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Abstract. Plant–soil interactions, such as the coupling of
plants’ below-ground biomass allocation with soil organic
matter (SOM) decomposition, nutrient release and plant up-
take, are essential to understand the response of carbon (C)
cycling to global changes. However, these processes are
poorly represented in the current terrestrial biosphere mod-
els owing to the simple first-order approach of SOM cycling
and the ignorance of variations within a soil profile. While
the emerging microbially explicit soil organic C models can
better describe C formation and turnover, at present, they lack
a full coupling to the nitrogen (N) and phosphorus (P) cycles
with the soil profile. Here we present a new SOM model – the
Jena Soil Model (JSM) – which is microbially explicit, ver-
tically resolved and integrated with the N and P cycles. To
account for the effects of nutrient availability and litter qual-
ity on decomposition, JSM includes the representation of en-
zyme allocation to different depolymerisation sources based
on the microbial adaptation approach as well as of nutrient
acquisition competition based on the equilibrium chemistry
approximation approach. Herein, we present the model struc-
ture and basic features of model performance in a beech for-
est in Germany. The model reproduced the main SOM stocks
and microbial biomass as well as their vertical patterns in the
soil profile. We further tested the sensitivity of the model to
parameterisation and showed that JSM is generally sensitive
to changes in microbial stoichiometry and processes.

1 Introduction

There is ample evidence from both ecosystem monitor-
ing data (Bond-Lamberty et al., 2018; Hou et al., 2018;
Jonard et al., 2015) and ecosystem manipulation experiments
(Ellsworth et al., 2017; Iversen et al., 2012; McCarthy et al.,
2010; Warren et al., 2011) that the effects of environmen-
tal changes, such as atmospheric CO2 concentrations, global
warming and continued air pollution, on terrestrial ecosys-
tems are driven by the constraints imposed by macronutri-
ents such as nitrogen (N) and phosphorus (P). It is, there-
fore, of great relevance to identify and understand these con-
straints on global carbon (C) cycling and storage for predict-
ing potential future carbon–climate feedback (Ciais et al.,
2013). There have been continuous efforts to integrate the
N (Thornton et al., 2007; Zaehle and Friend, 2010; Smith
et al., 2014) and P cycles (Wang et al., 2010; Yang et al.,
2014b; Goll et al., 2017; Thum et al., 2019; Zhu et al.,
2019) in terrestrial biosphere models (TBMs) for improv-
ing the representation of C–nutrient interactions. However,
despite major advances in simulating terrestrial biogeochem-
istry, these nutrient-enabled TBMs largely fail to reproduce
the responses of ecosystems to elevated atmospheric CO2
concentration, as observed in the free-air CO2 enrichment
experiments (Zaehle et al., 2014; Medlyn et al., 2015, 2016;
Fleischer et al., 2019). An important shortcoming of the
current generation of models is their poor representation of
plant–soil interactions, in particular the responses of soil or-
ganic matter (SOM) decomposition and nutrient release to
altered plant inputs and ultimately plant uptake of mineral
nutrients (Hinsinger et al., 2011; Drake et al., 2011; Zaehle
et al., 2014).
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Current TBMs largely adopt the CENTURY model (Par-
ton et al., 1988) or comparable model approaches, in which
SOM is divided into two or three pools with different first-
order decomposition rates. In these models, nutrient miner-
alisation and immobilisation fluxes depend on the C transfer
efficiency between SOM pools and their prescribed C : N : P
stoichiometry. Recent insights in soil science have ques-
tioned the adequacy of the CENTURY approach to SOM cy-
cling for simulating the effects of global changes, particularly
in response to altered plant inputs. Researchers have under-
scored the need and offered a direction for a more mech-
anistic representation of soil processes in models, such as
the substrate limitation of soil microbial growth as well as
the nutrient immobilisation and physico-chemical stabilisa-
tion of organic matter through organo-mineral association
(Schmidt et al., 2011; Lehmann and Kleber, 2015). Another
limitation of many current SOM models in TBMs is that they
represent soil as a ‘‘bucket’’, thus ignoring the strong vari-
ance of SOM cycling within a soil profile (Koven et al., 2013;
Arora et al., 2013; McGuire et al., 2018). Such a highly em-
pirical representation of SOM cycling, in which important
processes such as microbial immobilisation or rhizosphere
deposition are not well represented, brings large uncertain-
ties in future projections of terrestrial C sequestration (Brad-
ford et al., 2016). There have been increasing efforts in taking
into account microbial (enzymatic) dynamics and mineral as-
sociation in soil organic C (SOC) models, such as CORPSE
(Sulman et al., 2014), MIMICS (Wieder et al., 2014), MEND
(Wang et al., 2014) and RESOM (Tang and Riley, 2014). In-
clusion of these processes in SOC models has demonstrated
possibilities to represent SOC responses to global warming
(Sulman et al., 2018). Moreover, further inclusion of the ex-
plicit vertical resolution of biogeochemical processes and
transport allows for the reconciliation of the SOC depth and
14C profile (Ahrens et al., 2015). Although these new micro-
bial SOC models better describe C formation and turnover
processes than the conventional models, they still lack full
coupling with the N and P cycles.

The main challenge in coupling C and nutrient cycles in
microbially explicit models is to account for the large sto-
ichiometric imbalances between the microbial decomposers
(i.e. soil microorganisms) and their resources (i.e. plant litter
and SOM) (Xu et al., 2013; Mooshammer et al., 2014). Soil
microbial communities can adapt to these imbalances by ad-
justing their C : N : P ratios, typically through shifting com-
munity structure (e.g. fungal : bacterial ratios) (Rousk and
Frey, 2015) or through eliminating excess elements by al-
tering their use efficiencies (e.g. C use efficiency) (Manzoni
et al., 2012). A well-known adaptive mechanism to these im-
balances is the exudation of extracellular enzymes to release
nutrients through hydrolysis (Olander and Vitousek, 2000;
Allison and Vitousek, 2005) or enhanced SOM oxidation,
known as the “rhizosphere priming effect” (Craine et al.,
2007). Recent evidence has also shown that soil P availabil-
ity regulates phosphatase synthesis (Fujita et al., 2017) and

influences SOM turnover (Lang et al., 2017). As the above-
mentioned processes/phenomena are receiving more atten-
tions, an increasing number of emerging microbially explicit
models have started to tackle these challenges by account-
ing for the N cycle, enzymatic biosynthesis and rhizosphere
priming (Abramoff et al., 2017; Sulman et al., 2017; Huang
et al., 2018; Sulman et al., 2019) using certain novel ap-
proaches. For instance, the microbial adaptation concept has
been applied to represent the adaptation of enzyme allocation
by microorganisms to maximise their growth through alter-
ing the preferential source of decomposition between plant
litter and SOM, as demonstrated using the SEAM model
(Wutzler et al., 2017).

Another emerging challenge of representing nutrient pro-
cesses in microbially explicit models is the competition for
nutrient uptake between plants and microbes (Dannenmann
et al., 2016; Zhu et al., 2017). Regarding P, in particular,
the soil mineral surface adsorbs inorganic P to compete with
plants and microbes (Bünemann et al., 2016; Spohn et al.,
2018). The equilibrium chemistry approximation (ECA) ap-
proach has been proposed to simulate the competition of sub-
strate uptake kinetics in complex networks where the uptake
kinetics of one substrate affect the others (Tang and Riley,
2013). ECA has also been applied to resolve mineral nutri-
ent sink (plant–microbe uptake or mineral adsorption) com-
petitions in other modelling studies (Zhu et al., 2016, 2017,
2019).

