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Abstract. The prediction of near-surface ozone concentra-
tions is important for supporting regulatory procedures for
the protection of humans from high exposure to air pol-
lution. In this study, we introduce a data-driven forecast-
ing model named “IntelliO3-ts”, which consists of multi-
ple convolutional neural network (CNN) layers, grouped to-
gether as inception blocks. The model is trained with mea-
sured multi-year ozone and nitrogen oxide concentrations of
more than 300 German measurement stations in rural envi-
ronments and six meteorological variables from the meteo-
rological COSMO reanalysis. This is by far the most exten-
sive dataset used for time series predictions based on neural
networks so far. IntelliO3-ts allows the prediction of daily
maximum 8 h average (dma8eu) ozone concentrations for
a lead time of up to 4 d, and we show that the model out-
performs standard reference models like persistence models.
Moreover, we demonstrate that IntelliO3-ts outperforms cli-
matological reference models for the first 2 d, while it does
not add any genuine value for longer lead times. We attribute
this to the limited deterministic information that is contained
in the single-station time series training data. We applied a
bootstrapping technique to analyse the influence of different
input variables and found that the previous-day ozone con-
centrations are of major importance, followed by 2 m tem-
perature. As we did not use any geographic information to
train IntelliO3-ts in its current version and included no re-
lation between stations, the influence of the horizontal wind
components on the model performance is minimal. We ex-
pect that the inclusion of advection–diffusion terms in the
model could improve results in future versions of our model.

1 Introduction

Exposure to ambient air pollutants such as ozone (O3) is
harmful for living beings (WHO, 2013; Bell et al., 2014;
Lefohn et al., 2017; Fleming et al., 2018) and certain crops
(Avnery et al., 2011; Mills et al., 2018). Therefore, the pre-
diction of ozone concentrations is of major importance for
issuing warnings for the public if high ozone concentrations
are foreseeable. As tropospheric ozone is a secondary air pol-
lutant, there is nearly no source of directly emitted ozone. In-
stead, it is formed in chemical reactions of several precursors
like nitrogen oxides (NOx) or volatile organic compounds
(VOCs). Weather conditions (temperature, irradiation, hu-
midity, and winds) have a major influence on the rates of
ozone formation and destruction. Ozone has a “chemical life-
time” in the lower atmosphere of several days and can there-
fore be transported over distances of several hundred kilome-
tres.

Ozone concentrations can be forecasted by various nu-
merical methods. Chemical transport models (CTMs) solve
chemical and physical equations explicitly (for example,
Collins et al., 1997; Wang et al., 1998a, b; Horowitz et al.,
2003; von Kuhlmann et al., 2003; Grell et al., 2005; Don-
ner et al., 2011). These numerical models predict concentra-
tions for grid cells, which are assumed to be representative
of a given area. Therefore, local fluctuations which are be-
low model resolution cannot be simulated. Moreover, CTMs
often have a bias in concentrations, turnover rates, or meteo-
rological properties which have a direct influence on chemi-
cal processes (Vautard, 2012; Brunner et al., 2015).

This makes CTMs unsuited for regulatory purposes, which
by law are bound to station measurements, except if so-called
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model output statistics are applied to the numerical mod-
elling results (Fuentes and Raftery, 2005). As an alterna-
tive to CTMs, regression models are often used to generate
point forecasts (for example, Olszyna et al., 1997; Thomp-
son et al., 2001; Abdul-Wahab et al., 2005). Regression mod-
els are pure statistical models, which are based on empirical
relations among different variables. They usually describe a
linear functional relationship between various factors (pre-
cursor concentrations, meteorological, and site information)
and the air pollutant in question.

Since the late 1990s, machine learning techniques in the
form of neural networks have also been applied as a regres-
sion technique to forecast ozone concentrations or thresh-
old value exceedances (see Table 1). As the computational
power was limited in the early days of those approaches,
many of these early studies focused on a small number of
measurement stations and used a fully connected (FC) net-
work architecture. More recent studies explored the use of
more advanced network architectures like convolutional neu-
ral networks (CNNs) or long short-term memory (LSTM)
networks. These networks were also applied to a larger num-
ber of stations compared to the earlier studies and some stud-
ies have tried to generalise, i.e. to train one neural network
for all stations instead of training individual networks for
individual stations (Table 1). Although the total number of
studies focusing on air quality or explicit near-surface ozone
is already quite substantial, there are only few studies which
applied advanced deep learning approaches on a larger num-
ber of stations or on longer time series. Eslami et al. (2020)
applied a CNN on time series of 25 measurement stations
in Seoul, South Korea, to predict hourly ozone concentra-
tions for the next 24 h. Ma et al. (2020) trained a bidirectional
LSTM on 19 measurement sites over a period of roughly 9
months and afterwards used that model to re-train individu-
ally for 48 previously unused measurement stations (transfer
learning).

Sayeed et al. (2020) applied a deep CNN on data from 21
different measurement stations over a period of 4 years. They
used 3 years (2014 to 2016) to train their model and evalu-
ated the generalisation capability on the fourth year (2017).
Zhang et al. (2020) developed a hybrid CNN–LSTM model
to predict gridded air quality concentrations (O3, NO2, CO,
PM2.5, PM10). Seltzer et al. (2020) used 3557 measurement
sites across six measurement networks to analyse long-term
ozone exposure trends in North America by applying a fully
connected neural network. They mainly focused on metrics
related to human health and crop loss.

The current study extends these previous works and in-
troduces a new deep learning model for the prediction of
daily maximum 8 h average O3 concentrations (dma8eu; see
Sect. 2.1) for a lead time of up to 4 d. The network architec-
ture is based on several stacks of convolutional neural net-
works. We trained our network with data from 312 back-
ground measurement stations in Germany (date range from
1997 to 2007) and tuned hyperparameters on data from 211

stations (data range from 2008 to 2009). We evaluate the per-
formance at 203 stations, which have data during the 2010–
2015 period looking at skill scores, the joint distribution of
forecasts and observations, as well as the influence of input
variables.

This article is structured as follows: in Sect. 2, we explain
our variable selection and present our prepossessing steps.
In Sect. 3, we introduce our forecasting model (IntelliO3-
ts, version 1.0). Section 4 introduces the statistical tools and
reference models which were used for verification. In Sect. 5,
we present and discuss the results and analyse the influence
of different input variables on the model performance. In
Sect. 6, we discuss the limitations of IntelliO3-ts. Finally,
Sect. 7 provides conclusions.

2 Variable selection and data processing

2.1 Variable selection

Tropospheric ozone (O3) is a greenhouse gas formed in the
atmosphere by chemical reactions of other directly emitted
pollutants (ozone precursors) and therefore referred to as a
secondary air pollutant.

The continuity equation of near-surface ozone in a specific
volume of air can be written as (Jacobson, 2005, p. 74ff)

∂Nq

∂t
+∇ ·

(
vNq

)
= (∇ ·Kh∇)Nq +Rdepg+Rchemg, (1)

where ∂Nq
∂t

is the partial derivative of the ozone number con-
centration with respect to time, v is the vector wind velocity,
Kh is the eddy diffusion tensor for energy, while Rdepg and
Rchemg are the rates of dry deposition to the ground, and pho-
tochemical production or loss, respectively.

