m)ﬂ(z m,m’)
=1 kp=1

i, (m, 2) i, (m’, z)dmdm

+o00
= [z [ pemnmy o' amam. s
0

Q

with @ = {(m,m’) > 0|(m + m’) € Q}. The set Q represents
the set of couples of particles which form, when aggregating,
particles with mass in the interval €2.

Let us consider now the kth section for the family ip, de-
fined by [m,‘p,k_l,m,'p,k]. Fori =0andi =1, Eq. (16) gives
the equations governing the evolution of the number of par-
ticles and mass of particles of the family ip in the kth mass
interval per unit volume of the mixture, respectively:

d 2 ©) (0
d_z (Nip,kwr ) = —2rpw N; ookt S.p,k (19)
d 2 M oD
o (M,-p,kwr ) = —2rpwip M;, k + Sip,k' (20)

We remark that so far we have written a general form of the
moment equations, which are valid independently from the
particular approach used to solve them (QMOM or TSM). As
previously stated, when the TSM method is adopted, the in-
tegral terms on the right-hand side of the two previous equa-
tions (w and S k) are calculated first by reconstructing the
continuous number density functions in each section from
the known moments (number and mass of solid particles in
the kth section per unit volume of the mixture) and then ap-
proximating the integrals with the Gauss—Legendre quadra-
ture formulas.

We also observe that when the equations for the mass of
particles are added together (summed over the particles fam-
ilies and over the sections), the aggregation terms cancel out,
and the following transport equation is obtained:

dZ ZZM,]) pwr? :—erZZw(l) ipks (21

ip=1k=1 ip=1k=1

which gives the total mass of solid particles per unit volume
of the mixture lost because of particle sedimentation from the
plume.

The right-hand side of the previous expression can be used
in the mass conservation equation for the volcanic mixture
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accounting for air entrainment and particle sedimentation,
which writes as

d

e (pmlxwr ) =2r pamUe —2rp Z Zw, My, (22)
ip=1k=

where p,m is the density of the atmosphere and U is the
entrainment velocity defined as in Hewett et al. (1971):

Ue = ae|Usc — Uam €08 & | + Ve |[Uamm Sin g |.

In the previous equation, o¢ |Usc — Uy cOs ¢ | is entrainment
by radial inflow minus the amount swept tangentially along
the plume margin by the wind, and y,|Uqam Sin¢ | is entrain-
ment from wind. Equation (22) states that the variation of
mass flux along the plume axis (left-hand-side term) is due
to ingestion of atmospheric air into the column (first right-
hand-side term) and loss of particles from the column mar-
gins (second right-hand-side term).

The horizontal and vertical components of the momentum
balance are derived from Newton’s second law and the vari-
ation of mass flux as

d 1

dz (Pmlxwr2”> =2rUctte patm — 2upr Z Zw( ) sz ks (23)
1p—lk

d

d <pm1xwr U) = 2rUe Ve patm — 2vpr Z Zw ko (24)
ip=1k=1

and

p  ng

;Z(pmlxw ”) 8gr (patm pmlx)_zwprzzw ok (25)

ip=lk=1

Along the horizontal directions (Eqs. 23 and 24), the mo-
mentum of the eruptive mixture varies due to the wind (first
right-hand-side term) and the loss of particles (second right-
hand-side term), while along the vertical axis (Eq. 25) mo-
mentum is affected by the gravitational acceleration term and
the fallout of particles.

Mixture temperature Tpix varies when the plume rises, and
in this version of PLUME-MoM temperature, in a manner
similar to that described in Folch et al. (2016), is computed
from the total specific energy of the mixture E, defined as
the sum of mixture specific enthalpy, potential energy, and
kinetic energy as

1
E=H+gz+§UEC. (26)

The specific enthalpy of the mixture H is written as the mass-
weighted average of the enthalpies of its components:

H = x43Catm Tiix + XsCs Tmix + Xwy (hwvo + Cwy (Tiix — Tref))
+x1w (hiwo + Ciw (Tmix — Trer)) + %i Ci Tnix + xvgcvg Thix-» (27)

where the terms on the right-hand side express the contri-
butions to mixture enthalpy of dry air, solid particles, water
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vapor, liquid water, ice, and other volcanic gases, respec-
tively. All the mass fractions are denoted by the notation
x() and they refer to the mass fraction of the component
(-) with respect to the whole mixture. Similarly, the nota-
tion C, is used to represent the specific heat capacities at
constant pressure of the different components. In Eq. (27),
hwyvo and hp,o are the enthalpies at a reference tempera-
ture (Tref = 273.15 K) per unit mass of water vapor and lig-
uid water, respectively. The values of specific heat capaci-
ties and enthalpies at a reference temperature are listed in
Table D1 in Appendix D. The freezing temperature is here
fixed at Tief = 273.15 K, and we assumed that in the temper-
ature range [Tref — 40, Tref] vapor, liquid, and ice forms may
coexist. Further details on the relationships between mixture
temperature and mass fractions of water in gas, liquid, and
solid states are given in Appendix B1.

Denoting the specific humidity of the atmosphere (mass
of water vapor in a unit mass of moist air, expressed here as
kilograms of vapor per kilogram of air) by shyy, the follow-
ing conservation equation for the total energy of the eruptive
mixture can be written:

d
d_z(/omixwrzE) =277 Ue pam (Cagm Tatm (1 — shagm)

1
+ shaum (Awvo — Cwy Tamm) + 82 + _Uaztm)

2
SRy 1 ()
2
—2pr Zl ;(Cs,ip Toix + 5 URwi 3 M i (28)
lP: =

On the right-hand side of Eq. (28), the terms responsible
for the variation of mixture energy are listed. These terms
include the interaction of the eruptive mixture with the atmo-
sphere (which is assumed to contain water) and the loss of
thermal and kinetic energy due to the sedimentation of solid
particles.

The transport of dry air through the column is modeled as

d
— (Pmixraawr?) = 2r pumUe (1 = shagm). 29)

dz

Equation (29) states that the entrainment of dry air into the
column is responsible for the variation of dry air mass flux.
Analogously, the transport of water is affected by the inges-
tion into the column of atmospheric water as

d

= (pmixxwwr2> = 27 patmUe Shatm, (30)

where x, is the total mass fraction of water (which can be
in either vapor, liquid, and ice form) in the mixture. The par-
titioning of total water in the different phases is detailed in
Sect. 2.3 and in Appendix B1.

Finally, PLUME-MoM-TSM accounts for the presence of
additional volcanic gases:

d
© (meixkarz) =0. (31)
k
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From Eq. (31), we see that the volcanic gases mass flux
is assumed to be constant along the plume. We are thus as-
suming that all volcanic gases reach the top of the plume (or
the neutral buoyancy level) where they are released into the
atmosphere.

The system of Egs. (11) and (19-31), describing the steady
dynamics of volcanic plume rise in the atmosphere, is solved
numerically by PLUME-MoM-TSM. A fifth-order seven-
stage Dormand-Prince Runge—Kutta method (Dormand and
Prince, 1980) is implemented in a Fortran 90 code for the
numerical integration of the system of ordinary differential
equations. This method is based on a fifth-order method used
to advance the solution, which is compared with a fourth-
order method to estimate the integration error and to auto-
matically reduce or increase the integration step. The com-
putational time requested for a run is of the order of a few
tenths of a second for a simulation without aggregation and
slightly longer for simulations also modeling the aggregation
process.

2.3 Phase changes of water

The present version of PLUME-MoM accounts for phase
change of water as a function of the pressure and tempera-
ture conditions. Water (in vapor, liquid, or ice phases) in the
mixture can be either magmatic, added at the vent as liquid,
or incorporated through ingestion of moist atmospheric air.
Within the eruptive column, phase changes lead the water to
be partitioned into vapor, liquid, and ice:

Xw = Xwy + Xlw + Xi, (32)

where x,, is the water mass fraction in the eruptive mixture,
while xyy, X1y, and x;j are the mass fractions of water vapor,
liquid water, and ice phases in the mixture, respectively.

In the following, we will use the subscripts da, wv, and
vg to refer to dry air, water vapor, and volcanic gases, re-
spectively. With this notation, assuming that the mixture of
dry air, water vapor, and volcanic gases behaves as an ideal
gas, we can write the following relationships between atmo-
spheric pressure Py, phases’ partial pressures Py, and mo-
lar fractions n.:

Patm = Pda + Pywv + Pyg,

Pda = nda Pam,

Py = nwy Patm,

Pyg = nyg Pam. (33)

Molar fractions of water vapor (7yy), volcanic gases (nyg),
and dry air (ng4,) in the gas phase of the volcanic mixture (for
which nyy + nga +nve = 1) are given by

Xwy
_ mwyy
Nwy = Xwy Xvg Xda (34)
MWy mwyg mwg,
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Xvg

MWy
an T Xwy Xvg Xda (35)
MWy MWyg mwg,
Xda
_ MWda
Nda = Xwy Xvg Xda (36)
MWy MWy, mwg,
where mwy,y = 0.018 kg mole~! and MWy, =

0.029kgmole™! are the molar weights of water vapor
and dry air. The molar weight of the additional mixture of
volcanic gases mwyg is

> Xk
k

Xk
mwy

(37

mwyg =

where x; and mwy, are the mass fractions with respect to the
mixture and the molar weight of the kth volcanic gas. For
CO; and SO, (most abundant volcanic gases after water),
mwy, values are 0.044 and 0.064 kg mole™!, respectively.