In this study, we present the structure and basic features
of a novel microbially explicit and vertically resolved SOM
model that integrates with the N and P cycles – the Jena Soil
Model (JSM). JSM combines the representations of the verti-
cal structure, microbially explicit decomposition and stabil-
isation (Ahrens et al., 2015) with the microbial adaptation
concept from the SEAM model (Wutzler et al., 2017) and
the ECA approach (Tang and Riley, 2013). We tested alterna-
tive hypotheses regarding the competition among microbial,
plant and mineral nutrient sinks (uptake or mineral sorption)
and evaluated the effects of nutrient availability on the prefer-
ential decomposition of either nutrient-poor or nutrient-rich
organic matter using observed soil C, N and P profiles in a
temperate beech forest stand. Additionally, we evaluated the
model’s sensitivity to parameterisation and associated uncer-
tainty to help understand these effects.

2 Material and methods

2.1 Model description

JSM is a soil biogeochemical model built on the backbone
of the vertically explicit C-only SOC model COMISSION
(Ahrens et al., 2015). The COMISSION model was fur-
ther developed from the conventional one by introducing a
scalable maximum sorption capacity based on soil texture
for dissolved organic C and microbial residues (Sect. S1.4
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Figure 1. Theoretical representation of Jena Soil Model (JSM) structure. The vertical soil profile (9.5 m) is split into 15 soil layers; above-
ground litter is added on top of the soil profile; root litter enters into each soil layer according to the root distribution. Bioturbation and DOM
transport translocate SOM between soil layers. In each soil layer, boxes refer to pools and lines refer to processes. Red lines: biogeochemical
fluxes of C, N and P; green lines: respiration fluxes (RH for heterotrophic respiration and RG for microbial growth respiration); blue lines:
fluxes of N and P; orange lines: fluxes of only P; dashed lines: biogeochemical processes that involves stoichiometry change between the
sourcing and sinking pools. The number 1 at the centre (1) indicates microbial nutrient recycling from residue to DOM during decay; q[X]:
mineral-associated form (adsorbed to soil mineral surface or absorbed into soil mineral matrix) of X, which can be DOM, microbial residues
or inorganic phosphate (Pi).

in the Supplement) as well as temperature and moisture
rate modifiers for microbe-mediated processes and sorption
(Sect. S1). We will investigate in a separate study how the
maximum sorption capacity for mineral-associated organic
C contributes to the observed patterns of SOC content and
radiocarbon age. A schematic overview of JSM is presented
in Fig. 1, and the mathematical description of the processes is
provided in the Supplement. The model is integrated into the
QUINCY (Thum et al., 2019) TBM modelling framework
and can either be applied as a stand-alone soil model or cou-
pled to the representation of the vegetation and surface pro-
cesses. In this study, we applied JSM as a stand-alone model.
JSM neither describes the energy and water processes at the
atmosphere–soil interface or in the soil profile nor simulates
the production of litter. Model inputs (soil temperature, mois-
ture and water fluxes as well as plant litter data) were derived
from the QUINCY model.

JSM describes the formation and turnover of SOM along
a vertical soil profile, which is explicitly represented as ex-
ponentially increasing layer thickness with increasing soil
depth (Fig. 1). The biogeochemical processes and pools of
C, N and P are represented in each layer. Vertical transport
of biogeochemical pools between the adjacent layers due to
percolation and bioturbation is also modelled. To reflect the

development of an organic layer, the model also includes an
extra advective transport term which accounts for the up-
wards/downwards shift of the soil surface when the surface
SOM accumulates/diminishes.

SOM is represented as pools of soluble, polymeric or
woody litter as well as of dissolved organic matter (DOM),
mineral-associated DOM, living microbial biomass, micro-
bial residue (necromass) and mineral-associated microbial
residue, each of which contains organic forms of C, N and
P. The flows of organic N and P follow the pathways of C,
with additional nutrient-specific processes, such as minerali-
sation and plant uptake, to link organic matter turnover with
inorganic nutrient cycles. Microbial biomass is assumed to
maintain a fixed stoichiometry in the model. It assimilates
organic forms of C, N and P from DOM with fixed element
use efficiencies and inorganic forms of N and P from solu-
ble mineral pools. Microbes are assumed to aim to maximise
their growth by maintaining high C use efficiency; however,
when growth is limited by nutrients, microbes reduce their
C use efficiency and increase nutrient mineralisation accord-
ingly (See Sect. S1.5). The stoichiometry of all other SOM
pools depends on the C : N : P ratios of influx and efflux, and
these fluxes retain the stoichiometry of their source pools un-
less the formation processes involve respiration. In addition,
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Figure 2. Simulated dynamics of (a) SOC and (b) non-occluded inorganic P contents in topsoil (30 cm) and subsoil (30–100 cm) for
10 000 years. The three vertical dashed lines represent 200, 1000 and 5000 years.

when microbes decay, nutrients are preferentially recycled to
the DOM pool due to the low C-to-nutrient ratio in the cycto-
plasma, as proposed by Schimel and Weintraub (2003). The
inorganic pools of N and P include soluble inorganic ammo-
nium (referred to as NH4), nitrate (referred to as NO3), sol-
uble inorganic phosphate (referred to as PO4), as well as ad-
sorbed PO4, absorbed PO4, occluded PO4 and primary PO4.
The inorganic P cycle follows the QUINCY model (Thum
et al., 2019) and accounts for microbial interactions. JSM
explicitly traces 13C, 14C and 15N following Ahrens et al.
(2015) and Thum et al. (2019).

Enzymes are not explicitly modelled in JSM, although
these are described implicitly to regulate processes such as
depolymerisation and nutrient acquisition. For enzyme allo-
cation within depolymerisation processes, we extended the
microbial adaptation approach of the SEAM model (Wutzler
et al., 2017) by including P dependence of enzyme allocation
and the assumption of a steady state of enzyme production,
leading to the prediction that the total enzyme level is al-
ways proportional to the microbial biomass. The fractions of
enzymes allocated to different depolymerisation sources (lit-
ter and microbial residue) are dynamically modelled to max-
imise the release of the most limiting microbial elements.
JSM tracks three potential fractions of enzyme allocation,
which represent cases in which microbes only maximise the
depolymerisation release of C, N or P, respectively, and then
updates the microbial enzyme allocation fraction by accli-
mating gradually to the potential fraction of the most lim-
iting element (See Sect. S1.5.2). For nutrient competition
between plant, microbes and soil adsorption sites (only for

phosphate), the potential rates are calculated on the basis of
the respective richness and half-saturation level of enzymes
and the impacts of other competitors, following the ECA ap-
proach (See Sect. S2.2).

The impacts of soil conditions on biogeochemical pro-
cesses are also represented in JSM. The temperature response
of different processes (e.g. microbial growth, decay, and nu-
trient uptake in Sect. S1.4) are represented by the Arrhe-
nius equation with different activation energies. Moisture re-
sponses are described by two rate modifiers – one represent-
ing the effects of oxygen limitation (e.g. litter turnover in
Sect. S1.2) and the other representing the effects of diffusion
limitation (e.g. depolymerisation in Sect. S1.3). JSM also
considers the effects of SOM content to correct bulk den-
sity (Sect. S3), which in turn affects other processes such as
organic matter (Eq. S7) and phosphate (Eq. S25) sorption.

2.2 Site description and data for model analysis

The Vessertal (VES) site is a mature beech (Fagus sylvat-
ica) forest stand with an average tree age of > 120 years, lo-
cated in the central uplands of Germany (Thuringian Forest
mountain range). The intermediate elevation is 810 m a.s.l.,
with a high annual precipitation of 1200 mm and a mean an-
nual temperature of 5.5 ◦C (Lang et al., 2017). It is one of
the Level II intensive monitoring plots in the Pan-European
International Co-operative Program for the assessment and
monitoring of air pollution effects on forests (ICP Forests).
Since 2013, the VES site has also been one of the main study
sites in the German Research Foundation (DFG) priority pro-

Geosci. Model Dev., 13, 783–803, 2020 www.geosci-model-dev.net/13/783/2020/



L. Yu et al.: JSM 787

gramme 1685 “Ecosystem Nutrition: Forest Strategies for
Limited Phosphorus Resources”.

