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Abstract. Ice sheets lose the majority of their mass through
outlet glaciers or ice streams, corridors of fast ice moving
multiple orders of magnitude more rapidly than the surround-
ing ice. The future stability of these corridors of fast-moving
ice depends sensitively on the behaviour of their boundaries,
namely shear margins, grounding zones and the basal sliding
interface, where the stress field is complex and fundamen-
tally three-dimensional. These boundaries are prone to ther-
momechanical localisation, which can be captured numeri-
cally only with high temporal and spatial resolution. Thus,
better understanding the coupled physical processes that gov-
ern the response of these boundaries to climate change ne-
cessitates a non-linear, full Stokes model that affords high
resolution and scales well in three dimensions. This pa-
per’s goal is to contribute to the growing toolbox for mod-
elling thermomechanical deformation in ice by leveraging
graphical processing unit (GPU) accelerators’ parallel scal-
ability. We propose FastICE, a numerical model that re-
lies on pseudo-transient iterations to solve the implicit ther-
momechanical coupling between ice motion and tempera-
ture involving shear heating and a temperature-dependent
ice viscosity. FastICE is based on the finite-difference dis-
cretisation, and we implement the pseudo-time integration
in a matrix-free way. We benchmark the mechanical Stokes
solver against the finite-element code Elmer/Ice and report
good agreement among the results. We showcase a paral-

lel version of FastICE to run on GPU-accelerated distributed
memory machines, reaching a parallel efficiency of 99 %. We
show that our model is particularly useful for improving our
process-based understanding of flow localisation in the com-
plex transition zones bounding rapidly moving ice.

1 Introduction

The fourth IPCC report (Solomon et al., 2007) concludes that
existing ice-sheet flow models do not accurately describe po-
lar ice-sheet discharge (e.g. Gagliardini et al., 2013; Pattyn
et al., 2008) owing to their inability to simultaneously model
slow and fast ice motion (Gagliardini et al., 2013; Bueler and
Brown, 2009). This issue results from the fact that many ice-
flow models are based on simplified approximations of non-
linear Stokes equations, such as first-order Stokes (Perego
et al., 2012; Tezaur et al., 2015), shallow shelf (Bueler and
Brown, 2009) and shallow ice (Bassis, 2010; Schoof and
Hindmarsh, 2010; Goldberg, 2011; Egholm et al., 2011; Pol-
lard and DeConto, 2012) models. Shallow ice models are
computationally more tractable and describe the motion of
large homogeneous portions of ice as a function of the basal
friction. However, this category of models fails to capture
the coupled multiscale processes that govern the behaviour
of the boundaries of streaming ice, including shear margins,
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grounding zones and the basal interface. These boundaries
dictate the stability of the current main drainage routes from
Antarctica and Greenland, and predicting their future evolu-
tion is critical for understanding polar ice-sheet discharge.

Full Stokes models (Gagliardini and Zwinger, 2008;
Gagliardini et al., 2013; Jarosch, 2008; Jouvet et al., 2008;
Larour et al., 2012; Leng et al., 2012, 2014; Brinkerhoff and
Johnson, 2013; Isaac et al., 2015) provide a complete me-
chanical description of deformation by capturing the entire
stress rate and strain rate tensor. In three dimensions (3-D),
full Stokes calculations set a high demand on computational
resources that requires a parallel and high-performance com-
puting approach to achieve reasonable times to solution. An
added challenge in full Stokes models is the strongly non-
linear thermomechanics of ice. Ice viscosity significantly de-
pends on both temperature and strain rate (Robin, 1955; Hut-
ter, 1983; Morland, 1984), which can lead to spontaneous
localisation of shear (e.g. Duretz et al., 2019; Riss et al.,
2019a). Particularly challenging is the scale separation asso-
ciated with localisation, which leads to microscale physical
interaction generating mesoscale features such as thermally
activated shear zones or preferential flow paths in macroscale
ice domains. Thus, both high spatial and temporal resolutions
are important for numerical models to capture and resolve
spontaneous localisation.

The main contribution of this paper is to leverage the
unprecedented parallel performance of modern graphical
processing units (GPUs) to accelerate the time to solution
for thermomechanically coupled full Stokes models in 3-
D utilising a pseudo-transient (PT) iterative scheme — Fas-
tICE (Réss et al., 2019b). FastICE is a process-based model
that focuses specifically on improving our ability to bet-
ter model and understand spontaneous englacial instabilities
such as thermomechanical localisation at the scale of individ-
ual field sites. Thermomechanical localisation arises in a self-
consistent way in shear margins, at the grounding zone and in
the vicinity of the basal sliding interface, making our model
particularly well suited for assessing the complex physical
feedbacks in the boundaries of fast-moving ice. FastICE is a
complement to existing models by providing a multi-physics
platform for studying the transition between fast and slow ice
motion rather than addressing the large-scale evolution of the
entire ice sheet.

Recent trends in the computing industry show a shift from
single-core to many-core architectures as an effective way to
increase computational performance. This trend is common
to both central processing unit (CPU) and GPU hardware ar-
chitectures (Cook, 2012). GPUs are compact, affordable and
relatively programmable devices that offer high-performance
throughput (close to TB per second peak memory through-
put) and a good price-to-performance ratio. GPUs offer an
attractive alternative to conventional CPUs owing to their
massively parallel architecture featuring thousands of cores.
The programming model behind GPUs is based on a paral-
lel principle called single instruction multiple data (SIMD).
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This principle entails every single instruction being executed
on different data. The same instruction block is executed by
every thread. GPUs’ massive parallelism and the related high
performance is achieved by executing thousands of threads
concurrently using multi-threading in order to effectively
hide latency. Numerical stencil-based techniques such as the
finite-difference method allow one to take advantage of GPU
hardware, since spatial derivatives are approximated by dif-
ferences between two (or more) adjacent grid points. This re-
sults in minimal, local and regular memory access patterns.
The operations performed on each stencil are identical for
each grid point throughout the entire computational domain.
Combined with a matrix-free discretisation of the equations
and iterative PT updates, the finite-difference stencil evalu-
ation is well suited for the SIMD programming philosophy
of GPUs. Each operation on the GPU assigns one thread to
compute the update of a given grid point. Since on the GPU
device, one core can simultaneously execute several threads,
the operation set is executed on the entire computational do-
main almost concurrently.

We tailor our numerical method to optimally exploit the
massive parallelism of GPU hardware, taking inspiration
from recent successful GPU-based implementations of vis-
cous and coupled flow problems (Omlin, 2017; Réss et al.,
2018, 2019a; Duretz et al., 2019). Our work is most compara-
ble to the few land—ice dynamical cores targeting many-core
architectures such as GPUs (Bradstrup et al., 2014; Watkins
et al., 2019). Our numerical implementation relies on an it-
erative and matrix-free method to solve the mechanical and
thermal problems using a finite-difference discretisation on
a Cartesian staggered grid. We ensure optimal performance,
minimising the memory footprint bottleneck while ensuring
optimal data alignment in computer memory. Our acceler-
ated PT algorithm (Frankel, 1950; Cundall et al., 1993; Poli-
akov et al., 1993; Kelley and Keyes, 1998; Kelley and Liao,
2013) utilises an analogy of transient physics to converge
to the steady-state problem at every time step. One advan-
tage of this approach is that the iterative stability criterion
is physically motivated and intuitive to adjust and to gener-
alise. Using transient physics for numerical purposes allows
us to define local CFL-like (Courant—Friedrich-Lewy) crite-
ria in each computational cell to be used to minimise resid-
uals. This approach enables a maximal convergence rate si-
multaneously in the entire domain and avoids costly global
reduction operations from becoming a bottleneck in parallel
computing.

We verify the numerical implementation of our mechan-
ical Stokes solver against available benchmark studies in-
cluding EISMINT (Huybrechts and Payne, 1996) and IS-
MIP (Pattyn et al., 2008). There is only one model inter-
comparison that investigates the coupled thermomechanical
dynamics, EISMINT 2 (Payne et al., 2000). Unfortunately,
experiments in EISMINT 2 are usually performed using
a coupled thermomechanical first-order shallow ice model
(Payne and Baldwin, 2000; Saito et al., 2006; Hindmarsh,

www.geosci-model-dev.net/13/955/2020/



L. Réss et al.: Modelling thermomechanical ice

2006, 2009; Bueler et al., 2007; Brinkerhoff and Johnson,
2015), making the comparison to our full Stokes implemen-
tation less immediate. Although thermomechanically cou-
pled Stokes models exist (Zwinger et al., 2007; Leng et al.,
2014; Schifer et al., 2014; Gilbert et al., 2014; Zhang et al.,
2015; Gong et al., 2018), very few studies have investigated
key aspects of the implemented model, such as convergence
among grid refinement and impacts of one-way vs. two-way
couplings, with few exceptions (e.g. Duretz et al., 2019).

We start by providing an overview of the mathematical
model, describing ice dynamics and its numerical implemen-
tation. We then discuss GPU capabilities and explain our
GPU implementation. We further report model comparison
against a selection of benchmark studies, followed by shar-
ing the results and performance measurements. Finally, we
discuss pros and cons of the method and highlight glacio-
logical contexts in which our model could prove useful. The
code examples based on the PT method in both the MATLAB
and CUDA C programming language are available for down-
load from Bitbucket at: https://bitbucket.org/lraess/fastice/
(last access: 2 March 2020) and from: http://wp.unil.ch/
geocomputing/software/ (last access: 2 March 2020).

