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Abstract. The Arctic regional coupled sea-ice–ocean–
atmosphere model (ArcIOAM) has been developed to pro-
vide reliable Arctic sea ice prediction on seasonal timescales.
The description and implementation of ArcIOAM and its
preliminary results for the year of 2012 are presented in this
paper. In the ArcIOAM configuration, the Community Cou-
pler 2 (C-Coupler2) is used to couple the Arctic sea-ice–
oceanic configuration of the MITgcm (Massachusetts Insti-
tute of Technology general circulation model) with the Arc-
tic atmospheric configuration of the Polar WRF (Weather
Research and Forecasting) model. A scalability test is per-
formed to investigate the parallelization of the coupled
model. As the first step toward reliable Arctic seasonal sea
ice prediction, ArcIOAM, implemented with two-way cou-
pling strategy along with one-way coupling strategy, is evalu-
ated with respect to available observational data and reanaly-
sis products for the year of 2012. A stand-alone MITgcm run
with prescribed atmospheric forcing is performed for refer-
ence. From the comparison, all the experiments simulate rea-
sonable evolution of sea ice and ocean states in the Arctic re-
gion over a 1-year simulation period. The two-way coupling
has better performance in terms of sea ice extent, concen-
tration, thickness and sea surface temperature (SST), espe-
cially in summer. This result indicates that sea-ice–ocean–
atmosphere interaction plays a crucial role in controlling
Arctic summertime sea ice distribution.

1 Introduction

It is widely recognized that coupling between different Earth
system components (ocean, atmosphere, sea ice and land)
provides improved forecasts of oceanic and atmospheric
states on various timescales (Neelin et al., 1994). As an es-
sential component in the climate system, sea ice plays a cru-
cial role in the global energy and water budget and has a
substantial impact on atmospheric and oceanic circulation. In
polar regions, strong interactions at different interfaces dis-
turb sea ice motion and affect sea ice growth–melt processes
(Jung et al., 2016). Due to the combined physics of solids
and fluids, sea ice thermodynamical and dynamical repre-
sentations in coupled models are complicated (Bailey et al.,
2020). Due to the projected increase in marine traffic through
the Arctic marginal seas as climate change continues, there is
amplified demand for reliable polar sea ice and marine envi-
ronmental predictions from synoptic timescales to seasonal
and interannual timescales.

In past decades, a number of coupled models have been
developed with various sea ice prediction capacities on vari-
ous timescales (Pellerin et al., 2004; Williams et al., 2018;
Chen et al., 2010; Skachko et al., 2019). Climate models
comprising phase 6 of the Coupled Model Intercomparison
Project (CMIP6) are used for state-of-the-art sea ice pre-
diction on seasonal to longer timescales. Recently within
the GODAE (Global Ocean Data Assimilation Experiment)
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Oceanview community, there has been increasing interest in
using coupled global models to predict sea ice on shorter
timescales (Brassington et al., 2015). In Canada, a coupled
global forecasting system is now operationally running at
the Canadian Centre for Meteorological and Environmental
Prediction (Smith et al., 2018), providing global 10 d fore-
casts of ocean and sea ice states. The ocean–sea-ice com-
ponent of this system, namely the Global Ice-Ocean Pre-
diction System (GIOPS, running in real time since March
2014) (Smith et al., 2016), are based on the Nucleus for Eu-
ropean Modelling of the Ocean (NEMO) and the Commu-
nity Ice CodE (CICE) models. The GIOPS is coupled to an
operational global deterministic medium-range weather fore-
casting system, namely the Global Deterministic Prediction
System (GDPS) (Smith et al., 2014), which is based on the
Global Environmental Multiscale (GEM) atmosphere model.
In the United Kingdom, Hadley Centre Global Environment
Model version 3 (HadGEM3) is under development and is
intended to provide seasonal sea ice prediction (Williams et
al., 2018). The HadGEM3 is made up of the UK Met Office
Unified Model (UKMO UM) atmosphere model (Walters et
al., 2011), the Joint UK Land Environment Simulator land-
surface model (Brown et al., 2012), the NEMO model and the
CICE model. In the United States, a coupled global sea-ice–
ocean–wave–land–atmosphere prediction system providing
operational daily predictions out to 10 d and weekly predic-
tions out to 30 d is being developed by the US Navy (Brass-
ington et al., 2015; Posey et al., 2015).

Although global coupled models are now being run with
increased horizontal resolution, higher-resolution regional
coupled models can provide an affordable way to study inter-
active ocean–atmosphere and sea-ice–atmosphere feedbacks
for polar weather and sea ice processes, if properly forced by
initial and boundary conditions. On the regional scale, there
are also a few coupled sea-ice–ocean–atmosphere model sys-
tems for Arctic climate studies and operational sea ice fore-
casts. The Arctic Region Climate System Model (ARCSyM)
was developed to simulate coupled interactions among the
atmosphere, sea ice, ocean and land surface of the western
Arctic (Lynch et al., 1995; Rinke et al., 2000). Schrum et
al. (2003) introduced a coupled sea-ice–ocean–atmosphere
model for the North and Baltic seas. In their work, the re-
gional atmospheric model REgional MOdel (REMO) was
coupled to the HAMburg Shelf Ocean Model (HAMSOM)
with a sea ice module. Pellerin et al. (2004) demonstrated
that significant sea ice forecasting improvements occurred
when the two-way coupling was implemented between the
Gulf of St. Lawrence model and the GEM atmosphere model.
The Regional Arctic System Model (RASM) is a fully cou-
pled, regional Earth system model covering the pan-Arctic
domain (Maslowski et al., 2012; Cassano et al., 2017). The
component models of RASM include the Weather Research
and Forecasting (WRF) atmospheric model, the Variable In-
filtration Capacity (VIC) land and hydrology model, and re-
gionally configured versions of the ocean and sea ice mod-

els used in the Community Earth System Model (CESM):
the CICE model and Parallel Ocean Program (POP). Van
Pham et al. (2014) compared basin-scale climate simulation
in the regional coupled model COSMO-CLM-NEMO with
that in the stand-alone COSMO-CLM model for the North
and Baltic seas and found a large improvement in the sim-
ulated atmospheric low-boundary temperature. As part of
the Canadian Operational Network of Coupled Environmen-
tal PredicTion Systems (CONCEPTS), a fully coupled sea-
ice–ocean–atmosphere forecasting system for the Gulf of St.
Lawrence has been developed (Faucher et al., 2009) and run-
ning operationally at the Canadian Meteorological Centre
since June 2011. The new model development plan is to cou-
ple a high-resolution (1/12◦) sea-ice–ocean regional model
which covers the North Atlantic and Arctic Ocean (Dupont
et al., 2015) to the regional weather and wave prediction sys-
tem of Environment Canada and provides short-term sea ice
and ocean predictions to users. Yang et al. (2020) has devel-
oped a coupled atmosphere–sea-ice–ocean model configured
for the pan-Arctic with the Coupled Ocean–Atmosphere–
Wave–Sediment Transport modeling system (COAWST). A
data assimilation system using an ensemble Kalman filter is
combined with this coupled model to assimilate satellite sea
ice observations to improve initial sea ice conditions. Since
regional models can be run at higher resolution than global
models, regional models can explicitly represent mesoscale
features that may not be resolved in global models. Another
potential advantage of regional systems is that lateral bound-
ary conditions can be controlled to get an optimal model in-
put (Cassano et al., 2017). In coupled model systems, mois-
ture, heat and momentum are often coupled through the use
of a separate coupling software like OASIS-MCT (Craig et
al., 2017) or framework like the Earth System Model Frame-
work (ESMF) (DeLuca et al., 2012) which links component
models flexibly and controls the exchange and interpolation
of coupling variables. The coupler, which can handle data
interpolation and data transfer between different models and
different grids, is the crucial part in the coupled systems. Us-
ing the ESMF and the National United Operational Predic-
tion Capability (NUOPC), Sun et al. (2019) introduced a re-
gional ocean–atmosphere coupled model covering the Red
Sea based on the MITgcm (Marshall et al., 1997) and the
WRF models (Skamarock et al., 2008).