Soil at the VES site is classified as Hyperdystric Skeletic
Chromic Cambisol (WRB, 2015), with loamy topsoil and
sandy loamy subsoil, overlain by a moder organic layer. The
current soil developed on trachyandesite, and the develop-
ment started at the end of the last ice age, 10–12 000 years
ago (Lang et al., 2017). The soil was sampled up to 1 m, with
layer depths of 5–10 cm, for the measurements of total C,
N, and organic and inorganic P and basic physical properties
such as bulk density and soil texture. Soil from the A horizon
alone was extracted for the estimation of microbial C, N and
P pools. Detailed sampling and measurement approaches are
described in Lang et al. (2017).

The soil contains 19 kgm−2 C, 1.1 kgm−2 N and
464 gm−2 P up to 1 m soil depth, including the forest floor
(Lang et al., 2017). The soil C content decreases from
510 gCkg−1 soil in the forest floor to 126 gCkg−1 soil in the
A horizon to 5.9 g Ckg−1 soil at 1 m depth. The C : N ratio
of SOM slightly decreases from 19.5 in the forest floor to
14.75 at 1 m depth, whereas the C : P ratio decreases more
steeply from 348.7 in the forest floor to 46.6 at 1 m depth.
The organic P fraction of total P also decreases from 67 % in
the organic layer to 13 % at 1 m depth. The microbial C con-
tent decreases from > 2000 µgCg−1 soil C in the forest floor
(Zederer et al., 2017) to 764 µgCg−1 soil C in the top mineral
soil (Bergkemper et al., 2016). The microbial biomass shows
a C : N ratio of 13 and a very low C : P ratio of 10.3 (Lang
et al., 2017).

2.3 Model protocol, model experiments and sensitivity
analysis

2.3.1 Model protocol

The soil texture profiles for both QUINCY (for the gener-
ation of soil temperature, moisture and litterfall) and JSM
simulations were obtained from observations at the VES site.
The mineral-associated DOM and residue pools were ini-
tialised on the basis of Eq. (S7) using the observed soil tex-
ture and mineral soil density and assuming that the soil sur-
face sorption sites are less occupied as soil depth increases.
The vertical profile of the other SOM pools was initialised
with a default C content for each pool in the first layer and
assumed to decrease with soil depth in proportion to the fine
root profile (Jackson et al., 1996), except in the woody litter,
which is only initialised in the first layer. The initialisation
C contents in the first layer for soluble litter, polymeric lit-
ter, woody litter, DOM, microbes and microbial residue were
291, 2914, 1000, 2.4, 73.2 and 203 gm−3 C, respectively. The
N and P contents of the SOM pools were initialised using the
stoichiometry of different pools. For litter pools, we adapted
the litter stoichiometry from the QUINCY model (Thum
et al., 2019); for microbes and microbial residues, we used
the measured microbial stoichiometry (Bergkemper et al.,

2016), and for other SOM pools, we used the measured av-
erage SOM stoichiometry of the 1 m soil profile (Lang et al.,
2017). All SOC profiles were initialised with a pre-industrial
114C values for all C pools, from which the 14C values were
developed. The soil inorganic P pools were initialised using
the soil P dataset from Yang et al. (2014a), corrected with
the current total inorganic P from field measurements and
extrapolated to the whole soil profile following the approach
used in the QUINCY model (Thum et al., 2019). Organic
matter material and mineral soil densities were solved using
the Federer equation (Federer et al., 1993) with field data of
the SOM content and bulk density.

We first ran the QUINCY model for 500 years to generate
soil forcing and then simulated the VES site for 200 years
using JSM, repeating 30 years of soil forcing (half-hourly
soil temperature, soil moisture, vertical water fluxes and ver-
tically resolved litterfall that includes 14C values) simulated
by the QUINCY model for the VES site. To mimic the his-
tory of 14C input, we increased litter 14C content for the
final 60 years before the end of the simulation, assuming
that the 114C in gross primary productivity in response to
the observed 14CO2 atmospheric pulse propagates directly
into litterfall without any delay. We tested different simula-
tion lengths (50, 200, 1000, 5000 and 10 000 years) and ob-
served that the simulated SOM profiles changed slowly af-
ter 200 years but the soil inorganic P pools changed grad-
ually as the simulation time increased (Fig. 2b). In view of
computational efficiency, we sought to compare the present-
day soil profile observations with the simulated profiles for
200 years, which also best fit the date of soil inorganic P
pool initialisation (1850, as indicated in Yang et al., 2014a).
All the other presented results (including sensitivity analysis)
are also based on the 200-year simulations, and the results
of long-term simulations (1000, 5000 and 10 000 years) are
specified with their simulation times.

2.3.2 Model experiments

To further test the effects of different model features, we im-
plemented several model experiments, including a SEAM-
off scenario in which the enzyme allocation to polymeric lit-
ter and microbial residue are both fixed to 50 % (Eq. 1b),
and an ECA-off scenario in which the ECA-based plant and
microbial uptakes of inorganic N and P and soil adsorption
of phosphate were switched off and replaced by a demand-
based microbial uptake of inorganic N and P that ignored
P adsorption flux (Eq. 1c). All model experiments used the
same parameterisation from the calibrated model with full
model features, which is denoted as the Base Scenario in
this study.

The differences between Base Scenario and SEAM-off
and ECA-off are listed below.
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Base Scenario:

Enzpoly
frac &Enzres

fraccalculated as Eq. (S15);

U∗X,yfor microbes,plant and adsorption
calculated as Eq. (S23). (1a)

SEAM-off Scenario:

Enzpoly
frac = Enzres

frac = 0.5. (1b)

ECA-off Scenario:

U∗X,plant = f (Tsoil,2)v
X
max,plantCfine_root[X]

(K
upt
m1 +

1

K
upt
m2 + [X]

),

U∗X,mic = F
demand
mic,X ,

U∗P,adsorp = 0. (1c)

The plant uptake of inorganic N or P (U∗X,plant) in the ECA-
off scenario (Eq. 1c) uses the equations and parameters from
the QUINCY model (Thum et al., 2019).

2.3.3 Calibration and model sensitivity

We calibrated the Base Scenario in two main steps. In the first
step, we matched the model results with the measured SOC
profile, mainly by calibrating the depolymerisation, organic
matter sorption and litter turnover processes; in the second
step, we matched the model results with the measured soil
organic P profiles by calibrating the microbial growth and
decay, nutrient acquisition, and soil inorganic P cycling. The
two steps were not performed iteratively; however, during the
second step, we revised the parameters from the first step as
necessary. Other observed soil profiles, such as the soil or-
ganic N and the bulk density, were used as additional crite-
ria to select parameterisation, although not specifically used
to calibrate the model. During the calibration processes, pa-
rameter values were gradually changed and the goodness of
model fit was visually evaluated on the basis of observations.

To test the effects of different microbial stoichiometry, we
ran a “Glob Mic Stoi” scenario in which the global average
microbial stoichiometry (42 : 6 : 1, Xu et al., 2013) was used
to parameterise the model instead of the observed microbial
C : N : P ratio (10.3 : 0.8 : 1, Lang et al., 2017). To further
test the model responses to different initial conditions, we ran
the model with different initial SOM contents (50 %, 75 %,
150 % and 200 % of the default initial content) for 1000 years
to ensure that the soil reached a more stable state.

We also tested the sensitivity of JSM to parameterisation
using a hierarchical Latin hypercube design (LHS; Saltelli
et al., 2000; Zaehle et al., 2005). We selected 28 parameters
from calibration (Table S1) and varied each parameter be-
tween 80 % and 120 % of the Base Scenario values given in
Table S2, which were obtained through LHS sampling from
a uniform distribution to form a set of 1000 LHS samples and

used in model sensitivity and uncertainty analyses presented
in this paper. We evaluated the model output from these sim-
ulations in terms of main biogeochemical fluxes (e.g. respi-
ration, net N and P mineralisation, microbial uptake of inor-
ganic N and P, N and P losses, and P biomineralisation) and
the main SOM pools (up to 1 m depth) (e.g. total C, N and P
in SOM; total soil inorganic P and microbial C, N and P). We
measured parameter importance as the rank-transformed par-
tial correlation coefficients (RPCCs) to account for potential
non-linearities in the association between model parameters
and output (Saltelli et al., 2000; Zaehle et al., 2005).