Tropospheric ozone is formed under sunlit conditions in
gas-phase chemical reactions of peroxy radicals and nitro-
gen oxides (Seinfeld and Pandis, 2016). The peroxy radicals
are themselves oxidation products of volatile organic com-
pounds. The nitrogen oxides undergo a rapid catalytic cycle:

NO2+hν+O2+M→ NO+O3+M
∗ (R1)

NO+O3→ NO2+O2, (R2)

where NO and O3 are converted to NO2 and back within min-
utes (M is an arbitrary molecule which is needed to take up
excess energy, denoted by the asterisk). As a consequence,
ozone concentrations in urban areas with high levels of NOx
from combustive emissions are extremely variable. In this
study, we therefore focus on background stations, which are
less affected by the rapid chemical interconversion.

From a chemical perspective, the prediction of ozone con-
centrations would require concentration data of NO, NO2,
speciated VOC, and O3 itself. However, since speciated VOC
measurements are only available from very few measurement
sites, the chemical input variables of our model are limited to
NO, NO2, and O3.
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Table 1. Overview of the literature on ozone forecasts with neural networks. Machine learning (ML) types are abbreviated as FC for fully
connected, CNN for convolutional neural network, RNN for recurrent neural network, and LSTM for long short-term memory. We use the
following abbreviations for time periods: yr for years and m for month.

Citation ML type Total number of
stations

Stations for
training

Time period Comments

Comrie (1997) FC 8 8 5 yr Random split for train, val
Cobourn et al. (2000) FC 7 7 5 yr (train) + 1 yr (val) + 1 yr

(test)
Prybutok et al. (2000) FC 1 4 m + 1 m
Gardner and Dorling (2001) FC 6 6 12 yr
Eslami et al. (2020) CNN 25 25 3 yr train 1 yr test Random split
Liu et al. (2019) Attention RNN 2 2 10 m (train), 7 d (test) Analysis for PM2.5
Maleki et al. (2019) FC 4 4 1 yr Random split for train, val, test
Silva et al. (2019) FC 2 1 13 yr (train, val test); 14 yr (test

on second station)
Dry deposition of O3; random
split on first station

Abdul Aziz et al. (2019) FC 1 1 7 d Individual measurements for
study

Pawlak and Jarosławski (2019) FC 2 2 6 m (train) + 6 m (test) Individual network per station
Seltzer et al. (2020) FC 3557 3557 15 yr focus on trends
Ma et al. (2020) Bidir. LSTM 19 (standard) +

48 (transfer)
19 (standard) +
48 (transfer)

9 m Exploration of transfer learning

Sayeed et al. (2020) CNN 21 21 3 yr (train) + 1 yr (test/re-train) Re-train model for each
prediction

Zhang et al. (2020) CNN LSTM 35 35 19 m Gridded forecast
This study Inception blocks 329 312 18 yr

Besides the trace gas concentrations, ozone levels also
depend on meteorological variables. Due to the scarcity
of reported meteorological measurements at the air quality
monitoring sites, we extracted time series of meteorologi-
cal variables from the 6 km resolution COSMO reanalysis
(Bollmeyer et al., 2015, COSMO-REA6) and treat those as
observations.

All data used in this study were retrieved from the
Tropospheric Ozone Assessment Report (TOAR) database
(Schultz et al., 2017) via the representational state transfer
(REST) application programming interface (API) at https:
//join.fz-juelich.de (last access: 12 November 2020). The
air quality measurements were provided by the German
Umweltbundesamt, while the meteorological data were ex-
tracted from the COSMO-REA6 reanalysis as described
above. These reanalysis data cover the period from 1995 to
2015 with some gaps due to incompleteness in the TOAR
database. As discussed in the US EPA guidelines on air qual-
ity forecasting (Dye, 2003), ozone concentrations typically
depend on temperature, irradiation, humidity, wind speed,
and wind direction. The vertical structure of the lowest por-
tion of the atmosphere (i.e. the planetary boundary layer)
also plays an important role, because it determines the rate
of mixing between fresh pollution and background air. Since
irradiation data were not available from the REST interface,
we used cloud cover together with temperature as proxy vari-
ables.

Table 2 shows the list of input variables used in this study,
and Table 3 describes the daily statistics that were applied
to the hourly data of each variable. The choice of using the
dma8eu metrics for NO and NO2 was motivated by the idea

Table 2. Input variables and applied daily statistics according to
Table 3.

Variable Daily statistics

NO dma8eu
NO2 dma8eu
O3 dma8eu
Cloud cover average
Planetary boundary layer height maximum
Relative humidity average
Temperature maximum
Wind’s u component average
Wind’s v component average

to sample all chemical quantities during the same time pe-
riods and with similar averaging times. While the dma8eu
metrics is calculated based on data starting at 17:00 LT on
the previous day, the daily mean/max values, for example,
would be calculated based on data starting from the current
day. To test the impact of using different metrics for ozone
precursors, we also trained the model from scratch with ei-
ther mean or maximum concentrations of NO and NO2 as
inputs. The results of these runs were hardly distinguishable
from the results presented below.

As described above, ozone concentrations are less vari-
able at stations, which are further away from primary pol-
lutant emission sources. We therefore selected those stations
from the German air quality monitoring network, which are
labelled as “background” stations according to the European
Environmental Agency (EEA), Airbase classification.
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Table 3. Definitions of statistical metrics in TOAR analysis relevant for this study. Adopted form Schultz et al. (2017, Supplement 1, Table 6,
therein).

Name Description

data_capture Fraction of valid (hourly) values available in the aggregation period.
average_values Daily [. . . ] average value. No data capture criterion is applied, i.e. a daily average is valid if at least one hourly

value of the day is present.
dma8eu As dma8epa but using the EU definition of the daily 8 h window starting from 17:00 LT of the previous day.

(dma8epa: daily maximum 8 h average statistics according to the US EPA definition. The 8 h averages are calculated
for 24 bins starting at 00:00 LT. The 8 h running mean for a particular hour is calculated on the concentration for
that hour plus the following 7 h. If less than 75 % of data are present (i.e. less than 6 h), the average is considered
missing. Note that in contrast to the official EPA definition, a daily value is considered valid if at least one 8 h
average is valid.)

maximum Daily maximum value. No data capture criterion is applied; i.e. a daily maximum is valid if at least one hourly value
of the day is present.

Figure 1. Map of central Europe showing the location of German
measurement sites used in this study. This figure was created with
Cartopy (Met Office, 2010–2015). Map data © OpenStreetMap con-
tributors.

2.2 Data processing

We split the individual station time series into three non-
overlapping time periods for training, validation, and testing
which we will refer to as “set” from now on (see Fig. 2). We
only used stations which at least have 1 year of valid data in
one set. Firstly, the time span of the training dataset is rang-
ing from 1 January 1997 to 31 December 2007. Secondly, the
validation set is ranging from 1 January 2008 to 31 Decem-
ber 2009. Thirdly, the test set ranges from 1 January 2010 to
31 December 2015.

Due to changes in the measurement network over time,
the number of stations in the three datasets differ: training

data comprise 312 stations, validation data 211 stations, and
testing 203 stations. This is by far the largest air quality time
series dataset that has been used in a machine learning study
so far (see Table 1).

Supervised learning techniques require input data (X) and
a corresponding label (y) which we create for each station of
the three sets as depicted in Algorithm 1.

Samples within the same dataset (train, validation, and
test) can overlap which means that one missing data point
would appear up to seven times in the inputs X and up to
four times in the labels y. Consequently, one missing value
will cause the removal of 11 samples (algorithm 1, line 7).
As we want to keep the number of samples as high as pos-
sible, we decided to linearly interpolate (algorithm 1, line 2)
the time series if only one consecutive value is missing. Ta-
ble 4 shows the number of stations per dataset (train, val, test)
and the corresponding amount of samples (pairs of inputs X
and labels y) per dataset. Moreover, Table A1 summarises all
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Figure 2. Data availability diagram combined for all variables and all stations. The training set is coloured in orange, the validation set in
green, and the test set in blue. Gaps in 1999 and 2003 are caused by missing model data in the TOAR database.

samples per station individually. Figure 1 shows a map of all
station locations.