Once the conservation equation for the total energy
(Eq. 28) is integrated, giving a new value of the total specific
energy E, the specific enthalpy of the eruptive mixture H is
computed from Eq. (26). Then, mixture temperature (7ix)
and water mass fractions (Xyy, Xlw, Xj) are computed from
the known value of H by finding the values which satisfy
Egs. (27) and (32-36). The details of the procedure employed
to compute these values are given in Appendix B1.

2.3.1 Addition of external liquid water

The addition of external liquid water to the volcanic mix-
ture is one of the new features of PLUME-MoM-TSM. As in
Koyaguchi and Woods (1996), we assume that magma—water
mixing takes place at the vent location and that the thermal
equilibrium between the eruptive mixture and the external
water is reached before the interaction of the mixture with
the atmosphere.

Before addition of external water, specific enthalpy at the
vent 18

Hyent = x5 Cs Tix0 + Xwv [Awvo + Cwy (Tinix0 — Tref)]
+ Xvg Cvg Trnix0, (38)

where xg and x,y are the mass fractions of particles and mag-
matic water vapor in the erupted magma and Trixg is its tem-
perature.

If external liquid water is added at the vent, the eruptive
mixture formed by magma and liquid water is initialized by
computing a new enthalpy (Hyent,., )

Hventnew = xeruptHvent + Xlwex [hle + Clw(leext - Tref)] , (39
where xjy,,, is the mass fraction of external liquid water at

temperature 7w, and Xerupt = 1 — Xiw,,, 1S the magmatic
mass fraction. From the value of Hyepy,,,,, We update magma
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temperature and water partitions by following the procedure
described in Appendix B1.

To test the consistency of the results produced by PLUME-
MoM-TSM in the presence of external water, in the Supple-
ment, we reproduced some of the figures presented by Koy-
aguchi and Woods (1996).

2.4 Umbrella spreading model

As previously stated, PLUME-MoM-TSM includes the pos-
sibility to simulate the initial spreading of the umbrella cloud
associated with a volcanic column. When this option is ac-
tivated, the column equations are solved up to the neutral
buoyancy level, where the density of the mixture equals that
of the atmosphere. Above this height, the initial transport of
the tephra is dominated by a radial spreading, due to the fact
that the plume still has a vertical momentum, which produce
an overshoot in the atmosphere and then an intrusion at the
neutral buoyancy level as a gravity current. This intrusive dy-
namics is described by a different set of equations from those
of the column, and here we use a system of “shallow-water”
equations similar to that developed by Baines (2013); John-
son et al. (2015).

The intruding fluid is assumed to spread horizontally at the
neutral buoyancy level as a shallow layer (with respect to the
atmosphere thickness) so that vertical acceleration is negli-
gible and the pressure distribution within the umbrella is hy-
drostatic. In addition, we assume that, due to turbulent mix-
ing, the density of fluid is uniform within the umbrella, and
this implies that variations in the thickness of the layer gen-
erate horizontal pressure gradients driving the motion, only
opposed by turbulent drag, associated with the formation of
shear layers between the ambient and umbrella cloud (Abra-
ham et al., 1979). Furthermore, for the umbrella cloud model,
we neglect the loss of solid particles from its base, and thus
the density can be considered constant. Differently from the
model of Johnson et al. (2015), where the volumetric flux in-
truding from the column into the atmosphere is provided by
imposing a radial axisymmetric flux at a prescribed distance
from the plume centerline (with fixed initial thickness), here
the flux is provided, in both mass and momentum equations,
through appropriate source terms derived from the neutral
buoyancy level horizontal section of the column. In this way,
it is possible to consider also the initial horizontal velocity of
the umbrella cloud resulting from the horizontal momentum
of the volcanic plume. It is important to observe that the tran-
sitional region between the rising plume and umbrella cloud,
characterized by the plume overshoot and then the descent to
the neutral buoyancy level, has an aspect ratio of the flow not
small in either direction and is likely to be highly turbulent.
For these reasons, this transition region is not properly de-
scribed by either the rising plume or the shallow-water model
for the umbrella cloud, and the derivation of the inflow of the
umbrella cloud model directly from the output of the plume
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model at the neutral buoyancy level represents a simplifica-
tion of the real dynamics.

With these assumptions, if we denote & as the umbrella
cloud thickness, u = (u, v) the horizontal components of the
velocity, and u, = (u,, v,) the atmospheric wind at the neu-
tral buoyancy level, the equations for the conservation of vol-
ume and horizontal momentum are written:

Pt )+ & () =w

o )+ e (22 ) o () = —C (= ) = |

+ [ttnb1 + v (%, ) wot | 0 (40)

&)+ & )+ & (h? + 52 ) = —Cp (0 = v lu — |

+ [vnbt + vy (x, ) wapt ] .
On the left-hand sides of the momentum equations, N is the
Brunt-Viisild frequency, which represents an upper limit for
the frequency of internal gravity waves in the atmosphere.
Its value is computed at the neutral buoyancy level from the
atmospheric density profile as follows:

g 0pam
pnbl 92

N= |-

where ppp) is the atmospheric density at the neutral buoyancy
level. The first term on the right-hand side of both momen-
tum equations is the drag force, which is proportional to the
square of the relative velocity through the dimensionless drag
coefficient Cp. On the right-hand side of all the equations in
system (Eq. 40), w is the volumetric flux source derived from
the plume vertical velocity wyp at the neutral buoyancy level
and defined as a function of the horizontal coordinates (x, y),
with the origin of the coordinate system fixed at the center of
the plume at the neutral buoyancy level:

TJ) = Whnp] * X‘(X2+y2<rn2bl). (41)

The variables uqp and vpp) are the horizontal components of
plume velocity at the neutral buoyancy level, while y, and y,
are two functions which take into account the vertical gradi-
ent of the plume radius at the neutral buoyancy level:

o (42)

— x . dr,
Vx(xv y) e dz X|(x2+y2<r|%bl)
Yy, ¥) =5l & K<)

where y is the indicator function. In this way, the volume
and the momentum flux derived from the plume model are
correctly passed to the umbrella model.

The system of partial differential equations is solved on a
uniform grid in the (x, y) horizontal plane at the umbrella-
cloud height with a transient finite-volume code based on
the numerical solver presented in de’ Michieli Vitturi et al.
(2019), where an implicit—explicit Runge—Kutta scheme (As-
cher et al., 1997) is adopted to compute explicitly the flux
terms on the left-hand side of the equations and the source
terms, and implicitly the drag terms in the momentum equa-
tions. The solution is advanced in time until a steady up-
wind spreading is reached, with the integration time step con-
trolled by a CFL condition, i.e., by a constrain on the ratio
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between the distance traveled in one time step by the fastest
waves in the solution and the size of the cells of the compu-
tational grid (Courant et al., 1967). An example of the output
of the coupled plume—umbrella models is presented in Fig. 4.

3 Applications

In this section, we present a suite of simulations to highlight
the novelties introduced in this version of PLUME-MoM and
to constrain model parameters. First, we model the spreading
of the umbrella cloud for the eruption of the Calbuco volcano
in southern Chile in April 2015 by comparing simulation
results with rates of umbrella cloud expansion and upwind
spreading derived from satellite observations. This allows us
to constrain the coefficient Cp in Eq. (40), controlling the
spreading of the umbrella. Then, by using a modified stan-
dard atmosphere, an analysis of the effects of wind, atmo-
spheric humidity, and mass flow rate on the upwind spread-
ing of the umbrella cloud is presented.

3.1 April 2015 Calbuco eruption

We present here model results obtained for the two phases of
the eruption of the Calbuco volcano in April 2015 (Romero
et al., 2016; Castruccio et al., 2016; Van Eaton et al., 2016).
Calbuco is one of the most active volcanoes of the south-
ern Chilean Andes, and on the evening of 22 April 2015,
for the first time in 43 years, Calbuco erupted, producing a
sub-Plinian column with maximum plume heights exceed-
ing 15km above the vent (Pardini et al., 2018). Preceded
by an hour-long period of volcano-tectonic events, the first
phase started at 21:04 UTC and lasted approximately 1.5h,
producing tephra dispersed mostly in north and northeast di-
rections and causing a 20 km exclusion zone to be declared.
After a 5.5h break, at 03:54 UTC on 23 April 2015, a sec-
ond, larger explosive phase begun. This second phase lasted
approximately 6h, with a drop in activity of 1h approxi-
mately 2 h after its onset (Van Eaton et al., 2016). After the
second phase, discrete small explosions caused further ash
emission up to 2km height, with a major pulse which re-
sulted in a 4km high column on 30 April (Romero et al.,
2016). Ash from the different phases of the eruption reached
Brazil, Chile, Argentina, and Uruguay, causing the canceling
of international flights into and out of several major cities in
South America.