3 Results

3.1 Model stability and quasi-equilibrium state

We tested JSM with different initial SOM contents and dif-
ferent microbial stoichiometry. The simulated SOM profiles,
including SOC; C : N and C : P ratios of SOM; microbial C,
N and P contents, and bulk density, did not respond strongly
to changes in initial SOM contents (Fig. S2) but were notably
affected by the assumed microbial stoichiometry (Fig. S1).
We further examined the effects of simulation time on soil
profile development (Figs. 2 and S1). SOC in the topsoil
(30 cm) reached a stable state (ca. 70 kgCm−3) after approx-
imately 150 years and the subsoil (30–100 cm) reached a sta-
ble state (ca. 30 kgCm−3) after approximately 1000 years.
The accumulation rate of SOM decreased with time, but the
complete soil profile had not yet reached a steady state (Ta-
ble 1) because C continues to accumulate slowly, particu-
larly in deeper soil layers (> 1 m). Although the organic P
dynamics follow the soil C dynamics, the inorganic P pools
inevitably deplete in the long-term simulation (Fig. 2) due to
high uncertainties in initialisation and P cycling processes.
Therefore in this study, we focussed on the stable state of the
topsoil (30 cm) at the end of the 200-year simulations and re-
ferred to it as a “quasi-equilibrium state” since slow changes
are still occurring, particularly in soil inorganic P pools and
SOM in deeper soil layers (Figs. S3, S4 and S5).

3.2 Simulated SOM stocks and fluxes at the study site

We first compared the simulated profiles with the in situ
observed ones (Fig. 3). The modelled results agreed well
with observed stock sizes and vertical patterns, indicating
that the stocks (here we define the term “stock” as the total
amount of all (model) pools within a larger set) of C, N and
P pools in SOM show smaller temporal variations than the
microbial pools at the quasi-equilibrium state (Fig. 3a to c)
due to strong seasonal variations in microbial biomass. We
also found a greater variation in the simulated organic-P-to-
inorganic-P (Po-to-Pi) ratio (Fig. 3d) than for the individual
organic and inorganic P stocks (data not shown), inferring
that the seasonal dynamics of microbes also impose a sea-
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Table 1. The annual soil C, N and P fluxes of model experiments at the study site. Positive values infer accumulation in the soil, and negative
values infer loss from the soil. The values are the accumulated sum of the whole soil profile, calculated based on data from the last 10 years
of model experiments. SOP: soil organic phosphorus; SON: soil organic nitrogen.

Variable Unit Base Scenario SEAM-Off ECA-Off 1000 years 5000 years 10 000 years

Biogeochemical fluxes

C litterfall gCm−2 yr 788.0 788.0 788.0 788.0 788.0 788.0
Respiration gCm−2 yr −741.0 −746.2 −746.2 −778.0 −787.4 −788.0
1 SOC gCm−2 yr 47.0 41.8 41.8 10.1 0.7 0.04
N litterfall gNm−2 yr 14.52 14.52 14.52 14.52 14.52 14.52
N deposition gNm−2 yr 2.04 2.04 2.04 2.04 2.04 2.04
Plant N uptake gNm−2 yr −13.29 −13.26 −13.28 −15.67 −16.01 −16.01
N leaching gNm−2 yr −0.01 −0.01 −0.01 −0.08 −0.49 −0.54
1 SON gNm−2 yr 3.25 3.29 3.26 0.80 0.06 0.002
P litterfall mgPm−2 yr 980.4 980.4 980.4 980.4 980.4 980.4
P deposition mgPm−2 yr 4.2 4.2 4.2 4.2 4.2 4.2
P weathering mgPm−2 yr 155.6 155.6 142.6 277.8 197.0 522.8
Plant P uptake mgPm−2 yr −852.0 −866.8 −886.9 −920.9 −959.5 −1134.6
P leaching mgPm−2 yr −0.3 −0.3 −1.7 −0.5 −1.7 −8.4
P desorption mgPm−2 yr −233.0 −243.8 −185.6 −58.3 157.4 345.7
1 SOP mgPm−2 yr 520.9 516.9 424.1 399.3 63.0 18.7

Figure 3. Simulated and observed (a) SOC content, (b) C : N ratio in SOM, (c) C : P ratio in SOM, (d) organic-P-to-inorganic-P ratio in
soil, (e) microbial C content, (f) microbial N content, (g) microbial P content and (h) soil bulk density at the study site up to 1 m soil depth.
Black lines and dots: observations; coloured lines and shades: simulated mean values and ranges of standard deviation by different model
experiments in Sect. 2.3. Microbial C, N and P values were only measured in the top 30 cm of soil. Simulated means and standard deviations
were calculated using data from the last 10 years of model experiments.
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sonal pattern of P immobilisation (from Pi to Po) and miner-
alisation (from Po to Pi).

The distribution and radiocarbon profile of total organic
matter in the simulations varied across soil depths (Fig. 4).
The first layer (0 cm, O–A horizon) is dominated by the plant
litter and microbial component (living or dead microbes),
and while the microbial component decreases strongly from
ca. 40 % at 0 cm to almost zero at 50 cm soil depth, the lit-
ter component still constitutes ca. 10 % of the total SOC at
1 m soil depth. The mineral-associated C (MOC) compo-
nent switches from a minor component in the O–A horizon
(ca. 20 %) to the dominant component (ca. 90 % at 1 m) in
deeper soil layers.

The simulated radiocarbon (114C) profile qualitatively
agreed with the observed one (Fig. S1e); the 114C content
increased within the O horizon and started decreasing with
increasing soil depth from mineral soil, i.e. the A horizon.
This pattern indicates that the “bomb pulse”114C signal sig-
nificantly affects the apparent 14C age in the organic layer
and its impact decreases with soil depth due to the slow
turnover in deeper soil. Our simulations further indicated that
such a vertical pattern is caused by MOC and microbial com-
ponents, while the litter component stays modern throughout
the profile (Fig. 4). Increases in litter 14C with depth sug-
gest that more bomb-derived SOC is still found in subsoils
due to slower litter turnover, while it is already replaced by
more recent, 14C-poorer SOC in the topsoil. Although the
Base Scenario did not reproduce the measured radiocarbon
profile, despite producing its vertical pattern, a much better
fit with the measured radiocarbon profile and an increase in
soil 14C age, driven by MOC, were indeed observed as sim-
ulation time increased (Figs. S1e and S4).

The simulated biogeochemical fluxes show strong sea-
sonal and vertical patterns (Figs. 5 and 6), in which the flux
rates in summer and in the topsoil are generally higher than
those in winter and in the subsoil, respectively. Meanwhile,
microbial inorganic N uptake shows a different seasonal pat-
tern, with the lowest rates observed in August and Septem-
ber (Fig. 6c). In fact, this pattern is supported by the sea-
sonal pattern of net N mineralisation flux, in which the peak
is observed in August and September (Fig. 5b). This result
indicates that organic N in DOM is the most abundant for
microbial growth during August and September, leading to a
large reduction in the microbial inorganic N uptake and an in-
crease in net N mineralisation. In contrast, organic P content
in DOM is the lowest during August and September, leading
to net P immobilisation and microbial inorganic P uptake el-
evation (Figs. 5d and 6a). While the vertical pattern of plant
N uptake parallels root distribution (Jackson et al., 1996),
plant P uptake is lower in the organic layer than in the top-
soil due to strong competition from microbes in the organic
layer (Figs. 6 and 8).

The sources and sinks of soluble inorganic N and P also
show very different patterns (Fig. 7). The main source and
sink for inorganic N in solution are gross mineralisation and

plant uptake of NH4, respectively, whereas for P, microbial
uptake is the main sink and biomineralisation is a larger
source than gross mineralisation in each scenario.

