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Abstract. Geological uncertainty quantification is critical to
subsurface modeling and prediction, such as groundwater,
oil or gas, and geothermal resources, and needs to be con-
tinuously updated with new data. We provide an automated
method for uncertainty quantification and the updating of ge-
ological models using borehole data for subsurface devel-
opments within a Bayesian framework. Our methodologies
are developed with the Bayesian evidential learning proto-
col for uncertainty quantification. Under such a framework,
newly acquired borehole data directly and jointly update ge-
ological models (structure, lithology, petrophysics, and flu-
ids), globally and spatially, without time-consuming model
rebuilding. To address the above matters, an ensemble of
prior geological models is first constructed by Monte Carlo
simulation from prior distribution. Once the prior model is
tested by means of a falsification process, a sequential di-
rect forecasting is designed to perform the joint uncertainty
quantification. The direct forecasting is a statistical learning
method that learns from a series of bijective operations to
establish “Bayes–linear-Gauss” statistical relationships be-
tween model and data variables. Such statistical relation-
ships, once conditioned to actual borehole measurements, al-
low for fast-computation posterior geological models. The
proposed framework is completely automated in an open-
source project. We demonstrate its application by applying
it to a generic gas reservoir dataset. The posterior results
show significant uncertainty reduction in both spatial geo-
logical model and gas volume prediction and cannot be fal-
sified by new borehole observations. Furthermore, our auto-
mated framework completes the entire uncertainty quantifi-
cation process efficiently for such large models.

1 Introduction

Uncertainty quantification (UQ) is at the heart of decision
making. This is particularly true in subsurface applications
such as groundwater, geothermal resources, fossil fuels, CO2
sequestration, or minerals resources. Uncertainty on the ge-
ological structures, rocks, and fluids is due to the lack of ac-
cess to the subsurface geological medium. For most of the
subsurface applications, knowledge of the geological settings
is mainly gained through the drilling of well boreholes where
geophysical or rock physical measurements are made. For
example, several tens to hundreds of boreholes are drilled
in geothermal or groundwater appraisals (e.g., Le Borgne et
al., 2006; Klepikova et al., 2011; Vogt et al., 2010), while in
mineral resources and shale gas, the number of boreholes can
even be in the thousands (e.g., Curtis, 2002; Abbott, 2013).
From borehole data, geological models are constructed for
appraisal and uncertainty quantification, such as estimating
water volumes stored in groundwater systems or heat stor-
age in a geothermal system. Realistic geological modeling
involves complex procedures (Caumon, 2010, 2018; de la
Varga et al., 2019). This is due to the hierarchical nature
of geological formations: fluids are contained in a porous
medium, the porous medium is defined by various litholo-
gies, and lithological variation is contained in faults and lay-
ers (structure). In addition, boreholes are not drilled all at
once but throughout the lifetime of managing the Earth’s re-
source.

Representing the unknown subsurface geological reality
by a single deterministic model has been commonly done
(Beven, 1993; Royse, 2010), mostly by means of a single re-
alization of the structure (layers or faults), rock, and fluid
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model derived from the borehole data with other support-
ing geological and geophysical interpretations (e.g., Fischer
et al., 2015; Kaufmann and Martin, 2008). However, rely-
ing on a single model cannot reflect the inherent geological
uncertainty (Neuman, 2003). Recent advances in geostatis-
tics have shown the importance of using multiple model re-
alizations for uncertainty quantification in many geoscience
fields, including glaciology (e.g., Cullen et al., 2017), hy-
drogeology (e.g., Barfod et al., 2018; Zhou et al., 2014),
hydrology (e.g., Goovaerts, 2000; Marko et al., 2014), hy-
drocarbon reservoir modeling (e.g., Caers and Zhang, 2004;
Christie et al., 2002; Dutta et al., 2019; Yin et al., 2019),
and geothermal (e.g., Rühaak et al., 2015; Vogt et al., 2010).
Geostatistical approaches can provide multiple geological
models that are conditioned or constrained to borehole data.
When new boreholes are drilled, uncertainty needs to be up-
dated. While uncertainty updating in the form of data assim-
ilation is commonly applied to various subsurface applica-
tions, it is rarely used for updating newly drilled borehole
data, often termed “hard data” in geostatistical literatures
(Goovaerts, 1997). Elfeki and Dekking (2007) used a cou-
pled Markov chain (CMC) approach to calibrate a hydroge-
ological lithology model by conditioning on boreholes in the
central Rhine–Meuse delta in the Netherlands, and they then
ran a Monte Carlo simulation to reevaluate the hydrogeolog-
ical uncertainty. A similar approach was also used by Li et
al. (2016) to reduce the uncertainty in near-surface geology
for the risk assessment of soil slope stability and safety in
Western Australia. Jiménez et al. (2016) updated 3-D hydro-
geological models by adding new geological features identi-
fied from borehole tracer tests. Eidsvik and Ellefmo (2013)
and Soltani-Mohammadi et al. (2016) investigated the value
of information of additional boreholes for uncertainty reduc-
tion in mineral resource evaluations.