2 The model
2.1 The mathematical model

We capture the flow of an incompressible, non-linear, viscous
fluid — including a temperature-dependent rheology. Since
ice is approximately incompressible, the equation for con-
servation of mass reduces to

d Vi

=0, 1
o ey

where v; is the velocity component in the spatial direction x;.
Neglecting inertial forces, ice’s flow is driven by gravity
and is resisted by internal deformation and basal stress:

al'ij oP

ox;  ox +F; =0, 2)
where F; = pgsin(a)[1,0, —cot(x)] is the external force.
Ice density is denoted by p, g is the gravitational accelera-
tion and « is the characteristic bed slope. P is the isotropic
pressure and t;; is the deviatoric stress tensor. The devia-
toric stress tensor 7;; is obtained by decomposing the Cauchy
stress tensor o;; in terms of deviatoric stress 7;; and isotropic
pressure P.

In the absence of phase transitions, the temporal evolution
of temperature in deforming, incompressible ice is governed
by advection, diffusion and shear heating:

oT 9T D (T, .
c| —+vi— |)=—k— )+ 1jéj,
P\ ar V% ) T aw Ko ) T €
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where T represents the temperature deviation from the initial
temperature Ty, ¢ is the specific heat capacity, k is the spa-
tially varying thermal conductivity and ¢;; is the strain rate
tensor. The term 7;;¢;; represents the shear heating, a source
term that emerges from the mechanical model.

Shear heating could locally raise the temperature in the ice
to the pressure melting point. Once ice has reached the melt-
ing point, any additional heating is converted to latent heat,
which prevents further temperature increase. Thus, we im-
pose a temperature cap at the pressure melting point, follow-
ing Suckale et al. (2014), by describing the melt production
using a Heaviside function x (T — Tpy,):

T N 2 D -y = Tty . @)
| —+vi—|=—(k— — - Tij€ij
P\ or V% ) T ax Nax X m 1T €ij

where Ty, stands for the ice melting temperature. We balance
the heat produced by shear heating with a sink term in re-
gions where the melting temperature is reached. The volume
of produced meltwater can be calculated in a similar way as
proposed by Suckale et al. (2014).

We approximate the rheology of ice through Glen’s flow
law (Glen, 1952; Nye, 1953):

oy v i 0
o fovi | 9N —— 2 .. 65
€j B (axj + o, aptn exp R(T +Tp) Tij (5)

where ay is the pre-exponential factor, R is the universal gas
constant, Q is the activation energy, n is the stress exponent
and 1y is the second invariant of the stress tensor defined by
11 = /1/27;7;;. Glen’s flow law posits an exponent of n =
3.

At the ice-top surface I'i(¢), we impose the upper surface
boundary condition o;; nj = — Pymn j, where n ; denotes the
normal unit vector at the ice surface boundary and Py, the
atmospheric pressure. Because atmospheric pressure is neg-
ligible relative to pressure within the ice column, we can also
use a standard stress-free simplification of the upper surface
boundary condition o;;n; =0. On the bottom ice-bedrock
interface, we can impose two different boundary conditions.
For the parts of the ice—bedrock interface I'g(¢#) where the
ice is frozen to the ground, we impose a zero velocity v; =0
and thus no sliding boundary condition. On the parts of the
ice-bedrock interface ['s(f) where the ice is at the melting
point, we impose a Rayleigh friction boundary condition —
the so-called linear sliding law — given by

vini =0,
2
ni(fijtjz—ﬂ vjtj, (6)

where the parameter 82 denotes a given sliding coefficient,
n; denotes the normal unit vector at the ice-bedrock inter-
face and ¢; denotes any unit vector tangential to the bottom
surface. On the side or lateral boundaries, we impose either
Dirichlet boundary conditions if the velocities are known or
periodic boundary conditions, mimicking an infinitely ex-
tended domain.
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2.2 Non-dimensionalisation

For numerical purposes and for ease of generalisation, it is
often preferable to use non-dimensional variables. This al-
lows one to limit truncation errors (especially relevant for
single-precision calculations) and to scale the results to var-
ious different initial configurations. Here, we use two dif-
ferent scale sets, depending on whether we solve the purely
mechanical part of the model or the thermomechanically cou-
pled system of equations.

In the case of an isothermal model, we use ice thickness,
H, and gravitational driving stress to non-dimensionalise the
governing equations:

ol
Il

H ’

T = pgLsin(a),

v=2"AgLT", 7
where Ay is the isothermal deformation rate factor and « is

the mean bed slope. We can then rewrite the governing equa-
tions in their non-dimensional form as follows:

v
—L =9,
ax;
ot/ 9P’

2 /

- +F; =0,
Bx; ax; !
. 1{ av! av} _ 1
€ij=3 (ﬁ o) =2 ®)
J i

where F is now defined as F; =[1,0, —cot(ex)]. The model
parameters are the mean bed slope o and domain size in each
horizontal direction, i.e. L', and L’y.

Reducing the thermomechanically coupled equations to a
non-dimensional form requires not only length and stress,
but also temperature and time. We choose the characteris-
tic scales such that the coefficients in front of the diffusion
and shear heating terms in the temperature evolution Eq. (3)
reduce to 1:

—  nRTy?
7T="00
0
?:pcpT,
f=2"q l?_"exp — ),
RTy
— k _
PCp

These choices entail the velocity scale in the thermomechan-
ical model being v = L /7. We obtain the non-dimensional
(primed variables) by using the characteristic scales given in
Eq. (9), which leads to
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where F! is now defined as F! = F[1,0,—cot(a)] and
F = pgsin(a)L/T. The model parameters are the non-
dimensional initial temperature Ty, the stress exponent n,
the non-dimensional force F, the mean bed slope «, non-
dimensional domain height LQ, and the horizontal domain
size L', and L;, (Fig. 3). We motivate the chosen characteris-
tic scales by their usage in other studies of thermomechani-
cal strain localisation (Duretz et al., 2019; Kiss et al., 2019).
In the interest of a simple notation, we will omit the prime
symbols on all non-dimensional variables in the remainder
of the paper.

2.3 A simplified 1-D semi-analytical solution

We consider a specific 1-D mathematical case in which all
horizontal derivatives vanish (d/dx = d/0dy = 0). The only
remaining shear stress component 7, and pressure P are de-
termined by analytical integration and are constant in time
considering a fixed domain. We assume that stresses vanish
at the surface, and we set both horizontal and vertical basal
velocity components to 0. We then integrate the 1-D mechan-
ical equation in the vertical direction and substitute it into the
temperature equation, which leads to

0T (z,1)  0°T(z
a8z

(1 B i)(n-}-l)exp< nT(z,1) )
L, 1+ —T(Tzo’t) 7
g n
v (z,1) =2<1—">(sz)”f <1 — i)
L,
0
nT(z,t) )
exp| ——— |dz.. (11)
(5

Notably, the velocity and shear heating terms (Eq. 11) are
now a function only of temperature and thus of depth and
time. To obtain a solution to the coupled system, one only

,1) + o(1=n) (fLZ)(n-H)
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needs to numerically solve for the temperature evolution pro-
file, while the velocity can then be obtained diagnostically by
a simple numerical integration.

2.4 The numerical implementation

We discretise the coupled thermomechanical Stokes equa-
tions (Eq. 10) using the finite-difference method on a stag-
gered Cartesian grid. Among many numerical methods cur-
rently used to solve partial differential equations, the finite-
difference method is commonly used and has been success-
fully applied in solving a similar equation set relating to
geophysical problems in geodynamics (Harlow and Welch,
1965; Ogawa et al., 1991; Gerya, 2009). The staggering
of the grid provides second-order accuracy of the method
(Virieux, 1986; Patankar, 1980; Gerya and Yuen, 2003; Mc-
Kee et al., 2008), avoids oscillatory pressure modes (Shin
and Strikwerda, 1997) and produces simple yet highly com-
pact stencils. The different physical variables are located at
different locations on the staggered grid. Pressure nodes and
normal components of the strain rate tensor are located at
the cell centres. Velocity components are located at the cell
mid-faces (Fig. 1), while shear stress components are located
at the cell vertices in 2-D (e.g. Harlow and Welch, 1965).
The resulting algorithms are well suited for taking advantage
of modern many-core parallel accelerators, such as graphi-
cal processing units (GPUs) (Omlin, 2017; Riss et al., 2018,
2019a; Duretz et al., 2019). Efficient parallel solvers utilis-
ing modern hardware provide a viable solution to resolve the
computationally challenging coupled thermomechanical full
Stokes calculations in 3-D. The power-law viscous ice rhe-
ology (Eq. 5) exhibits a non-linear dependence on both the
temperature and the strain rate:

. 1on T (12)
n—=e€mnqn exXp|— ,
1+ 7

where €1 is the square root of the second invariant of the
strain rate tensor égy = /1/2¢;;€¢;;. We regularise the strain
rate and temperature-dependent viscosity 1 to prevent non-
physical values for negligible strain rates, Mg =1/ (r;_1 +
Mo 1. We use a harmonic mean to obtain a naturally smooth
transition to background viscosity values at negligible strain
rate 7g.