3.3 Model features: nutrient acquisition competition
and enzyme allocation

In general, the SEAM-off scenario did not differ much from
the Base Scenario in terms of the main soil stocks and bio-
geochemical fluxes (Figs. 3 and 5); however, the ECA-off
scenario produced a lower microbial biomass and Po-to-Pi
ratio in the organic layer and topsoil. Total SOC may not be
influenced in either scenario, although its composition and
radiocarbon profile were both altered (Fig. 4).

We presented the uptake of inorganic PO4 and competition
between phosphate adsorption, uptake of inorganic P at three
different depths (Fig. 8), and seasonal and vertical uptakes
of inorganic N and P for both microbes and plants (Fig. 6).
The simulations showed that microbes outcompeted roots for
inorganic P uptake in JSM at all depths. However, the rela-
tive competitiveness of roots for phosphate uptake increased
with increasing soil depth because the plant P uptake rate
decreases less strongly than the microbial P uptake with in-
creasing soil depth. In contrast, the phosphate adsorption rate
increased strongly with increasing soil depth and outcom-
peted biological processes (plant and microbial uptake) in
deeper soil layers. The relative competitiveness of phosphate
adsorption against microbial and plant uptake also strongly
decreased in summer in the topsoil due to high biological ac-
tivity in warm months (Fig. 8b). With respect to competition
for inorganic N, plants outcompeted microbes along the en-
tire soil profile and throughout the year, particularly in sum-
mer when microbes assimilate N mainly from DOM (Fig. 6c
and d).

Turning off the model’s feature for nutrient acquisition
competition, i.e. ECA-off scenario, led to a notably lower
microbial biomass and Po-to-Pi ratio in the topsoil (Fig. 3).
This is caused by concurrent changes in microbes and plant
inorganic P uptake, particularly in the topsoil layer where
plants take up more inorganic P than in the Base Scenario
(Fig. 6) due to reduced competition with microbes. More-
over, there were differences in spatial and temporal varia-
tions in uptake and mineralisation fluxes between the ECA-
off scenario and the other two scenarios. For instance, the
seasonal variation in fluxes was notably lower in the ECA-
off scenario. Decrease in P flux rate with soil depth may be
weaker in the ECA-off scenario, but the decrease in net N
mineralisation with soil depth is marginally stronger (Fig. 5).
This difference is because geophysical processes, such as ad-
sorption and absorption, play more crucial roles in the soil
P cycle than in the N cycle and because these show rather
different seasonal and vertical patterns from the biochemical
processes, such as mineralisation.

The modelled enzyme allocation for depolymerisation is
presented in Fig. 9. We compared the enzyme allocation

Geosci. Model Dev., 13, 783–803, 2020 www.geosci-model-dev.net/13/783/2020/



L. Yu et al.: JSM 791

Figure 4. Simulated SOC fractions (upper panels) and their respective radiocarbon profiles (bottom panels) at 1 m soil depth. Column (a):
mineral-associated C (MOC), including adsorbed DOM and adsorbed microbial residue; column (b): litter, including woody, polymeric and
soluble litter; column (c): live and dead microbes. Data points are derived using data from the last 10 years of the model experiments. All
model experiments used 200-year simulations and were not validated against the measured 114C.

curve of polymeric litter (Enzpoly
frac in Eq. S17) with three

potential allocation curves (αXpoly where X stands for C, N
and P in Eq. S15), which represent cases in which microbes
only maximise C, N or P release from depolymerisation. All
modelled fractions of enzyme allocation to polymeric lit-
ter were well below 50 % for the whole soil profile, indi-
cating that polymeric litter is less preferred than microbial
residues for depolymerisation in the soil, particularly in very
deep soil layers where no roots are present and microbes
would thus only produce enzyme to depolymerise microbial
residues because the content of residue is much higher than
that of polymeric litter. The simulated curve of allocation
overlaps with the curve of potential allocation to maximise
P release, indicating that depolymerisation is solely driven
by P demand. This explains why microbial residues are pre-
ferred over polymeric litter since the C : P ratio of micro-
bial residues is much lower than that of polymeric litter (data
not shown). Despite rather different enzyme allocation frac-
tions shown in Fig. 9, the majority of the modelled stocks
and fluxes were not significantly influenced when enzyme
allocation was turned off (Figs. 3 and 5). More profound dif-
ferences were observed in the composition and radiocarbon
profile of SOC; there was less litter and more SOC in the
SEAM-off scenario than in the Base Scenario, resulting a
systematic difference in the radiocarbon profiles between the
two scenarios (Fig. 4).

3.4 Model sensitivity and uncertainties

The interquartile range of outputs (Fig. 10) from model sen-
sitivity analysis revealed that all outputs were well centred
around the results of the parameterisation of the Base Sce-
nario (Table S2), except microbial inorganic N uptake and
N losses. In general, the soil stocks were more stable than
the microbial pools and biogeochemical fluxes. N minerali-
sation was surprisingly insensitive while microbial inorganic
N uptake was very sensitive to parameterisation. N minerali-
sation in JSM was mainly driven by the C : N ratio of DOM,
which remains rather stable due to the similar C : N ratios of
plant litter, microbes and microbial residues. The very sensi-
tive response of microbial inorganic N uptake was attributed
to the high-affinity (low Km,mic value) N uptake transporters
of microbes (Kuzyakov and Xu, 2013) and their sensitivity
to changes in NH4 concentration. The RPCC of parameters
with outputs (Table 2) also demonstrated that the C and N
contents of SOM as well as the C and N fluxes were more
sensitive to changes in C processes, such as depolymerisa-
tion, organic matter sorption and litter partitioning, while the
microbial dynamics and the P fluxes were more sensitive to
changes in microbial and nutrient processes, such as maxi-
mum biomineralisation rate (vmax,biomin) and P recycling dur-
ing microbial decay (ηP

res→dom). Overall, most of the selected
outputs were strongly influenced by microbial stoichiometry.
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Figure 5. Simulated seasonal and vertical distribution of (a) respiration, (b) net N mineralisation, (c) biochemical P mineralisation and (d) net
P mineralisation at the study site at 1 m soil depth. Points represent the mean values and error bars represent the standard deviations, both
calculated using data from the last 10 years of model experiments.

The five most influencing parameters in JSM were micro-
bial C : N ratio (χC:N

mic ), microbial N : P ratio (χN:P
mic ), micro-

bial mortality rate (τmic), soluble litter C fraction transformed
into DOM (ηC,sol→dom), and P fraction recycled from res to
dom during microbial decay (ηP

res→dom).

4 Discussion

4.1 Features of nutrient cycling

4.1.1 Soil stoichiometry

Following calibration, JSM could reproduce the main soil
stocks of C, N and P; microbial biomass; and soil bulk den-
sity as well as their vertical patterns along the soil profile in a
beech forest stand in Germany. The observed SOM C : N ra-
tio (19.5) and the C : P ratio (348) in the first model layer
– the O–A horizon – fit well within the ranges of the re-
ported soil stoichiometry of temperate broadleaf forests (Xu
et al., 2013), and there was a much stronger decreasing trend
in the C : P ratio than in the C : N ratio with an increase in
soil depth, indicating that organic P in SOM is “decoupled”
from the C and N cycles (Yang and Post, 2011; Tipping et al.,
2016).

This decoupling of the soil P cycle is represented by
biomineralisation in TBMs; however, the vertical decoupling
of C : N : P stoichiometry is poorly reproduced (Fig. S6) even
when microbial biomass is explicitly represented (Yu et al.,
2018). Our study indicated that the decrease in C : N ratio
is mainly due to a shift in SOC composition with soil depth
(Fig. 4), whereby the fraction of the nutrient-poor litter com-
ponent decreases and the nutrient-rich MOC component in-
creases. Slight overestimation of the modelled soil C : N ratio
in the first layer (Fig. 3) is probably due to the higher C : N
ratio (52) of leaf litter inputs than the observed one (41.7).