The problem of geological uncertainty, due to its inter-
pretative nature and the presence of prior information, is of-
ten handled in a Bayesian framework (Scheidt et al., 2018).
The key part often lies in the joint quantification of the prior
uncertainty on all modeling parameters, whether structural,
lithological, petrophysical, or fluid. A common problem is
that the observed data may lie outside the defined prior model
and hence are falsified. Another major issue is that most of
the state-of-the-art uncertainty updating practices deal with
each geological model component separately (a silo treat-
ment of each UQ problem). However, the borehole data in-
form all components jointly, and hence any separate treat-
ment ignores the likely dependency between the model com-
ponents, possibly returning unrealistic uncertainty quantifi-
cation. A final concern, more practically, lies around au-
tomating any uncertainty updating. Geological modeling of-
ten requires significant individual or group expertise and
manual intervention to make the model adhere to geological
rules, hence often requiring months of work when new data
are acquired. There is to date, no method that addresses, with

borehole data, the falsification, the joint uncertainty quantifi-
cation, and the automation problem.

Recently, an uncertainty quantification protocol termed
Bayesian evidential learning has been proposed to address
decision making under uncertainty, and it has been applied
to cases in oil or gas, groundwater contaminant remedia-
tion and geothermal energy (Athens and Caers, 2019; Her-
mans et al., 2018, 2019; Scheidt et al., 2018). It provides ex-
plicit standards that need to be reached at each stage of its
UQ design with the purpose of decision making, including
model falsification, global sensitivity analysis, prior elicita-
tion, and data-science-driven uncertainty reduction under the
principle of Bayesianism. Compared to the previous works
on Bayesian evidential learning (BEL), model falsification,
statistical learning-based uncertainty reduction approaches,
and automation are what is of concern in this paper. Also,
we will deal with one specific data source: borehole data,
through logging or coring, for geological uncertainty quan-
tification. First, we will introduce a scheme to address the
model falsification problem involving borehole data by using
robust Mahalanobis distance. We will then extend a statisti-
cal learning approach termed direct forecasting (Hermans et
al., 2016; Satija et al., 2017; Satija and Caers, 2015) to re-
duce uncertainty of all geological model parameters jointly,
using all (new) borehole data simultaneously. To achieve this,
we will present a model formulation that involves updating
based on the hierarchy typically found in subsurface forma-
tion: structures, then lithology, and then property and fluid
distribution. Finally, we will show how the proposed frame-
work can be completely automated in an open-source project.
With a generalized field case study of uncertainty quantifica-
tion of gas volume in an offshore reservoir, we will illustrate
our approach and emphasize the need for automation, min-
imizing the need for tuning parameters that require human
interpretation.

2 Methodology

2.1 Bayesian evidential learning

2.1.1 Overview

We establish the geological uncertainty quantification frame-
work based on BEL, which is briefly reviewed in this sec-
tion. BEL is not a method, but a prescriptive and norma-
tive data-scientific protocol for designing uncertainty quan-
tification within the context of decision making (Athens and
Caers, 2019; Hermans et al., 2018; Scheidt et al., 2018).
It integrates four constituents in UQ – data, model, predic-
tion, and decision under the scientific methods and philoso-
phy of Bayesianism. In BEL, the data are used as evidence
to infer model or/and prediction hypotheses via “learning”
from the prior distribution, whereas decision making is ul-
timately informed by the model and prediction hypotheses.
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The BEL protocol consists of six UQ steps: (1) formulating
the decision questions and prediction variables; (2) statement
of model parametrization and prior uncertainty; (3) Monte
Carlo and prior model falsification with data; (4) global
sensitivity analysis between data and prediction variables;
(5) uncertainty reduction based on statistical learning meth-
ods that reflect the principle of Bayesian philosophy; (6) pos-
terior falsification and decision making. Bayesian methods,
particularly in the Earth sciences rely on the statement of
prior uncertainty. However, such a statement may be incon-
sistent with data in the sense that the prior cannot predict the
data, hence the important falsification step. We next provide
important elements of BEL within the problem of this paper:
prior model definition, falsification, and inversion by direct
forecasting.

2.1.2 Hierarchical model definition

In geological uncertainty quantification, any prior uncer-
tainty statement needs to involve all model components
jointly. A geological modelm typically consists of four com-
ponents that are modeled in hierarchical order: structural
model χ (e.g., faults, stratigraphic horizons), rock types ζ
(which are categorical, e.g., sedimentary or architectural fa-
cies), petrophysics model κ (e.g., density, porosity, perme-
ability), and subsurface fluid distribution τ (e.g., water satu-
ration, salinity).

m= {χ ,ζ ,κ,τ } (1)

The uncertainty model then becomes the following sequen-
tial decomposition:

f (m)=f (χ ,ζ ,κ,τ )= f (τ |χ ,ζ ,κ)f (κ |χ ,ζ )

f (ζ |χ)f (χ) . (2)

In addition, because of the spatial context of all geological
formations, we divide the model variables into global and
spatial ones. The global variables, such as proportions, de-
positional system interpretation, or trend, are scalars and not
attached to any specific grid locations, whereas the spatial
variables are gridded. Here, we term the global variables as
mgl, and the spatial ones as msp In this way, the geological
model variables are

m=
{(
χgl,χ sp

)
,
(
ζ gl,ζ sp

)
,
(
κgl,κsp

)
,
(
τ gl,τ sp

)}
. (3)

The prior uncertainty f (m) of the global and spatial vari-
ables needs to be specified for each model component; this
is problem specific and may require a substantial amount
of work by considering the existing data (e.g., the sys-
tem is deltaic) and any prior knowledge about the inter-
preted systems. Using the prior distribution f (m), we run
Monte Carlo to generate a set of L model realizations{
m(1),m(2), . . .,m(L)

}
. This means instantiating all geolog-

ical variables χ ,ζ ,κ,τ jointly.