We trained the neural network (details on the network
architecture are given in Sect. 3) with data of the train-
ing set and tuned hyperparameters exclusively on the val-
idation dataset. For the final analysis and model evalua-
tion, we use the independent test dataset, which was nei-
ther used for training the models parameters, nor for tuning
the hyperparameters. Random sampling, as is often done in
other machine learning applications, and occasionally even
in other air quality or weather applications of machine learn-
ing, would lead to overly optimistic results due to the multi-
day auto-correlation of air quality and meteorological time
series. Horowitz and Barakat (1979) already pointed to this
issue when dealing with statistical tests. Likewise, the alter-
native split of the dataset into spatially segregated data could
lead to the undesired effect that two or more neighbouring
stations with high correlation between several paired vari-
ables fall into different datasets. Again, this would result in
overly optimistic model results.

By applying a temporal split, we ensure that the training
data do not directly influence the validation and test datasets.
Therefore, the final results reflect the true generalisation ca-
pability of our forecasting model.

In accordance with other studies, our initial deep learning
experiments with a subset of this data have shown that neural
networks, just as other classical regression techniques, have a
tendency to focus on the mean of the distribution and perform
poorly on the extremes. However, especially the high concen-
tration events are crucial in the air quality context due to their
strong impact on human health and the adverse crop effects.
Extreme values occur relatively seldomly in the dataset, and
it is therefore difficult for the model to learn their associ-
ated patterns correctly. To increase the total number of val-
ues on the tails of the distribution during training, we append
all samples where the standardised label (i.e. the normalised
ozone concentration) is<−3 or> 3 for a second time on the
training dataset (algorithm 1, line 8).

We selected a batch size of 512 samples (algorithm 1,
line 10), because this size is a good compromise between
minimising the loss function and optimising computing time
per trained epoch. Experiments with larger and smaller batch

sizes did not yield significantly different results. Before cre-
ating the different training batches, we permute the ordering
of samples per station in the training set to ensure that the dis-
tribution of each batch is similar to those of the full training
dataset (algorithm 1, line 9). Otherwise, each batch would
have an under-represented season and consequently would
lead to undesired looping during training (e.g. no winter val-
ues in the first batch, no autumn values in the second batch).

3 Model setup

Our machine learning model is based on a convolutional
layer neural network (LeCun et al., 1998), which was initially
designed for pattern recognition in computer vision applica-
tions. It has been shown that such model architectures work
equally well on time series data as other neural network ar-
chitectures, which have been especially designed for this pur-
pose, such as recurrent neural networks or LSTMs (Dauphin
et al., 2017; Bai et al., 2018). Schmidhuber (2015) provides
a historical review on different deep learning methods, while
Ismail Fawaz et al. (2019) focus especially on deep neural
networks for time series.

Our neural network named IntelliO3-ts, version 1.0, pri-
marily consists of two inception blocks (Szegedy et al.,
2015), which combine multiple convolutions, execute them
in parallel, and concatenate all outputs in the last layer of
each block. Figure A2 depicts one inception block including
the first input layer, while Figs. A2 and A3 together show the
entire model architecture including the final flat and output
layers. We treat each input variable (see Table 2) as an indi-
vidual channel (like R, G, B in images) and use time as the
first dimension (this would correspond to the width axis of an
image). Inputs (X) consist of the variable values from 7 d (−6
to 0 d). Outputs are ozone concentration forecasts (dma8eu)
for lead times up to 4 d (1 to 4 d). Therefore, we change the
kernel sizes in the inception blocks from 1× 1, 3× 3, and
5× 5, as originally proposed by Szegedy et al. (2015), to
1× 1, 3× 1, and 5× 1. This allows the network to focus on
different temporal relations. The 1× 1 convolutions are also
used for information compression (reduction of the number
of filters) before larger convolutional kernels are applied (see
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6 F. Kleinert et al.: IntelliO3-ts v1.0

Table 4. Number of stations, total number of samples (pairs of X and y), and various statistics of number of samples per station in the
training, validation, and test datasets. The number of stations per set varies as not all stations have data through the full period (see Table A1
for details).

No. of stations No. of samples Mean SD Min 5 % 10 % 25 % 50 % 75 % 90 % 95 % Max

Training 312 643 788 2063 802 369 668 939 1426 2191 2902 2989 3011 3045
Validation 211 145 030 687 61 370 532 625 690 710 721 721 721 721
Test 203 212 093 1044 92 466 759 983 1056 1075 1086 1086 1086 1086

Szegedy et al., 2015). This decreases the computational costs
for training and evaluating the network. In order to conserve
the initial input shape of the first dimension (time), we apply
symmetric padding to minimise the introduction of artefacts
related to the borders.

While the original proposed concept of inception blocks
has one max-pooling tower alongside the different convolu-
tion stacks, we added a second pooling tower, which calcu-
lates the average on a kernel size of 3×1. Thus, one inception
block consists of three convolutional towers and two pooling
(mean and max) towers. A tower is defined as a collection
or stack of successive layers. The outputs of these towers
are concatenated in the last layer of an inception block (see
Fig. A2). Between individual inception blocks, we added
dropout layers (Srivastava et al., 2014) with a dropout rate of
0.35 to improve the network’s generalisation capability and
prevent overfitting.

Moreover, we use batch normalisation layers (Ioffe and
Szegedy, 2015) between each main convolution and activa-
tion layer to accelerate the training process (Fig. A2). Those
normalisations ensure that for each batch the mean activation
is zero with standard deviation of 1. As proposed in Szegedy
et al. (2015), the network has an additional minor tail which
helps to eliminate the vanishing gradient problem. Addition-
ally, the minor tail helps to spread the internal representation
of data as it strongly penalises large errors.

The loss function for the main tail is the mean squared
error:

Lmain =
1
n

∑
i

(
yi,true− yi,pred

)2
, (2)

while the loss function of the minor tail is

Lminor =
1
n

∑
i

(
|yi,true− yi,pred|

)4
. (3)

All activation functions are exponential linear units
(ELUs) (Clevert et al., 2016); only the final output activa-
tions are linear (minor and main tail).

The network is built with Keras 2.2.4 (Chollet, 2015) and
uses TensorFlow 1.13.1 (Abadi et al., 2015) as the backend.
We use Adam (Kingma and Ba, 2014) as optimiser and apply
an initial learning rate of 10−4 (see also Sect. A5).

We train the model for 300 epochs on the Jülich Wizard for
European Leadership Science (JUWELS; Jülich Supercom-
puting Centre, 2019) high-performance computing (HPC)

system which is operated by the Jülich Supercomputing Cen-
tre (see also Sect. A4 for further details regarding the soft-
ware and hardware configurations).

4 Evaluation metrics and reference models

In general, one can interpret a supervised machine learn-
ing approach as an attempt to find an unknown function ϕ
which maps an input pattern (X) to the corresponding labels
or the ground truth (y). The machine learning model is con-
sequently an estimator (ϕ̂) which maps X to an estimate ŷ of
the ground truth. The goodness of the estimate is quantified
by an error function, which the network tries to minimise
during training. As the network is only an estimator of the
true function, the mapping generally differs:

ϕ (X)= y 6= ŷ = ϕ̂ (X) . (4)

To evaluate the genuine added value of any meteorological
or air quality forecasting model, it is essential to apply proper
statistical metrics. The following section describes the veri-
fication tools, which are used in this study. We provide ad-
ditional information on joint distributions as introduced by
Murphy and Winkler (1987) in Sect. A2.