To provide operational seasonal sea ice prediction in
the National Marine Environmental Forecasting Center
(NMEFC) of China, the motivation of this work is to develop
a fully coupled Arctic sea-ice–ocean–atmosphere model (Ar-
cIOAM) as a new tool to perform regional sea ice simula-
tion and operational sea ice prediction on seasonal timescale.
In our study, we use a newly developed efficient coupling
framework, the Community Coupler 2 (C-Coupler2) (Liu et
al., 2018), to couple the Arctic sea-ice–oceanic configura-
tion of the MITgcm (Nguyen et al., 2011; Liang and Losch,
2018) with the Arctic atmospheric configuration of the Po-
lar WRF model (Hines and Bromwich, 2008). By coupling
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the Polar WRF and the MITgcm for the first time in the
Arctic region, a series of specific procedures including data
interpolation between different grids and a relaxation algo-
rithm in lateral boundaries are implemented. After describing
the ArcIOAM, we evaluate the model performance in 2012
against available observational and reanalysis data. This year
is selected because of the historical sea ice extent minimum
record in the satellite era. To evaluate the role of sea-ice–
ocean–atmosphere interaction in the Arctic sea ice seasonal
cycle, we compare the simulation results of the two-way cou-
pling experiment with that of the one-way coupling experi-
ment in which the coupling variables are only transmitted
from the Polar WRF to the MITgcm. Also, a stand-alone
MITgcm simulation with prescribed atmospheric forcing is
performed for reference.

The paper is organized as follows. The description of
the component models and coupling strategy are detailed in
Sect. 2. In Sect. 3, a scalability test of the coupled model
is performed to investigate its parallel capability. Section 4
introduces the designs and configurations of coupling exper-
iments. Section 5 discusses the preliminary results in the val-
idation test. The last section concludes the paper and presents
an outlook for future work.

2 Model description

The newly developed regional coupled modeling system of
ArcIOAM is introduced in this section. The descriptions of
individual model components and the coupling strategy with
C-Coupler2 are presented below. Detailed options of physi-
cal parameterizations and model settings for the Polar WRF,
MITgcm models and C-Coupler2 are summarized in Table 1.

2.1 The oceanic and sea ice component model

The ocean and sea ice component of ArcIOAM is an Arc-
tic configuration of the MITgcm (Nguyen et al., 2011; Liang
and Losch, 2018; Liang et al., 2019, 2020). The model has an
average horizontal resolution of 18 km and covers the whole
Arctic Ocean with open boundaries close to 55◦ N in both the
Atlantic and Pacific sectors (Losch et al., 2010). The ocean
model includes 420×384 horizontal grid points and 50 verti-
cal model layers based on Arakawa C grid and Z coordinates
and a time step of 1200 s. The ocean model uses curvilinear
coordinates, and the model grid is locally orthogonal. Verti-
cal resolution of the ocean model layers increases from 10 m
near the surface to 456 m near the bottom. The K-profile pa-
rameterization (KPP) (Large et al., 1994) is used as the ver-
tical mixing scheme.

The sea ice model shares the same horizontal grid with the
ocean model and divides each model grid into two parts: ice
and open ocean. In the open-ocean area, ocean–atmosphere
heat and momentum fluxes are calculated following the stan-
dard bulk formula (Doney et al., 1998). In the ice-covered

area, the ice surface and bottom heat and momentum fluxes
are calculated according to viscous-plastic dynamics and
zero-layer thermodynamics (Hibler, 1980; Semtner, 1976).
The so-called zero-layer thermodynamic model assumes one
layer of ice underneath one layer of snow and assumes ice
does not store heat and therefore tends to exaggerate the
seasonal variability in ice thickness. Snow modifies ice sur-
face albedo and conductivity. If enough snow accumulates
on top of the ice, its weight submerges the ice and the snow
is flooded. In order to parameterize a sub-grid-scale distribu-
tion for sea ice thickness, the mean sea ice thickness in each
grid can be split into as many as seven thickness categories
in the MITgcm sea ice model. In our coupled model for sim-
plicity, we use two thickness categories: open water and sea
ice.

2.2 The atmospheric component model

The atmospheric component of ArcIOAM is based on the
Polar WRF (Bromwich et al., 2013; Hines and Bromwich,
2008) model, which is an optimized version of the WRF
model (Skamarock et al., 2008) for use in polar regions. Pre-
vious researchers have made several specific modifications
for polar environments, which primarily encompass the land
surface model and sea ice to adapt to the particular con-
ditions in Arctic regions. The Noah land surface model is
embedded inside the Polar WRF. The changes made in the
Noah land surface model (LSM; Chen and Dudhia, 2001)
include using the latent heat of sublimation for calculating
latent heat flux over ice surface, increasing the snow albedo
and the emissivity value for snow, adjusting snow density,
modifying thermal diffusivity and snow heat capacity for the
subsurface layer, changing the calculation of skin tempera-
ture, and assuming ice saturation in calculating the surface
saturation mixing ratio over ice. Other modifications of the
Polar WRF include a fix to allow specified sea ice quantities
and the land mask associated with sea ice to update during a
simulation. These modifications improve model performance
over the pan-Arctic for short-term forecasts.

The Arctic configuration of the Polar WRF model has been
tested and evaluated by a set of simulations over several key
surface categories, including large permanent ice sheets with
the Greenland/North Atlantic grid and Arctic land (Hines
et al., 2011; Hines and Bromwich, 2008) and the produc-
tion of the Arctic System Reanalysis (ASR) (Bromwich et
al., 2010). In this study, the Polar WRF model covers the
Arctic regions with a horizontal resolution of 27 km. The
model has 306× 306 horizontal grid points and 60 vertical
layers and a time step of 120 s. The Polar WRF model em-
ployed physics options that included the Mellor–Yamada–
Janjic boundary layer scheme in conjunction with the Janjic
Eta Monin–Obukhov surface layer scheme (Janjić, 2002), the
WRF single-moment 6-class microphysics scheme for mi-
crophysics, the Grell–Devenyi scheme for clouds (Grell and
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Table 1. The summary of physics option and details of coupled system.