Since borehole data provide information at the locations of
drilling, we define the data variables d through an operator
Gd .

d =Gd m (4)

Gd is simply a matrix in which each element is either 0 or
1, identifying the locations of boreholes in the model m. In
this sense, borehole data are linear data because of the linear
forward operator. By applying Gd to prior geological model
realizations, we obtained a set of L samples of the borehole
data variable.

d =
{
d(1),d(2), . . .,d(L)

}
(5)

Note that we term the actual acquired data dobs.
The prediction variable h, such as storage volume of a

groundwater aquifer or the heat storage of a geothermal
reservoir, is defined through another operator (linear or non-
linear):

h=Gh(m). (6)

Applying this function to the prior model realizations we get

h=
{
h(1),h(2), . . .,h(L)

}
. (7)

A common problem in practice is that the statement of the
prior may be too narrow (overconfidence) and hence may
not in fact predict the observed data. In falsification, we use
hypothetic–deductive reasoning to attempt to reject the prior
by means of data, namely by stating the null hypothesis: the
prior can predict the observation and attempt to reject it. This
step does not involve matching models to data; it is only a
statistical test. One way of achieving this is using outlier de-
tection as discussed in the next section.

2.1.3 Falsification using multivariate outlier detection

The goal of falsification is to test that the prior model is not
wrong. The prior model should be able to predict the data.
Our reasoning then is that a prior model is falsified if the ob-
served data dobs are not within the same population as the
samples d(1),d(2), . . .,d(L); i.e., dobs is an outlier. Evidently,
the data variable can be high dimensional due to a large num-
ber of wells with various types of measurements on structure,
facies, petrophysics, and saturation, which calls for multi-
variate outlier detection. We propose in this paper to use a
robust statistical procedure based on Mahalanobis distance
to perform the outlier detection. The robust Mahalanobis dis-
tance (RMD) for each data variable realization d(l) or dobs is
calculated as

RMD(d(l))=

√(
d(l)−µ

)T
6−1

(
d(l)−µ

)
,

for l = 1, 2, . . .,L , (8)
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where µ and 6 are the robust estimation of mean and covari-
ance of the data (Hubert and Debruyne, 2010; Rousseeuw
and Driessen, 1999). Assuming d distributes as a multi-
variate Gaussian, the distribution of [RMD

(
d(l)

)
]
2 will be

chi-squared χ2
d . We will use the 97.5 percentile of

√
χ2
d

as
the tolerance for the multivariate dimensional points d(l). If
the RMD(dobs) falls outside the tolerance (RMD(dobs) >
√
χ2
d,97.5), the dobs will be regarded as outliers, which means

the prior model has a very small probability of predicting the
actual observations; hence it is falsified. It should be noted
that the dobs dealt with in this paper is at model grid reso-
lution. Outlier detection using the Mahalanobis distance has
the advantage of providing robust statistical calculations. In
addition, diagnostic plots can be used to visualize the result
for high-dimensional data. However, it requires the marginal
distribution of data to be Gaussian. If the data variables are
not Gaussian, other outlier detection approaches such as one-
class support vector machine (SVM) (Schölkopf et al., 2001)
or isolation forest (Liu et al., 2008) can be used.

2.2 Direct forecasting

2.2.1 Review

If the prior model cannot be falsified, we will use direct fore-
casting to reduce geological model uncertainty. Direct fore-
casting (DF) is a prediction-focused data science approach
for inverse modeling (Hermans et al., 2016; Satija et al.,
2017; Satija and Caers, 2015). The aim is to estimate/learn
the conditional distribution f (h|d) between the prediction
variable h and data variable d from prior Monte Carlo sam-
ples. Then, instead of using traditional inverse methods that
require rebuilding models to update prediction, direct fore-
casting directly calculates the conditional prediction distri-
bution f (h|dobs) through the statistical learning based on
data. The learning strategy of direct forecasting is that, by
employing bijective operations, the non-Gaussian problem
f (h|d) can be transformed into a linear-Gauss problem of
transformed variables

(
h∗,d∗

)
:

h∗ ∼ exp
(
−

1
2

(
h∗−h∗prior

)T
C−1

prior

(
h∗−h∗prior

))
;

d∗obs;d
∗
=Gh∗ , (9)

where G is coefficients that linearly map h∗ to d∗. This
makes f (h∗|d∗obs) become a “Bayes–linear-Gauss” problem
that has an analytical solution:

E
[
h∗|d∗obs

]
= h∗posterior = h

∗

prior+CpriorGT(
GCpriorGT

)−1(
d∗obs−Gh∗prior

)
,

Var
[
h∗|d∗obs

]
= Cposterior = Cprior−CpriorGT(

GCpriorGT
)−1

GCprior . (10)

In detail, the specific steps of direct forecasting are

1. Monte Carlo: generateL samples of prior model and run
forward function to evaluate data and prediction vari-
ables.

2. Orthogonality: PCA (principal component analysis) on
data variable d and prediction variable h.

3. Linearization: maximize linear correlation between the
orthogonalized data and variables by normal score
transform and CCA (canonical component analysis),
obtaining transformed h∗,d∗.