Following Reckziegel et al. (2019), for both phases, the
total grain size distribution released at the vent (here fixed
at an elevation of 2003 m) has been initialized with of a
bi-modal distribution with 11 particle classes from —1¢ to
9¢ (see Table 1), with densities increasing linearly with ¢
from 2300 to 2700 kg m 3. Particle sphericity, mostly affect-
ing the loss of particles through the terminal velocity equa-
tion (Textor et al., 2006b), has been fixed to 0.8. Following
Van Eaton et al. (2016), we assumed 5 wt % of magmatic wa-
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Figure 4. Lateral, top, and oblique views of the plume and the umbrella. The 3-D coordinate system (x, y, z) is centered horizontally at the
plume base location and vertically at the sea level. Going up the neutral buoyancy level, the plume horizontal sections are calculated by the
steady-state model. Above the neutral buoyancy level, the colored contours represent thickness levels of the steady solution computed by the
transient umbrella model. The color is not meant to represent cloud thickness but only to better distinguish the contours.

Table 1. Total grain size distribution for the April 2015 Calbuco eruption (Reckziegel et al., 2019).

¢ -1 0 1 2 3

4 5 6 7 8 9

Mass % 7.86 15.68 0.508 1.629 6.614

12.291

14.615 2371 13.147 4332 0.126

ter, plus an additional 5 wt % of cooler surface water, possi-
bly associated with the presence of a summit glacier prior to
the eruption. The initial temperature of the magmatic mix-
ture has been fixed to 1173 K and, after the mixing with the
external water, a temperature of 1006 K has been found for
the base of the plume. The initial plume velocity for both
phases has been fixed to 250 m s~! and the radius has been
changed for the two phases in order to match the height of
the intrusion of the umbrella cloud in the atmosphere and its
main spreading direction. This results in a mass eruption rate
of 9.54 x 10 kg s~ for the first phase and 2.02 x 10 kg s~
for the second one. Varying the initial velocity, while keep-
ing fixed the height of the neutral buoyancy level, produced
very similar results in terms of mass eruption rates. The at-
mospheric profiles used to run the simulations derive from
the ECMWF-ERAS reanalysis dataset. For the two eruptive
phases, we extracted geopotential height, atmospheric den-
sity, pressure, temperature, specific humidity, and horizontal
wind velocity components at the vent location and eruption
starting time.

In Fig. 5, some of the plume model outputs obtained for
the first phase are reported. In each panel, values below the
neutral buoyancy level are plotted with a solid line, while
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dashed lines represent plume model results above it. Plume
velocity (top-left panel) initially decelerates very rapidly in
the gas thrust region and then decelerates more gently and
almost linearly with height, up to the neutral buoyancy level.
Mixture density, because of the large amount of air entrained
from the column margin and heated in the gas thrust re-
gion, rapidly decreases below atmospheric density, making
the plume positively buoyant (see the plot of the relative den-
sity in the top-right panel). The water vapor initially present
in the rising mixture, with the additional contribution of the
moist air entrained in the plume, stays in the gaseous state up
to a height above sea level of approximately 8.5 km, above
which ice starts to form. At the neutral buoyancy level, al-
most all the water present in the plume is constituted by ice
(middle-left panel). Particles are lost during the rise, but the
fraction of the initial amount lost up to the neutral buoyancy
level is relatively small, ranging from a maximum of 0.24 for
¢ = —1 to fractions smaller that 0.01 for ¢ > 3. This means
that almost all the particles that erupted reach the neutral
buoyancy level, and that the initial grain size distribution dif-
fers very little from that feeding the umbrella cloud (bottom-
left panel). In any case, almost immediately above the vent,
due to the large entrainment, the mass of particles, as that of
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Figure 5. Plume model results for the first phase of the April 2015 Calbuco eruption: (a) velocity profile; (b) relative density, defined as the
difference between the density of the volcanic mixture and the density of the surrounding air (with the vertical dashed black line indicating a
relative density of zero); (c) relative mass fractions of water phases; (d) mass fractions of particles, gas (water and dry air), liquid water, and
ice; (e) relative mass fractions (with respect to the initial amount) of particles lost during the rise for the different bins; (f) three-dimensional
view of the plume. Height reported on the left axis of the 2-D plots is measured above sea level. Please note that in all the panels values going
up to the neutral buoyancy level are plotted with solid lines, while those corresponding to plume model solutions above the neutral buoyancy

level are plotted with dashed lines.

water, rapidly becomes a small fraction of the total mass of
the mixture, with the dry air being the more abundant phase
(middle-right panel). At the neutral buoyancy level, reached
at 12.7 km above sea level, the plume radius is 3935 m (see
bottom-right panel) and the mass flow rate injected in the
umbrella cloud is 6.64 x 108 kgs~! (corresponding to a vol-
ume flow rate of 2.21 x 10° m? s~1). The bottom-right panel
presents a 3-D view of the plume, showing the weak bend-
ing of the plume axis due to both the moderate wind and the
magnitude of the eruption.

The simulation performed for the second phase produced
similar results, and the main output variables are plotted in
Fig. 6. For this simulation, the height of the neutral buoy-
ancy level increased to approximately 13.6 km, at which the
plume radius is 3814 m, with a mass flow rate injected in the
umbrella cloud of 8.38x 108 kgs~! (corresponding to a vol-
ume flow rate of 3.22 x 10° m? s7h.

For both phases, the outputs at the neutral buoyancy level
of the plume model of PLUME-MoM-TSM (volumetric flow
rate, radius, and horizontal velocities) were used as input
of the umbrella cloud module. For this application, we var-
ied the drag coefficient Cp of the umbrella cloud model in
order to find the value which best reproduced the spread-
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ing in the atmosphere observed during the eruption. From
the experiments of Abraham et al. (1979), Baines (2013),
and Johnson et al. (2015), both inferred coefficients in the
range Cp = 0.001 to 0.01, while Pouget et al. (2016), by
comparing the results of the shallow-water intrusion model
developed by Johnson et al. (2015) with satellite data from
seven eruptions, better reproduced observations of umbrella
cloud structure and morphological evolution with a value
Cp = 0.1, which was the largest value of the investigated
range. Here, three values were tested (Cp =0.01, 0.1, and 1)
by carrying on the simulations for 1.5 and 2 h for the first and
second phases, respectively. At each time step, we computed
(i) the upwind spreading, defined here as the maximum hori-
zontal distance from the vent in the opposite direction to that
of the wind at the neutral buoyancy level; (ii) the radius of
a circle with area equivalent to that of the modeled umbrella
cloud.

These values are plotted, at intervals of 300s, in the left
panels of Fig. 7, with blue lines for the equivalent radius
and red lines for the upwind distances. In the right panels of
Fig. 7, the edges of the umbrella cloud at the end of the simu-
lations are plotted, with different lines for the different values
of Cp. From both the left and right panels, we can observe the
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Figure 6. Same as Fig. 5 but for the second phase of the April 2015 Calbuco eruption.

expected larger spreading of the umbrella cloud for smaller
values of Cp. These results highlight the fact that intrusive
gravity current dominates in the initial stages of the disper-
sion of tephra at the neutral buoyancy level and large upwind
and crosswind spreadings of the umbrella cloud with respect
to the vent location (denoted by a yellow star in the right pan-
els of Fig. 7) are produced also for sub-Plinian eruptions. In
order to constrain the value of the drag coefficient, the blue
lines in the left panels of Fig. 7 are compared with the series
of values for the umbrella radius reported in Van Eaton et al.
(2016), obtained by detecting the edge of the umbrella from
GOES-13 satellite images and plotted here with blue mark-
ers. From the results plotted in the figure, we can see that the
values obtained with Cp =1 seem to better match the ob-
servations, with a small overestimate at the beginning and a
small underestimate at the end of the simulation.

A different result is obtained by analyzing the modeled
upwind spreading of the umbrella cloud. First of all, we can
see from the red lines in the left panels of Fig. 7 that for val-
ues of Cp greater than 0.1, a steady upwind distance is ap-
proached at the end of the simulation, and that by changing
(increasing or decreasing) the drag coefficient by an order of
magnitude, the upwind spreading at the final time changes
approximately by a factor of 2. In this case, when model re-
sults are compared with the upwind spreading derived from
the processing of the observations presented in Van Eaton
et al. (2016), represented by the red crosses in the left pan-
els of Fig. 7, we see that the drag coefficient value Cp = 0.1
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produces the best results. The two different values of Cp ob-
tained by comparing the equivalent radius and the upwind
spreading with observational data can be due to the several
approximations in the numerical simulations. In particular,
the depth-averaged umbrella cloud model uses a constant
wind (in time and space), extracted at the vent coordinates
and at the neutral buoyancy level from the ECMWF-ERAS
reanalysis data. Thus, while upwind spreading, which is mea-
sured close to the vent, is slightly affected by this approxima-
tion, the spreading of the whole umbrella cloud (controlling
the equivalent radius) could be affected by larger errors, be-
cause downwind wind far from the vent can be different from
the assumed constant value. Furthermore, we notice that the
value Cp = 0.1 better agrees with the results presented in
Pouget et al. (2016). For these reasons, and because in the
rest of the paper we are mostly interested in quantifying the
upwind spreading of the umbrella cloud, we use the value
Cp = 0.1 as reference value. For this value of the drag coef-
ficient, simulated umbrella cloud thicknesses 1.5 h after the
onset of each phase are compared in Fig. 8 with cloud-top IR
brightness temperatures as retrieved by the NOAA GOES-
13 geostationary satellite. First of all, it is important to re-
mark that the images on the left have been cropped from a
larger satellite image and have not been reprojected in the
same Universal Transverse Mercator (UTM) projection zone
used for the right panels (WGS 84/UTM zone 18S), so the
two areas represented in the left and right panels do not cor-
respond. In addition, as already stated, model simulations use