4.1 Scores and skill scores

To quantify a model’s informational content, scores like the
mean squared error (Eq. 5) are defined to provide an absolute
performance measure, while skill scores provide a relative
performance measure related to a reference forecast (Eq. 6).

MSE(m,o)=
1
N

N∑
i=1

(mi − oi)
2
≥ 0 (5)

Here, N is the number of forecast–observation pairs, m is a
vector containing all model forecasts, and o is a vector con-
taining the observations (Murphy, 1988).

A skill score S may be interpreted as the percentage of
improvement of A over the reference Aref. Its general form is

S =
A−Aref

Aperf−Aref
. (6)

Here, A represents a general score, Aref is the reference
score, and Aperf the perfect score.

Geosci. Model Dev., 14, 1–25, 2021 https://doi.org/10.5194/gmd-14-1-2021
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For A= Aref, S becomes zero, indicating that the forecast
of interest has no improvements over the reference forecast.
A value of S > 0 indicates an improvement over the refer-
ence, while S < 0 indicates a deterioration. The informative
value of a skill score strongly depends on the selected refer-
ence forecast. In the case of the mean squared error (Eq. 5),
the perfect score is equal to zero and Eq. (6) reduces to

S (m,r,o)= 1−
MSE(m,o)
MSE(r,o)

, (7)

where r is a vector containing the reference forecast.

4.2 Reference models

We used three different reference models: persistence, cli-
matology, and an ordinary least-square model (linear regres-
sion). For the climatological reference, we create four sub-
reference models (see Sect. 4.2.2). In the following, we in-
troduce our basic reference models.

4.2.1 Persistence model

One of the most straightforward models to build, which in
general has good forecast skills on short lead times, is a per-
sistence model. Today’s observation of ozone dma8eu con-
centration is also the prediction for the next 4 d. Obviously,
the skill of persistence decreases with increasing lead time.
The good performance on short lead times is mainly due to
the facts that weather conditions influencing ozone concen-
trations generally do not change rapidly, and that the chemi-
cal lifetime of ozone is long enough.

4.2.2 Climatological reference models

We create four different climatological reference models
(Case I to Case IV), which are based on the climatology of
observations by following Murphy (1988) (also with respect
to their terminology, which means that the reference score
Aref is calculated by using the reference forecast r).

The first reference forecast (Aref : r = o, Case I) is the in-
ternal single value climatology which is the mean of all ob-
servations during the test period. This unique value is then
applied as reference for all forecasts. As this forecast has
only one constant value which is the expectation value, this
reference model is well calibrated but not refined at all.

The second reference (Aref : r = o
∗, Case II) is an inter-

nal multi-value climatology. Here, we calculate 12 arithmetic
means, where each of the means is the monthly mean over
all years in the test set (one mean for all Januaries from
2012 to 2015, one for all Februaries, etc.). The corresponding
monthly mean is applied as reference. Therefore, Case II al-
lows testing if the model has skill in reproducing the seasonal
cycle of the observations.

The third reference (Aref : r = µ, Case III) is an external
single value climatology which is the mean of all available
observations during the training and validation periods. This

reference does not include any direct information on the test
set. Therefore, one can access the information if the forecast
of interest captures features which are not directly present in
the training and validation set.

Finally, the fourth reference (Aref : r = µ
∗, Case IV) is

an external multi-value climatology. A tabular summary ex-
plaining the individual formulae and terms following Mur-
phy (1988) is given in Sect. A3. The last two references are
calculated on a much longer time series than the first ones.

4.2.3 OLS reference model

The third reference model is an ordinary least-square (OLS)
model. We train the OLS model by using the statsmod-
els package v0.10 (Seabold and Perktold, 2010). The OLS
model is trained on the same data as the neural network
(training set) and serves as a linear competitor.

5 Results

As described in Sect. 3, we split our data into three subsets
(training, validation, and test set). We only used the inde-
pendent test dataset to evaluate the forecasting capabilities
of the IntelliO3-ts network. During training and hyperpa-
rameter optimisation, only the training and validation sets
were used, respectively. Therefore, the following results re-
flect the true generalisation capability of IntelliO3-ts. Before
discussing the results in detail below, we would like to point
out again that this is the first time that one neural network
has been trained to forecast data from an entire national air
quality monitoring station network. Also, the network has
been trained exclusively with time series data from air pollu-
tant measurements and a meteorological reanalysis. No addi-
tional information, such as geographic coordinates, or other
hints that could be used by the network to perform a station
classification task, has been used. The impact of such extra
information will be the subject of another study.

5.1 Forecasting results

Figure 3 shows the observed monthly O3–dma8eu distribu-
tion (green) and the corresponding network predictions for a
lead time of up to 4 d (dark to light blue) summarised for all
203 stations in the test set. The network clearly captures the
seasonal cycle. Nonetheless, the arithmetic mean (black tri-
angles) and the median tend to shift towards their respective
annual mean with increasing lead time (see also Fig. 6). In
spring and autumn, the observed and forecasted distributions
match well, while in summer and wintertime the network un-
derestimates the interquartile range (IQR) and does not re-
produce the extremes values (for example, the maxima in
July/August or the minima in December/January/February).
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Figure 3. Monthly dma8eu ozone concentrations for all test stations
as boxplots. Measurements are denoted by “obs” (green), while the
forecasts are denoted by “1 d” (dark blue) to “4 d” (light blue).
Whiskers have a maximal length of one interquartile range. The
black triangles denote the arithmetic means.

5.2 Comparison with competitive models

The skill scores based on the mean squared error (MSE)
evaluated over all stations in the test set are summarised in
Fig. 4. In the left and centre groups of boxes and whiskers,
the IntelliO3-ts model (labelled “CNN”) and the OLS model
are compared against persistence as reference. The right
group of boxes and whiskers shows the comparison between
IntelliO3-ts and OLS. The mean skill score for IntelliO3-ts
against persistence is positive and increases with time. The
OLS forecast shows similar behaviour in terms of its tempo-
ral evolution but exhibits a slightly lower skill score through-
out the 4 d forecasting period. The increases in skill score in
both cases is mainly due to the decreasing performance of
the persistence model (see also Sect. 4.2.1). Consequently,
IntelliO3-ts shows a positive skill score when the OLS model
is used as a reference, indicating a small genuine added value
over the OLS model.

In comparison with climatological reference forecasts as
introduced in Sect. 4.1 and summarised in Table A2, the skill
scores are high for the first lead time (1 d) and decrease with
increasing lead time (Fig. 5). Both cases with a single value
as reference (internal Case I, external Case III) maintain a
skill score above 0.4 over the 4 d. These high skill scores are a
direct result of the fact that IntelliO3-ts captures the seasonal
cycle as shown in Fig. 3, while the reference forecasts only
report the overall mean as a single value prediction.

If the reference includes the seasonal variation (Case II
and Case IV), the IntelliO3-ts skill score is still better than
0.4 for the first day (1 d), but then it decreases rapidly and
even becomes negative on day 4 for Case II. The skill scores
for Case II are lower than for Case IV as the reference cli-
matology (i.e. the monthly mean values) is calculated on the

Figure 4. Skill scores of the IntelliO3-ts (cnn) versus the two ref-
erence models’ persistence (persi) and ordinary least square (ols)
based on the mean squared error; separated for all lead times (1 d
(dark blue) to 4 d (light blue)). Positive values denote that the
first mentioned prediction model performs better than the reference
model (mentioned as second). The triangles denote the arithmetic
means.