4. Bayes–linear-Gauss: calculate conditional mean and co-
variance of the transformed prediction variable.

5. Sampling: sample from the posterior distribution of
transformed prediction variable h∗posterior.

6. Reconstruction: invert all bijective operations, obtaining
hposterior in the original space.

One key question in direct forecasting is how to determine
the Monte Carlo samples size L. Usually, the samples size L
lies between 100 and 1000, according to the studies in water
resources (Satija and Caers, 2015), hydrogeophysics (Her-
mans et al., 2016), and hydrocarbon reservoirs (Satija et al.,
2017).

Direct forecasting can also be extended to update model
variables, by simply replacing the prediction variable h

by model variable m in the above algorithms, to obtain
f (m|dobs) without conventional model inversions (Park,
2019). However, the high dimensionality of spatial models
(millions of grid cells) imposes challenge to such an exten-
sion. This is because CCA requires the sum of input data
and model variable dimensions to be smaller than the Monte
Carlo samples size L: L > dim(d)+ dim(m). Otherwise it
will always produce perfect correlations (correlation coeffi-
cients be 1) (Pezeshki et al., 2004). Although PCA can signif-
icantly reduce the dimensionality ofm from L×P to L×L,
where P is the number of model parameters and L� P , this
requirement is still difficult to meet. Global sensitivity anal-
ysis is therefore applied to select a subset of the PCA or-
thogonalized m that is most informed by the data variables.
The subset m may retain only a few principal components
(PCs) (Hoffmann et al., 2019), depending on how informa-
tive the boreholes are. For unselected (non-sensitive) model
variables, they remain random according to their prior em-
pirical distribution. Both the sensitive and non-sensitive vari-
ables will be used for posterior reconstruction in step 6. In
this paper, we use a distance-based generalized sensitivity
analysis (DGSA) method (Fenwick et al., 2014; Park et al.,
2016) to perform sensitivity analysis. Compared to the other
global sensitivity analyses, such as variance-based methods
(e.g., Sobol, 2001, 1993), regionalized methods (e.g., Pap-
penberger et al., 2008; Spear and Hornberger, 1980), or tree-
based method (e.g., Wei et al., 2015), DGSA has its specific
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advantages for high-dimensional problems while requiring
no functional form between model responses and model pa-
rameters. It can efficiently compute global sensitivity, which
makes it preferred for our geological UQ problem where the
models are large and computationally intensive. When per-
forming PCA on the data variable d , we select the PCs by
preserving 90 % variance. Note that borehole data are in a
much lower dimension than spatial models and hence are al-
ready low dimension.

2.2.2 Direct forecasting on a sequential model
decomposition

We defined our prior uncertainty model (Eq. 2) through a se-
quential decomposition of hierarchical model components.
Likewise, the conditioning of such model components to
borehole data will be done, using direct forecasting in a se-
quential fashion:

f (χ ,ζ ,κ,τ |dobs)=

f
(
τ |χposterior,κposterior,ζ posterior,dobs,τ

)
f
(
κ |χposterior,ζ posterior,dobs,κ

)
f
(
ζ |χposterior,dobs,ζ

)
f
(
χ |dobs,χ

)
. (11)

Following this equation, the joint uncertainty quantification
is equivalent to a sequential uncertainty quantification, where
the uncertainty quantification of one model component con-
ditions to borehole data and posterior models of the previous
components. Direct forecasting has not been applied within
this framework of Eq. (11); hence this is one of the new con-
tributions in this paper. In applying direct forecasting we will
use the posterior realizations of χ and prior realizations of ζ
to determine a conditional distribution f

(
ζ |χposterior

)
; then

we evaluate this using borehole observations dobs,ζ of ζ .
To apply this framework to discrete variables such as

lithology, we need a different method for dimension reduc-
tion than using PCA. PCA relies on a reconstruction by a lin-
ear combination of principal component vectors, which be-
comes challenging when the target variable is discrete. Fig-
ure 1 shows this problem that discrete lithology model can-
not be recovered from inverse PCA. To avoid this, a level
set method of signed distance function (Osher and Fedkiw,
2003; Deutsch and Wilde, 2013) is employed to transform
rock type models into a continuous scalar field of signed dis-
tances before applying PCA. Here, considering S discrete
rock types in model ζ , for each sth (s = 1, 2, . . .,S) rock
type, the signed distance ψs (x) from location x to its closest
boundary xβ can be computed as

ψs(x)=

{
+
∥∥x− xβ∥∥ , if ζ (x)= s
−
∥∥x− xβ∥∥ , otherwise s = 1, 2, . . ., S. (12)

Figure 2 illustrates the concept of using a signed distance
function to first transform a sedimentary lithology model to
continuous signed distances for PCA. We observe that, with

the signed distance as an intermediate transformation, the in-
verse PCA recovers the lithology model. In the case of mul-
tiple categories, we will have multiple signed distance func-
tions.