We define temperature on the cell centres within our stag-
gered grid. We discretise the temperature equation’s advec-
tion term using a first-order upwind scheme, doing the phys-
ical time integration using either an implicit backward Euler
or a Crank—Nicolson (Crank and Nicolson, 1947) scheme.
To ensure that our numerical results are not confounded by
numerical diffusion, the grid Peclet number must be smaller
than the physical Peclet number. Limiting numerical diffu-
sion is one motivation for using high numerical resolution in
our computations.
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Figure 1. Setup of the staggered grid in 2-D. Variable C is located
at the cell centre, V depicts variables located at cell vertices, and
Mzx and My represent variables located at cell mid-faces in the x or
y direction.

We rely on a pseudo-transient (PT) continuation or relax-
ation method to solve the system of coupled non-linear par-
tial differential equations (Eq. 10) in an iterative and matrix-
free way (Frankel, 1950; Cundall et al., 1993; Poliakov et al.,
1993; Kelley and Keyes, 1998; Kelley and Liao, 2013). To
this end, we reformulate the thermomechanical Eq. (10) in a
residual form:

Bvi
_8_)ci_fp’
dt;j dP
——+F = f,,
0x; 8xl+l Fu
T 8T+82T+ . F 13)
N SIS SUN S
ot ox; | ox2 Wt EIT

The right-hand-side terms (fp, fv;, fr) are the non-linear
continuity, momentum and temperature residuals, respec-
tively, and quantify the magnitude of the imbalance of the
corresponding equations.

We augment the steady-state equations with PT terms us-
ing the analogy of physical transient processes such as the
bulk compressibility or the inertial terms within the momen-
tum equations (Duretz et al., 2019). This formulation enables
us to integrate the equation forward in pseudo-time t until we
reach the steady state (i.e. the pseudo-time derivatives van-
ish). Relying on transient physics within the iterative process
provides well-defined (maximal) iterative time step limiters.
We reformulate Eq. (10):

av; P
Cox 9ty
a‘l.','j aP _ 31),‘
Wj - 3_xl i = o, )
aT AT  °T . T
—E—via—xi-l-m-l-tije,‘j:E, (14)
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where we introduced the pseudo-time derivatives /9t for
the continuity (3 P/0t)), the momentum (dv;/97y;) and the
temperature (07 /dtr) equation.

For every non-linear iteration k, we update the effective
viscosity 7] in the logarithmic space by taking a fraction
6, of the actual physical viscosity n'*1 using the current strain
rate and temperature solution fields and a fraction (1 —6;)
of the effective viscosity calculated in the previous iteration
IR

e = exp [0, 1n (1) + (1 =0 1n (nea )| . (15)

We use the scalar 8, (0 <6, < 1) to select the fraction of a
given non-linear quantity, here the effective viscosity 7eft, to
be updated each iteration. When 6, =0, we would always
use the initial guess, while for 8, =1, we would take 100%
of the current non-linear quantity. We usually define theta
to be in the range of 1072 — 10~! in order to account for
some time to fully relax the non-linear viscosity as the non-
linear problem may not be sufficiently converged at the be-
ginning of the iterations. This approach is in a way similar
to an under-relaxation scheme and was successfully imple-
mented in the ice-sheet model development by Tezaur et al.
(2015), for example.

The pseudo-time integration of Eq. (14) leads to the defi-
nition of pseudo-time steps ATy, Aty; and Arr for the con-
tinuity, momentum and temperature equations, respectively.
Transient physical processes such as compressibility (conti-
nuity equation) or acceleration (momentum equation) dictate
the maximal allowed explicit pseudo-time step to be utilised
in the transient process. Using the largest stable steps al-
lows one to minimise the iteration count required to reach
the steady state:

2.1 ngimnie(1 4 mp)

Aty = ,
max(7;)
min(Ax;)2
A'Cvl- _ (k Xz) ’
2.1 ndimneff(l + Mb)
2.1ngim 1\"!

A= ———+ — , 16

T (mmwmﬂ+AJ (16)

where n4im 1s the number of dimensions, and Ax; and n; are
the grid spacing and the number of grid points in the i di-
rection (i = x in 1-D, x, z in 2-D and x, y, z in 3-D), respec-
tively. The physical time step, At, advances the temperature
in time. The pseudo-time step AzT is an explicit Courant—
Friedrich-Lewy (CFL) time step that combines temperature
advection and diffusion. Similarly, Aty, is the explicit CFL
time step for viscous flow, representing the diffusion of strain
rates with viscosity as the diffusion coefficient. It is modified
to account for the numerical equivalent of a bulk viscosity
nb. We choose AT, to be the inverse of Az, to ensure that
the pressure update is proportional to the effective viscosity,
while the velocity update is sensitive to the inverse of the vis-
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cosity. This interdependence reduces the iterative method’s
sensitivity to the variations in the ice’s viscosity.

During the iterative procedure, we allow for finite com-
pressibility in the ice, d P/dt,, while ensuring that the PT
iterations eventually reach the incompressible solution. The
relaxation of the incompressibility constraint is analogous
to the penalisation of pressure pioneered by Chorin (1967,
1968) and subsequently extended by others. Compared to
projection-type methods, it has the advantage that no pres-
sure boundary condition is necessary that will lead to nu-
merical boundary layers (Weinan and Liu, 1995). We use
the parameter ny to balance the divergence-free formulation
of strain rates in the normal stress component evaluation,
wherein it is multiplied with the pressure residual f,. Thus,
normal stress is given by t;; = 2n(é;; + 1y fp). With conver-
gence of the method, the pressure residual f,, vanishes and
the incompressible form of the normal stresses is recovered.

Combining the residual notation introduced in Eq. (13)
with the pseudo-time derivatives in Eq. (14) leads to the up-
date rules:

plkl — plk=11 A plk] ,
Ui[k] — ;1 Ay T
Tkl — ple=1] ~|—AT[k] , 17)

where the pressure, velocity and temperature iterative incre-
ments represent the current residual [k] multiplied by the
pseudo-time step:

APH = A, £, 1K
Av = Az, £,
AT = Agp flFT (18)

The straightforward update rule (Eq. 17) is based on a
first-order scheme (d/d7). In 1-D, it implies that one needs
N? iterations to converge to the stationary solution, where
N stands for the total number of grid points. This behaviour
arises because the time step limiter Ay, implies a second-
order dependence on the spatial derivatives for the strain
rates. In contrast, a second-order scheme (Frankel, 1950),
(1//82/ 8t2+8/81:) invokes a wave-like transient physical
process for the iterations. The main advantage is the scaling
of the limiter as Ax instead of Ax? in the explicit pseudo-
transient time step definition. We can reformulate the veloc-
ity update as

At = Az, £, 1

+ <1 — K) Av; =11 (19)

nj

where ¥ can be expanded to (1 —v/n;) and acts like a damp-
ing term on the momentum residual. A similar damping ap-
proach is used for elastic rheology in the FLAC (Cundall
et al., 1993) geotechnical software in order to significantly
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GPU

Figure 2. Schematic chip representation for both the central pro-
cessing unit (CPU) and graphical processing unit (GPU) architec-
ture. The GPU architecture consists of thousands of arithmetic and
logical units (ALUs). On the CPU, most of the on-chip space is de-
voted to controlling units and cache memory, while the number of
ALUEs is significantly reduced.

CPU

reduce the number of iterations needed for the algorithm
to converge. The optimal value of the introduced parame-
ter v is found to be in a range (1 <v < 10), and it is usu-
ally problem-dependent. This approach was successfully im-
plemented in recent PT developments by Riss et al. (2018,
2019a) and Duretz et al. (2019). The iteration count increases
with the numerical problem size for second-order PT solvers
and scales close-to-ideal multi-grid implementations. How-
ever, the main advantage of the PT approach is its concise-
ness and the fact that only one additional read/write operation
needs to be included — keeping additional memory transfers
to the strict minimum.

Notably, the PT solution procedure leads to a two-way nu-
merical coupling between temperature and deformation (me-
chanics), which enables us to recover an implicit solution
to the entire system of non-linear partial differential equa-
tions. Besides the coupling terms, rheology is also treated
implicitly; i.e. the shear viscosity 7 is always evaluated using
the current physical temperature, 7', and strain rate, €y;. Our
method is fully local. At no point during the iterative pro-
cedure does one need to perform a global reduction, nor to
access values that are not directly collocated. These consider-
ations are crucial when designing a solution strategy that tar-
gets parallel hardware such as many-core GPU accelerators.
We implemented the PT method in the MATLAB and CUDA
C programming languages. Computations in CUDA C can be
performed in both double- and single-precision arithmetic.
The computations in CUDA C shown in the remainder of the
paper were performed using double-precision arithmetic if
not specified otherwise.