Atmosphere component (Polar WRF)

Horizontal spacing 27 km
Horizonal grid points 306× 306
Polar WRF time step 120 s
Vertical layers 60
Lateral boundary conditions CFSR
Polar WRF version 3.7.1
Cumulus parameterization Grell–Devenyi scheme (Grell and Dévényi, 2002)
Microphysics parameterization WRF single-moment 6-class scheme
Longwave and shortwave radiation Rapid Radiative Transfer Model
Boundary layer Mellor–Yamada–Janjic scheme
Land surface Unified Noah LSM (Chen and Dudhia, 2001)

Ocean/sea ice component (MITgcm)

Horizontal spacing 18 km
Horizonal grid points 420× 384
MITgcm time step 1200 s
Vertical layers 50
Lateral boundary conditions ECCO2
MITgcm version checkpoint64a
Equation of sea water state Jackett and McDougall (1995)
Vertical mixing scheme K-profile parameterization (KPP) scheme
Horizontal advection scheme Seventh-order monotonicity-preserving advection scheme (Daru and

Tenaud, 2004)
Ice rheology Viscous-Plastic constitutive law
Ice momentum solver Line successive over-relaxation (Zhang and Hibler, 1997)
Ice thermodynamics Zero-layer snow/ice thermodynamics (Semtner, 1976 )
Albedo (under CFSR forcing) Dry ice: 0.65; wet ice: 0.55; dry snow: 0.8; wet snow: 0.7

Coupler component (C-Coupler)

Coupler version C-Coupler2
Coupling frequency 1200 s
Interpolation scheme Bilinear remapping algorithm
Coupling parameters (from MITgcm to Polar WRF) SST, sea ice concentration, sea ice thickness, snow depth, ice surface

albedo
Coupling parameters (from Polar WRF to MITgcm) Downward longwave radiation, downward shortwave radiation, 10 m

wind speed, 2 m air temperature, 2 m air specific humidity, precipitation

Dévényi, 2002), and the new version of the rapid radiative
transfer model for both shortwave and longwave radiation.

2.3 The coupler

We have implemented the C-Coupler2 to couple the MITgcm
and the Polar WRF model. The first version (C-Coupler1) in-
cludes features such as a flexible coupling configuration and
3-D coupling capability (Liu et al., 2014). Two coupled mod-
els have been built using the C-Coupler1. The first is a cou-
pled climate system model version FGOALS-gc at the Insti-
tute of Atmospheric Physics, Chinese Academy of Sciences.
The FGOALS-gc can achieve exactly the same (bitwise iden-
tical) simulation results as the same model components with
a different coupler, the CPL6 (Liu et al., 2014). The second
is a regional coupled model FIO-AOW (Zhao et al., 2017)

which includes an atmosphere model WRF, an ocean model
POM (Princeton Ocean Model) and a wave model MAS-
NUM (Yang et al., 2005).

The second version of the C-Coupler family, the C-
Coupler2 (Liu et al., 2018), is equipped with many advanced
functions, including (1) a common, flexible, user-friendly
coupling configuration interface; (2) the capability of cou-
pling within one executable or the same subset of Message
Passing Interface (MPI) processes; (3) flexible and automatic
coupling procedure generation for any subset of component
models; (4) dynamic 3-D coupling that enables convenient
coupling of the field on 3-D grids with time-evolving vertical
coordinate values; (5) non-blocking data transfer; (6) model
nesting; (7) increment coupling; and (8) adaptive restart ca-
pability (Liu et al., 2018).
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Figure 1. Coupling strategy of the Polar WRF-MITgcm coupled
model system.

2.4 Coupling strategy

In ArcIOAM, the requested CPUs are assigned equally to
the MITgcm and Polar WRF models. The C-Coupler2 is em-
ployed as a library to achieve the two-way parallel coupling
between the Polar WRF and the MITgcm (Fig. 1). The cou-
pling interval is set to 20 min. The component models are
running in concurrent mode (Fig. 2); that is, the component
models run on mutually exclusive sets of cores. If one com-
ponent model finishes earlier than the other, its resources are
idle and wait for the other component model. At each cou-
pling time step, data transfer from the MITgcm to the Polar
WRF is executed when data transfer from the Polar WRF to
the MITgcm is completed, and vice versa. During coupling
execution, the MITgcm sends sea surface temperature (SST),
sea ice concentration, sea ice thickness, snow depth and ice
surface albedo to the coupler, and these coupling variables
are used directly as the bottom boundary conditions in the
Polar WRF model. The Polar WRF model sends the atmo-
spheric bottom boundary variables to the coupler, including
downward longwave radiation, downward shortwave radia-
tion, 10 m wind speed, 2 m air temperature, 2 m air specific
humidity and precipitation. The MITgcm uses these atmo-
spheric variables to compute the open-ocean and ice surface
heat, freshwater, and momentum forcing.

Model domains of the MITgcm and the Polar WRF model
are shown in Fig. 3a. As the model domain and grid of the
Polar WRF and the MITgcm are generally different, several
important procedures are carried out in our coupled system.
The model domain of the Polar WRF is larger than that of
the MITgcm, producing a non-overlapped area between the
MITgcm domain and the Polar WRF domain. Also, the MIT-

Figure 2. Concurrent mode of the coupled model. The small blocks
under OCN or above ATM are the small subdomains in each node;
the block under CPL is the coupler. The red curve arrows indicate
that the component models are sending data to the coupler and the
red straight arrows indicate that the component models are reading
data from the coupler. The horizontal arrows in the wall time indi-
cate the time axis of each component model and the ticks on the
time axis indicate the coupling time steps.

gcm model only produces surface variables over ocean, and
the Polar WRF model also needs bottom boundary condi-
tions over land. Thus, the coupling variables received by the
Polar WRF model need to be concatenated by value in the
non-overlapped area and in the land area from an external
forcing file, and by value in the overlapped ocean area from
the MITgcm model together. To diminish the abrupt value
changes from two sources, a simple linear relax zone is de-
signed near the open boundaries of the MITgcm model in
both the Atlantic and Pacific sectors (Fig. 3b). The coupling
variables (VARrecbyWRF) received by the Polar WRF model
can be expressed as follows:

VARrecbyWRF = (1−α)VARsedbyMIT+αVARextern, (1)

where α is relaxation coefficient, which is equal to 0 in
the overlapped ocean area away from the MITgcm open
boundaries, and equal to 1 in the land area and in the non-
overlapped area away from the MITgcm open boundaries.
While in the relax zone, α increases from 0 to 1 linearly from
the overlapped side to the non-overlapped side. VARsedbyMIT
are the coupling variables which are sent by the MITgcm
model. VARextern are the bottom boundary variables of the
Polar WRF model which are read from the external forcing
file.

Normally in coupled models the coupler controls the ex-
change of heat and momentum fluxes among component
models. In our model configuration, instead of coupling
fluxes directly, we use the C-Coupler2 to control the ex-
change of fields between the Polar WRF and the MITgcm.
Heat and momentum fluxes are calculated separately in each
component model. Both the Polar WRF and the MITgcm
use the same bulk formula and similar parameters in cal-
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Figure 3. (a) Model domain of the MITgcm and the Polar WRF model. The red and black lines denote the boundaries of the Polar WRF and
the MITgcm model, respectively. (b) Relaxation coefficient for the external forcing file of the Polar WRF bottom boundary conditions.

culating fluxes, which guarantees the quasi-conservation of
heat and momentum transmission between the component
models. The bilinear interpolation algorithm is used to trans-
form model variables between the horizontal grid of the Polar
WRF and that of the MITgcm. Figure 4 shows wind stress
curl derived from the Polar WRF output and the MITgcm
output, as well as their difference on 1 March 2012. It can
be seen that the Polar WRF and MITgcm models generate
similar wind stress curl pattern, and the difference due to the
interpolation algorithm and momentum calculation accounts
for less than 5 % of the wind stress curl (Fig. 4c).