Figure 5. Skill scores of IntelliO3-ts with respect to climatological
reference forecasts: with internal single value reference (Case I),
internal multi-value (monthly) reference (Case II), external single
(Case III), and external multi-value (monthly) reference (Case IV)
for all lead times from 1 d (dark blue) to 4 d (light blue). Triangles
denote the arithmetic means.

test set itself. These results show that, for the vast majority
of stations, our model performs much better than a seasonal
climatology for a 1 d forecast, and it is still substantially bet-
ter than the climatology after 2 d. However, there are some
stations which yield a negative skill score even on day 2
in the Case II comparison. Longer-term forecasts with this
model setup do not add value compared to the computation-
ally much cheaper monthly mean climatological forecast.

Geosci. Model Dev., 14, 1–25, 2021 https://doi.org/10.5194/gmd-14-1-2021
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5.3 Analysis of joint distributions

The full joint distribution in terms of calibration refinement
factorisation (Sect. A2) is shown in Fig. 6a (first lead time;
1 d) to d (last lead time; 4 d). The marginal distribution (re-
finement) is shown as histogram (light grey; sample size),
while the conditional distribution (calibration) is presented
by specific percentiles in different line styles. If the median
(0.5th quantile, solid line) is below the reference, the net-
work exhibits a high bias with respect to the observations,
and vice versa. Obviously, quantiles in value regions with
many data samples are more robust and therefore more credi-
ble than quantiles in data-sparse concentration regimes (Mur-
phy et al., 1989). On the first lead time (d1; Fig. 6), the
IntelliO3-ts network has a tendency to slightly overpredict
concentrations /30 ppb. On the other hand, the forecast un-
derestimates concentrations above '70 ppb.

Both very high and very low forecasts are rare (note the
logarithmic axis for the sample size). Therefore, the results
in these regimes have to be treated with caution. Further de-
tail is provided in Fig. A1, where the conditional biases are
shown (terms BI, BII, and BIV in Sect. A3) which decrease
the maximal climatological potential skill score (term AI; see
also Table A2).

With increasing lead time, the model looses its capability
to predict concentrations close to zero and high concentra-
tions above 80 ppb. The marginal distribution develops a pro-
nounced bimodal shape which is directly linked to the con-
ditional biases. The number of high (extreme) ozone concen-
trations is relatively low, resulting in few training examples.
The network tries to optimise the loss function with respect to
the most common values. As a result, predictions of concen-
trations near the mean value of the distribution are generally
more correct than predictions of values from the fringes of
the distribution. Moreover, this also explains why the model
does not perform substantially better than the monthly mean
climatology forecasts (Case II, Case IV). This problem also
becomes apparent in other studies. For example, Sayeed et al.
(2020) focus their categorical analysis on a threshold value
of 55 ppbv (maximum 8 h average) which corresponds to the
air quality index value “moderate” (AQI 51 to 100), instead
of the legal threshold value of 70 ppbv (U.S. Environmen-
tal Protection Agency, 2016, Table 5, therein), as the model
shows better skills in this regime.

To shed more light on the factors influencing the forecast
quality, we analyse the network performance individually
for each season (DJF, MAM, JJA, and SON). Conditional
quantile plots for individual seasons can be found in the Ap-
pendix (Sect. A6). As mentioned above, the bimodal shape of
the marginal distribution is mainly caused by the network’s
weakness to predict very high and low ozone concentrations.
Moreover, the seasonal decomposition shows that the left
mode is caused by the fall (SON) and winter (DJF) seasons
(Figs. A7a–d and A4a–d). In both seasons, the most com-
mon values fall into the same concentration range, while the

right tail of SON is much more pronounced than for DJF,
with higher values occurring primarily in September. In the
summer season (JJA, Fig. A6a–d), the most frequently pre-
dicted values correspond to the location of the right mode
of Fig. 6a–d. During DJF, MAM, and JJA, the model has a
stronger tendency of under-forecasting with increasing lead
time (median line moves above the reference line).

5.4 Relevance of input variables

To analyse the impact of individual input variables on the
forecast results, we apply a bootstrapping technique as fol-
lows: we take the original input of one station, keep eight
of the nine variables unaltered, and randomly draw (with re-
placement) the missing variable (20 times per variable per
station). This destroys the temporal structure of this specific
variable so that the network will no longer be able to use
this information for forecasting. Compared to alternative ap-
proaches, such as re-training the model with fewer input vari-
ables, setting all variable values to zero, etc., this method has
two main advantages: (i) the model does not need to be re-
trained, and thus the evaluation occurs with the exact same
weights that were learned from the full dataset, and (ii) the
distribution of the input variable remains unchanged so that
adverse effects, for example, due to correlated input vari-
ables, are excluded. However, we note that this method may
underestimate the impact of a specific variable in the case of
correlated input data, because in such cases the network will
focus on the dominant feature (here ozone). Also, this analy-
ses only evaluates the behaviour of the deep learning model
and does not evaluate the impact of these variables on actual
ozone formation in the atmosphere.

After the randomisation of one variable, we apply the
trained model on this modified input data and compare the
new prediction with the original one. For comparison, we ap-
ply the skill score (Eq. 6) based on the MSE where we use
the original forecast as a reference. Consequently, the skill
score will be negative if the bootstrapped variable has a sig-
nificant impact on model performance. Figure 7 shows the
skill scores for all variables (x axis) and lead times (dark (1 d)
to light blue (4 d) boxplots). Ozone is the most crucial input
variable, as it has by far the lowest skill score for all lead
times. With increasing lead time, the skill score increases but
stays lower than for any other variable. In contrast, the model
does not derive much skill from the variables nitrogen oxide,
nitrogen dioxide, and the planetary boundary layer height. In
other words, the network does not perform worse, when ran-
domly drawn values replace one of those original time series.
Relative humidity, temperature, and the wind’s u component
have an impact on the model performance. With increasing
lead time, these influences decrease.
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Figure 6. Conditional quantile plot for all IntelliO3-ts predictions for a lead time of 1 d (a), 2 d (b), 3 d (c), and 4 d (d). Conditional percentiles
(0.10th and 0.90th, 0.25th and 0.75th and 0.50th) from the conditional distribution f

(
oj |mi

)
are shown as lines in different styles. The

reference line indicates a hypothetical perfect forecast. The marginal distribution of the forecast f (mi) is shown as log histogram (right axis,
light grey). All calculations are done by using a bin size of 1 ppb. Quantiles are smoothed by using a rolling mean of a window size of 3.
(After Murphy et al., 1989.)

6 Limitations and additional remarks

Even though IntelliO3-ts v1.0 generalises well on an unseen
testing set (see Sect. 5), it still has some limitations related to
the applied data split.

By splitting the data into three consecutive, non-
overlapping sets, we ensure that the datasets are as inde-
pendent as possible. On the other hand, this independence
comes at the cost that changes of trends in the input variables
may not be captured, especially as our input data are not de-
trended. Indeed, at European non-urban measurement sites,
several ozone metrics related to high concentrations (e.g.
fourth highest daily maximum 8 h (4MDA8) or the 95th per-
centile of hourly concentrations) show a significant decrease
during our study period (1997 to 2015) (Fleming et al., 2018;
Yan et al., 2018). Our data-splitting method for evaluating
the generalisation capability is conservative in the sense that
we evaluate the model on the test set, which has the largest
possible distance to the training set. If our research model

shall be transformed into an operational system, we suggest
applying online learning and use the latest available data for
subsequent training cycles (see, for example, Sayeed et al.,
2020).