3 Leveraging hardware accelerators

3.1 Implementation on graphical processing units

Our GPU algorithm development effort is motivated by the
aim to resolve the coupled thermomechanical system of
equations (Egs. 12-13) with high spatial and temporal ac-
curacy in 3-D. To this end, we exploit the low-level intrin-
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sic parallelism of shared memory devices, particularly tar-
geting GPUs. A GPU is a massively parallel device origi-
nally devoted to rendering the colour values for pixels on a
screen independently from one another whereby the latency
can be masked by high throughput (i.e. compute as many jobs
as possible in a reasonable time). A schematic representa-
tion (Fig. 2) highlights the conceptual discrepancy between a
GPU and CPU. On the GPU chip, most of the area is devoted
to the arithmetic units, while on the CPU, a large area of the
chip hosts scheduling and control microsystems.

The development of GPU-based solvers requires time to
be devoted to the design of new algorithms that leverage the
massively parallel potential of the current GPU architectures.
Considerations such as limiting the memory transfers to the
mandatory minimum, avoiding complex data layouts, prefer-
ring matrix-free solvers with low memory footprint and op-
timal parallel scalability instead of classical direct—iterative
solver types (Riss et al., 2019a) are key in order to achieve
optimal performance.

Our implementation does not rely on the CUDA unified
virtual memory (UVM) features. UVM avoids the need to
explicitly define data transfers between the host (CPU) and
device (GPU) arrays but results in about 1 order of magnitude
lower performance. We suspect the internal memory han-
dling to be responsible for continuously synchronising the
host and device memory, which is not needed in our case.

3.2 Multi-GPU implementation

We rely on a distributed memory parallelisation using the
message passing interface (MPI) library to overcome the on-
device memory limitation inherent to modern GPUs and ex-
ploit supercomputers’ computing power. Access to a large
number of parallel processes enables us to tackle larger com-
putational domains or to refine grid resolution. We rely on
domain decomposition to split our global computational do-
main into local domains, each executing on a single GPU
handled by an MPI process. Each local process has its bound-
ary conditions defined by (a) physics if on the global bound-
ary or (b) exchanged information from the neighbouring pro-
cess in the case of internal boundaries. We use CUDA-aware
non-blocking MPI messages to exchange the internal bound-
aries among neighbouring processes. CUDA awareness al-
lows us to bypass explicit buffer copies on the host mem-
ory by directly exchanging GPU pointers, resulting in an
enhanced workflow pipelining. Our algorithm implementa-
tion and solver require no global reduction. Thus, there is
no need for global MPI communication, eliminating an im-
portant potential scaling bottleneck. Although the proposed
iterative and matrix-free solver features a high locality and
should scale by construction, the growing number of MPI
processes may deprecate the parallel runtime performance by
about 20 % owing to the increasing number of messages and
overall machine occupancy (Réss et al., 2019c). We address
this limitation by overlapping MPI communication and the
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Figure 3. Model configuration for the numerical experiments: (a) 2-D model and (b) 3-D model. Both the surface and bed topography are
flat but inclined at a constant angle of «. We show both the model coordinate axes and the prescribed boundary conditions.

computation of the inner points of the local domains using
streams, a native CUDA feature. CUDA streams allow one
to assign asynchronous kernel execution and thus enable the
overlap between communication and computation, resulting
in optimal parallel efficiency.

4 The model configuration

To verify the numerical implementation of the developed
FastICE solver, we consider three numerical experiments
based on a box inclined at a mean slope angle of «. We per-
form these numerical experiments on both 2-D and 3-D com-
putational domains (Fig. 3a and b, respectively). The non-
dimensional computational domains are 2;_p =[0L,] x
[OL;]and Q3_p = [OL ] x[OL,]x[0OL] for 2-D and 3-D do-
mains, respectively. The difference between the 2-D and the
3-D configurations lies in the boundary conditions imposed
at the base and at the lateral sides. At the surface, the zero
stress o;jn; = 0 boundary condition is prescribed in all ex-
periments. Experiment 2’s model configuration corresponds
to the ISMIP benchmark (Pattyn et al., 2008), wherein exper-
iment C relates to the 3-D case and experiment D relates to
the 2-D case.

Experiments 1 and 2 seek to first verify the implementa-
tion of the mechanical part of the Stokes solver, which is
the computationally most expensive part (Eq. 8). For these
experiments, we assume that the ice is isothermal and ne-
glect temperature. We compare our numerical solutions to
the solutions obtained by the commonly used finite-element
Stokes solver Elmer/Ice (Gagliardini et al., 2013), which has
been thoroughly tested (Pattyn et al., 2008; Gagliardini and
Zwinger, 2008). Experiment 3 is a thermomechanically cou-
pled case. The model parameters are the stress exponent n,
the mean bed slope «, and the two horizontal distances L
and Ly in their respective dimensions (x, y), which appear in
Table 1. If a linear basal sliding law (Eq. 6) is prescribed, the
respective 2-D and 3-D sliding coefficients are
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where B is a chosen non-dimensional constant. Differences
may arise depending on the prescribed values for the param-
eters o, Ly, Ly and By. Experiment 2 represents the ISMIP
experiments C and D for L = 10 km (Pattyn et al., 2008), but
in our case using non-dimensional variables.

The mechanical part of Experiment 3 is analogous to Ex-
periment 2. The boundary conditions are periodic in the
x and y directions unless specified otherwise. The thermal
problem requires additional boundary conditions in terms of
temperature or fluxes. We set the surface temperature T to
0. At the bottom, we set the vertical flux g, to 0 and, on the
sides, we impose periodic boundary conditions. The model
parameters used in Experiment 3 are compiled in Table 2.
We employ the semi-analytical 1-D model (Sect. 2.3) as an
independent benchmark for the Experiment 3 calculations.

B*(x.y) =ﬂo[1+sin(

5 Results and performance
5.1 Experiment 1: Stokes flow without basal sliding

We compare our numerical solutions obtained with the GPU-
based PT method using a CUDA C implementation (Fas-
tICE) to the reference Elmer/Ice model. We report all the
values in their non-dimensional form, and the horizontal axes
are scaled with their aspect ratio. We impose a no-slip bound-
ary condition on all velocity components at the base and
prescribe free-slip boundary conditions on all lateral domain
sides. We prescribe a stress-free upper boundary in the verti-
cal direction.

In the 2-D configuration (Fig. 4), the horizontal velocity
component vanishes at the left and right boundary, v, =0,
and thus the maximum velocity values in the horizontal di-
rection are located in the middle of the slab. On the left
side (x /L, = 0), the ice is pushed down (compression); thus,
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Table 1. Experiments 1 and 2: non-dimensional model parameters and the dimensional values (D) for comparison.

Experiment Ly Ly o n Bo L)l? L}D L]z)
Exp.1 2-D 10 - 10 3 - 2km - 200m
Exp.1 3-D 10 4 10 3 -  2km 800m 200m
Exp.2 2-D 10 - 01 3 0.1942 10km - 1km
Exp.2 3D 10 10 0.1 3 0.1942 10km 10km 1km

Table 2. Experiment 3: non-dimensional model parameters and the dimensional values (D ) for comparison.

Experiment Ly Ly L, o n F Ty LD Ly LP 7P
Exp.3 1-D - - 3x100 10 3 28x107% 915 - - 300m —10°C
Exp.3 2-D 10L, - 3x10° 10 3 28x1078 915 3km - 300m -—10°C
Exp.3 3-D 10L, 4L; 3x10° 10 3 28x107% 915 3km 12km 300m —10°C
0.04 Vg 0.03 vz The DOFs represent three variables in 2-D (v, v, P) and
(a) (b) four variables in 3-D (vy, vy, v, P) multiplied by the num-
0.03 0.02 ber of grid points involved.
0.01 We find good agreement between the two model solu-
0.02 0 tions in the 3-D configuration as well (Fig. 5). We employed
. a numerical grid resolution of 319 x 159 x 119 grid points
0.01 ' in the x, y and z directions (= 2.41 x 10’ DOFs) and used
o FastiCE -0.02 o FastiCE a numerical grid resolution of 61 x 61 x 21 (&~ 3.1 x 10°
0 Fimer/ice -0.03 Flimer/ice DOFs) in Elmer/Ice. Scaling our result to dimensional val-
0 :z%r ! 0 ;}'Lsr ! ues (Table 1) results in a maximal horizontal velocity (vy)

Figure 4. Comparison of the non-dimensional simulation results for
the 2-D configuration of Experiment 1. We show (a) the horizontal
component of the surface velocity, vy, and (b) the vertical compo-
nent of surface velocity, v;, across the ice slab for both our FastICE
model and Elmer/Ice. For context, the maximum horizontal veloc-
ity (vx & 0.0365) corresponds to & 174 m yr_l. The horizontal dis-
tance is 2 km, while the ice thickness is 200 m. The box is inclined
at 10°.

the vertical velocity values were negative. On the right side
(x/Ly = 1), the ice is pulled up (extension), and the vertical
velocity values were positive. Our FastICE results agree well
with the numerical solutions produced by Elmer/Ice. The nu-
merical resolution of the Elmer/Ice model is 1001 x 275 grid
points in the x and z directions (= 8.25 x 107 degrees of free-
dom — DOFs), while we employed 2047 x 511 grid points
(~3.13 x 10° DOFs) within our PT method. We use higher
numerical grid resolution within FastICE to jointly verify
agreement with Elmer/Ice and convergence. The fact that we
obtain matching results when increasing grid resolution sig-
nificantly suggests that we have sufficiently resolved the rele-
vant physical processes, even at relatively low resolution. We
report an exception to this trend in the 3-D case of Experi-
ment 2. The PT method’s efficiency enables simulations with
a large number of grid points without affecting the runtime.
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of 2 105 myr~!. The horizontal distance is 2 km in the x di-
rection and 800 m in the y direction, and the ice thickness is
200 m. The box is inclined at 10°.