Geosci. Model Dev., 14, 1345-1377, 2021
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Figure 7. Umbrella cloud spreading for the two initial phases of the April 2015 Calbuco eruption. Panels (a, b) refer to the first phase, while
the bottom panels refer to the second phase. Panels (a, ¢) are plotted the umbrella equivalent radius and the upwind distance versus time,
with the markers representing the observations; (b, d) the umbrella cloud edges at the end of the simulations are shown. In all the panels,
different lines (solid, dashed, and dash-dotted) represent the three different values of Cp used in this work.

a constant wind (in time and space), extracted at the vent co-
ordinates and at the neutral buoyancy level, and thus down-
wind spreading can differ substantially from the real one. In
any case, a qualitative comparison shows that the cross-wind
spreading of the two phases of the eruption matches well with
that predicted by the model. In addition, we observe from the
contour plots in the right panels that the larger volumetric
flow rate injected at the neutral buoyancy level for the second
phase resulted in a thicker cloud, with a total height of col-
umn and umbrella of approximately 15.5 and 17.5 km above
sea level for the first and second phases, respectively. Also,
these values compare well with those reported in Van Eaton
et al. (2016).

In the analysis presented so far, we have not accounted for
the effect of aggregation. To better understand if aggregation
could affect the spreading of the umbrella for this scenario,
we repeated the plume rise simulation for the first phase of
the April 2015 Calbuco eruption by enabling aggregation be-
tween particles and analyzing the changes in the height of the
neutral buoyancy level and the grain size distribution of par-
ticles still present in the plume and released from its margin
at that height. For this set of simulations, two coarser bins
(¢ = —2, —3) with an initial negligible number of particles

Geosci. Model Dev., 14, 1345-1377, 2021

have been added to the total grain size distribution. This al-
lows for the formation of aggregates larger than the particles
present in the original size spectrum. Because we are con-
sidering wet aggregation, the density of the aggregates has
been fixed to 1500kg m~3 (Costa et al., 2010), resulting in
lower settling velocities than the original particles, with the
size being equal.

The results of the simulation without aggregation are plot-
ted in the top panels of Fig. 9. The grain size distribution
within the plume at the neutral buoyancy level (NBL) is plot-
ted in panel Al of Fig. 9, the grain size distribution of the
particles lost from the plume margins at the same height is
plotted in panel A2, and the fraction of the initial total solid
flux lost with height (which indicates the number of particles
lost from the plume edges during the rise) is shown in panel
A3. The grain size distribution at the neutral buoyancy level
does not differ significantly from that at the vent, and this is
due to the fact that the number of particles lost during the rise
is very small (approximately 4 %).

As a first aggregation test, we used a modified version of
the wet aggregation kernel introduced in Costa et al. (2010),
defined as the product of a collision frequency function and a
sticking efficiency function (see Appendix B3). According to
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Figure 8. Left panels show the cloud-top IR brightness temperature as retrieved by the NOAA GOES-13 geostationary satellite, channel 4
(images from http://rammb.cira.colostate.edu, last access: 14 February 2021). Right panels show simulated umbrella cloud thickness contours
1.5 h after the onset of phase 1 (top) and phase 2 (bottom), obtained with Cp = 0.1. Please note that in the right panels the color scales for

the two phases are different.

this model, to aggregate, a collision must occur between the
particles and when that collision occurs the particles must
adhere to one another. Collisions between particles are asso-
ciated with different mechanisms, as Brownian motion, lam-
inar and turbulent fluid shear, and differential settling veloc-
ity. Following Costa et al. (2010), all these contributions are
considered in the calculation of the collision frequency func-
tion. In our formulation, the sticking efficiency depends on
the amount of liquid water and ice present in the volcanic
plume. For the simulations of the Calbuco eruption, as shown
in Fig. 5, only ice forms above a height of 8 km a.s.1. For this
reason, aggregation is quite limited and the grain size distri-
butions of the particles within the plume and those particles
released from the plume margin at the NBL show very small
differences with the simulation without aggregation, and it
is limited to the coarser particles. This is mostly due to the
fact that the dominant collisional mechanism is the differen-
tial settling velocity, which is larger for coarser particles. It
is important to note that the neutral buoyancy level differs
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from that obtained without aggregation by less than 0.1 %,
and also the total number of particles lost from the plume
does not differ significantly.

In order to better understand the effect of aggregation,
we performed additional simulations with a constant ker-
nel, starting from a value of 8 =10"""m?s~! up to a value
B=10"8m3s~!. The simulation with g =10"" m3s~!
shows small differences compared to that without aggrega-
tion, with small numbers of aggregated particles produced
(represented in panel B1 of Fig. 9 with the red bars). Because
of the adoption of a constant kernel, aggregates form in each
bin of the initial grain size distribution. By increasing 8 by
an order of magnitude to a value of 1074 m3 s~ ! the num-
ber of aggregates becomes significant (more than 50 % for
some bins), and also the relative number of particles released
from the plume margins at the neutral buoyancy level dif-
fers from that obtained without aggregation. Despite that, we
observe that the height of the neutral buoyancy level of the
plume does not change, and also the overall bi-modal shape

Geosci. Model Dev., 14, 1345-1377, 2021
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Figure 9. Grain size distributions at the neutral buoyancy level: within the plume (left panels) and released from the plume margins (central
panels). The blue bars represent the number of non-aggregated particles, while the maroon bars represent the number of aggregates. The plot
on the right panels represent the fraction of solid flux lost from the plume margins because of sedimentation, up to the neutral buoyancy level
(represented by the dashed black lines). The results of the simulation without aggregation are plotted in panels (A1) and (A2). The results
obtained with the wet aggregation model presented in Costa et al. (2010) are plotted in panels (B1) and (B2). The results obtained with a
constant aggregation kernel and values of 10_15, 10_14, and 10~ 13 are plotted in panels (C1-C3), (D1-D3), and (E1-E3), respectively.

of the total (aggregated and non-aggregated particles) distri-
bution does not change substantially. This is because, with
the binary aggregation and the constant aggregation kernel
considered here, most of the aggregation occurs “intra-bin”;
i.e., it produces an aggregate with a volume, or mass, which
belongs to the same bin of particles forming the new aggre-
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gate. In fact, for bin sizes of 1 ¢, and a uniform mass distribu-
tion within each bin, the number of smallest particles within
a bin is almost 1 order of magnitude smaller than the number
of largest particles. Thus, with a constant kernel, aggregation
of the smallest particles occurs much frequently, and the ag-
gregate produced from a binary aggregation of these particles

https://doi.org/10.5194/gmd-14-1345-2021
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produces a new particle with an equivalent diameter (diame-
ter calculated from the mass) still belonging to the same bin.
In order to produce a larger change in the particle size distri-
bution in the plume at the neutral buoyancy level, we have to
increase the constant kernel to 8 = 1078 m3 s~ ! for which
the fraction of aggregates is close to 97 % of the total mass
of particles in the plume (Fig. 9, panels E1 and E2). It is in-
teresting to observe that even with such a large number of
aggregates, the total number of particles lost during the rise
does not change with respect to the simulation without ag-
gregation, and also the height of the neutral buoyancy level
differs from that obtained without aggregation only by 1 m.
This result allows us to disregard aggregation for the sensi-
tivity analysis presented in the next section, where the main
outputs of the plume module used to initialize the umbrella
spreading module are the volumetric flow rate and the height
of the gas—particle mixture injected by the plume into the at-
mosphere at the neutral buoyancy level.

3.2 Umbrella cloud upwind spreading

In this section, we present a sensitivity analysis of the up-
wind spreading of the umbrella cloud with respect to mass
flow rate and to some parameters characterizing the mete-
orological profile above the vent. This study builds on the
ideas of Carey and Sparks (1986), where the ratio of upwind
spreading to the amount of axial displacement at the neu-
tral buoyancy level was analyzed, with results based on the-
oretical and empirical information on column behavior. With
respect to the previous section, where atmospheric profiles
used to run the simulations were derived from the ECMWF-
ERADS reanalysis data, the simulations presented here employ
atmospheric profiles of pressure, temperature, and density
modified from the International Standard Atmosphere (ISA)
model. This model provides a common reference for temper-
ature and pressure at various altitudes, and it is based on the
subdivision of the atmosphere in layers where the absolute
temperature Ty, against geopotential altitude 4 (i.e., the ver-
tical coordinate referenced to Earth’s mean sea level) is as-
sumed to vary linearly. Geopotential and orthometric heights
differ little for low terrestrial atmosphere (Daidzic, 2019),
and for this reason we can assume a linear dependence of
temperature also against orthometric height (i.e., the distance
of a point along the plumb line to the geoid). In the following,
as common in meteorology, we refer to the negative value of
the rate of temperature change with altitude using the term
“lapse rate”, and we use for it the notation of I". Once the
bottom values and the lapse rate are known in an atmospheric
layer, pressure, temperature, and density profiles within the
layer can be calculated by solving simultaneously the equa-
tion for vertical pressure gradient resulting from hydrostatic
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Table 2. International Standard Atmosphere (ISA) layers and lapse
rates up to 71 km geopotential altitude.