7 Conclusions

In this study, we developed and evaluated IntelliO3-ts, a deep
learning forecasting model for daily near-surface ozone con-
centrations (dma8eu) at arbitrary air quality monitoring sta-
tions in Germany. The model uses chemical (O3, NO, NO2)
and meteorological time series of the previous 6 d to create
forecasts for up to 4 d into the future. IntelliO3-ts is based
on convolutional inception blocks, which allow us to cal-
culate concurrent convolutions with different kernel sizes.
The model has been trained on 10 years of data from 312
background stations in Germany. Hyperparameter tuning and
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Figure 7. Skill scores of bootstrapped model predictions having the
original forecast as the reference model are shown as boxplots for
all lead times from 1 d (dark blue) to 4 d (light blue). The skill score
for ozone is shown on the left y axis, while the skill score of the
other variables is shown on the right y axis.

model evaluation were done with independent datasets of 2
and 6 years length, respectively.

The model generalises well and generates good quality
forecasts for lead times up to 2 d. These forecasts are su-
perior compared to the reference persistence, ordinary least
squares, annual, and seasonal climatology models. After 2 d,
the forecast quality degrades, and the forecast adds no value
compared to a monthly mean climatology of dma8eu ozone
levels. We could primarily attribute this to the network’s ten-
dency to converge to the mean monthly value. The model
does not have any spatial context information which could
counteract this tendency. Near-surface ozone concentrations
at background stations are highly influenced by air mass ad-
vection, but the IntelliO3-ts network has no way of taking up-
wind information into account yet. We will investigate spatial
context approaches in a forthcoming study.

We observed that the model loses refinement with increas-
ing lead time which results in unsatisfactory predictions on
the tails of the observed ozone concentration. We were able
to attribute this weakness to the under-representation of ex-
treme (either very small or high) levels in the training dataset.
This is a general problem for machine learning applications
and regression methods. The machine learning community is
investigating possible solutions to lessen the impact of such
data imbalances, but their adaptation is beyond the scope of
this paper as proposed techniques are not directly applicable
to those time series (auto-correlation time).

Bootstrapping individual time series of the input data to
analyse the importance of those variables on the predictive
skill showed that the model mainly focused on the previ-
ous ozone concentrations. Temperature and relative humidity

only have a small effect on the model performance, while the
time series of NO, NO2, and planetary boundary layer (PBL)
have no impact.

The IntelliO3-ts network extends previous work by using a
new network architecture, and training one model on a much
larger set of measurement station data and longer time peri-
ods. In light of Rasp and Lerch (2018), who used several neu-
ral networks to postprocess ensemble weather forecasts, we
applied meteorological evaluation metrics to perform a point-
by-point comparison, which is not common in the field of
deep learning. We hope that the forecast quality of IntelliO3-
ts can be further improved if we take spatial context informa-
tion into account so that the advection of background ozone
and ozone precursors can be learned by the model.
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Appendix A

A1 Information on used stations

Table A1 lists all measurement stations which we used in this
study. The table also shows the number of samples (X, y) for
each of the three datasets (training, validation, and test).

Table A1. Number of samples (input and output pairs) per station
separated by training, validation (val), and test dataset. “–” denotes
no samples in a set.

Training Val Test

Stat. ID

DEBB001 1104 – –
DEBB006 1455 – –
DEBB007 – 721 1086
DEBB009 1438 – –
DEBB021 2512 705 1052
DEBB024 2592 – –
DEBB028 1353 – –
DEBB031 2577 – –
DEBB036 1008 – –
DEBB038 1245 – –
DEBB040 760 – –
DEBB042 2902 721 1086
DEBB043 2194 – –
DEBB048 2473 721 1075
DEBB050 2510 721 –
DEBB051 1006 – –
DEBB053 2115 706 1086
DEBB055 1887 721 1053
DEBB063 1392 721 1086
DEBB064 1480 721 1086
DEBB065 1411 699 1086
DEBB066 1451 721 1086
DEBB067 1073 721 1086
DEBB075 – 721 1079
DEBB082 – 622 1086
DEBB083 – – 1086
DEBE010 1372 707 1035
DEBE032 2441 690 1060
DEBE034 2506 671 1031
DEBE051 2433 694 1053
DEBE056 2481 678 1055
DEBE062 1941 677 1069
DEBW004 1440 721 1086
DEBW006 1451 721 1086
DEBW007 1440 699 –
DEBW008 656 – –
DEBW010 3041 708 1086
DEBW013 1432 710 1079
DEBW019 2962 710 1078
DEBW020 1520 – –

Table A1. Continued.

Training Val Test

Stat. ID

DEBW021 1579 – –
DEBW023 1430 721 1078
DEBW024 3011 713 1086
DEBW025 1530 – –
DEBW026 3005 721 –
DEBW027 3005 699 1075
DEBW028 1510 – –
DEBW029 3012 721 1086
DEBW030 2966 – –
DEBW031 2970 711 1069
DEBW032 2648 – –
DEBW034 3045 707 –
DEBW035 2281 – –
DEBW036 1183 – –
DEBW037 3023 721 –
DEBW039 2999 710 1086
DEBW041 1581 – –
DEBW042 2617 708 1067
DEBW044 1571 – –
DEBW045 656 – –
DEBW046 2990 699 1086
DEBW047 1563 – –
DEBW049 646 – –
DEBW050 1556 – –
DEBW052 2652 721 1078
DEBW053 1574 – –
DEBW054 1566 – –
DEBW056 2938 721 1086
DEBW057 644 – –
DEBW059 2974 721 1086
DEBW060 1571 – –
DEBW065 1540 – –
DEBW072 480 – –
DEBW076 3035 721 708
DEBW081 2654 721 1079
DEBW084 1444 721 1042
DEBW087 3043 713 1086
DEBW094 2188 – –
DEBW102 1122 – –
DEBW103 2525 721 –
DEBW107 1801 714 1086
DEBW110 1107 721 –
DEBW111 1083 703 –
DEBW112 651 721 1079
DEBW113 678 – –
DEBY002 2924 721 747
DEBY004 2917 707 1028
DEBY005 2959 714 1086
DEBY013 1412 652 980
DEBY017 1250 – –
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Table A1. Continued.

Training Val Test

Stat. ID

DEBY020 2976 721 1013
DEBY031 2927 678 1072
DEBY032 2975 721 711
DEBY034 1555 – –
DEBY039 2554 721 1067
DEBY047 1895 721 754
DEBY049 2918 693 1066
DEBY052 2929 708 1035
DEBY062 1411 704 748
DEBY072 2907 690 1055
DEBY077 1409 721 724
DEBY079 2878 721 671
DEBY081 2932 523 713
DEBY082 1592 – –
DEBY088 2986 713 1062
DEBY089 2644 721 1086
DEBY092 616 – –
DEBY099 1828 703 725
DEBY109 1310 713 1071
DEBY113 1347 706 1086
DEBY118 937 705 727
DEBY122 – – 877
DEHB001 2567 710 953
DEHB002 2287 702 1053
DEHB003 2546 695 –
DEHB004 1428 708 1037
DEHB005 2518 683 1066
DEHE001 1451 721 1086
DEHE008 2447 707 1075
DEHE010 1600 – –
DEHE013 – 721 1086
DEHE017 1562 – –
DEHE018 3016 721 1086
DEHE019 1958 – –
DEHE022 2643 721 1086
DEHE023 2966 708 466
DEHE024 2935 710 1086
DEHE025 1554 – –
DEHE026 2877 697 1086
DEHE027 1536 – –
DEHE028 2946 710 1068
DEHE030 3028 721 1086
DEHE032 2926 714 1075
DEHE033 1835 – –
DEHE034 1880 – –
DEHE039 – – 812
DEHE042 2966 721 1079
DEHE043 3004 721 1074
DEHE044 2543 721 1086
DEHE045 2535 699 1086
DEHE046 2513 714 1086

Table A1. Continued.