However, with respect to the decrease in C : P ratio, the
model simulations indicated that the change in microbial
nutrient recycling scheme with depth might be associated
with shift in the SOC component. To account for differ-
ent stoichiometry of cell walls and plasma of microbes in
JSM, we introduced the microbial nutrient recycling pa-
rameter (ηXres→dom, X for N or P) that partitions microbial
residues with lower C : N : P ratio according to P stoichiom-
etry; that is, a higher nutrient content is allocated to DOM,
while the residual pool receives the remaining part with a
lower nutrient content. Since JSM currently does not distin-
guish between microbial guilds, the microbial nutrient recy-
cling parameters also mimic different stoichiometry of mi-
crobial guilds, such as bacteria and fungi. The model only
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Figure 6. Simulated seasonal and vertical distribution of (a) microbial inorganic P uptake, (b) plant P uptake, (c) microbial inorganic N
uptake and (d) plant N uptake at the study site at 1 m soil depth. Points represent the mean values and error bars represent the standard
deviations, both calculated using data from the last 10 years of model experiments.

adequately reproduced the vertical SOM C : P ratio profile
when the microbial P recycling parameter decreases with in-
creasing depth, resulting in a decreased C : P ratio with in-
creasing soil depth. Such a shift in the microbial P recycling
parameters indicates changes in microbial communities from
a nutrient-poor fungi-dominated to a nutrient-rich bacteria-
dominated one with increasing depth, which has also been
evidenced by Rousk and Frey (2015). Our model suggests
that this community shift mainly regulates the decrease in
SOM C : P ratio at the study site.

4.1.2 N cycle vs. P cycle

JSM had already reached a quasi-equilibrium state at the end
of the 200-year simulation, when the respiration of C and
plant uptake of N and P were very close to the C, N and P
from litterfall and SOM accumulated slowly in the soil (Ta-
ble 1, Fig. 2). As the simulation time increased, the C and
N cycles approached true equilibrium but the P cycle did not
(Table 1); this could be due to the lack of vegetation feedback
or the constantly increasing occluded P pool and decreasing
primary P pool that do not make it possible to reach true equi-
librium in JSM. Similar trends have been observed with all
TBMs because they employ the structure of the inorganic P
cycle described in Wang et al. (2010). This leads to a bound-
ary issue, particularly in long-term simulations, and warrants

further investigation, particularly for the development of soil
profiles.

In JSM, plant nutrient uptake is driven by root biomass
(prescribed by the QUINCY outputs) and its uptake capacity
(as reported in Kuzyakov and Xu, 2013; Kavka and Polle,
2016). Plant uptake is further influenced by microbial (P ad-
sorption) competition, but it is not regulated by plant demand
due to the absence of vegetation processes. The simulated
plant N and P uptakes at the quasi-equilibrium state were
very close to the N and P inputs from the litterfall (Table 1),
indicating that realistic root biomass and uptake capacity en-
able the simulation of nutrient uptake for plants. This find-
ing supports the recent change in plant uptake simulations in
TBMs from plant demand driven (Yang et al., 2014b) to trait
(root biomass, uptake capacity and inorganic nutrient pool)
driven (Zaehle and Friend, 2010; Goll et al., 2017; Thum
et al., 2019), which strengthens the interactions between soil
nutrient availability and plant growth.

The simulated microbial uptake of inorganic P
(238.0 kgPha−1 yr−1) was much higher than the plant
inorganic P uptake (8.5 kgPha−1 yr−1) and microbial
inorganic N uptake (Fig. 7). This difference was strongly
driven by the difference between litterfall and microbial
stoichiometry. In JSM, nutrient assimilation for microbial
growth occurs in two steps. In the first one, a certain fraction
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Figure 7. Simulated yearly budget of (a) N and (b) P in soil solutions. In (a), sourcing fluxes of N are presented in the order of gross
mineralisation of NH4 and NO3 and N deposition (in the bar plot: from right to the zero point; in the legend: from the top to the separation
line); sinking fluxes of N are presented in the order of plant and microbial uptakes of NH4, plant and microbial uptakes of NO3, N leaching
(both inorganic and organic), and changes in soluble N content (delta_sol_N) (in the bar plot: from left to the zero point; in the legend: from
the separation line to the bottom). In (b), sourcing fluxes of P include weathering, gross mineralisation of PO4, biochemical mineralisation
of PO4 and P deposition; sinking fluxes of P includes adsorption (Exchange_fast), microbial and plant uptakes, P leaching (both inorganic
and organic), and changes in soluble P content (delta_sol_P). (The order of presented processes follows the same rule as N.) The budgets are
calculated using data from the full simulation (200 years) of the model experiments.

of N and P (micnue and micpue) from microbial DOM
uptake is assimilated directly by microbes; in the second
step, dissolved inorganic N and P are further taken up by
microbes through microbial inorganic N and P uptake to
fulfil their stoichiometry. In the Base Scenario, we used
the measured microbial C : N : P ratio at the study site
(10.3 : 0.8 : 1), which largely differs from the litterfall
C : N : P ratio (800 : 14.8 : 1), particularly in terms of the
P content. Therefore, although the demand for N and P for
microbial growth does not differ much, the assimilation of
dissolved organic N is much higher than that of dissolved
organic P, resulting in a much higher demand for microbial
P uptake than for N uptake from the inorganic pool and very
different seasonal patterns of microbial inorganic N and P
uptakes (Fig. 6). This is well demonstrated in Figs. 5 and 7;
net mineralisation, calculated by subtracting microbial
inorganic nutrient uptake from gross mineralisation, is
always positive for N and mostly negative for P, particularly
in the warm season when microbial biomass is high. While
the majority of the mineralised N is taken up by plants, only
a minor fraction of mineralised P is taken up by them, and
most of it, together with the additional biomineralised P, is
taken up by microbes in the form of dissolved inorganic P.
This pattern implies that the mobilisation of soil N is driven

by plant demand and that of soil P is driven by microbial
demand.

4.1.3 Microbial stoichiometry

Since the microbial C : N : P ratio we used (10.3 : 0.8 : 1,
Lang et al., 2017) was very different from the global average
value (42 : 6 : 1, Xu et al., 2013), additional modelling exper-
iments were conducted with the global microbial stoichiom-
etry to examine the effects of this ratio (Figs. S1 and S3–S5).
The SOC and microbial C profiles did not differ significantly
in the new scenarios, although the N and P stocks and fluxes
were greatly influenced. As a direct consequence of a change
in microbial stoichiometry change, the resultant SOM C : N
and C : P ratios became lower and higher, respectively, than
values in the Base Scenario. Moreover, the total demand for
microbial N was much higher and the demand for microbial
P was much lower than that in the Base Scenario, leading
to a higher microbial inorganic N uptake and lower micro-
bial inorganic P uptake, which in turn alter the plant–microbe
competition for inorganic N and P as well as the vertical and
seasonal patterns of plant and microbial uptake of inorganic
nutrients. Although the microbial P demand was lower in the
scenario with the global microbial stoichiometry than in the
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Figure 8. Simulated (a) microbial and plant P uptake rates and (b) relative competitiveness (in fractions) of P adsorption, microbial P uptake
and plant P uptake at depths of 0 (O–A horizon, upper panels), 15 (A–B horizon, middle panels) and 80 cm (B–C horizon, bottom panels).
In (a), monthly mean values at different depths are presented throughout the whole year; in (b), relative competitiveness is calculated as the
fraction of the individual rate to the sum of all three rates (P adsorption rate, microbial P uptake and plant P uptake). All data points are
derived from data from the last 10 years of model experiments.

Base Scenario, it still drove the soil P mobilisation. However,
N mobilisation in the new scenario was no longer exclusively
plant driven and became both microbe and plant driven. This
indicates that the microbial stoichiometry is a key factor for
soil nutrient processes and plant–soil interactions in JSM.