Layer Levelname  Base geopotential Lapse rate

height m) (Kkm™1)
0 Troposphere —610 —6.5
1 Tropopause 11 000 0.0
2 Stratosphere 20000 +1.0
3 Stratosphere 32000 +2.8
4 Stratopause 47000 0.0
5 Mesosphere 51000 —2.8

balance, the equation for temperature, and the ideal gas law:

9z —  Pam (2)g
Fn = Ty (43)

atm

Patm = T ~»

where R is the specific gas constant of the atmosphere, which
can vary with humidity. When the option for a modified stan-
dard atmosphere is selected in PLUME-MoM-TSM, the first
two equations are added to the set of ordinary differential
equations solved numerically by the model, and the last one
is employed to calculate explicitly the right-hand term of the
first equation.

ISA lapse rates (see Table 1) do not account for humidity
effects and air is assumed to be dry, and the specific gas con-
stant used in the ideal gas law is that of dry air (R = Ry;;). For
this reason, when humidity is considered, appropriate correc-
tions to the atmospheric profiles given by the ISA model need
to be introduced. Moist unsaturated air cools with height
at a slightly lower rate than dry air (Dutton, 2002), and in
this work we adopt the following lapse rate correction to ac-
count for the presence of water vapor, as proposed in Daidzic
(2019):

Taem = T (1 — 0.8568haum) » (44)

where 'y and 'y are the moist and dry atmospheric lapse
rates, respectively. According to Ahrens (2012), the aver-
age specific humidity in the lower troposphere ranges from
0.004kgkg™! at 60° (north or south) to 0.018kgkg™! at
the Equator, and its value exponentially decreases to values
lower than 10~ kg kg ™! above the tropopause. It follows that
the sensitivity of lapse rates to the specific humidity value is
minimal in the lower troposphere and negligible above it.

Density of moist atmosphere also varies with water con-
tent, and the relationship between dry and moist air densities
can be written as

P
1+ (’;i - 1) Shaum

Patm = 45

where R,y and Ry, are the gas constants of water vapor and
air, respectively.
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With these equations, ISA lapse rates I'q and density pq
are corrected for the presence of humidity, and it is possi-
ble to solve the system of Eq. (43) for the modified pressure
and temperature profiles. The specific humidity profile used
in the simulations presented here has been derived from the
data presented in Anderson et al. (1986), providing the values
at the boundaries between the atmospheric layers, while val-
ues at the bottom of the troposphere have been varied in the
range 0.004-0.018 kgkg~!. Inside each layer, the logarithm
of specific humidity is assumed to vary linearly.

In this work, we also assume the wind speed to be a con-
tinuous function of height which varies linearly in several
layers. Observations indicate that on average the wind speed
profile has local minima at altitudes of about 20 km and about
90km, where air masses are relatively stationary, and local
maxima at altitudes of about 11 and 70km (Modica et al.,
2007; Brasefield, 1954). While quite a wide range of val-
ues is observed for the first maximum at the tropopause, the
value of the wind speed at 70 km varies less, and a speed of
65ms~! is assumed in this work. For the wind speed mini-
mum at 20 km altitude, we fix a value of 10m s—!. With these
assumptions, the relevant atmospheric profiles obtained for
a moist atmosphere and with a wind speed of 20ms~! at
11km are plotted in Fig. 10, where the red markers in the
last two panels denote the values we varied for the sensitivity
analysis.

Maximum upwind spreading of the umbrella cloud with
respect to vent location represents an important informa-
tion that coupled plume and umbrella models or fully three-
dimensional models (Cerminara et al., 2016; Suzuki and
Koyaguchi, 2009) can provide. It has been noted that using
only the output of integral plume models as the source of
VATD models generally underestimates the upwind deposi-
tion patterns of volcanic ash, and corrections accounting for
the initial spreading of the umbrella as a gravity current result
in a better agreement of ash distribution close to the eruptive
source (Costa et al., 2013; Webster et al., 2020).

Most of the work done so far to couple the spreading of
the umbrella cloud with advection—diffusion—sedimentation
models focused on large events such as the 1991 Pinatubo
eruption, with a mass flow rate of the order of 10°kgs~!.
Less work has been devoted to smaller scenarios, and for this
reason we focus here on lower values of mass flow rate in or-
der to gain a better understanding of the relationship between
mass flow rate, wind speed, and upwind spreading. It is well
known that upwind spreading increases with increasing mass
flow rate and decreasing wind, but a quantitative relationship
between them is unknown. Here, we varied three input pa-
rameters of the model: (1) the decadic logarithm of mass flow
rate in the range 6-8 (i.e., m = 10°-108 kg s’l), adjusted by
changing vent diameter; (2) the wind speed at the tropopause
in the range 35-80 m s~'; and (3) the specific humidity at sea
level in the range 0.004-0.018kgkg~!. A uniform probabil-
ity has been assigned to all the input variables and the space
of parameters has been sampled with Latin hypercube sam-
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Table 3. Relevant input parameters of the plume model fixed for all
the simulations of the sensitivity analysis.

Input parameter Symbol  Value
Vent hight (a.s.l.) ho 1500 m
Initial water mass fraction  xw 0.01
Initial temperature Tix0 1273 K
Initial velocity wo 135ms™!

pling generating 700 elements. The other main input parame-
ters used for this analysis are listed in Table 3. As previously
stated, aggregation is disregarded. In addition, as shown in
de’ Michieli Vitturi et al. (2015), also the initial total grain
size distribution has a minimal control on plume height, and
consequently on upwind umbrella spreading. For this reason,
it has been kept fixed for all the simulations. As for the previ-
ous application, settling of particles from the plume edges is
considered, and the settling velocity model from Textor et al.
(2006b) is adopted (see Appendix B2 for more details).

For each simulation, the horizontal upwind distance from
the vent of the umbrella cloud has been calculated from the
output of umbrella spreading module (when a steady value is
reached), and correlation plots with the three input parame-
ters are presented in the first three panels of Fig. 11, where
each red dot represents a different simulation. In general, we
observe increasing upwind spreading with increasing mass
eruption rate and decreasing wind speed at the tropopause,
while the relative humidity does not seem to affect it. For a
fixed value of the input parameters on the x axis, the vertical
spreading of the red dot cloud is associated with variations in
the other input parameters. Each black line represents the av-
erage of the upwind spreading values at a given input value.

The global sensitivity of the upwind spreading with re-
spect to the three input parameters has been computed by
using a variance-based method (Saltelli et al., 2010; Scollo
et al., 2008; de’ Michieli Vitturi et al., 2016). If we denote
the output parameter of interest with Y and the input param-
eters considered with x;, the main sensitivity index S;, also
called the Sobol index, expresses the fraction of the variabil-
ity in the output Y that is reduced when the value of the input
x; is fixed. It is calculated by

_ Vary, [Yx]
"7 Var(Y)

The values of the Sobol index are shown in the bar plot
presented in the right panel of Fig. 11. The largest value is
obtained for the sensitivity with respect to the mass flow rate
(yellow bar), with a smaller sensitivity with respect to the
wind speed at the tropopause (red bar) and a negligible effect
of the specific humidity at sea level (blue bar). This high-
lights the fact the upwind spreading is mostly controlled by
the first two parameters.

For this reason, we plotted in Fig. 12 the maximum upwind
spreading as a function of the logarithm of the mass flow rate

(46)
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and the tropopause wind speed only, highlighting a poten-
tial power-law dependence of the spreading on the two input
variables. In fact, if we denote with dy the upwind spreading
and with m and v the mass flow rate and the tropopause wind
speed, respectively, we can write

1 )b
a(Oglom) '

dup = a1

(47)
A least-squares minimization procedure gives a = 1.22 x

10_3, b =10.75, and ¢ = 1.453 as optimal values for the
fitting parameters, with a coefficient of determination of
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R? = 0.987 and a square root of the variance of the residuals
of 680.8 m. With these values, the relationship expressed by
Eq. (47) gives an estimation of the upwind spreading once
the mass flow rate and the tropopause wind speed are known.
While from a modeling perspective this represents an inter-
esting result, it is not always applicable, because the input
values needed to compute the spreading cannot be observed
directly. For this reason, we plotted in the right panel of
Fig. 12 the upwind umbrella distance as a function of the
height of the NBL and the downwind horizontal distance
of the centerline at the NBL from the vent, both extracted
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the upwind spreading.

from the output of PLUME-MoM-TSM plume module. As
expected, upwind spreading decreases with increasing bend-
ing of the column (expressed by the downwind distance of
the centerline from the vent), because the bending is associ-
ated with wind intensity. On the contrary, upwind spreading
increases with increasing height of the intrusion in the atmo-
sphere. Also in this case there is a power-law dependence of
the upwind spreading dyp on the two input variables and, if
we denote with & and dgown the NBL height and the down-
wind distance of the centerline from the vent (measured at
the NBL), respectively, we can write

hB
A———.
(ddown)c

In this case, the least-squares minimization procedure gives
A =9.055x% 1()’6, B =2.993, and C = 0.806 as optimal val-
ues for the fitting parameters, with a coefficient of determi-
nation of R?> =0.985 and a square root of the variance of
the residuals of 719.5 m. The results of this fitting and the
residuals are shown in Fig. 13, showing that the largest ab-
solute error is obtained for the larger values of the upwind
spreading. In any case, these errors of the fitting result in an
overestimation of the modeled upwind spreading of less than
5 %. It is important to remark that the fitting parameters we
obtained are valid for the range of tropopause wind speeds
(35-80ms~!) and mass flow rates (10°-10% kg s~1) investi-
gated in this analysis, and that extrapolations outside these
ranges should be avoided.