Training Val Test

Stat. ID

DEHE048 1043 – –
DEHE050 1014 – –
DEHE051 2331 721 1086
DEHE052 2078 713 1086
DEHE058 789 721 1086
DEHE060 704 672 1086
DEHH008 1439 721 1086
DEHH021 2624 710 1086
DEHH033 2148 682 1067
DEHH047 2175 696 1086
DEHH049 2150 721 1075
DEHH050 2131 721 1069
DEMV001 794 – –
DEMV004 2908 721 1058
DEMV007 2986 721 1053
DEMV012 2885 710 1086
DEMV017 2507 708 1086
DEMV018 2113 710 –
DEMV019 1429 706 1086
DEMV021 600 688 1072
DEMV024 – – 908
DENI011 2611 452 1086
DENI016 3034 627 1051
DENI019 2919 – –
DENI020 2984 667 1086
DENI028 2927 516 1086
DENI029 2903 692 1086
DENI031 1410 451 1079
DENI038 2599 573 1083
DENI041 2935 525 1086
DENI042 2939 553 1072
DENI043 2941 606 1086
DENI051 2976 – 1072
DENI052 2910 529 1086
DENI054 2997 596 1086
DENI058 2398 – 1086
DENI059 2408 451 1079
DENI060 2386 677 1086
DENI062 2482 625 1080
DENI063 2385 460 1073
DENI077 – – 1079
DENW004 1148 – –
DENW006 1367 694 1026
DENW008 2511 701 1064
DENW010 1397 – –
DENW013 1830 – –
DENW015 1451 – –
DENW018 1196 – –
DENW028 1655 – –
DENW029 2530 – –
DENW030 2785 630 998
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Table A1. Continued.

Training Val Test

Stat. ID

DENW036 1314 – –
DENW038 2598 652 1079
DENW042 1185 – –
DENW047 1350 – –
DENW050 2488 – –
DENW051 1206 – –
DENW053 1795 678 1051
DENW059 1777 648 980
DENW062 1078 – –
DENW063 2816 – –
DENW064 2887 589 1052
DENW065 2877 550 1045
DENW066 2865 – –
DENW067 2473 686 1079
DENW068 2892 447 1009
DENW071 1827 713 1071
DENW078 1382 681 1078
DENW079 2040 706 1086
DENW080 2147 689 1043
DENW081 2422 646 1058
DENW094 1980 627 1058
DENW095 1981 681 1071
DENW096 700 – –
DENW179 766 699 1079
DENW247 – 572 1066
DERP001 1421 721 1068
DERP007 2652 721 1077
DERP013 2883 708 1067
DERP014 2967 703 1061
DERP015 2810 710 1047
DERP016 2962 721 1086
DERP017 2955 721 1055
DERP019 1413 708 1041
DERP021 2996 713 1025
DERP022 2989 701 1059
DERP025 2918 691 1086
DERP028 2802 678 1026
DESH005 962 – –
DESH006 614 – –
DESH008 3031 721 1053
DESH016 2635 698 –
DESH021 1107 – –
DESH023 1700 721 1066
DESH033 – 721 1072
DESL003 1393 713 1086
DESL008 1371 – –
DESL011 2776 710 1086
DESL012 – – 1086

Table A1. Continued.

Training Val Test

Stat. ID

DESL017 2785 714 1086
DESL018 1656 710 1086
DESL019 1371 472 1057
DESN001 2925 689 1072
DESN004 3011 705 1086
DESN005 1166 – –
DESN011 2613 694 1073
DESN012 2995 721 –
DESN014 2256 – –
DESN017 3028 704 –
DESN019 2934 721 –
DESN024 3017 721 –
DESN028 401 – –
DESN036 810 – –
DESN045 2913 721 1064
DESN050 2939 710 –
DESN051 1451 685 1075
DESN057 1535 – –
DESN059 2533 714 1078
DESN074 2534 702 1062
DESN076 2489 717 1075
DESN079 – – 1071
DESN085 713 – –
DESN092 – 536 1057
DEST002 3020 721 1075
DEST005 802 – –
DEST011 2924 713 1075
DEST014 996 – –
DEST022 805 – –
DEST025 480 – –
DEST028 2694 – –
DEST030 2282 – –
DEST031 796 – –
DEST032 447 – –
DEST039 2971 676 1069
DEST044 2923 709 1086
DEST050 2672 706 1075
DEST052 1484 – –
DEST061 814 – –
DEST063 1241 – –
DEST066 2991 659 1086
DEST069 2589 707 –
DEST070 1488 – –
DEST071 462 – –
DEST072 2641 703 –
DEST077 1611 663 1086
DEST078 3042 709 –
DEST089 2467 710 1048
DEST098 1422 649 1086
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Table A1. Continued.

Training Val Test

Stat. ID

DEST104 – – 1061
DETH005 3030 721 1075
DETH009 2995 721 1086
DETH013 2945 710 1086
DETH016 1937 – –
DETH018 3027 721 1086
DETH020 3002 721 1086
DETH024 1193 – –
DETH025 2542 370 –
DETH026 1474 721 1072
DETH027 1444 705 1086
DETH036 2996 721 1086
DETH040 2926 721 1078
DETH041 3003 710 1043
DETH042 2993 697 1086
DETH060 2519 721 1086
DETH061 2465 721 1063
DETH095 – – 1059
DETH096 – – 898
DEUB001 1202 721 1075
DEUB003 1436 – –
DEUB004 2746 721 932
DEUB005 1422 721 974
DEUB013 414 – –
DEUB021 369 – –
DEUB026 1768 – –
DEUB028 2602 603 1086
DEUB029 2834 721 1062
DEUB030 2893 710 947
DEUB031 1845 – –
DEUB032 1629 – –
DEUB033 2034 – –
DEUB034 1434 – –
DEUB035 1977 – –
DEUB036 411 – –
DEUB038 1628 – –
DEUB039 1676 – –
DEUB040 1549 – –
DEUB041 781 – –
DEUB042 687 – –
Total stations 312 211 203
Total samples 643 788 145 030 212 093

A2 Joint distributions

Forecasts and observations are treated as random variables.
Let p(m,o) represent the joint distribution of a model’s fore-
cast m and an observation o, which contains information on
the forecast, the observation, and the relationship between
both of them (Murphy and Winkler, 1987). To access specific
pieces of information, we factorise the joint distribution into
a conditional and a marginal distribution in two ways. The
first factorisation is called calibration refinement and reads

p(m,o)= p(o|m)p(m), (A1)

where p(o|m) is the conditional distribution of observing
o given the forecast m, and p(m) is the marginal distribu-
tion which indicates how often different forecast values are
used (Murphy and Winkler, 1987; Wilks, 2006). A continu-
ous forecast is perfectly calibrated if

E(o|m)=m (A2)

holds, where E(o|m) is the expected value of o given the
forecast m. The marginal distribution p(m) is a measure of
how often different forecasts are made and is therefore also
called refinement or sharpness. Both distributions are impor-
tant to evaluate a model’s performance. Murphy and Win-
kler (1987) pointed out that a perfectly calibrated forecast is
worth nothing if it lacks refinement.

The second factorisation is called the likelihood-base rate
and consequently is given by

p(m,o)= p(m|o)p(o), (A3)

where p(m|o) is the conditional distribution of forecast m
given that o was observed. p(o) is the marginal distribution
which only contains information about the underlying rate of
occurrence of observed values and is therefore also called the
sample climatological distribution (Wilks, 2006).