3 Scalability test

In this section, the parallel efficiency of the ArcIOAM is in-
vestigated. Different numbers of CPU cores are used to eval-
uate the parallel speed-up of the coupled model. The CPU
elapsed time spent on the coupling interface of each com-
ponent model in the coupled runs are detailed. Addition-
ally, the parallel efficiency of each component model in the
stand-alone runs are calculated for references. The parallel
efficiency tests are performed on the high-performance com-
puting cluster at NMEFC. The high-performance computing
cluster is a Lenovo Blade Server system composed of 240
dual-socket compute nodes based on 14-core Intel Haswell
processors running at 2.4 GHz. Each node has 128 GB DDR4
memory running at 2133 MHz. Overall the system has a to-
tal of 6270 CPU cores (240 nodes×2× 14 CPU cores) and
has a theoretical peak speed of 258 teraflops. The parallel ef-
ficiency of the scalability test is Np0tp0/Npntpn, where Np0
and Npn are the number of CPUs employed in the base case
and the test case, respectively; tp0 andtpn represent the CPU
elapsed time in the base case and the test case. The speed-

up is defined as tp0/tpn, which is the relative improvement
of the CPU time. The scalability tests are performed by in-
tegrating 7 model days for the stand-alone Polar WRF, the
stand-alone MITgcm and the coupled runs.

In the ArcIOAM runs, the requested CPUs are assigned
equally to the component models. The minimum number of
CPUs we use is 28, i. e. Np0 = 28. Limited by computa-
tional resources, the maximum number of CPUs we can use
is 896. The total CPU elapsed time in the coupled runs de-
creases from 12 840 to 1380 s when the requested CPUs in-
crease from 28 to 896 (Table 2). When the requested CPUs
are less than 448, the CPU elapsed time used for numeri-
cal integration by the MITgcm is substantially smaller than
that for numerical integration by the WRF, meaning that the
efficiency of the coupled model depends on the WRF com-
ponent model. When the requested CPUs are larger than 448,
the efficiency of the coupled model depends on the MITgcm
component model.

The parallel efficiency of the coupled model remains
higher than 90 % when employing less than 112 cores and is
still as high as 80 % when using 224 cores (Fig. 5). The par-
allel efficiency of the stand-alone MITgcm is near to that of
the stand-alone Polar WRF when the requested CPUs are less
than 448, while both of them are substantially lower than the
coupled model. The parallel speed-up of the coupled model is
higher than the stand-alone component model. The decrease
in parallel efficiency results from the increase in communica-
tion time, load imbalance and I/O (read and write) operation
per CPU core (Christidis, 2015).
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Figure 4. Wind stress curl (unit: Nm−2) derived from (a) the MITgcm output, (b) the Polar WRF output and (c) their difference on
1 March 2012. The difference of wind stress curl between the Polar WRF and MITgcm is calculated by interpolating the Polar WRF
output onto the MITgcm grid.

Figure 5. The parallel efficiency (a) and speed-up (b) test of the coupled model and the stand-alone component models, employing up to
896 CPU cores. The simulation using 28 CPU cores is regarded as the baseline case when computing the speed-up. The tests are performed
on a Lenovo Blade Server system composed of 240 dual-socket compute nodes based on 14-core Intel Haswell processors.

4 Numerical experiments

As a starting point, we evaluate the performance of Ar-
cIOAM on a seasonal timescale. In this work, we perform the
coupled model simulations in the year 2012, because an un-
usually strong storm formed off the coast of Alaska on 5 Au-
gust 2012 and tracked into the center of the Arctic Basin,
where it lingered for several days and generated strong sea-
ice–ocean–atmosphere interaction (Simmonds and Rudeva,
2012). With more open-ocean area exposed to atmosphere,
we expect that sea-ice–ocean–atmosphere interaction pro-
cesses are more intense in the summertime than in the win-
tertime. In the Arctic regions, there is also higher demand for
seasonal prediction in the summertime when more commer-
cial and Arctic shipping occurs. The main aim of this paper is
to assess the sea ice and ocean simulation capabilities of the
coupled system. For this reason, less attention will be paid
to the atmosphere simulation. Future work will emphasize

atmospheric variables and seasonal sea ice prediction skill
with available observations assimilated.

Three experiments using different coupling strategies are
performed in this study (Table 3). The first experiment, which
is denoted by OCNCPL, is a two-way coupled simulation
where the MITgcm receives the coupled variables from the
Polar WRF, and the Polar WRF receives the coupled vari-
ables from the MITgcm. The second experiment, which is
denoted by OCNDYN, is a one-way coupled simulation
where the MITgcm only receives the coupled variables from
Polar WRF, but without sending the coupled variables back
to Polar WRF. α in Eq. (1) is set to 1 in the OCNDYN run.
The third experiment, OCNSTA, represents the stand-alone
MITgcm simulation with the same sea ice albedo parame-
ters as the coupled model but prescribed atmospheric forcing
to keep consistency with the previous two coupling experi-
ments. The model state deviation between these cases repre-
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Figure 6. Time series of (a) sea ice extent, (b) sea ice extent
anomaly and (c) root mean square error (RMSE) of modeled sea
ice concentration with respect to the OSISAF observation in 2012.
The black, red, green and blue lines in (a) denote sea ice extent
of the MASIE observation, the OCNCPL run, the OCNSTA run
and the OCNDYN run, respectively. The black, red, green and blue
lines in (b) denote sea ice extent anomaly of the MASIE observa-
tion, the OCNCPL run, the OCNSTA run and the OCNDYN run,
respectively. The red, green and blue lines in (c) denote the sea ice
concentration RMSE of the OCNCPL run, the OCNSTA run and the
OCNDYN run, respectively. MASIE: Multisensor Analyzed Sea Ice
Extent; OSISAF: Ocean and Sea Ice Satellite Application Facility.

sents the influences of sea-ice–ocean–atmosphere interaction
in the Arctic Ocean.

The atmospheric initial and lateral boundary conditions,
the bottom boundary conditions in the external forcing file
used in the OCNCPL and OCNDYN runs, and the prescribed
atmospheric forcing used in the OCNSTA run are derived
from the 6-hourly National Centers for Environmental Pre-
diction (NCEP) Climate Forecast System Reanalysis (CFSR)
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Table 3. The initial conditions, boundary conditions and forcing terms used in the experiments.