This second relationship, from an operational point of
view, may be more useful. On one hand, the two input values
are produced by all plume integral models, and in this way

dup = (48)
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a correction can be applied to obtain the upwind spreading
without the need of an umbrella cloud spreading model. On
the other hand, the input values are also observable data than
can be estimated with monitoring techniques, allowing us to
have an immediate initial estimation of the upwind spread-
ing, and thus of the upwind area potentially affected by the
presence of ash, once the volcanic column is observed.

The results presented here are consistent with those dis-
cussed in Carey and Sparks (1986), who showed that for very
weak plumes no true umbrella cloud forms and a direct cou-
pling of column and dispersal models is appropriate, while,
for columns able to reach the tropopause, upwind spreading
is significant and an umbrella model is required. Further stud-
ies will address this point by considering the uncertainty as-
sociated with additional input parameters of the models. We
also remark that the values of the upwind spreading presented
here are strongly dependent on the drag coefficient Cp, in
this analysis fixed at 0.1, and that the lower values suggested
by Baines (2013) and Johnson et al. (2015) would produce
a larger upwind spreading of the umbrella cloud. Additional
simulations we performed (not shown here) suggest that a
decrease of the drag coefficient of 1 order of magnitude re-
sults approximately in doubling the upwind spreading dis-
tance. Finally, it is worth noting that in this analysis we have
not varied some of the parameters which can have a large
control on the eruptive column, such as the initial water con-
tent and temperature (de’ Michieli Vitturi et al., 2016; Costa
etal., 2016).
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Figure 13. Exponential fitting of upwind spreading vs. neutral buoyancy level height and downwind displacement of the plume axis at the
same height. A contour plot is shown in panel (a), while on the right 3-D views of the fitting surface (b) and the residuals of the fitting (c)
are shown. The black dots in panels (a—c) represent PLUME-MoM-TSM results.

4 Conclusions

PLUME-MoM-TSM, like all the integral models of vol-
canic plumes, is based on important simplifications, from the
steadiness of the plume to the 1-D formulation. For this rea-
son, it cannot describe the details of the complex transient
and 3-D dynamics of turbulent volcanic plumes. Despite that,
integral models are able to predict column heights and neu-
tral buoyancy levels consistent with those calculated by 3-
D models (Costa et al., 2016). This result, coupled with the
fact that integral models require few seconds to run, pushes
toward further development of these models. In this work,
we have presented PLUME-MoM-TSM, a new version of
the volcanic plume model PLUME-MoM described in de’
Michieli Vitturi et al. (2015) and based on the method of mo-
ments for the description of the particle distributions. With
respect to the previous version, where a finite set of moments
of the total grain size distribution was tracked, here the adop-
tion of the two-size moment allowed us to model the evolu-
tion of the mass and the number of particles associated with
each single bin of the distribution. A first important conse-
quence is that, with such an approach, it is possible to use
PLUME-MoM-TSM outputs as the input of VATD models.
In addition, the method used in this work to describe the grain
size distribution allows for the solution of the full Smolu-
chowski coagulation equation and thus to model accurately
particle aggregation. We applied here the two-size moment
method to the steady-state integral equations for the plume,
but the procedure described is general and the code has a
modular structure, which make it easy to port the procedure
to other Eulerian models for transport of volcanic ash in the
atmosphere.

https://doi.org/10.5194/gmd-14-1345-2021

PLUME-MoM-TSM also accounts for phase changes of
water, resulting in the formation of liquid water or ice inside
the plume, and it includes a module for the spreading of the
umbrella cloud as a gravity current. These new features have
been tested by applying the model to the April 2015 eruption
of the Calbuco volcano in Chile, allowing us to calibrate the
drag coefficient of the umbrella cloud depth-averaged model
and to quantify the effect of wet aggregation on model re-
sults. The analysis shows that aggregation has a minimal con-
trol on plume characteristics and on the loss of particles from
its margins. We observe that dry aggregation could produce
different results, because the aggregates would have lower
densities and thus lower settling velocity, strongly affecting
the deposition pattern from the rising plume. In addition, we
remark that most aggregates that have been mapped in prox-
imal fallout (Self, 1983; Sisson, 1995; Wallace et al., 2013)
and produced in shaker-pan experiments (Van Eaton et al.,
2012) have a size distribution narrower than that produced
by the aggregation kernel we adopted. This suggests that in
the future the model could be updated with new collision
and sticking kernels, informed by laboratory experiments and
data coming from fallout deposits.

Finally, a sensitivity analysis provided a relationship be-
tween mass flow rate, wind speed at the tropopause, and
maximum upwind spreading of the umbrella cloud, and also
between observable parameters quantifying plume bending
(height of the neutral buoyancy level and downwind displace-
ment of the plume axis at the same height) and the umbrella
upwind spreading. These results are in agreement and ex-
tend those presented in Carey and Sparks (1986), and provide
important information for both modelers and observatories,

Geosci. Model Dev., 14, 1345-1377, 2021
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even if further studies are necessary to extend the analysis to
more general initial vent conditions.
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Appendix A: Reconstruction from moments

The TSM method is based on the reconstruction of the num-
ber density function from the moments, which are updated by
the solution of the plume equations. We provide here the de-
tails of the TSM reconstruction of the number density func-
tion 7 (m) from the two moments (N and My) in the mass
interval [my_1, mg].

The linear reconstruction nk(m) defined b2f Eq. (10),
CASE 2, satisfies the conditions 7 nk = Ny and 7" = M for
the following values of oy and By:

2(Ngmy—1 — 3My + 2Nmy)

A = s
(mk _’/nk|)2
22Ngmy_1 —3My + Nymy)
B =— 5 .
(myg —mp,)

We observe now that the linear reconstruction is a phys-
ical approximation of a number density function only if its
values are positive in the interval [my_1, my], and this can be
verified by calculating the values of 7, (m) at my_1 and my.

If for the linear reconstruction given by CASE 2 and by
the values of o and By defined above it holds 7 (mg—1) < 0,
then we switch to Eq. (10), CASE 1. In this case, the condi-
tions ﬁl((o) = Ny and f],(cl) = M, are satisfied for the following
values of oy and y4:

= N (My — Ngmy)
(mi—1 —my) (Mg — Nymg—1)”
y Nimp—y — 2Mj + Nimy
k= .

My — Ngmy—y

Conversely, if for the linear reconstruction given by CASE
2 and by the values of o4 and S defined above it holds
Nk (my) < 0, then we switch to Eq. (10), CASE 3. In this case,
the conditions ﬁ,io) = Ny and ﬁ,({ = M, are satisfied for the
following values of Sy and yy:

N(My — Ngmg—1)
(mi—1 —my)(My — Ngmy)'
Nimy_1 —2My + Nymy,

My — Nimy, '

Bk =

Yk =

We observe that we cannot have both 7; (my—;) < 0 and
Nk (my) < 0 because of the positivity of the moments My, and
Np.

Appendix B: Constitutive equations

B1 Water-phase transition

For the partition of water in the gas, liquid, and solid phases,
three different cases are considered: Tix > Tref, Tref — 40 <
Tmix < Tref, and Tix < Tref — 40, where Tier is the reference

temperature of 273.15 K. Starting from the first case, we
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solve for the unknown variables (mass fraction of the dif-
ferent phases) and we check if their values are consistent
with the hypothesis of thermal and mechanical equilibrium
between all phases. If the equilibrium is not possible, we skip
to a different case.

1. For Tyix > Tref, water can be in vapor and liquid form

only and Tpix is given by

H — x1y (Mo — Ciw Tref) — Xwv (hwyo — Cwv Tref) (B 1)
XdaCatm + x5 Cs + X1y Clw + XwyCwv + xvgCvg

mix =

Following Folch et al. (2016), for T > 29.65 K, the satu-
ration pressure of vapor over liquid (ej) depends on mix-
ture temperature in the following way:

(Tmix —273. 16))‘ B2)

Tmix) = 611.2 17.67
€1 (Tmix) exp( (Tix — 29.65)

At equilibrium condition, when both liquid water and
vapor are present, it must hold:

Awy = Pyy— e =0, (B3)

where both terms can be written as functions of xyy, by
appropriately combining Eqs. (33), (34), (B1), and (B3).