2.3 Automation and code

Our objective of automation is to allow for seamless uncer-
tainty quantification once the prior uncertainty models have
been established. Therefore, following the above-described
geological UQ strategies, we design a workflow in Fig. 3
to automate the implementation. The workflow starts with
the prior model Monte Carlo (MC) samples and borehole
observations as input. All following steps including the ex-
traction of borehole data variables, prior falsification, se-
quential direct forecasting, posterior prediction, and falsifica-
tion (if required) are completely automated. With this work-
flow, we develop an open-source Python implementation
to execute the automation (named “AutoBEL”). This open-
source project can be accessed from Github (repository:
https://github.com/sdyinzhen/AutoBEL-v1.0, last access: 13
January 2020, https://doi.org/10.5281/zenodo.3479997, Yin,
2019). Figure 4 briefly explains the structure of the Python
implementation. Once a new borehole observation and prior
model are provided from the “Input” directory, this au-
tomation implementation allows the uncertainty quantitation
and updating to be performed automatically by running the
Jupyter Notebook “Control panel”. The results from the au-
tomated uncertainty quantification are stored in the “Output”,
classified as “Model”, “Data”, and “Prediction”.

3 Application example

3.1 The field case

We demonstrate the application of the automated UQ frame-
work using a synthetic dataset inspired by a gas reservoir lo-
cated offshore of Australia. This case study is regarded as
synthetic due to simplification for generic application and
because of confidentiality issues. Its spatial size is around
50 km (E–W)×25 km (N–S) with a thickness ranging from
75 to 5 m. The reservoir rocks are deposited in a shallow ma-
rine environment, with four lithological facies belts corre-
sponding to four different types of porous rocks (Fig. 5a).
The rock porous system contains natural gas and formation
water. The major challenges lie in quantifying spatial geolog-
ical uncertainty, appraising gas initially in place (GIIP), and
then fast updating the uncertainty quantification when new
boreholes are drilled. This will directly impact the economic
decision making for reservoir development.

Initially, the reservoir geological variation is represented
on a 3-D model (Fig. 5b) with a total of 1.5 million grid cells
with dimension of 200× 100× 75 (layers). Companies of-
ten drill exploration and appraisal wells before going ahead
with producing the reservoir. They would like to decrease
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Figure 1. PCA on discrete lithology model: (a) the original lithology model; (b) scree plot of PCA on the lithology model. (c) The recon-
structed model from inverse PCA using the preserved PCs (marked by the red dashed line on the scree plot).

Figure 2. Example of transforming categorical lithology model to continuous signed distances for performing PCA.

uncertainty by such drilling to a point where the risk is con-
sidered tolerable to start actual production. To mimic such
a setting, we consider that initially four well bores (w1, w2,
w3, w4; marked in Fig. 5b) have been acquired and that mod-
els have been built using the data from these wells. Then nine
new wells (w5 to w13 in Fig. 5b) are drilled, and uncertainty
needs to be updated. The idea is to use the nine new wells to
automatically update the reservoir uncertainty using the pro-
cedures developed above. In order to validate our results, we
will use observations from w7 to w13 to reduce the uncer-
tainty, whereas observations from w5 and w6 will be used to
analyze the obtained uncertainty quantification.

3.2 Prior model parameterization and uncertainty

3.2.1 Approaches

The reservoir geological properties responsible for reserve
appraisals are spatial variations in (1) reservoir thickness,
spatial distributions of (2) lithological facies belts, (3) 3-D
porosity, and (4) 3-D formation water (saturation), while the
spatial heterogeneity of (5) 3-D permeability is critical to the
future production of gas but is not used in volume appraisal.
Constructing a prior uncertainty model for these properties
requires a balance between considering aspects of the data
and overall interpretation based on such data. The strategy in
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Figure 3. Proposed workflow to automate the geological uncertainty quantification.

Figure 4. The structure of the AutoBEL python implementation
project.

the BEL framework is not to state too narrow an uncertainty
initially but rather to explore a wide range of possibilities.
Based on interpretation from data, Table 1 contains all un-
certainties and their prior distribution was constructed. We
will clarify how these uncertainties were obtained.

Thickness

First, the thickness uncertainty is mainly due to a limited res-
olution of the geophysical seismic data and uncertainty in ve-
locity modeling (not shown in this paper). Seismic interpre-
tations show no faults in the geological system, but the thick-
ness variations follow a structural trend. To model thickness
uncertainty, we decompose thickness Z(x) into an uncertain
trend T (x) and uncertain residual R(x):

Z(x) = T (x) + R(x). (13)

Note that most common geostatistical approaches do not con-
sider uncertainty in trend. Uncertainty in T (x) can be esti-
mated using geophysical data such as seismic, electrical re-
sistivity tomography, or airborne electromagnetics. This case
study uses seismic data. We describe uncertainty in the trend

using a 2-D Gaussian process (Goovaerts, 1997) with un-
certain expectation and spatial covariance. The expectation
is interpreted from seismic data with a vertical resolution
of 15 m, while the uncertain spatial covariance is modeled
using a geostatistical variogram of seismic data with uncer-
tain range (spatial correlation length) and sill (variance). The
residual R(x) is modeled using a zero-mean 2-D Gaussian
process with unknown spatial covariance. This term is highly
uncertain, in particular the covariance, because the residual
term is observed only at four initial borehole locations. How-
ever, the variogram range is assumed to be much smaller than
the trend variogram, as residuals aim to represent more local
features. Once the Gaussian process is defined, it can be con-
strained (conditioned) to the actual thickness observation at
the vertical boreholes through the generation of conditional
realizations. Note that these conditional realizations contain
the uncertainties of trend and residual terms (Fig. 6).