Experiments description

Experiment name Description Bottom boundary forcing for
atmospheric component

Surface boundary forcing for
ice/oceanic component

OCNCPL two-way coupled simulation MITgcm Polar WRF

OCNDYN one-way coupled simulation that the MITgcm
only receives the variables from the Polar WRF,
but without sending variables back to the Polar
WRF

CFSR Polar WRF

OCNSTA stand-alone MITgcm simulation Not used CFSR

Atmospheric initial and boundary conditions: CFSR. Oceanic boundary conditions: ECCO2.r Oceanic initial conditions: restart field on 1 January 2012 derived from a stand-alone
MITgcm simulation initialized from climatological temperature and salinity field derived from WOA05 and forced by the 3-hourly JRA55 data from 1979 to 2011.

data (Saha et al., 2010). The oceanic monthly lateral bound-
ary condition of the coupled model is derived from the Es-
timating the Circulation and Climate of the Ocean Phase II
(ECCO2) high-resolution global-ocean and sea ice data syn-
thesis (Menemenlis et al., 2008), including potential temper-
ature, salinity, current and sea surface elevation. The discrep-
ancy of atmosphere and ocean boundary condition is less
of an issue since the ocean does not vary much on shorter
timescales and the zones of sea ice are far away from the
lateral boundary. The initial conditions of ocean and sea
ice on 1 January 2012 are derived from a stand-alone MIT-
gcm simulation initialized from a climatological tempera-
ture and salinity field derived from the World Ocean At-
las 2005 (WOA05) (Locarnini et al., 2006; Antonov et al.,
2006) and forced by the 3-hourly Japanese 55-year Reanal-
ysis (JRA55) (Harada et al., 2016; Kobayashi et al., 2015)
data from 1979 to 2011 (Liang and Losch, 2018). After a 33-
year integration, the ocean and sea ice initial conditions on
1 January 2012 used in the coupled model are retrieved from
a quasi-equilibrium ocean–sea-ice evolution period. River
runoff is based on the Arctic Runoff Database (Nguyen et
al., 2011). The model states are output on a daily basis.

5 Results

5.1 Sea ice extent and concentration

The minimum Arctic sea ice extent in the satellite era
occurred in the summer of 2012 (Francis, 2013). Arctic
sea ice extent grew to maximum value of 14.5 million km2

in March 2012 and dropped to minimum value of
3.5 million km2 in September 2012 (Fig. 6a) according to the
Multisensor Analyzed Sea Ice Extent – North Hemisphere
(MASIE-NH) data (U.S. National Ice Center and National
Snow and Ice Data Center, 2010). The MASIE-NH data are
provided daily by the National Ice Center Interactive Multi-
sensor Snow and Ice Mapping System with a spatial resolu-
tion of 4 km. Compared with the OCNSTA run, results from

the experiments with coupling (OCNCPL and OCNDYN)
are closer to observations (Fig. 6). It is noted that both the
OCNCPL and OCNDYN runs simulate lower sea ice extent
than the observations by a bias of 1–1.5 million km2 (Fig. 6a)
after the first 2 weeks of January. Because the sea ice initial
condition on 1 January 2012 is derived from a stand-alone
MITgcm simulation which is forced by the JRA55 data, the
change of atmospheric forcing data from the JRA55 to the
NCEP CFSR induces a model state adjustment period which
lasts about 2 weeks. By comparing the sea ice extent evo-
lution of the OCNCPL and OCNDYN runs, it appears that
sea-ice–ocean–atmosphere interaction generates only a small
change in sea ice extent. Based on our analysis of the sea
ice spatial distribution, sea-ice–ocean–atmosphere interac-
tion plays a decisive role in summertime sea ice spatial dis-
tribution.

Figure 6b shows the modeled and observed sea ice extent
anomaly. After the model state adjustment period, both the
amplitudes and phase of sea ice extent seasonal cycle in the
OCNCPL and OCNDYN runs are close to the observations.
Results of the stand-alone run show that sea ice melts and
freezes in advance of the observations. Nguyen et al. (2011)
pointed out that optimized parameters of sea ice and snow
albedo depend on selected atmospheric forcing in the MIT-
gcm. In the sea ice model of MITgcm, the actual surface
albedo changes with time and is a function of four foun-
dational albedo parameters (dry ice, dry snow, wet ice, wet
snow), as well as ice surface temperature and snow depth. A
series of sensitivity experiments are performed to get an op-
timal combination of sea ice parameters (figures not shown).
The sea ice model systematic bias could also be reduced by
assimilating sea ice data (Liang et al., 2019) when conduct-
ing a seasonal sea ice prediction system.

The modeled sea ice concentration is compared with the
observations derived from the EUMETSAT Ocean and Sea
Ice Satellite Application Facility (OSISAF) (Eastwood et al.,
2011). The observations are reprocessed daily sea ice con-
centration fields which are retrieved from the Scanning Mul-

https://doi.org/10.5194/gmd-14-1101-2021 Geosci. Model Dev., 14, 1101–1124, 2021



1110 S. Ren et al.: A fully coupled Arctic sea-ice–ocean–atmosphere model (ArcIOAM v1.0)

tichannel Microwave Radiometer/Special Sensor Microwave
Imager (SMMR/SSMI) data with a spatial resolution of
10 km. Figure 6c shows the root mean square error (RMSE)
evolution of the modeled sea ice concentration with respect
to the OSISAF data. After 1 month of model state adjust-
ment, three experiments show a similar pattern of RMSE
being lower in winter and spring than in summer and au-
tumn. The Arctic basin is almost fully covered by sea ice
from November to May (Fig. 7); thus the two coupling
experiments do not produce substantial sea ice concentra-
tion differences. With more open ocean exposed to atmo-
sphere, from June to September the sea ice concentration
RMSE of the OCNCPL run is significantly lower than that of
the OCNDYN run. This result indicates that sea-ice–ocean–
atmosphere interaction plays a crucial role in controlling
Arctic summertime sea ice distribution.

We show the modeled and observed monthly mean sea ice
concentration (Fig. 7) and deviation of model results and ob-
servation (Fig. 8) in March, June, September and December.
In March, when the Arctic Ocean is almost fully covered by
sea ice, the main source of discrepancy appears in sea ice
edge zones on the Atlantic side (Fig. 7a–c). In June, sea ice
concentrations are overestimated in the Arctic marginal seas
in the OCNCPL and OCNDYN runs (Fig. 8d–e). The mod-
eled sea ice concentration in the OCNSTA run is closer to the
observations (Fig. 7f) than the two coupled runs. In Septem-
ber, the modeled sea ice in the marginal sea ice zone melts
out in all runs (Fig. 7i–k). Compared with the satellite ob-
servations (Fig. 7l), sea ice in the OCNSTA run melts over
in summertime, which leads to an anomalous negative bias
of sea ice concentration in the Arctic (Fig. 8i), and the two
coupled runs overestimate sea ice concentration in the south-
ern Beaufort Sea while underestimating sea ice concentra-
tion in the center Arctic basin (Fig. 8g–h). Although the two
coupled runs simulate similar sea ice extent patterns, due to
the inclusion of sea-ice–ocean–atmosphere interaction in the
OCNCPL run, the modeled sea ice distribution of the OC-
NCPL run is closer to the observations (Fig. 7i and l). In
December, the situation is similar to that in March when sea
ice dominates almost the entire Arctic.

5.2 Sea ice volume and thickness

Satellite sea ice thickness data are not currently available in
melt seasons from May to September. We compare the mod-
eled sea ice volume with that from a widely used sea ice vol-
ume data source (Fig. 9a), the Pan-Arctic Ice Ocean Mod-
eling and Assimilation System (PIOMAS) developed at the
Applied Physics Laboratory of the University of Washing-
ton (Zhang and Rothrock, 2003). PIOMAS assimilates sea
ice concentration data from the National Snow and Ice Data
Center (NSIDC) and SST data from NCEP/NCAR Reanaly-
sis. The OCNSTA run simulates more realistic sea ice growth
rates from January to May but systematic negative sea ice
volume bias compared with the PIOMAS data. The sea ice

volume in the OCNCPL and OCNDYN runs shows better re-
sults than that in the OCNSTA run from June to December.
However, both the two coupled runs produce less sea ice vol-
ume than the PIOMAS data in most of 2012, partly because
our model underestimates sea ice extent (Fig. 6a) without as-
similating observations. It is notable that the sea ice volume
evolution of the OCNCPL run is closer to the PIOMAS data
at the end of 2012.