Before trying to solve Eq. (B3), we consider the two
extreme values — xyy = 0 (liquid only) and xyy = xyw
(vapor only) — in order to check if they are compat-
ible with the condition Tiix > Tref. If Awylryy=xy, <0
and Tiix | xyw=xy = Tref, the plume is undersaturated and
there is no water vapor condensation (Xy = Xyy). If
Awylxy=0 > 0 and Tix|x,, =0 > Trer, all the water is in
liquid form (xyw = x1w). Otherwise, we apply a bisection
iterative method to solve Eq. (B3) for xyy in the inter-
val [0, xw]. Once the solution is obtained, we check if
the corresponding temperature, as given by Eq. (B1), is
> Tret. If this is not the case, Tihix must be less than Tiet.

2. For Tyix < Tret —40, water can be in vapor and ice form

only and the temperature of the eruptive mixture can be
computed as
H — xwy (hwyo — Cywy Tref)

Thix = . (B4)
XdaCatm + XsCs + XwyCywy + X1 Ci + xvgcvg

the difference of considering the equations holding for a
mixture containing water as vapor and ice. From Folch
et al. (2016), the saturation pressure of vapor over ice
(es) is a function of mixture temperature Trix as

es(Tmix)

=611.22x 10

We follow the procedure adopted for Tiix > Trer With

79.097( 7

) 3.566l0g;0 ( F2

16)+0. §76(1- 5

), (B5)

At equilibrium, when both vapor and ice are present, it
must hold:

Awy = Pyy —e5 =0, (B6)
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where Py, and eg can be written as functions of xyy
only, by appropriately combining Egs. (33), (34), (BS),
and (B4). Again, before solving Eq. (B6), we exam-
ine the two extreme cases — xyy =0 (ice only) and
Xwy = Xw (vapor only) — and we check if the corre-
sponding temperature as evaluated from Eq. (B4) is
less than Tref —40. In the case of Ayy|y,,=x, <0 and
Tmix | xyy=xy < Trer—40, the plume is undersaturated and
water is in vapor form only (xy, = xwy). On the contrary,
in the case of Ayy|x,,=0 > 0 and Tiix|x,,=0 < Tref—40,
all the water is present as ice (xy = Xj).

If equilibrium conditions can not be obtained for the two
extreme cases, we solve Eq. (B6) for x,, by applying a
bisection procedure in the interval [0, x] and we check
if the corresponding temperature given by Eq. (B4) is
< Tres — 40.

3. For Tiet — 40 < Thix < Tref, Water can be in vapor, lig-
uid, and ice form. Following Mastin (2007) and refer-
ences therein, we assume that in this range of tempera-
tures liquid and ice coexist but not in equilibrium, with
liquid water present in a subcooled state to temperatures
well below freezing. In this case, specific mixture en-
thalpy can be computed from Eq. (27) as a function of
mixture temperature only. Indeed, we show in the fol-
lowing that water mass fractions can be written as func-
tions of Trix. Water vapor mass fraction is computed by
inverting Eq. (34) as

(_mxlf)za + _mx,:f/g> NwyMWyy
Xwy (Tix) = — (B7)
(mwyy — 1)

The right-hand-side term contains ny, which, at this
stage, is unknown. However, at equilibrium conditions,
nywy is a function of Tpyix and it can be computed by in-
verting Eq. (33) as

elT=Ty
— mix , B8
Ty P, atm ( )
where e is vapor partial pressure which, depending on
mixture temperature, can be evaluated from Eq. (B2)
for Tinix = Trer or from Eq. (BS) for Tinix = Trer — 40.

As done in Mastin (2007), we assume that liquid water
mass fraction is a function of Tix as

Thix — (Tref - 40)

40 ] - (B9

le(TmiX) = x1W|Tmix=Tref [

where Xiw|7,,,,=7,; can be computed from Xy |7, =Tt
assuming that at Tier no ice is present. Finally, ice mass
fraction is

(B10)

Xi (Tiix) = Xw — Xwy — Xlw-
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The specific enthalpy of the eruptive mixture at equi-
librium (Heq) is known by solving the energy equation,
and, for a generic mixture temperature 7, it must hold:

Ap=Heq—Hlp _7=0, (B11)

where H Iz =T is the mixture enthalpy at the

generic temperature 7. Before solving Eq. (B11),
we check if equilibrium is possible in the inter-
val [Tiet — 40, Tref] by computing Ay |7, =T,.s—40 and
AT =T H AH|T . =Tg—40 > 0and Ap |7, =7,p >
Oor Ap 7, =Te—40 <0and Agl7,; =7 <0, it means
that equilibrium cannot be reached in the range [Tier —
40, Trer] and we examine the case Tix < Trer —40. Oth-
erwise, we apply a bisection procedure to solve for Tiix
and water partitions in the interval [Tier — 40, Tref]. Dur-
ing the procedure, we check that water partitions are
positive values and their sum is equal to water mass
fraction. In the event that these conditions do not hold,

we skip to a different case.
B2 Settling velocity

Several models are implemented in PLUME-MoM-TSM to
compute particle settling velocity (wj,) as a function of parti-
cle diameter (D), particle density (pp), and shape factor (/).

The first model is taken from Textor et al. (2006b) and
references therein:

wj, (D)
kippy/ e (52, D < 100um.
= { kapp /220(D), 100pm < D < 1000pm  (B12)

Patm,
ka2 /5 [ B, D > 1000 um,

where k1 =1.19 x 10° m? kg_l s7L kp=8m? kg_l s~
k3 =4.833m?kg~!/2s~!, and Cp is the drag coefficient that
we set equal to 0.75.

The second model (Ganser, 1993) defines the settling ve-
locity for the Stokes regime (Re < 0.005) as

49D — D3
w;, (D) = gD (pp — patm) .
3Cppatm

The drag coefficient (Cp) in Eq. (B13) is calculated with
the following expression:

(B13)

24 0.4305K
Cp = ———(1+0.1118(ReK | K»)?0567) + — 2222 (B14)
ReK1 1 3305
ReK K>

where Re is the Reynolds number, K is the Stokes shape
factor, and K> is the Newton shape factor:

Re — Patm Wi, (D)D ’
n

(B15)
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3
Ki=——, Bl16
' T2y 03 (B16)
Ky = 101.8148(—log1//)0~5743. (B17)

Finally, settling velocity can be computed following Pfeif-
fer et al. (2005) as

2mg

-, (B18)
Cp patm Acs

w;, (D) =

where m is the particle mass and A the cross-sectional area
of the particle. Depending on the Reynolds number, the drag
coefficient used in Eq. (B18) is

24 -0828 +R24 /116(?7 =7. Re < 100.
CD =] CDReygp + Re 1000 (CDReygpy — CDRepgy): 100 < Re < 1000 (B19)
1, Re > 1000.

We remark here that the Reynolds number is a function of
the settling velocity, and thus for the formulations where the
drag coefficient is a function of the Reynolds number a non-
linear equation has to be solved. This is done in PLUME-
MoM-TSM with an iterative procedure.

B3 Aggregation kernel

Following Costa et al. (2010), a model for wet aggrega-
tion based on the classical Smoluchowski equation is im-
plemented in PLUME-MoM-TSM. In their work, a general
model describing the aggregation processes was presented,
but a simplified version that was computationally cheaper
was then adopted. Here, the full original version is retained
and implemented in the plume model, in accordance with the
framework of the TSM method of moments.

The kernel aggregation is defined as the product of a colli-
sion frequency function §;; and a sticking efficiency function
Aij, with the collision frequency function given by the sum
of three contributions: a Brownian frequency function dp; a
fluid shear frequency function §s; and a differential sedimen-
tation frequency function dpg. Considering two particles of
the family i, with masses m; and m ; and diameters in meters
d; and d;, we can write

2
2 kp Tmix (dl +dj) 1 ) a3
3. dd +8Fs(d,+d])

T 2
+7 (i + dj) Twiy (d) = wi (@)l

d=08p + 85 +8ps =

(B20)

where ky, is the Boltzmann constant, u is the dynamic viscos-
ity of air, and I's is the fluid shear (here constant and equal
t0 0.0045s71, following Costa et al. (2010), Table 1).
Following Costa et al. (2010), the sticking efficiency A;; in
presence of ice only (no liquid water) takes a constant value:

Ajj =0.09. (B21)
When liquid water is present in the plume (without ice),
sticking is a function of the viscous Stokes number S7;;
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(Costa et al., 2010; Liu and Litster, 2002), and the follow-
ing parametrization is adopted:

1

..\q"’
1+ (52)
where St.; = 1.3 is a critical Stokes number above which
there is no sticking, and ¢ = 0.8 is an empirical parameter.
These two expressions for sticking efficiency do not take into
account the amount of ice and/or liquid water available in the
plume as the limiting factor for aggregation. Here, we mod-
ified the formulation presented in Costa et al. (2010) by tak-

ing the sticking efficiency as a weighted linear combination
of the two expressions above:

,\}y = (B22)

hij = ey + ik, (B23)
where a1y and o; are the volumetric fraction of liquid water

and ice in the mixture, respectively.