Facies

The lithological facies are considered to have rather simple
spatial variability and are described as “belts” (see Fig. 5a).
These are common in the stratigraphic progression and typi-
cal of shallow marine environments. To describe such vari-
ation, we use a 3-D Gaussian process that is truncated
(Beucher et al., 1993), thereby generating discrete variables.
This truncated Gaussian process has a specific advantage in
reproducing simple organizations of ordered lithologies, thus
making a useful model in our case. Because four facies ex-
ist, three truncations need to be made on the single Gaus-
sian field. The truncation bounds are determined based on
facies proportions. The uncertain facies proportions are ob-
tained from lithological interpretations on borehole gamma
ray logs and geophysical seismic interpretation.
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Figure 5. (a) The field geology conceptual model with the four facies belts. (b) The initial 3-D geological model of facies with locations of
existing boreholes and newly drilled boreholes.

Figure 6. Layer view of prior Monte Carlo model samples of thickness trend and corresponding thickness, facies, porosity, permeability
(logarithmic, termed log-perm), and Sw.

Porosity and permeability

For each facies belt, rock porosity and permeability (logarith-
mic scale, termed log-perm) are modeled, using two corre-
lated 3-D Gaussian processes. The cross-covariances of these
processes are determined via Markov models (Journel, 1999)

that only require the specification of a correlation coefficient.
Laboratory measurements on the borehole rock core samples
show that permeability is linearly correlated to porosity with
a coefficient of 0.80 and a small experimental error (around
6 % random error according to the lab scientists by repeating
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Table 1. The global model parameter mgl and its prior uncertainty distribution f (mgl). The initial prior distributions of the parameters are
mostly assumed to be uniform (formulated as U [min, max]) due to limited available data.

Model Global parameters: mgl Prior uncertainty: f (mgl) Source for prior uncertainty statement

Reservoir thickness Thickness expectation – Zmean U [36, 51] m Geophysical seismic interpretations,
initial borehole measurements

Variogram range of trend – Trange U [10 000, 40 000] m

Variogram sill of trend – Tsill U [350, 650]

Variogram range of residual – Rrange U [1000, 5000] m

Variogram sill of residual – Rsill U [4, 100]

Lithological
facies

Proportion of facies 1 – f ac1 U [0.22, 0.36] Boreholes gamma ray logs, seismic am-
plitude maps

Proportion of facies 2 – f ac2 U [0.07, 0.27]

Proportion of facies 3 – f ac3 U [0.13, 0.19]

Porosity and
permeability

Porosity mean in facies 1 – φ1 U [0.175, 0.225] Borehole neutron porosity logs,
laboratory measurements
on core samples

Porosity mean in facies 2 – φ2 U [0.275, 0.325]

Porosity mean in facies 3 – φ3 U [0.225, 0.275]

Porosity mean in facies 0 – φ U [0.125, 0.175]

Variogram range of porosity – φrange U [4000, 10 000] m

Variogram sill of porosity – φsill U [0.0015, 0.003]

Correlation coeff. between Porosity and
log-perm – rφk

Normal(0.80, 0.0025)

log-perm mean in facies 1 – k1 U [0.3, 1.3] log(mD)

log-perm mean in facies 2 – k2 U [1.6, 2.6] log(mD)

log-perm mean in facies 3 – k3 U [1, 2] log(mD)

log-perm mean in facies 0 – k0 U [−1.6, −0.6] log(mD)

Variogram range of permeability –
krange

U [4000, 10 000] m

Variogram sill of permeability – ksill U [0.9, 1.4]

Saturation
(Sw)

Coeff.a of Eq. (14) (capillary pressure
model) – a

U [0.041, 0.049] Laboratory capillary pressure experi-
ments on rock core and fluid samples

Coeff.b of Eq. (14) – b U [0.155, 0.217]

Coeff.c of Eq. (14) – c U [0.051, 0.203]

the experiments). The marginal distributions of porosity and
log-perm are assumed to be normal but with uncertain mean
and variances. The mean of porosity and log-perm is based
on borehole neutron porosity logs and core sample measure-
ments. Similar to the thickness residual modeling, the spa-
tial covariances are modeled via a variogram, respectively,
for porosity and permeability, with uncertain range and sill.
Limited wellbore observations make variogram range and sill

highly uncertain, and therefore large uncertainty bounds are
assigned.

Saturation

Rocks contain gas and water; hence the uncertain saturation
of water (Sw) will affect the uncertain gas volume calcula-
tions. The modeling of Sw is based on a classical empirical
capillary pressure model from a Leverett J-function (Leverett
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Figure 7. Uncertainty quantification of GIIP based on prior uncer-
tainty and four boreholes.

et al., 1942), formulated as

Sw= 10−a·[log(j)]2
−b·log(j)−c, (14)

where j = 0.0055 ·h
√
∅/k and h is height above the reser-

voir free water level. The uncertainty parameters in this fluid
modeling are the coefficients a, b, and c. Their prior distri-
butions are provided by capillary pressure experiments using
rock core plugs and reservoir fluids as shown in Table 1.