5.2 Experiment 2: Stokes flow with basal sliding

We then consider the case in which ice is sliding at the base
(ISMIP experiments C and D). We prescribe periodic bound-
ary conditions at the lateral boundaries and apply a linear
sliding law at the base. The top boundary remains stress-free
in the vertical direction.

We performed the 2-D simulation of Experiment 2 (Fig. 6)
using a numerical grid resolution of 511 x 127 grid points (~
1.95 x 10° DOFs) for the FastICE solver and computed the
Elmer/Ice solution using a numerical grid resolution of 241 x
120 (=~ 8.7 x 10* DOFs). We show both v, and v, velocity
components at the slab’s surface. The two models’ results
agree well.

We performed the 3-D simulation of Experiment 2 (Fig. 7)
using a numerical grid resolution of 63 x 63 x 21 (=~ 3.33 x
10° DOFs) for our FastICE solver and a numerical grid reso-
lution of 61 x 61 x 21 (= 3.12 x 10° DOFs) in the Elmer/Ice
model. In dimensional units, the maximum horizontal veloc-
ity (vy) corresponds to ~ 16.4myr—!. The horizontal dis-
tance is 10km in the x direction 10km in the y direction,
and the ice thickness is 1 km. The box is inclined at 0.1°.
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Figure 5. Non-dimensional simulation results for the 3-D configuration of Experiment 1. We report (a) the horizontal surface velocity
component vy, (¢) the horizontal surface velocity component vy and (e) the vertical surface velocity component v;. The black solid line
depicts the position at which y = L /4. Panels (b), (d) and (f) show the surface velocity components vy, vy and vz, respectively, at y = Ly /4

and compare them against the results from the Elmer/Ice model.

v, v
5.6 - 0.2 -
(a) (b)
5.55 0.1
5.5 0
5.45 -0.1
* FastICE * FastICE
—Elmer/Ice Elmer/Ice
5.4 -0.2
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Figure 6. Non-dimensional simulation results for the 2-D configu-
ration of Experiment 2. We plot (a) the horizontal surface velocity
component vy and (b) the vertical surface velocity component v,
across the slab for both our FastICE model and Elmer/Ice. In di-
mensional terms, the maximum horizontal velocity (vx & 5.58) cor-
responds to ~ 16.9 m yr_l. The horizontal distance is 10 km, while
the ice thickness is 1 km. The box is inclined at 0.1°.

We find good agreement between the two numerical im-
plementations. Since the flow is mainly oriented in the x di-
rection, the vy velocity component is more than 2 orders of
magnitude smaller than the vy velocity component. Numeri-
cal errors in vy are more apparent than in the leading velocity
component v,. We report a 1 order of magnitude increase in
the time to solution in Experiment 2 compared to the Exper-
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iment 1 configuration owing to the periodicity on the lateral
boundaries.

We employ a matching numerical resolution between Fas-
tICE and Elmer/Ice in this particular benchmark case. Us-
ing higher resolution for FastICE results in minor discrep-
ancy between the two solutions, suggesting that the resolu-
tion in Fig. 7 is insufficient to capture small-scale physical
processes. We discuss this issue more in Sect. 5.5 where we
test the convergence of the FastICE numerical implementa-
tion upon grid refinement.

5.3 Experiment 3a: thermomechanically coupled
Stokes flow without basal sliding

We first verify that the 1-D, 2-D and 3-D model configura-
tions from Experiment 3 produce identical results, assum-
ing periodic boundary conditions on all lateral sides. In this
case, all the variations in the x or y directions vanish (9/dx
and 0/0y); thus, both the 2-D and 3-D models reduce to
the 1-D problem. We employ a numerical grid resolution
of 127 x 127 x 127 grid points in the x, y and z direction,
127 x 127 grid points in the x and z directions, and 127 grid
points in the z direction for the 3-D, 2-D and 1-D problems,
respectively.

We ensure that all results collapse onto the semi-analytical
1-D model solution (Sect. 2.3), which we obtained by ana-
Iytically integrating the velocity field and solving the decou-
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Figure 7. Non-dimensional simulation results for the 3-D configuration of Experiment 2. We report (a) the horizontal surface velocity
component vy, (¢) the horizontal surface velocity component vy and (e) the vertical surface velocity component v;. The black solid line
depicts the position at which y = L /4. Panels (b), (d) and (f) show the surface velocity components vy, vy and vz, respectively, at y = Ly /4

and compare them against the results from the Elmer/Ice model.

pled thermal problem separately (Eq. 11). From a compu-
tational perspective, we numerically solve Eq. (11) using a
high spatial and temporal accuracy and therefore minimise
the occurrence of numerical errors. We establish the 1-D ref-
erence solution for both the temperature and the velocity pro-
file, solving Eq. (11) on a regular grid, reducing the physi-
cal time steps until we converge to a stable reference solu-
tion. Our reference simulation involves 4000 grid points and
a non-dimensional time step of 5 x 10° (using a backward
Euler time integration). We reach the total simulation time of
2.9 x 10® within 580 physical time steps.

We report overall good agreement of all model solutions
(1-D, 2-D, 3-D and 1-D reference) at the three reported stages
for this scenario (Fig. 8). As expected from the 1-D model
solution, temperature varies only as a function of time and
depth, with the highest value obtained close to the base and
for longer simulation times. Similarly, the velocity profile is
equivalent to the 1-D profile, and the largest velocity value
is located at the surface. We only report the horizontal veloc-
ity component v, for the 2-D and the 3-D models, since v,
and v, feature negligible magnitudes. Thus, we only observe
spatial variation in the vertical z direction. We report the non-
dimensional temperature 7 (Fig. 9a) and horizontal velocity
vy (Fig. 9b) fields for both the 3-D and the 2-D configura-
tions compared at non-dimensional time 0.7 x 108, 1.4x 108
and 1.9 x 108. The dimensional results from Experiment 3
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correspond to a 300 m thick ice slab inclined at a 10° an-
gle with an initial surface temperature of —10 °C. The max-
imum initial velocity for the isothermal ice slab corresponds
to ~ 486 myr—!, while the maximum velocity just before
the melting point is reached corresponds to 830 myr—!. The
comparison snapshot times are 1.6, 3.2 and 4.4 years.

The semi-analytical 1-D solution enables us to evaluate
the influence of the numerical coupling method and time
integration and to quantify when and why high spatial res-
olution is required in thermomechanical ice-flow simula-
tions. We compare the 1-D semi-analytical reference solution
(Eq. 11) to the results obtained with the 1-D FastICE solver
for three spatial numerical resolutions (n; = 31, 95 and 201
grid points) at three non-dimensional times 1 x 108, 2 x 108
and 2.9 x 10% (Fig. 10). The grey area in Fig. 10 highlights
where the melting temperature is exceeded. Since our semi-
analytical reference solution does not include phase transi-
tions, we also neglect this component in the numerical re-
sults. During the early stages of the simulation, the thermo-
mechanical coupling is still minor, and solutions at all res-
olution levels are in good agreement with one another and
with the reference. The low-resolution solution starts to devi-
ate from the reference (Fig. 10b) when the coupling becomes
more pronounced close to the thermal runaway point (Clarke
et al., 1977). The high-spatial-resolution solution is satisfac-
tory at all stages. We conclude that high spatial resolution
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Figure 8. Non-dimensional simulation results for (a) the temper-
ature deviation 7 and (b) the horizontal velocity component vy
for the 1-D, 2-D and 3-D FastICE models at three different non-
dimensional times 0.7 x 103, 1.4 x 108 and 1.9 x 108 compared to
the 1-D reference model results. We employ a vertical grid resolu-
tion n; of 31,95 and 201 grid points. We sample the 1-D profiles
at location x = Ly /2 in 2-D and at x = Ly /2 and y = Ly /2 in 3-
D. The shaded areas correspond to the part of the solution that is
above the melting temperature, since we do not account for phase
transitions in this case.

is required to accurately capture the non-linear coupled be-
haviour in regimes close to the thermal runaway, which is
seldom the case in the models reported in the literature.
Thermomechanical strain localisation may significantly
impact the long-term evolution of a coupled system. A recent
study by Duretz et al. (2019) suggested that partial coupling
may result in underestimating the thermomechanical locali-
sation compared to the fully coupled approach, as reported in
their Fig. 8. We compare three coupling methods (Fig. 11):
(1) a fully coupled implicit PT method, as described in the
numerical section, whereby the viscosity and the shear heat-
ing term are implicitly determined by using the current guess;
(2) an implicit numerically uncoupled mechanical and ther-
mal model; and (3) an explicit numerically uncoupled me-
chanical and thermal model. The numerical time integra-
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tion in physical time is performed using an implicit back-
ward Euler method for (1) and (2) and a forward Euler ex-
plicit time integration method for (3). We utilise the identical
non-dimensional time step for both the explicit and the im-
plicit numerical time integration. We perform 580 time steps,
reaching a simulation time of 2.9 x 10%. We employ a verti-
cal grid resolution of n, = 201 grid points for all models. The
chosen time step for the explicit integration of the heat diffu-
sion equation is below the CFL stability condition given by
Az%/2.1 in 1-D, where Az represents the grid spacing in a
vertical direction.