Appendix C: Addition of external water

To test the consistency of our results with those presented by
Koyaguchi and Woods (1996) and later by Mastin (2007) for
the addition of external water at the base of the plume, we ap-
plied PLUME-MoM-TSM to reproduce some of the figures
presented in their works. The left panel of Fig. C1 shows
the effects of external water on plume height as a function
of mass flow rate. PLUME-MoM-TSM results (orange lines)
are compared with those of Plumeria (light blue lines digi-
tized from Fig. C4 of Mastin (2007)) and those of Koyaguchi
and Woods (1996) (green lines digitized from Fig. 5). A gen-
eral agreement can be seen between our results and those
of the other models, with a maximum difference of 20 % be-
tween the maximum column height found by PLUME-MoM-
TSM and the one found by Plumeria for the 10 % external
water case. For the 0 % case, PLUME-MoM-TSM predicts
column collapse for a slightly lower mass eruption rate than
the other models, while a good fit between PLUME-MoM-
TSM and Koyaguchi and Woods (1996) results is observed
for the other cases.

The right panel of Fig. C1 reproduces Fig. 4 of Koyaguchi
and Woods (1996), where the height of the eruptive col-
umn as a function of the mass of external water added at
the vent is shown. Each curve is drawn for a constant mass
flow rate of 2.24 x 10, 5.6 x10%, 2.24 x 10, 5.6 x 10%, and
2.24 x10°kgs~!. These values correspond to vent radii of
10, 50, 100, 500, and 1000 m, respectively. The PLUME-
MoM-TSM results (orange lines) appear to be similar to
those of Koyaguchi and Woods (1996) (light blue lines),
although PLUME-MoM-TSM predicts column collapse for
slightly lower values of external water than Koyaguchi and
Woods (1996). Figures C2 and C3 present the variation of
mixture temperature, velocity, relative density, gas mass frac-
tion, and water mass fraction (liquid and ice) as functions of

Geosci. Model Dev., 14, 1345-1377, 2021
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Figure C1. (a) Effect of addition of external water on column height as a function of mass flow rate. As in Koyaguchi and Woods (1996) and
Mastin (2007), input parameters are as follows: magma temperature is 1000 K, water vapor mass fraction is 0.03, and relative humidity in the
atmosphere is 100 %. The exit velocity for the dry scenario is 100 m s~1, while an adjustment on exit velocities was done for the runs with
external water to match the mass flux of magma and gas of the dry case. For this reason, exit velocities are 300, 329, 289, and 236 m s~ for
the runs involving 10 %, 20 %, 30 %, and 40 % of external water, respectively (Mastin, 2007). (b) Plume height as a function of mass fraction
of external water added at the vent. Orange lines show the PLUME-MoM-TSM results, while light blue lines are digitized from Fig. 4 of
Koyaguchi and Woods (1996). Curves are shown for vent radii of 10, 50, 100, 500, and 100 m. Exit velocity is equal to 100 m s~1, water
vapor mass fraction to 0.03, and mixture temperature to 1000 K.

column height for two eruptive scenarios. Each panel shows
the results for amounts of external water of 3 (5 in Fig. C3),
10, 20, and 30 wt %. The two figures reproduce Fig. 3 of Koy-
aguchi and Woods (1996).
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Figure C2. Variation with column height of mixture temperature (a), velocity (b), relative density (c), gas mass fraction (d), liquid mass
fraction (e), and ice mass fraction (f). As done in Koyaguchi and Woods (1996), each curve accounts for a different amount of external water

added to the magmatic mixture: 3, 10, 20, and 30 wt %. The dry case is set for a vent radius of 50 m and an exit velocity of 100 m s~

s

resulting in a mass flow rate of 5.7 x 106 kg s~1. The wet cases are obtained by keeping constant vent radius and mass flow rate, while
varying exit velocity. Magma is assumed to contain a 0.03 wt fraction of volatiles (only water vapor) and to have an initial temperature of

1000 K.
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Figure C3. As in Fig. C3, but the model is initialized with a vent radius of 1000 m.
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Figure C4. Variation of initial mixture density (ppix) and temper-
ature (Tpnix) as the mass of water added to the magma increases.
Continuous lines show the results of PLUME-MoM, while dotted
lines are digitized from Koyaguchi and Woods (1996). Curves are
shown for initial magma temperatures of 1000 and 1400 K, while
magma volatile content ranges from 0.01 to 0.05 wt fraction.

Following Koyaguchi and Woods (1996), Fig. C4 shows
the variation of initial mixture density and temperature as
the mass of external liquid water increases. The figure shows
how the addition of a certain amount of external water alters
the properties of the magmatic mixture at the vent. The three
curves are done for different initial temperatures of the erup-
tive mixture (1000 and 1400 K) and volatile contents (0.01
and 0.05 wt fraction; only water vapor is considered). The
temperature of the external water is 273 K.
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Appendix D: List of model variables

Table D1. List of model variables.
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Symbol  Definition Units Comments
Catm Specific heat capacity of air J kg_1 K!

Cp Drag coefficient

Clw Specific heat capacity of liquid water J kg_l K1  =4187

Ci Specific heat capacity of ice Jkg_1 K- =2108

Cs Specific heat capacity of the solid phase J kg_1 K!

Cs.ip Specific heat capacity of ith particle family Jkg_l K1

Cyg Specific heat capacity of volcanic gases J k;cf1 K!

Cwy Specific heat capacity of water vapor J kg_1 K= =199

E Total specific energy J kg_1

es Saturation pressure of water vapor over ice Pa

e Saturation pressure of water vapor over liquid Pa

g Gravitational acceleration ms 2 =9.81

H Specific enthalpy J kgf1

Hyent Specific enthalpy at the vent without addition of external liquid water J kg_l

Hyent,.,, Specific enthalpy at the vent after addition of external liquid water J kg_1

h Thickness of umbrella cloud intrusion m

hwo Enthalpy per unit mass of liquid water at Tief Jkg_l =3.337x 1072
Rwvo Enthalpy per unit mass of water vapor at Tief J kgf1 =2.501 x 10°
mwg, Dry air molar weight kg mole ™! =0.029
mwg kth volcanic gas phase molar weight kg mole™!

mwyg Volcanic gas molar weight kg mole™!

MWy Water vapor molar weight kg mole ™! =0.018

N Brunt—Viisila frequency g1

Nda Dry air molar fraction

nyg Volcanic gas molar fraction

Nwy Water vapor molar fraction

P Probability of particle loss -

Patm Atmospheric pressure Pa

Pga Partial pressure of dry air Pa

Pyg Partial pressure of volcanic gases Pa

Py Partial pressure of water vapor Pa

r Plume radius m

Ry Specific gas constant of dry air J kgf1 K- =287.026
Ry Specific gas constant of water vapor J kg_1 K1 =462
Tatm Atmospheric temperature K

Tiwey Temperature of external liquid water K

Tix Mixture temperature K

Tref Reference temperature K =273.15K
Thix0 Temperature of the magma K

u Horizontal x component of plume velocity ms~!

Ug Horizontal x component of atmospheric wind ms™!

Uatm Magnitude of atmospheric wind ms™!

Ue Air entrainment velocity ms~!

Usc Magnitude of plume velocity ms~! =vVu?+v2+w?
v Horizontal y component of plume velocity ms™!

Vg Horizontal y component of atmospheric wind ms~!

w Vertical plume velocity ms~!

shatm Specific humidity kg kg71

wj Particle settling velocity ms~!
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Table D1. Continued.

Symbol  Definition Units Comments
X Horizontal coordinate m

Xda Mass fraction of dry air

Xerupt Mass fraction of eruptive mixture without external liquid water

X Mass fraction of ice

Xk Mass fraction of kth volcanic gas -

Xlw Mass fraction of liquid water

XlWey Mass fraction of external liquid water added at the vent

Xs Mass fraction of solid particles -

Xvg Mass fraction of volcanic gases in the mixture

Xw Mass fraction of water = xwy +x7 +Xj
Xwy Mass fraction of water vapor -

y Horizontal coordinate m

z Vertical coordinate m

¢ Angle between plume axial direction and horizontal plane

e Radial entrainment coefficient -

B Aggregation kernel m3s~!

Catm Moist atmospheric lapse rate km™!

Iq Dry atmospheric lapse rate km ™!

Ve Crossflow air entrainment coefficient -

8 Collision frequency m3 s~}

A Sticking efficiency

Patm Air density kg m3

£d Dry air density kg m—3

Pmix Density of the mixture kg m~3  Solid particles and gas
) Diameter in Krumbein scale -

v Particle shape factor -

Nij k Number of particles of the ipth family in the kth section m—3

Ni, k Mass of particles of the ipth family in the kth section kg m~3
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Code availability. The numerical code, benchmark tests,
and documentation are available at https://github.com/
demichie/PLUME-MoM-TSM (last access: 23 June 2020).
Postprocessing scripts (to plot the solution variables and
to create animations) are also available. Furthermore,
each example has a page description on the model wiki
(https://github.com/demichie/PLUME-MoM-TSM/wiki (last
access: 23 June 2020), where detailed information on how
to run the simulations is given. The digital object identifier
(DOI) for the version of the code documented in this paper is
https://doi.org/10.5281/zenodo0.3904379 (de’ Michieli Vitturi and
Pardini, 2020).
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