Satellite sea ice thickness observations are usually re-
trieved from either ice surface brightness temperature or
radar altimetric measurement of sea ice freeboard. We use
three kinds of satellite sea ice thickness data to validate our
model results (Fig. 9b and c). Daily sea ice thickness ob-
servations provided by the University of Hamburg are de-
rived from the Soil Moisture Ocean Salinity (SMOS) bright-
ness temperature combined with a sea ice thermodynamic
model and a three-layer radiative transfer model (Kaleschke
et al., 2012). Weekly sea ice thickness observations provided
by the Alfred Wegener Institute at the Helmholtz Centre for
Polar and Marine Research are derived from the European
Space Agency satellite mission CryoSat-2 radar altimetric
data (Ricker et al., 2014). The SMOS observations retrieved
from satellite brightness temperature data are more accurate
in the marginal sea ice zone where ice thickness is thinner
than 1 m (Tian-Kunze et al., 2014), while the CryoSat-2 ob-
servations retrieved from radar altimetric data have higher
accuracies in the pack sea ice zone than in the marginal sea
ice zone (Laxon et al., 2013; Wingham et al., 2006). Tak-
ing the spatial complementarity of the SMOS and CryoSat-
2 data into consideration, Ricker et al. (2017) introduced a
weekly sea ice thickness product covering the entire Arctic,
the CS2SMOS sea ice thickness, which is generated by merg-
ing the SMOS sea ice thickness with the CryoSat-2 sea ice
thickness (Ricker et al., 2017). The CS2SMOS data with ob-
servational uncertainty are also added to our comparison.

The weekly CryoSat-2 data include several banded sea ice
thickness records which are collected in 1 week when polar
orbital satellites pass the Arctic region. The SMOS data used
in this study are those in the thin ice (< 1 m) region. Con-
sidering spatial coverage of the observations, we compare
spatial-mean sea ice thickness evolution with the CS2SMOS
data (Fig. 9b). Compared with the CS2SMOS data, both cou-
pled runs produce more realistic sea ice thickness evolution
than the stand-alone run from January to April. However,
large sea ice thickness errors between the model and the
observations exist in October and November. We attribute
these large errors to the observational uncertainties induced
by radar altimetric measurement errors when sea ice starts
to freeze. The modeled sea ice in the OCNCPL run is thinner
than that in the OCNDYN run, and the sea ice thickness devi-
ations between the two runs amplify after the summer. Mean-
while, the sea ice volume and thickness of the OCNCPL run
are closer to the PIOMAS data and the CS2SMOS observa-
tions at the end of 2012. Day et al. (2014) pointed out that sea
ice thickness incorporates the long-term memory of melting–
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Figure 7. Modeled and observed monthly mean sea ice concentration. From top to bottom panels show the March, June, September and
December sea ice concentration, respectively. From left to right panels show sea ice concentration of the OCNCPL run, the OCNDYN run,
the OCNSTA run and the OSISAF observations. OSISAF: Ocean and Sea Ice Satellite Application Facility.

freezing processes. Notz and Bitz (2017) indicated that sum-
mertime sea ice thickness has an important influence on sea
ice state in the following spring through the ice-thickness–
ice-growth feedback. A negative anomaly of the sea-ice area
in late summer induces larger heat losses in autumn and win-
ter from the ocean to the atmosphere due to enhanced outgo-
ing long-wave radiation and turbulent heat fluxes; this causes

thinner snow and ice due to later freeze-up and hence larger
heat-conduction fluxes through sea ice, eventually leading to
larger ice-growth rates. We speculate that in the OCNCPL
run sea-ice–ocean–atmosphere interaction causes a more re-
alistic sea ice thickness distribution in the summer of 2012,
which preconditions the sea ice thickness evolution in the
following freezing season.
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Figure 8. Deviation between the modeled and observed monthly mean sea ice concentration. From top to bottom panels show the March,
June, September and December sea ice concentration deviation respect to the OSISAF observations, respectively. The left, middle and right
panels show results of the OCNCPL run, the OCNDYN run and the OCNSTA run. OSISAF: Ocean and Sea Ice Satellite Application Facility.
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Figure 9. Time series of (a) total sea ice volume, (b) spatial mean
sea ice thickness and (c) the RMSE of sea ice thickness with respect
to the satellite-retrieved observations in 2012. The black, red, green
and blue lines in (a) denote total sea ice volume of the PIOMAS
data, the OCNCPL run, the OCNSTA run and the OCNDYN run,
respectively. The black, red, green and blue dots in (b) denote sea
ice thickness of the CS2SMOS observations, the OCNCPL run, the
OCNSTA run and the OCNDYN run, respectively. The black bar
in (b) represents the observational uncertainties of the CS2SMOS
data. The red, green and blue masks in (c) denote sea ice thick-
ness RMSE of the OCNCPL run, the OCNSTA run and the OC-
NDYN run with respect to the SMOS observations in a thin ice
(< 1 m) region (line), the Cryosat-2 observations (circle) and the
CS2SMOS observations (triangle), respectively. Model grid points
without available observations are not included in the sea ice thick-
ness RMSE calculation. PIOMAS: Pan-Arctic Ice Ocean Modeling
and Assimilation System; SMOS: Soil Moisture Ocean Salinity.

The sea ice thickness RMSEs of the three runs with respect
to three kinds of satellite sea ice thickness data are shown in
Fig. 9c. Compared with the coupled runs, the sea ice thick-
ness in the OCNSTA run shows larger bias in the pack ice

zone and a smaller bias in the marginal ice zone. The sea ice
thickness RMSE between the OCNCPL run and the SMOS
data is smaller than that between the OCNDYN run and the
SMOS data, indicating that sea-ice–ocean–atmosphere inter-
action substantially improves the sea ice thickness simula-
tion in the marginal sea ice zone in the coupled runs. The
sea ice thickness RMSEs between the coupled runs and the
CryoSat-2 data are generally larger than those between the
coupled runs and the CS2SMOS data, especially in October
and November, which is partly due to the large uncertainty
of radar altimetric measurement when sea ice starts to freeze,
and partly due to the low spatial coverage of the CryoSat-2
data.

Normally, satellite sea ice thickness data have large uncer-
tainties due to limitations of the retrieval algorithm. In situ
sea ice thickness observations with higher accuracy can pro-
vide a direct reference for the model. To further evaluate the
modeled sea ice thickness, we compare the time evolution
of modeled and in situ observed sea ice thickness at three
locations in the Beaufort Sea in 2012 (Fig. 10). The observa-
tions are derived from moored upward-looking sonar (ULS)
ice draft data from the Beaufort Gyre Exploration Project
(BGEP) (Proshutinsky et al., 2005). The ULS samples the ice
draft with a precision of 0.1 m (Melling and Riedel, 1995),
and the ice draft can be converted to ice thickness assum-
ing hydrostatic equilibrium (Nguyen et al., 2011). Generally
speaking, at all three locations in the Beaufort Sea, when the
modeled sea ice is thinner than 1 m, the sea ice thickness evo-
lution improves in the OCNCPL run compared with those in
the OCNDYN run. This result further demonstrates that sea-
ice–ocean–atmosphere interaction plays an important role in
marginal sea ice evolution.