Physically, the viscosity and shear heating terms are cou-
pled and are a function of temperature and strain rates, but we
update the viscosity and the shear heating term based on tem-
perature values from the previous physical time step. Thus,
the shear heating term can be considered a constant source
term in the temperature evolution equation during the time
step, leading to a semi-explicit rheology. We show the 1-D
numerical solutions of (blue) the fully coupled method with
a backward Euler (implicit) time integration and the two un-
coupled methods with either (green) backward (implicit) or
(red) forward (explicit) Euler time integration (Fig. 11) and
compare them to the 1-D reference model solution. Surpris-
ingly, and in contrast to Duretz et al. (2019), we observe a
good agreement between all methods, suggesting that the dif-
ferent coupling strategies capture the coupled flow physics
with sufficient accuracy given high enough spatial and tem-
poral resolution. However, for a longer-term evolution, the
uncoupled approaches may predict lower temperature and
velocity values than the fully coupled approach.

5.4 Experiment 3b: thermomechanically coupled
Stokes flow in a finite domain

Boundary conditions corresponding to immobile regions in
the computational domain may induce localisation of defor-
mation and flow observed in locations such as shear mar-
gins, grounding zones or bedrock interactions. Dimensional-
ity plays a key role in such configurations, causing the stress
distribution to be variable among the considered directions.
We used the configuration in Experiment 3 to investigate
the spatial variations in temperature and velocity distribu-
tions by defining no-slip conditions on the lateral boundaries
for the mechanical problem and prescribing zero heat flux
through those boundaries. We employ a numerical grid reso-
lution of 511 x 255 x 127 grid points, 511 x 127 grid points
and 201 grid points for the 3-D, 2-D and 1-D case, respec-
tively. We prescribe a non-dimensional time step of 5 x 10°.
We perform 500 numerical time steps and reach a total non-
dimensional simulation time of 2.5 x 10%. We then compare
the temperature 7' and horizontal velocity component v, at
three times obtained with the 1-D, 2-D and 3-D FastICE
solver to the reference solution (Fig. 12). We use 1-D profiles
for comparison, taken at location x = L, /2 in the 2-D model
and at location x = L,/2 and y = L,/2 in the 3-D model.
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Figure 9. Spatial distribution of (a) the temperature deviation from the initial temperature 7 and (b) the horizontal velocity component v, for
3-D (a) and 2-D (b) in non-dimensional units. We scale the domain extent with L,. We compare the numerical solutions at non-dimensional

times 0.7 x 103, 1.4 x 103 and 1.9 x 108.
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Figure 10. Non-dimensional simulation results for (a) the temper-
ature deviation 7 and (b) the horizontal velocity component vy to
test solver performance at three resolutions. The vertical resolutions
are LR =31, MR =95 and HR =201 grid points for low-, mid-
and high-resolution runs, respectively. We compare the results for
non-dimensional time 1 x 108, 2 x 108 and 2.9 x 108. The shaded
areas correspond to the part of the solution that is above the melting
temperature, since we do not account for phase transitions in this
benchmark.

We also report the temperature variation AT (Fig. 13a) and
the horizontal velocity component v, (Fig. 13b) for both the
2-D and 3-D simulations. The melting temperature approxi-
mately corresponds to 0.35 of the temperature deviation. The
reported results correspond to a 2.3-, 4.6- and 5.8-year evo-
lution.

All three models start with identical initial conditions for
the thermal problem, i.e. AT =0 throughout the entire ice
slab. The difference between the models arises owing to dif-
ferent stress distributions in 1-D, 2-D or 3-D. For instance,
the additional stress components inherent in 2-D and 3-D
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Figure 11. Non-dimensional simulation results for (a) the temper-
ature deviation 7' and (b) the horizontal velocity component vy to
evaluate different numerical time integration schemes. We consider
three non-dimensional times 1 x 108, 2 % 108 and 2.9 x 108 and
compare our numerical estimates to the reference model. As before,
the shaded areas correspond to the part of the solution that is above
the melting temperature, since we neglect phase transitions in this
comparison.

are of the same order of magnitude as the 1-D shear stress
for the considered aspect ratio, reducing the horizontal ve-
locity v, in the 2-D and 3-D models. This also impacts the
shear heating term, reducing the source term in the tempera-
ture evolution equation. In the 1-D configuration, the unique
shear stress tensor component is a function only of depth. On
the other endmember, the 3-D configurations allow for a spa-
tially more distributed stress state. They lower strain rates in
this scenario and reduce the magnitude of shear heating in
higher dimensions. The spatially heterogeneous temperature
and strain rate fields in all directions require the utilisation of
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Figure 12. Non-dimensional simulation results for (a) the temper-
ature deviation 7 and (b) the horizontal velocity component v, for
the 1-D, 2-D and 3-D FastICE models at three non-dimensional
times 1 x 108, 2 x 108 and 2.5 x 108 compared to our analytical so-
lution. We sample the 1-D profiles at location x = Lx /2 in 2-D and
atx = Ly/2 and y = Ly /2 in 3-D. The shaded area corresponds to
the part of the solution that is above the melting temperature, ap-
proximately 0.35 of the temperature deviation.

sufficiently high spatial numerical resolution in all directions
in order to accurately resolve spontaneous localisation.

We did not consider phase transition in the previous ex-
periments for the sake of model comparison and because the
analytical solution excluded this process. The existence of a
phase transition caps the temperature at the pressure melt-
ing point in regions with pronounced shear heating, as illus-
trated in 2-D in Fig. 14. The simulation represents the ther-
momechanically coupled Experiment 3 with no sliding and
thermally impermeable walls (similar to Fig. 13). Meltwater
production consumes excess heat generated by shear heat-
ing. Thus, melting provides a physical mechanism that avoids
thermal runaway in shear-heating-dominated zones in the
ice. The experiment duration in dimensional units is 70 years,
and the maximal temperature increase is 10 °C upon reaching
the melting point.
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5.5 Verification of the FastICE numerical
implementation

In order to confirm the accuracy of the FastICE numerical
implementation, we report truncation errors (L2 norms) upon
numerical grid refinement. We consider both the 2-D and 3-D
configurations of Experiment 2 for this convergence test. We
vary the numerical grid resolution, keeping the relative grid
step Ax and Ay (and Az in 3-D) ratio. We utilise a high-
resolution numerical simulation as a reference and perform
three additional simulations in which we keep dividing the
number of grid points in both the x and y (and z in 3-D)
direction by a factor of 2. We report the L2 norms,

||Perr||2 = ||Pref_ Pcoarse||2 s
Nvxerr!2 = [[Vxref — Vxcoarsell2 » 21

for both the pressure P and the horizontal downslope v,
velocity component on a logarithmic plot for both the 2-D
(Fig. 15a) and 3-D configurations (Fig. 15b). The FastICE
numerical implementation converges with increasing numer-
ical resolution, and we report linear fitting slopes of —1.19
for pressure and about —1.4 for horizontal the velocity com-
ponent.

We additionally report the behaviour of the residuals’ con-
verge as a function of the non-linear iterations n?t‘;‘““ for the
FastICE GPU-based implementation (Fig. 16a). The reported
convergence history stands for a 2-D configuration of Exper-
iment 3 and a numerical grid resolution of 511 x 127 grid
points. The optimal damping parameter used in this case is
v =2 (Eq. 19). We further report the sensitivity of the ac-
celerated PT scheme on the damping parameter v (Fig. 16b).
We show that selecting the optimal damping parameter (in
the reported case v = 2) ensures a relatively low number of
iterations to converge both the linear and non-linear thermo-
mechanical problem.

5.6 The computational performance

We used two metrics to assess the performance of the devel-
oped FastICE PT algorithm: the effective memory through-
put (MTPesr) and the wall time. We first compare the effec-
tive memory throughput of the vectorised MATLAB CPU
implementation and the single-GPU CUDA C implementa-
tion. We employ double-precision (DP) floating-point arith-
metic in CUDA C for fair comparison. Second, we employ
the wall-time metric to compare the performance of our var-
ious implementations (MATLAB, CUDA C) and compare
these to the time to solution of the Elmer/Ice solver.