In JSM, the choice of nutrient mineralisation–
immobilisation pathways (Manzoni and Porporato, 2009)
during microbial DOM uptake, i.e. the microbial nutrient
use efficiencies in Eq. (S13), did not greatly change the total
microbial nutrient assimilation but significantly impacted
the partitioning between organic (microbial DOM uptake)
and inorganic (microbial inorganic nutrient uptake) nutrient
assimilation (Table 2). This partitioning greatly alters the
isotopic signals of soil pools and is essential to understand-
ing soil nutrient cycling and thus to unravelling soil effects
based on vegetation signals (Craine et al., 2018) – something
which is not possible with the current TBMs due to poorly
defined and parameterised microbial nutrient use efficiencies
(Manzoni and Porporato, 2009). It is possible to use JSM
to predict realistic microbial nutrient use efficiencies with
constraints of tracer experiments by labelling different
forms of dissolved nutrients. However, future detailed
investigation is needed due to complications arising from

other involved processes such as adsorption–desorption and
nitrification–denitrification.

4.2 Key features and model limitations

We applied the ECA approach described by Tang and Riley
(2013) to simulate inorganic nutrient competition. In general,
our model simulations indicated that microbes take up more
inorganic P than plants, which supports the findings of 33P
tracer experiments at two other beech forests in Germany
(Spohn et al., 2018). However, our study showed that plants
take up more inorganic N than microbes (Figs. 7a and S1).
This pattern seems to disagree with the findings of field stud-
ies of 15N addition (e.g. Bloor et al., 2009; Dannenmann
et al., 2016) and a modelling study using the same approach
to simulate competition (Zhu et al., 2017). The reason for
this disagreement is that in JSM, we assumed high microbial
N use efficiency from DOM, and the majority of microbial
N assimilation was actually fulfilled by DOM uptake. There-
fore, plants take up more inorganic N than microbes. How-
ever, in 15N tracer experiments and a model study by Zhu
et al. (2017), there was no distinction between assimilation
from organic and inorganic sources; thus, microbes outcom-
pete plants in the sense that the total N assimilated by mi-

www.geosci-model-dev.net/13/783/2020/ Geosci. Model Dev., 13, 783–803, 2020



796 L. Yu et al.: JSM

Table 2. The five most important parameters (Par) and their respective RPCCs for each output variable and the overall model importance
(OVI). RPCCs were calculated for each output variable, and the overall importance of parameters was measured by calculating the mean of
the absolute RPCCs across all output variables, weighted by the uncertainty contribution of these model outputs. The parameters are listed
in Table S2 and explained in Table S1. SOP: soil organic phosphorus; SIP: soil inorganic phosphorus; SON: soil organic nitrogen.

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

Variable Par RPCC Par RPCC Par RPCC Par RPCC Par RPCC

Total SOC v
poly
max,depoly −0.84 vres

max,depoly −0.80 1
τmic

0.83 ηC,wl→poly 0.71 ηC,sol→dom 0.66

Total SON χC:N
mic −0.99 vres

max,depoly −0.94 ηC,sol→dom 0.84 χN:P
mic 0.40 ηC,wl→poly 0.38

Total SOP χC:N
mic −0.97 χN:P

mic −0.97 vmax,biomin −0.84 ηP
res→dom −0.78 1

τmic
0.74

Total SIP kweath −0.58 ηP
res→dom 0.57 vmax,biomin 0.47 χN:P

mic 0.45 ηP
res→dom −0.42

Microbial C 1
τmic

−0.98 ηC,sol→dom 0.86 χC:N
mic 0.68 χN:P

mic 0.67 ηC,wl→poly 0.67

Microbial N 1
τmic

−0.97 χC:N
mic −0.95 ηC,sol→dom 0.83 χN:P

mic 0.63 ηC,wl→poly 0.62

Microbial P 1
τmic

−0.96 χN:P
mic −0.94 χC:N

mic −0.93 ηC,sol→dom 0.79 ηC,wl→poly 0.55

Respiration 1
τmic

−0.71 χN:P
mic 0.69 χC:N

mic 0.65 vres
max,depoly 0.45 micmin

cue −0.37

Net N mineralisation χC:N
mic 0.97 vres

max,depoly 0.65 micmin
cue −0.40 ηC,sol→dom −0.32 1

τmic
−0.29

Microbial N uptake micnue −0.98 χC:N
mic −0.90 ηC,sol→dom 0.75 ηC,wl→poly 0.38 χN:P

mic 0.21

Net P mineralisation ηP
res→dom 0.94 χN:P

mic 0.84 χC:N
mic 0.84 ηC,sol→dom −0.67 ηC,wl→poly −0.53

P Biomineralisation ηP
res→dom −0.94 χN:P

mic −0.85 χC:N
mic −0.84 ηC,sol→dom 0.67 ηC,wl→poly 0.54

Microbial P uptake micpue −0.91 χN:P
mic −0.90 χC:N

mic −0.89 ηP
res→dom −0.85 ηC,sol→dom 0.70

N losses χN:P
mic 0.72 1

τmic
−0.72 χC:N

mic 0.67 vdom
max,upt 0.41 vmax,biomin 0.35

P losses vdom
max,upt 0.22 micpue 0.15 micmin

cue −0.14 ηP
res→dom −0.11 kP

enz,mic −0.55

OVI χC:N
mic 0.73 χN:P

mic 0.57 1
τmic

0.47 ηC,sol→dom 0.42 ηP
res→dom 0.35

crobes exceeds the total N taken up by plant roots, which
was also true in our study. Another uncertainty related to
the plant–microbe competition for inorganic N is the micro-
bial stoichiometry we used in parameterisation. As discussed
in the previous section, a change in microbial stoichiome-
try from the observed field value to the global average value
resulted in a switch from microbes outcompeting plants for
inorganic N to the opposite trend. Additionally, the choice
of microbial nutrient use efficiencies not only affected the
microbial demand for inorganic nutrients and the concentra-
tions of inorganic N and P, thereby influencing the potential
uptake rates of microbes and roots.

We extended the enzyme allocation approach of the
SEAM model (Wutzler et al., 2017) by including P depen-
dence and vertical explicitness and by assuming a steady
state of enzyme production. Due to the very small micro-
bial C : P ratio used in model parameterisation, our results
indicated that depolymerisation is solely driven by P de-
mand; thus, microbial residues are the preferred substrate
because they have a much lower C : P ratio than polymeric
litter. This is also supported by the massive P biomineralisa-
tion flux (Fig. 7) independent of depolymerisation and gross
mineralisation, indicating that microbial growth is strongly
P limited. Even in the scenario using the global microbial
stoichiometry, depolymerisation was still solely P driven,
and P biomineralisation fulfilled over half of the microbial

P demand (Fig. S5). This result is partly supported by the
global enzymatic activity data, in which global ratios of spe-
cific C, N and P acquisition activities converged on 1 : 1 : 1
(Sinsabaugh et al., 2008), while the global microbial stoi-
chiometry was much higher, indicating that relatively more
resources are allocated to acquire P than to acquire N and
C. This result actually reveals a caveat in the current imple-
mentation of enzyme allocation in JSM: the main process
via which organic P is hydrolysed, biomineralisation and the
mobilisation of sorbed inorganic P due to root exudation are
not included in the enzyme allocation calculation. It also ex-
plains the very small difference between the Base Scenario
and the SEAM-off scenario.

JSM demonstrated a capacity to reproduce the vertical
patterns of soil stocks (Fig. 3) and to satisfactorily produce
both vertical and seasonal patterns of biogeochemical fluxes
(Figs. 5 and 6). While the seasonal patterns are primarily
driven by the temperature response of the represented pro-
cesses, the vertical patterns are shaped by the combined ef-
fects of biochemical and geophysical factors represented in
the model. As seen in Figs. 3 and 4, although total SOC
decreased with soil depth, the microbial, litter and MOC
components showed very different patterns. Following the
COMISSION model (Ahrens et al., 2020), we constrained
the capacity of organo-mineral association with silt and clay
contents and soil bulk density in JSM. In the organic layer
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Figure 9. Simulated enzyme allocation to polymeric litter compared with potential enzyme allocations to polymeric litter given that the
element C, N or P is the most limiting. Black lines: fraction of enzyme allocated to polymeric litter; orange, blue or green lines: potential
enzyme allocation to polymeric litter to maximise C, N or P, respectively. (a) Base Scenario; (b) SEAM-off scenario; (c) ECA-off scenario.
All data points are derived from data from the last 10 years of model experiments.

and topsoil, the continuous litter input sustains a large mi-
crobial biomass and microbial residue pool; however, due to
the very low bulk density and relatively low silt and clay con-
tents, sorption is weak and MOC content is very low. As soil
depth increases, bulk density and silt and clay contents in-
crease such that microbial residues and DOM stabilise to a
greater extent. This hinders microbial DOM assimilation and
nutrient immobilisation, leading to a strong decline in micro-
bial biomass and an increase in MOC. As a consequence of
the decreasing microbial biomass and litter inputs, much less
microbial residue and DOM are available for sorption to the
mineral soil, which explains the observed decrease in total
SOC in deep soil layers.