Spatial distributions of monthly mean sea ice thickness
and its bias with respect to available CS2SMOS data in
March, June, September and December are shown in Figs. 11
and 12. In March and December, all three runs underestimate
sea ice thickness in the central Arctic, while overestimat-
ing sea ice thickness in the marginal sea ice zone (Fig. 12).
In March, the OCNSTA run overestimates sea ice thickness
in the Pacific sector of the Arctic Ocean and in Baffin Bay
(Fig. 12e). The coupled runs overestimate sea ice thickness
in the northern Barents Sea while underestimating sea ice
thickness in the western Chukchi Sea (Fig. 12a and c). In De-
cember, compared with the OCNDYN run, the modeled sea
ice thickness in marginal sea ice zone in the OCNCPL run
is closer to the CS2SMOS data (Fig. 12b), partly due to the
more realistic sea ice distribution at the beginning of freezing
season, as summertime sea ice thickness has a strong effect
on preconditioning the following wintertime sea ice thick-
ness (Day et al., 2014).

5.3 Ocean temperature and current

Sea ice state is intimately linked to ocean state, both dynam-
ically and thermodynamically. The modeled spatial distribu-
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Figure 10. Time series of sea ice thickness at three positions:
(a) 75◦ N, 150◦W; (b) 78◦ N, 150◦W; and (c) 74◦ N, 140◦W. The
red, blue and green lines denote sea ice thickness of the OCNCPL
run, the OCNDYN run and the OCNSTA run, respectively. The
black solid and dashed lines denote sea ice thickness observations of
the BGEP ULSs, which were deployed in the summers of 2011 and
2012. The black lines of the BGEP ULS observations have been
smoothed with the gray bar representing the observational uncer-
tainties. BGEP: Beaufort Gyre Exploration Project; ULS: upward-
looking sonar.

tion of sea ice concentration in the OCNCPL run exhibits
great improvement compared with the OCNDYN run. Since
sea ice in the marginal ice zone is strongly affected by SST
through lateral heat transport, we suspect that sea-ice–ocean–
atmosphere interaction should impose a positive influence on
the modeled ocean temperature in the marginal sea ice zone.

The modeled SST is validated against the Group for
High-Resolution SST Multi-Product Ensemble (GMPE) data
(Martin et al., 2012). The GMPE SST data provided by the
UKMO are a reanalysis daily global SST product that is com-

puted as the median of a large number of SST products.
Each product contributing to the GMPE product uses differ-
ent observational data sets or different retrieval algorithms.
As a median product of a multiproduct ensemble, the GMPE
SST data greatly reduce observational uncertainties. The SST
RMSE of the three runs with respect to the GMPE data are
shown in Fig. 13. Compared with the coupled runs, the SST
RMSE in the OCNSTA run is smaller in the summertime but
larger during the other seasons. Spatial patterns of the mod-
eled and observed SST in March, June, September and De-
cember are shown in Fig. 14. Deviation of the modeled SST
and the GMPE SST observation is demonstrated in Fig. 15.
The GMPE SST data are available in ice-free areas (Fig. 14d,
h, l and p). In March and June, the OCNSTA run produces a
warmer sea surface in the Nordic Seas, which explains the
positive SST bias from January to June in Fig. 13 compared
with the coupled runs. In September the SST RMSE in the
OCNCPL run (Fig. 13) arises from the strong negative bias
in the southern Beaufort Sea and the Baffin Bay (Fig. 15g).

Ocean current observations in the Arctic Ocean are quite
sparse, so we evaluate the modeled ocean velocity and tem-
perature with climatological observation generated from the
1998–2003 mooring data in Fram Strait. Under the frame-
work of the European Union projects Variability of Ex-
changes In the Northern Seas (VEINS) and Arctic Subarc-
tic Ocean Fluxes – North (ASOF-N), a series of moorings in
Fram Strait were deployed to record ocean properties since
September 1997 to 2004 (Beszczynska, 2011). The observa-
tions include the water column from 10 m above the seabed
to about 50 m below the surface. Although the observations
were conducted at least one decade earlier than 2012, we
believe that the comparison between the modeled and ob-
served monthly mean value would likely still apply since the
phase of the Atlantic Multidecadal Oscillation did not re-
verse between 1995 and 2012. The modeled and observed
northward cross-section velocity and temperature averaged
between 5◦ and 8◦40′ E at 78◦50′ N are listed in Table 4. The
observations show that the northward velocity of the West
Spitsbergen Current (WSC) increases from July to Septem-
ber, and the mean temperature of the section of 78◦50′ N also
increases from July to December. It is notable that the mod-
eled velocity and temperature of the OCNCPL run in Fram
Strait are closer to the observations compared with those
of the OCNDYN run, although there are still large biases
of the modeled velocity between the OCNCPL run and the
observations. Vertical temperature distribution in the section
averaged between July and September shows that sea-ice–
ocean–atmosphere interaction induces warming of the WSC
until 700 m depth accompanied with strong cooling beside
the WSC (Fig. 16c). The cross-section velocity deviation be-
tween the OCNCPL and OCNDYN run is characterized by
enhanced northward velocity over the whole water column
around 0◦ E and east of 6◦ E, and reduced northward velocity
between them (Fig. 16f).
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Figure 11. Monthly mean sea ice thickness. From top to bottom panels show the March, June, September and December sea ice thickness,
respectively. From left to right panels show sea ice thickness of the OCNCPL run, the OCNDYN run, the OCNSTA run and the CS2SMOS
data.

6 Conclusion and discussion

This paper describes the implementation of an Arctic
regional sea-ice–ocean–atmosphere coupled model (Ar-
cIOAM). To connect the component models, a newly de-
veloped coupler, C-Coupler2 is implemented to couple the
Arctic sea-ice–oceanic configuration of the MITgcm model

with the Arctic atmospheric configuration of the Polar WRF
model. To couple the Polar WRF and the MITgcm for the
first time in the Arctic region, a series of specific procedures
including data interpolation between different grids and a re-
laxation algorithm in lateral boundaries are designed. The
parallel efficiency of the coupled model is also investigated.
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Figure 12. Deviation of the modeled monthly mean sea ice thickness and the CS2SMOS data. The top, middle and bottom panels show sea
ice thickness deviation of the OCNCPL run, the OCNDYN run and the OCNSTA run, respectively. The left and right panels show results in
March and December.
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Table 4. Monthly mean northward cross-section velocity (cm/s) and temperature (◦ C) averaged between 5 and 8◦40′ E at 78◦50′ N in Fram
Strait. A1 represents algorithm 1, in which values are calculated from sea water with potential temperature higher than 1 ◦C. A2 represents
algorithm 2, in which values are calculated from sea water with potential temperature higher than −0.1 ◦C. A3 represents algorithm 3,
in which values are calculated from sea water with depth shallower than 700 m. The observations are averaged between 1998 and 2003.
WSCOBS: West Spitsbergen Current Observation.