3.2.2 Monte Carlo

By running Monte Carlo from the given prior distribution
in Table 1, a set of 250 geological model realizations are
generated. Figure 6 displays Monte Carlo realizations of the
geological model: thickness trend and corresponding thick-
ness model, facies, porosity, permeability (log-perm), and
Sw. With prior samples of the geological model, prior pre-
diction of GIIP is calculated, using the following linear equa-
tion:

GIIP= study area · thickness · porosity · (1−Sw)/Bg, (15)

where the Bg is the gas formation volume factor provided
from laboratory measurements. The calculated GIIP predic-
tion is plotted in Fig. 7. The plot shows that the initial predic-
tion of reservoir gas storage volume has a wide range, which
means a significant risk can exist during decision making for
field development.

3.3 Prior falsification with newly acquired borehole
data

Table 1 is a subjective statement of prior uncertainty. When
new data are acquired, this statement can be tested, using a
statistical test (Sect. 2.1.3) that may lead to a falsified prior.
To perform falsification, borehole data variables at the seven
new well locations (from w7 to w13) are extracted by ap-
plying the data forward operator Gd to the 250 prior model

Figure 8. Prior falsification using robust Mahalanobis distance
(RMD). Circle dots represent the calculated RMD for data variable
samples. The red square is the RMD for borehole observations. The
red dashed line is the 97.5 percentile of the chi-squared distributed
RMD.

realizations. It simply means extracting all thickness, facies,
petrophysics, and saturation at the borehole locations in the
prior model. For the 2-D thickness model, the new bore-
holes provide seven data extraction locations. For the 3-D
model of facies, porosity, permeability, and Sw, each vertical
borehole drills through 75 grid layers; thus the seven bore-
holes provide 2100 extracted data measurements (75 data
measurements/well ×7 wells ×4 model components = 2100
data measurements). The dimensionality of data variable d
in this case therefore equals 2107. The actual observations
of these data (dobs) are measured from the borehole wire-
line logs and upscaled to the model resolution vertically. As
described in Sect. 2.1.3, prior falsification is then conducted
by applying the robust Mahalanobis distance outlier detec-
tion to d and dobs. Figure 8 shows the calculated RMD for
dobs and the 250 samples of d , where the distribution of the
calculated RMD(d) falls to a chi-squared distribution, with
the RMD(dobs) falling below the 97.5 percentile threshold.
This shows with (97.5) confidence that the prior model is not
wrong.

3.4 Automatic updating of uncertainty with new
boreholes

After attempting to falsify the prior uncertainty model,
we use the automated framework to jointly update model
uncertainty with the new boreholes. The joint model
uncertainty reduction is performed sequentially as ex-
plained in Sect. 2.2.2. Under the AutoBEL GitHub reposi-
tory instruction (https://github.com/sdyinzhen/AutoBEL-v1.
0/blob/master/README.md, last access: 13 January 2020),
we also provide a supplement YouTube video to demonstrate
how this automated update is performed.
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Figure 9. Example of applying PCA to thickness model. One model realization l (l = 12, . . .L) can be represented by the linear combination
of eigen images scaled by the PC scores m∗

l
.

3.4.1 Thickness and facies

Uncertainty in facies and thickness models can be updated
jointly, as they are two independent components for this case.
AutoBEL first transforms the categorical facies to a contin-
uous model using signed distance function. The transformed
signed distances are then combined with the thickness model
to perform orthogonalization using mixed PCA (Abdi et al.,
2013). As shown in Fig. 9, the first eigen image (first princi-
pal components, PC1) of thickness reflects the global varia-
tions in reservoir thickness, while higher-order eigen images
(e.g., eigen image of PC40) represent more local variation
features. To evaluate what model variables impact thickness
variation at the boreholes, DGSA (Fenwick et al., 2014) is
then performed to analyze the sensitivity of model variables
to data. Figure 10a plots the main effects in a Pareto plot. As
shown in the plot, DGSA identifies sensitive (measure of sen-
sitivity > 1) and non-sensitive (measure of sensitivity < 1)
model variables. Thickness global parameters of both trend
(Zmean, Trange, Tsill) and residuals (Rrange) show sensitivity to
the borehole data. In terms of facies, proportions of the fa-
cies 1 (fac1) and 2 (fac2) are sensitive. There are, in total, 26
sensitive principal components from the spatial model. These
sensitive global variables and principal component scores are
now selected for uncertainty quantification.

Following the steps of direct forecasting (see Sect. 2.2.1),
uncertainty reduction proceeds by mapping all sensitive
model variables into a lower-dimensional space such that the
Bayes–linear-Gauss model can be applied. This requires the
application of CCA to the selected model variables and data
variables and then normal score transformation. Figure 10b
shows two examples of a cross plot between model and data
variables of the first and tenth canonical components, where
we observe a linear correlation coefficient of 0.84 even for
the tenth canonical components. Once the Bayesian model
is specified, one can sample from the posterior distribution
and back-transform from lower-dimensional scores into ac-
tual facies and thickness models. Figure 10c shows the dis-
tribution of the posterior model realizations in comparison to
the corresponding prior, showing the reduction in the model
uncertainty. Figure 10d shows the comparison between the
prior and posterior distributions of the scores for the first four
sensitive PCs, where the reduction in uncertainty is observed

(while noting that uncertainty quantification involves all the
sensitive PC score variables).