Nonetheless, certain caveats of this study and JSM should
be discussed. A main challenge is the different simulation
times for different purposes. Our results indicated that in the
upmost 30 cm of soil, SOM content stabilises after 150 years,
while in the upmost 1 m SOM stabilises after 1000 years
of simulation (Fig. 2), regardless of the initial SOM content
(Fig. S2). However, with respect to the radiocarbon profile,
as indicated by Ahrens et al. (2015), a very long simulation
time (13 500 years) was required to match both the measured
114C and SOC profiles at a nearby Norway spruce forest
site. In our study, a 10 000-year simulation time was still not
sufficient to match the measured114C profile, indicating that
an even longer simulation time is required. Although JSM is

very stable in the long term in terms of SOM development
and storage, long-term simulation of soil P balance as a re-
sult of continuous weathering and occlusion remains a sig-
nificant challenge (Fig. 2, Table 1). Such a long simulation
time is unrealistic for the P cycle due to the unknown con-
ditions of the initial soil P pools and the un-equilibrated soil
inorganic P cycling processes (Yang et al., 2014b). Although
we used a much shorter simulation length in this study, no-
ticeable uncertainties remain due to inorganic P cycling pa-
rameters (Table 2). Additionally, the long simulation time re-
quired to match the radiocarbon profiles is also problematic
for future coupling to TBMs because these models typically
examine centennial timescales. A possible solution is to spin
up radiocarbon (> 10 000 years) independent of the plant–
soil spin-up (1000 years), although this approach needs to be
properly tested in the future.

Another caveat involves the model’s representation of mi-
crobial adaptation schemes. In JSM, we describe enzyme al-
location, which is one of the schemes of microbial adapta-
tion proposed by Mooshammer et al. (2014); however, as
discussed above, enzyme allocation to phosphatases might
be essential and might thus need to be included. Addition-
ally, we found out that another adaptation scheme, the mi-
crobial community shift between fungi and bacteria, is cru-
cial for reproducing the vertical pattern of soil stoichiometry.
Although we mimicked such a shift in this study by calibra-
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Figure 10. Normalised output variations in the LHS sensitivity analysis. The selected output variables include respiration; total soil organic
C, N and P; microbial C, N and P; net N mineralisation; microbial N uptake; net P mineralisation; biomineralisation of P; microbial P
uptake and N and P losses. All the calculations are performed for the topmost 1 m of soil based on data from the last 10 years of 1000 LHS
simulations.

tion and parameterisation, a more mechanistic representation
is necessary in the future for representing the acclimation of
microbial functional properties to climate and environmental
changes.

Concerning the model’s description of N dynamics, in
the current version, N processes such as nitrification–
denitrification and abiotic ammonium adsorption are not yet
implemented. Although the simplified N dynamics will prob-
ably not alter the main findings of this study, it is important to
investigate these in the future since plants often have a pref-
erence for ammonium uptake (Masclaux-Daubresse et al.,
2010). Finally, given the good quality of the input data, JSM
could adequately reproduce the soil stocks and flux rates at
the selected study site; however, its capacity to extrapolate to
other climate and soil conditions needs to be further investi-
gated in the future.

JSM is highly non-linear and sensitive to the parameters
controlling microbial growth and decay (Table 2). The C and
N stocks in SOM as well as respiration and net N mineral-
isation are highly sensitive to the parameter changes of de-
polymerisation and organo-mineral association, whereas the
organic or inorganic P stocks and P mineralisation are highly
sensitive to the microbial processes. These trends support,
and also explain, the finding of Yang and Post (2011) and
Tipping et al. (2016) that the P cycle is decoupled from the

C and N cycles in the soil. A more in-depth explanation of
this difference, based on our results, is that the gross miner-
alisation associated with microbial DOM uptake can supply
microbes and plants with sufficient N but not P; thus, a large
amount of P needs to be mobilised, particularly from SOM
as well as from mineral pools, to sustain microbial growth.
Therefore, the microbial pools and soil P stocks or fluxes are
highly sensitive to microbial processes.

5 Summary and future directions

We presented the mathematical formulation for a new SOC
model – JSM – which is an extension of the vertically
explicit, microbially based and organo-mineral association-
enabled SOC model, COMISSION, developed by introduc-
ing the N and P processes via novel approaches such as
optimised enzyme allocation, nutrient acquisition competi-
tion and process acclimation. The model was evaluated with
the observed C, N and P stocks of SOM; soil inorganic P
stock; microbial C, N and P contents; and soil bulk density
in the topmost 1 m of soil in a beech forest stand in Germany.
JSM captured the extents and vertical patterns of these obser-
vations. We further presented the main features of nutrient
cycling under the new model structure and the sensitivities
of model outputs to parameter changes; both indicated that
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the P cycle is largely decoupled from the C and N cycles
and shows very close associations with microbial dynamics.
Evaluation of model experiments underscores the need for
improved representation of microbial dynamics in JSM, par-
ticularly their interactions with the P cycle.

To better represent microbial dynamics, we would need
a detailed and advanced understanding of microbial pro-
cesses from experiments for implementation and testing in
the model. For example, how will microbial C use efficiency
change in response to changes in C sources (e.g. DOM or
litter addition) and nutrient availability (e.g. N and P addi-
tion)? How starkly does the microbial community adjust its
stoichiometry, change its element use efficiency or alter ex-
tracellular enzyme synthesis under dynamic external condi-
tions?

Next steps for the evaluation of JSM are to investigate the
effects of P cycling on microbial dynamics and SOM cycling
in greater detail by subjecting it to other beech forest sites in
Germany along a soil P availability gradient and to evaluate
whether the contrasting P cycling patterns proposed by Lang
et al. (2017) – “acquiring system” and “recycling system” –
can be reproduced. Such a model evaluation is expected to
identify the key or missing processes of the model to repro-
duce the contrasting P cycling schemes and to assess their
effects on the SOM turnover or stability.

JSM was developed under the framework of the new bio-
sphere model QUINCY, and the future plan is to apply
this model coupled with the vegetation component of the
QUINCY model described by Thum et al. (2019), which
will offer an alternative to better represent the interactions
between root growth or activity and SOM turnover and sta-
bilisation in TBMs.

Code availability. JSM is developed using the framework of
the QUINCY model and is licensed under GNU GPL ver-
sion 3. The scientific code of JSM requires software from
the MPI-ESM environment, which is subject to the MPI-M-
Software-License-Agreement in its most recent form (http://www.
mpimet.mpg.de/en/science/models/license, last access: 14 Novem-
ber 2019; MPI-MET, 2019). The source code is available online
(https://git.bgc-jena.mpg.de/quincy/quincy-model-release, branch
“jsm/release01”; https://doi.org/10.17871/quincy-model-2019, Yu
et al., 2019), but access is restricted to registered users. Readers
interested in running the model should request a username and
password from the corresponding authors or via the git repository.
Model users are strongly encouraged to follow the fair-use pol-
icy stated at https://www.bgc-jena.mpg.de/bgi/index.php/Projects/
QUINCYModel (last access: 14 November 2019; Zaehle, 2019).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-13-783-2020-supplement.
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