July August September

Vmean Tmean Vmean Tmean Vmean Tmean

A1: (T > 1 ◦C) OCNCPL 3.94 3.56 4.03 3.66 4.03 4.02
OCNDYN 3.22 3.69 2.93 3.79 2.27 3.91
WSCOBS 6.26 2.76 6.98 2.90 7.36 3.02

A2: (T >−0.1 ◦C) OCNCPL 3.53 2.30 3.32 2.35 3.24 2.54
OCNDYN 2.63 2.58 2.38 2.69 1.98 2.66
WSCOBS 5.82 2.35 6.39 2.44 6.69 2.51

A3: (0–700 m) OCNCPL 4.21 3.97 4.33 4.03 4.16 4.53
OCNDYN 3.87 4.36 3.53 4.54 2.55 4.65
WSCOBS 6.09 2.61 6.67 2.72 7.04 2.83

Figure 13. Time series of the RMSE of modeled SST with respect
to the GMPE observations in 2012. The red, blue and green lines
denote the SST RMSE of the OCNCPL run, the OCNDYN run and
the OCNSTA run, respectively. GMPE: Group for High-Resolution
Sea Surface Temperature Multi-Product Ensemble.

After implementing ArcIOAM, we demonstrate it with a
seasonal simulation of the Arctic sea ice and ocean states
in 2012 to evaluate the model capability of seasonal pre-
diction of sea ice. Results from the two-way coupling sim-
ulation (OCNCPL), the one-way coupling simulation (OC-
NDYN) and the stand-alone oceanic simulation (OCNSTA)
are compared to a wide variety of available observational and
reanalysis products. The model state deviation between the
two coupled experiments represents the influences of sea-
ice–ocean–atmosphere interaction on the Arctic Ocean and
sea ice. From the comparison, results obtained from the two-
way coupling experiment best capture the sea ice and ocean
evolution in the Arctic region over a 1-year simulation pe-
riod. The two-way coupling experiment gives better results
compared with the one-way coupling experiment and stand-
alone oceanic simulation, especially in summertime.

The amplitudes of the sea ice extent seasonal cycle of the
two coupled runs are close to the observations. The spatial
distribution of sea ice concentration in the OCNCPL run is
similar to that in the OCNDYN run from January to May.
From June to September the sea ice concentration RMSE of
the OCNCPL run with respect to the observations is signif-
icantly lower than that of the OCNDYN run, indicating that
sea-ice–ocean–atmosphere interaction plays a crucial role in
controlling Arctic summertime sea ice distribution. The sea
ice thickness RMSE of the OCNCPL run with respect to the
SMOS data in thin ice areas is smaller than that of the OC-
NDYN run. Meanwhile, the evolution of the modeled and
observed sea ice thickness at three locations in the Beau-
fort Sea show that the modeled sea ice thickness evolution
improves in the OCNCPL run when the ice is thinner than
1 m. This result means that sea-ice–ocean–atmosphere inter-
action is very likely to improve the sea ice thickness simula-
tion in the marginal sea ice zone when considering ocean-to-
atmosphere feedbacks. Based on comparison with a series of
mooring data in Fram Strait, the modeled velocity and tem-
perature in the OCNCPL run are closer to the observations
than those in the OCNDYN run, although large biases of the
modeled velocity still exist. Compared with the satellite data,
the SST obtained in the OCNCPL run is also better than that
in the OCNDYN run in summer 2012. The two-way cou-
pling between the Polar WRF and the MITgcm provides a
more realistic representation of real air–ice–ocean physical
processes, which includes the important ice-albedo feedback
in early summer. In the MITgcm, sea ice albedo is calcu-
lated based on several variables, such as snow depth on ice
and ice surface temperature. In the OCNCPL run, albedo is
a coupling variable which affects both the Polar WRF and
the MITgcm. In the OCNDYN run, albedo used in the Po-
lar WRF is directly read from the CFSR forcing data. Due
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Figure 14. Modeled and observed monthly mean SST. From top to bottom panels show the March, June, September and December SST,
respectively. From left to right panels show the SST of the OCNCPL run, the OCNDYN run, the OCNSTA run and the GMPE observations,
respectively. GMPE: Group for High-Resolution Sea Surface Temperature Multi-Product Ensemble.

to strong sea-ice–ocean–atmosphere interaction in summer-
time, the two-way coupling strategy not only improves the
sea ice simulation, but also benefits the modeled ocean states.

The ArcIOAM is designed for seasonal sea ice predic-
tion up to 6 months, while on longer timescales the regional
model’s capacity is expected to severely depend on the lateral
boundary forcing data. Global coupled models, such as those

involved in CMIP6, have innate advantages in sea ice pre-
diction and outlook on seasonal to longer timescales because
interactions between high- and mid- latitudes are considered.
The land component is also important to the Arctic simula-
tion; however, at the current stage, our coupled model does
not have the capacity of coupling an individual land model.
Instead we use the embedded land component in the Polar

Geosci. Model Dev., 14, 1101–1124, 2021 https://doi.org/10.5194/gmd-14-1101-2021
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Figure 15. Deviation of the modeled monthly mean SST and the GMPE SST data. From top to bottom panels show the March, June,
September and December SST deviation, respectively. From left to right panels show the SST of the OCNCPL run, the OCNDYN run and
the OCNSTA run, respectively. GMPE: Group for High-Resolution Sea Surface Temperature Multi-Product Ensemble.
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Figure 16. July–August–September mean ocean temperature and meridional velocity section along 78◦ N in Fram Strait. The top and bottom
panels show the ocean temperature and meridional velocity, respectively. The left, middle and right panels show the OCNCPL run, the
OCNDYN run and the deviation between them, respectively.

WRF for technical simplicity. It should be noted that the sim-
ulation presented in this paper only covers 1 year, and longer
simulation results should be carried out to further assess
the coupled model. However, given the encouraging results
in 2012, this new developed Arctic regional coupled model
displays a potential capacity for seasonal sea ice prediction
and provides a reliable basis for investigating both thermo-
dynamic and dynamic process and forecasting applications.
Meanwhile, bias in the modeled sea ice extent and summer-
time sea ice thickness still exist, although satellite sea thick-
ness data normally have large uncertainty in summertime,
which partly contributes to the large sea ice thickness bias
in October–November between the model and CS2SMOS
data (Fig. 9b). The foundational sea ice albedo parameters in
our current model configuration seem to be underestimated,
which allows more heat into the ice and causes thinner sea
ice thickness, as well as lower sea ice extent. The choice of
sea ice albedo parameters also contributes to the large sea
ice thickness bias in October–November between the model
and CS2SMOS data. Though the albedo formulation in the
MITgcm sea ice model is simple and straightforward, the

CICE model provides a more sophisticated scheme for sea
ice albedo calculation. In developing operational seasonal
sea ice prediction capabilities, the model physics and uncer-
tainty in the coupled model can be improved by using ad-
vanced techniques, such as sophisticated sea ice albedo for-
mulation, stochastic physics parameterizations and ensem-
ble approaches. The regional coupled forecasting system can
also be improved by involving data assimilation capabilities
for initializing the forecasts. Future work will involve explor-
ing these and other aspects for a regional coupled model-
ing system suited for forecasting and better understanding of
mechanisms.

Code and data availability. The latest version and future updates
of the source code, user guide and examples can be downloaded
from https://github.com/cdmpbp123/Coupled_Atm_Ice_Oce (last
access: 7 April 2020). The current version of this coupled model
(ArcIOAM v1.0) used to produce the results in this paper can be
accessed via https://doi.org/10.5281/zenodo.3742692 (Ren et al.,
2020).
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