We use two methods to solve the linear system in
Elmer/Ice. In the 2-D experiments, we use a direct method,
and in 3-D, we use an iterative method. The direct method
used in 2-D relies on the UMFPACK routines to solve
the linear system. To solve the 3-D experiments, we em-
ploy the available bi-conjugate gradient-stabilised method
(BICGstab) with an ILUO preconditioning. We employ the
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Figure 13. Non-dimensional simulation results of (a) the temperature deviation from the initial temperature 7 and (b) the horizontal velocity
component vy for Experiment 3 at three non-dimensional times 1 x 108, 2 x 108 and 2.5 x 108 for both the 2-D and 3-D configurations.
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Figure 14. Experiment 3 includes a phase transition owing to melt-
ing. We report the evolution in time of non-dimensional temperature
variation AT along a vertical profile picked at location x = Ly /2
within a 2-D run from Experiment 3. For this purpose, we run the
2-D FastICE models from Experiment 3 for a duration of 2.9 x 10°.

configuration in Experiment 1 for all the performance mea-
surements. We use an Intel i7 4960HQ 2.6 GHz (Haswell)
four-core CPU to benchmark all the CPU-based calculations.
For simplicity, we only ran single-core CPU tests, staying
away from any CPU parallelisation of the algorithms. Thus,
our MATLAB or the Elmer/Ice single-core CPU results are
not representative of the CPU hardware capabilities and are
only reported for reference.
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Figure 15. Evolution of velocity and pressure truncation errors (L2
norm) upon grid refinement for (a) the 2-D configuration and (b) the
3-D configuration of Experiment 2.
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Figure 16. Residual evolution and convergence efficiency of the
2-D FastICE GPU-based implementation for a numerical grid reso-
lution of 511 x 127 grid points targeting a relative non-linear tol-
erance of tolyoniin = le — 8. (a) Relative total non-linear residu-
als f =max(fp, fv;, fr) as a function of non-linear iterations and
(b) the non-linear iteration count as a function of the damping pa-
rameter v (Eq. 19).

The FastICE PT solver relies on evaluating a finite-
difference stencil. Each cell of the computational domain
needs to access neighbouring values in order to approximate
derivatives. These memory access operations are the per-
formance bottleneck of the algorithm, making it memory-
bounded. Thus, the algorithm’s performance depends cru-
cially on the memory transfer speed, and not the rate of
the floating-point operations. Memory-bounded algorithms
place additional pressure on modern many-core processors,
since the current chip design tends toward large flop-to-byte
ratios. Over the past years and decades, the memory band-
width increase has been much slower compared to the in-
crease in the rate of floating-point operations.

As shown by Omlin (2017) and Réss et al. (2019a), a rele-
vant metric to assess the performance of memory-bounded
algorithms is the effective memory throughput (MTPegr)
(Eq. 22). The MTPggr determines how efficiently data are
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Figure 17. Performance evaluation of the FastICE mechanical
solver in terms of (a) the effective memory throughput MTPc¢ in
GB per second and (b) the wall time (in seconds) to converge the
Stokes solver to a relative non-linear tolerance of tol,gpjin = 1078,
We report the results obtained using a 2-D CPU-based single-core
vectorised MATLAB implementation of FastICE, a 2-D and 3-D
GPU-based CUDA C implementation of FastICE, and a 2-D (di-
rect) and 3-D (iterative) solver within the Elmer/Ice FEM single-
core CPU-based model. The CPU codes are executed on an Intel i7
4960HQ CPU processor with 8 GB of RAM, and the GPU codes
are launched on a Nvidia Titan X (Maxwell) GPU with 12 GB of
on-board memory. All the computations are performed in double-
precision arithmetic, with the only exception for the two single-
precision GPU-based runs depicted with larger red (2-D) and or-
ange (3-D) symbols. The single-core FastiICE CPU MATLAB and
Elmer/Ice results are shown for reference; they are not meant for
performance comparison because we did not enable multi-threading
in MATLAB and did not have access to a parallel version of
Elmer/Ice.

transferred between the main memory and the arithmetic
units and is inversely proportional to the execution time:

(nxnynz)niter nio np

MTPetr = 10243 1.,

[GB s_l] , 22)
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where (n,nyn;) stands for the total number of grid points,
nieer 1S the total number of numerical iterations performed,
np is the arithmetic precision (single — 4 bytes or double —
8 bytes), f¢ is the wall time in seconds needed to compute
the nje, iterations and nyo is the performed number of mem-
ory accesses. It represents the minimum number of memory
operations (read-and-write or read only) required to solve
a given physical problem. For instance, in the mechanical
Stokes solver for Experiment 1, we have to update (read-and-
write) three arrays (vy, v, and P) at every iteration in 2-D
and four arrays (vy, vy, v; and P) at every iteration in 3-D.
Thus, the update of the mandatory arrays requires a mini-
mum of six (eight) read-and-write operations in 2-D (3-D).
One additional read-and-write is needed to resolve the non-
linear viscosity; thus, njo = 10 in the 2-D case and njp = 12
in 3-D.

We report MTPe values obtained with the FastICE al-
gorithm for both the vectorised MATLAB (CPU) and the
CUDA C (GPU) implementations in double-precision arith-
metic (Fig. 17a). We also show the GPU performance us-
ing single-precision arithmetic (Fig. 17a — green diamonds).
The results we obtain should be compared to the peak mem-
ory throughput value MTPpe, for the specific hardware
used. The MTPpe,x reports the memory transfer rates de-
livered only by performing memory copy operations with
no computations. This value reflects the hardware perfor-
mance limit and the maximal effective memory bandwidth.
We measure MTPpe,x values for the Intel i7 4960HQ CPU of
20GBs~! and of 260GB s™! for the Nvidia Titan X GPU.
The single-core vectorised MATLAB CPU implementation
achieves about 0.7 GBs~!, and the CUDA C implementa-
tion 16 GB s~!. Thus, the MATLAB single-core CPU imple-
mentation reaches 3.5 % of the (CPU) hardware peak value,
and the CUDA C (GPU) implementation at about 6.15 %
and 11 % of the (GPU) hardware peak value using double-
precision and single-precision arithmetic, respectively. Fur-
ther improvement of the GPU MTP¢r values can be achieved
by optimising the GPU code using more on-the-fly calcula-
tions and advanced kernel scheduling.

We investigate the wall time to solve one time step with
the FastICE GPU solver for both the 2-D and the 3-D con-
figurations (Fig. 17b). We found wall times of about 15 min
to solve ~ 2.4 x 10’ DOFs with double-precision arithmetic
and only 3 min when using single-precision arithmetic on
a Nvidia Titan X (Maxwell) GPU. In future investigations,
one may consider comparing wall times obtained by CPU
algorithms fully enabling all cores of the CPU against wall
times for GPUs within the same price and power consump-
tion range.

The 3-D performance results obtained on various avail-
able Nvidia GPUs are summarised in Fig. 18. We performed
all the calculations using double-precision arithmetic. We
compare the MTP.g and wall-time values as functions of
the DOFs. We tested GPUs from various price ranges and
chip generations, targeting entry-level GPUs such as the
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Nvidia Quadro P1000 (Pascal), high-end gaming cards such
as the Nvidia Titan Black (Kepler) or the Nvidia Titan X
(Maxwell), and data-centre-class GPU accelerators such as
the Nvidia Tesla V100 PCIe (Volta). The MATLAB im-
plementation peak MTP.g values are about 0.46 GB s~
the Quadro P1000 (Pascal) values about 4.3GBs™!, the
Titan Black (Kepler) 12.4 GB s~1, the Titan X (Maxwell)
16.7GBs™! and the Tesla V100 (Volta) 83.2GBs~!. The
MTPer values directly impact the wall time, since the mem-
ory bandwidth is the bottleneck in FastICE. We solved a 3-
D problem involving 511 x 255 x 127 grid points (6.6 x 107
DOFs) in about 1 h on the Titan Black GPU, 40 min on the Ti-
tan X GPU, and only 8 min on the Tesla V100 GPU. Notably,
at this resolution, we employed about 4.5 GB of memory to
solve the isothermal Stokes model. The results suggest that
more recent GPUs such as the data-centre Tesla V100 (Volta)
offer a more significant (order of magnitude higher) perfor-
mance increase than entry-level GPU accelerators, such as
the Quadro P1000.

We share the performance of the GPU-MPI implementa-
tion of FastICE to execute on distributed memory machines.
We achieve a weak scaling parallel efficiency of 99 % on the
512 Nvidia K80 (Kepler) GPUs on the Xstream Cray CS-
Storm GPU compute cluster at the Stanford Research Com-
puting Facility. As our baseline, we use a non-MPI single-
GPU calculation. We then repeat the experiment using 1 to
512 MPI processes (thus GPUs) and report the normalised
execution time (Fig. 19). The effective drop in parallel ef-
ficiency is only 1 % involving 1 to 512 MPI processes. We
achieve this close-to-optimal parallel efficiency by overlap-
ping MPI message communication and local domain stencil
calculations. We specifically employ distinct CUDA streams
in order to execute the communication and computation over-
lap asynchronously. We repeat a similar experiment on both
the Volta node, an 8 Nvidia Tesla V100 32 GB (Nvlink Volta)
GPU compute node (analogous to Nvidia’s DGX-1 box), and
the octopus supercomputer hosting 128 consumer electronics
Nvidia Titan X (Maxwell) GPUs at the Swiss Geocomputing
Centre, University of Lausanne, Switzerland. On the Volta
node, we report a weak scaling parallel efficiency of 0.985 %
for a single MPI process running at 0.99 % of the non-MPI
reference. On the octopus supercomputer, we report a par-
allel efficiency of 95.5 % with an effective drop in parallel
efficiency of only 2 % involving 1 to 128 MPI processes.