A3 Mean squared error decomposition (Murphy, 1988)

This section provides additional information about the MSE
decomposition introduced by Murphy (1988). The MSE de-
composition is performed as

MSE(m,o)=
1
n

n∑
i=1

((mi −m)− (oi − o)+ (m− o))
2 (A4)

= (m− o)2+ σ 2
m+ σ

2
o − 2σmo (A5)

= (m− o)2+ σ 2
m+ σ

2
o − 2σmσoρmo. (A6)

Here, σm (σo) is the sample variance of the forecasts
(observations) and σmo is the sample covariance of the
forecasts and observations, which is given by σmo =
1
n

∑n
i=1 (mi −m)(oi − o). ρmo is the sample coefficient of
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correlation between forecast and observation.

Case I:
S (m,o,o)=

ρ2
mo︸︷︷︸
AI

−

(
ρmo−

σm

σo

)2

︸ ︷︷ ︸
BI

−

(
m− o

σo

)2

︸ ︷︷ ︸
CI

(A7)

Case II:
S
(
m,o?,o

)
=

AI−BI−CI− ρ2
o?o+

(
ρo?o−

σo?

σo

)2

1− ρ2
o?o︸︷︷︸

AII

+

(
ρo?o−

σo?

σo

)2

︸ ︷︷ ︸
BII

(A8)

Case III:
S (m,µ,o)=

AI−BI−CI+
(
µ−o
σo

)2

1+
(
µ− o

σo

)2

︸ ︷︷ ︸
AIII

. (A9)

Case IV:
S (m,µ,o)=

AI−BI−CI− ρ2
µo+

(
ρ2
µo−

σµ
σo

)2
+

(
µ−o
σo

)2

1− ρ2
µo︸︷︷︸

AIV

+

(
ρ2
µo−

σµ

σo

)2

︸ ︷︷ ︸
BIV

+

(
µ− o

σo

)2

︸ ︷︷ ︸
CIV

(A10)

The term AI is the square of the sample correlation co-
efficient and might be interpreted as the strength of linear
relationship between the forecast and the observation. This
term ranges from 0 (no correlation) to 1 (perfect correlation).
The term BI includes the square of the differences between
the sample correlation coefficient and the ratio of standard
deviation of the forecast and observation. Therefore, BI is a
measure of the conditional bias of the forecast which is al-
ways positive due to the square and tends to decrease skill
as it is a subtrahend. The last term, which is included in all
cases (I–IV), is CI and contains the square of the difference
of the mean forecast and mean observation divided by the
variance of the observation. Therefore, CI is a measure of
the unconditional bias in the forecast and, again, tends to de-
crease the skill as it is a subtrahend which is always greater
than or equal to zero.

In the case of multi-value internal climatology (Case II,
Eq. A8), two additional terms appear in the dominator as

Figure A1. Skill scores of IntelliO3-ts with respect to climatologi-
cal reference forecast, with internal single value reference (Case I),
internal multi-value (monthly) reference (Case II), external single
(Case III), and external multi-value (monthly) reference (Case IV)
for all lead times from 1 d (dark blue) to 4 d (light blue). All terms
are described in Sect. A3. Triangles denote the arithmetic means.

well as the numerator which tend to decrease skill in general
and only vanish if 2ρo?o = σµ/σo. In Case III, the additional
term AIII appears that includes the square of the difference
between the mean external and the internal climatology di-
vided by the variance of the observation. AIII leads to an
increase of skill for any difference in the means of external
and internal climatologies.

Three additional terms (AIV, BIV, and CIV) appear if
Eq. (7) is decomposed by using a multi-value external cli-
matology as reference forecast (Case IV). These terms only
vanish if 2ρµo = σµ/σo and µ= o. A summary of all four
cases and all terms included is given in Table A2.

Figure A1 also includes all individual terms as described
above.

A4 Additional information on JUWELS

Each node on JUWELS (Jülich Supercomputing Centre,
2019) which is part of the graphical processor unit (GPU)
partition is equipped with four NVIDIA Volta V100 GPUs.
The user guide for JUWELS is available from https://
apps.fz-juelich.de/jsc/hps/juwels/index.html (last access: 12
November 2020).

A5 Detailed model settings

Figures A2 and A3 show the full architecture of IntelliO3-
ts including all individual layers and tails. Table A3 lists
the specific compile options per keyword of Keras’ compile
method. Table A4 summarises additional settings for the spe-
cific architecture.

Geosci. Model Dev., 14, 1–25, 2021 https://doi.org/10.5194/gmd-14-1-2021
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Table A2. Summarised skill scores S (m,r,o) based on the MSE (Cases I–IV) and relating terms (AI–CIV) as described in Sect. A3. m
denotes the prediction model, r is the reference, and o denotes the observation. The “×” sign marks if a term (AI to CIV) appears in the
different factorisations. The following abbreviations are used: corr. for correlation, obs. for observation, ref. reference (forecast), cond. for
conditional, int. for internal, and ext. for external.

Term Case I Case II Case III Case IV Formula Meaning

r: o o? µ µ reference
int. single int. multi ext. single ext. multi

AI × × × × ρ2
mo potential skill

AII × ρ2
o?o corr. obs.–ref.

AIII ×

(
µ−o
σo

)2
trend

AIV × ρ2
µo corr. obs.–ref.

BI × × × ×

(
ρmo−

σm
σo

)2
cond. bias

BII ×

(
ρo?o−

σo?
σo

)2
cond. bias

BIV ×

(
ρ2
µo−

σµ
σo

)2
cond. bias

CI × × × ×

(
m−o
σo

)2
uncond. bias

CIV ×

(
µ−o
σo

)2
trend

Equation (A7) (A8) (A9) (A10)

Table A3. Specific compile options passed to Keras’ compile
method. Other keywords which are not listed in this table are left
with default values.

Keyword Value

optimizer adam(lr=0.001, amsgrad=True)
loss Eqs. (3), (2)
loss_weight 0.01, 0.99

Table A4. Specific information and rates used to set up the model
architecture.

Setting Value

Dropout rate 0.35
Regularizer keras.regularizers.l2(0.01)
Epochs 300
Activation (all without last layer) ELU
Activation (output layers) linear
Padding symmetric padding

A6 Seasonal decomposition of conditional quantiles

The following section contains all conditional quantile plots
decomposed for all seasons (DJF: Fig. A4a–d, MAM:
Fig. A5a–d, JJA: Fig. A6a–d, and SON: Fig. A7a–d).
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Figure A2. First part of the network showing the input, the first padding, convolution and activation, and the first inception block. This figure
was created with Netron (Roeder, 2020).
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Figure A3. Second part of the network after the “concatenate” layer in Fig. A2, showing the minor output branch, the second inception
block, and the main output branch. This figure was created with Netron (Roeder, 2020).
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Figure A4. Same as Fig. 6 but for DJF.

Figure A5. Same as Fig. 6 but for MAM.
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Figure A6. Same as Fig. 6 but for JJA.

Figure A7. Same as Fig. 6 but for SON.
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Code and data availability. The current version of
IntelliO3-ts is available from the project website:
https://gitlab.version.fz-juelich.de/toar/mlair/-/tree/IntelliO3-ts
(last access: 12 November 2020) under the MIT licence
(http://opensource.org/licenses/mit-license.php, last access:
18 December 2020). The exact versions of the model and data used
to produce the results in this paper are archived on b2share at https:
//doi.org/10.23728/b2share.5042cda41a4c49769cc4010d231ecdec
(Kleinert et al., 2020b). The initial version which was used
for the initial submission is also archived on b2share at
https://doi.org/10.34730/c5dae21fac954aa6bdb4e86172221526
(Kleinert et al., 2020a).
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