6 Discussion

Numerically resolving thermomechanical processes in ice is
vital for improving our understanding of the physical pro-
cesses that govern the transition from fast to slow ice in a
changing climate. To date, very few studies have investigated
the numerical aspects of thermomechanically coupled Stokes
solvers (e.g. Duretz et al., 2019). Existing assessments (e.g.
Zhang et al., 2015) usually employ low spatial resolution and
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Figure 18. Performance evaluation of the FastICE mechanical
solver in terms of (a) effective memory throughput MTP¢ in GB
per second and (b) wall time (in seconds) to converge the Stokes
solver to a relative non-linear tolerance of tolyoniin = 1078, We re-
port the results from a 3-D CPU-based single-core vectorised MAT-
LAB implementation and a 3-D GPU-based CUDA C implemen-
tation of FastICE running on different GPU chip architectures. The
CPU codes are executed on an Intel 17 4960HQ CPU processor with
8 GB of RAM. The GPU codes were launched on a Nvidia Titan
Black (Kepler) GPU with 6 GB, a Nvidia Titan X (Maxwell) GPU
12 GB, a Nvidia Quadro P1000 (Pascal) 4 GB and a Nvidia Tesla
V100 PCle (Volta) 32 GB.

do not address the influence of the numerical implementa-
tion of multi-physics coupling strategies or the role of nu-
merical time integration. To avoid the significant computa-
tional expense of a thermomechanically coupled full Stokes
model, many studies relied either on the computationally less
expensive shallow ice approximations, linear or linearised
Stokes models, or low spatial resolutions. None of the ap-
proaches have resolved the multi-physics and multiscale pro-
cesses governing the boundaries of streaming ice, including
shear margins, grounding zones and the basal interface.

To address these limitations, we have developed FastICE,
a new parallel GPU-based numerical model. The goal of Fas-
tICE is to better understand the physical processes that gov-
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ern englacial instabilities such as thermomechanical locali-
sation at the field site, rather than the regional, scale. It hence
targets different scientific problems than many existing land—
ice models and complements these previous models. FastICE
is based on an iterative pseudo-transient finite-difference
method. Our discretisation yields a concise matrix-free al-
gorithm well suited to use the intrinsic parallelism of mod-
ern hardware accelerators such as GPUs. Our choices en-
able high-resolution 2-D and 3-D thermomechanically cou-
pled simulations to efficiently perform on desktop computers
and to scale linearly on supercomputers, both featuring GPU
accelerators.

The significant temperature dependence of ice’s shear vis-
cosity leads to pronounced spatial variations in the viscos-
ity, which affects the convergence rate of our iterative PT
method. Resolving shear flow localisation is challenging in
this context, since it requires the simultaneous minimisation
of errors in locations of the computational domain that are
governed by different characteristic timescales. Our PT ap-
proach allows us to capture the resulting spatial heterogene-
ity and offers a physically motivated strategy to locally en-
sure the stability of the iterative scheme using local pseudo-
time steps, analogous to diagonal preconditioning in matrix-
based direct approaches. The conciseness and simplicity of
the implementation allows us to explore influences of various
coupling methods and time integrations in a straightforward
way. The PT approach is an interesting choice for educational
purposes and research problems given its conciseness and ef-
ficiency, respectively.

We quantify the scalability of our approach through ex-
tensive performance tests, whereby we investigated both the
time to solution and the efficiency of exploiting the current
hardware capabilities at their maximal capacities. To verify
the accuracy and the coherence of the proposed results, we
performed a set of benchmark experiments, obtaining excel-
lent agreement with results from the widely used glacier flow
model Elmer/Ice. Experiment 3 verifies that, under the as-
sumption of periodic configurations, the 1-D, 2-D and 3-D
models return matching results.

Further, we have tested the accuracy of our numerical so-
lutions for different time integration schemes, including for-
ward (explicit) and backward (implicit) Euler and different
physical time steps. The value of the numerical time step
must be chosen as sufficiently small so as to resolve the rele-
vant physical processes. We limited the maximal time step in
the explicit time integration scheme by the CFL stability cri-
terion for temperature diffusion. For high spatial numerical
resolutions, the CFL-based time step restriction is sufficient
to resolve the coupled thermomechanical process. However,
this conclusion is not valid for low spatial resolutions (e.g.
fewer than 20 grid points). At low resolution, the CFL-based
stability condition predicts time step values larger than the
non-dimensional time (2 x 108) needed to raise the temper-
ature. Thus, we did not sufficiently resolve the physical pro-
cess. An implicit scheme for the time integration remedies
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Figure 19. MPI weak scaling of the 3-D thermomechanically coupled GPU-based FastICE software. We report the parallel efficiency (-)
of the numerical application on three different Nvidia hardware accelerators, the 1-512 Tesla K80 12 GB data-centre GPUs, the 1-8 Tesla
V100 32 GB Nvlink data-centre GPUs and the 1-128 Titan X (Maxwell) 12 GB consumer electronics GPUs. These accelerators are available
via the Xstream supercomputer, the Volta node and the octopus supercomputer, respectively. Note that the execution time baseline used to
compute the parallel efficiency represents a non-MPI calculation. We report the highest numerical grid resolution nyy; achieved on each

distributed memory machine.

the stability issue but does not guarantee accuracy. Indepen-
dent of the numerical time integration scheme used, the range
of time step values that resolve the coupled physics is close
to the explicit stability criterion.

Our multi-GPU implementation of the thermomechani-
cal FastICE solver achieves a close-to-ideal parallel effi-
ciency featuring a runtime drop of only 1% and 2 % com-
pared to a single MPI process execution on 1-512 Nvidia
K80 GPUs and on 1-128 Nvidia Titan X (Maxwell) GPUs,
respectively (representing a 1% and 4.5 % deviation from
a non-MPI single-GPU runtime). We achieve this optimal
domain decomposition parallelisation by overlapping com-
munication and computation using native CUDA streams.
This CUDA feature enables asynchronous compute kernel
execution. Similar implementation and parallel scaling re-
sults were recently reported for hydromechanical couplings
(Réss etal., 2019a, c). Discrepancies in the parallel efficiency
among the three tested distributed memory machines mainly
result from the various hardware type and age, as well as
from the interconnect specifications. The Xstream supercom-
puter features Nvidia Tesla K80 GPUs based on Kepler chip
architecture launched in late 2014 as well as single-rail Mel-
lanox FDR Infiniband interconnect. The octopus supercom-
puter features consumer electronics Nvidia Titan X GPUs
based on the Maxwell chip architecture launched in mid-
2015 as well as dual-rail Mellanox FDR Infiniband intercon-
nect. The Volta node features the latest Nvidia Tesla V100
GPUs based on Volta chip architecture launched in mid-2018
and Nvlink technology as intra-node interconnect. More re-
cent chip architectures reduce the relative computation time
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and may provide less room for hiding the MPI communica-
tion. Dual-rail interconnect doubles the inter-node through-
put and thus reduces the communication time among dis-
tinct compute nodes. Note that Xstream features 16 GPUs
per node, which may reduce the inter-node communication
compared to octopus that features 4 GPUs per node.

7 Conclusions

In this study, we develop FastICE, an iterative solver that
efficiently exploits the capabilities of modern hardware ac-
celerators such as GPUs. We achieve rapid execution times
on single GPUs monitoring and optimising memory trans-
fers. We achieve close-to-ideal parallel efficiency (99 % and
95.5 %) on a weak scaling test up to 512 and 128 GPUs on
heterogenous hardware by overlapping MPI communication
and computations. The technical advances and utilisation of
GPU accelerators enable us to resolve thermomechanically
coupled ice flow in 3-D at high spatial and temporal resolu-
tion.

We benchmark the mechanical solver of FastICE against
the community model Elmer/Ice, focusing specifically on ex-
plicit as opposed to implicit coupling and time integration
strategies. We find that the physical time step must be chosen
with care. Sufficiently high temporal resolution is necessary
in order to accurately resolve the coupled physics. Although
minor differences arise among uncoupled and coupled ap-
proaches, we observe less localisation for uncoupled mod-
els compared to the fully coupled ones. In additional to high
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temporal resolution, a relatively high spatial numerical reso-
lution of more than 100 grid points in the vertical direction is
necessary to resolve thermomechanical localisation for typ-
ical ice-sheet thicknesses on the order of hundreds of me-
tres. The presented models enable us to gain further process-
based understanding of ice-flow localisation. Resolving the
coupled processes at very high spatial and temporal resolu-
tions provides future avenues to address current challenges
in accurately predicting ice-sheet dynamics.

Code availability. The FastICE software developed in this study
is licensed under the GPLv3 free software licence. The lat-
est version of the code is available for download from Bit-
bucket at: https://bitbucket.org/Iraess/fastice/ (last access: 2 March
2020) and from: http://wp.unil.ch/geocomputing/software/ (last
access: 2 March 2020). Past and future FastICE versions
are available from a permanent DOI repository (Zenodo) at:
https://doi.org/10.5281/zenodo.3461171 (Réss et al., 2019b). The
FastICE software includes code examples based on the PT method
in both the MATLAB and CUDA C programming languages. The
GPU routines run on a CUDA-capable GPU device. The multi-GPU
version of the 3-D code requires CUDA-aware MPI to be installed.
On the octopus GPU supercomputer, we installed CUDA 10.0 and
built Open MPI 2.1.5 with CUDA 10.0 and GCC 6.5 on a CentOS
6.9 system.
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