Figure 11 plots the reconstructed posterior global param-
eters in comparison to the prior. Uncertainty reduction in
sensitive global parameters is observed, while the distribu-
tion of non-sensitive global parameters (Rsill and fac3) is un-
changed. To assess the reconstructed posterior spatial model
realizations, we calculate the mean for thickness (namely
“ensemble mean”) and the median realization of facies. Vari-
ance is also calculated for thickness and facies, respectively
(“ensemble variance”). Figure 12 shows show the ensemble
mean and median of the thickness and facies realizations,
while the ensemble variances is shown in Fig. 13. The results
in Fig. 12 imply that the posterior model thickness is thicker
on average than the prior. This change mainly occurs in areas
where the new boreholes are drilled. Referring to the actual
borehole observations plotted in Fig. 12, we also find that
the posterior thickness adjusts to the borehole observations
at both training (w7–w13) and validating (w5, w6) locations.
This improvement is significant compared to the prior model.
Furthermore, the ensemble variances (Fig. 13) are reduced in
the posterior model, mostly in the vicinity of the new bore-
holes. This implies a reduction in the spatial uncertainty. One
should note that our method does not (yet) result in an exact
match of the thickness with borehole data. This is an issue we
will comment on in the Discussion section and the Conclu-
sion. For the facies model, the magnitudes of the uncertainty
reduction are not as remarkable because prior uncertainty at
borehole locations was small to start with.

3.4.2 Porosity, permeability, and saturation

AutoBEL is now applied to update the uncertainty in poros-
ity, permeability, and saturation under the sequentially de-
composition.

The prior Monte Carlo samples have provided a full distri-
bution of porosity for each facies. This allows the calculation
of posterior porosity to fit the obtained posterior facies mod-
els. Therefore, we condition to posterior facies model and
borehole porosity observations in AutoBEL to calculate the
posterior porosity. Similarly, for permeability and saturation
model, AutoBEL is applied by additionally conditioning to
posterior models from previous model components.
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Figure 10. Uncertainty reduction in thickness and facies: (a) global sensitivity of model parameters to borehole data. (b) First and tenth
canonical covariates of data and model variables. The dashed red line is the observation data. (c) Posterior and prior distributions of model
variables (first and tenth canonical components, corresponding to b). (d) Prior and posterior PC score distributions of first four sensitive PCs.

Figures 14, 15, and 16 show the results. In Fig. 14, we see
sensitive global and spatial model variables that are selected
for uncertainty reduction. Figure 15 shows the constructed
the linear correlation between data and sensitive model vari-
ables by means of CCA. Figure 16 plots the posterior model
realizations (250 realizations) computed from the Bayes–
linear-Gauss model, where reduced uncertainty is observed
when comparing to the prior. The posterior spatial model PC
scores are also plotted in Fig. 17.

Finally, by back-transformation, we can reconstruct all
original model variables. Figure 18 compares ensemble
means and variances of the reconstructed posterior poros-
ity, log-perm, and Sw to their corresponding prior models,
with actual borehole observations plotted on top. Taking w7
for example, the actual borehole observations show low val-
ues of porosity, permeability, and Sw, while the prior model
initially expects those values to be large at this location.
This is adjusted in the posterior. From the ensemble variance
maps, we notice that spatial uncertainty is significantly re-
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Figure 11. Uncertainty updating of (a) sensitive and (b) non-sensitive global model parameters at the first sequence. The dashed lines are
estimated kernel density with Gaussian kernels.

Figure 12. (a) Ensemble mean of posterior and prior thickness. (b) The median realization of posterior and prior facies. The dots are borehole
locations and their color represents the actual borehole observation values. The boreholes and models share the same color legend.

duced from prior to posterior in areas near w7. The updates
of model expectations and reduction in spatial uncertainty
are also observed from the other wells. It implies that the
posterior models have been constrained by the borehole ob-
servations.

Figure 19 shows one example realization of the spatial
models. It shows that, as with the hierarchical order in the
prior (Fig. 19a), the spatial distributions of posterior porosity

and log-perm follow the spatial patterns of their correspond-
ing facies belts (Fig. 19b). However, if the joint model uncer-
tainty reduction is performed without the sequential decom-
position (not conditioning to the posterior models from pre-
vious sequences), the model hierarchy from facies to poros-
ity and permeability is lost (marked by the purple boxes in
Fig. 19c). This is because they are treated as independent
model variables, which violates the imposed geological or-
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Figure 13. Ensemble variance of the posterior and prior thickness and facies models from the first sequence.

der of variables. The linear correlation between porosity and
log-perm is also preserved due to the sequential decomposi-
tion. We observe similar correlation coefficients from prior
(Fig. 20a) to posterior (Fig. 20b). But without sequential de-
composition, this important feature cannot be maintained as
the results shown from Fig. 20c: (1) the four-cloud pattern
(representing the four facies) of the covariate distribution be-
tween porosity and log-perm is lost; (2) the correlation coef-
ficient has changed significantly for facies 0, 2, and 3.

3.4.3 Posterior prediction and falsification

Gas storage volume is calculated using the posterior geolog-
ical models and plotted in Fig. 21. The result highlights a
steep uncertainty reduction in comparison to the initial prior
prediction. The posterior predicted GIIP leads to a major
shift in the expected gas volumes to a more positive direc-
tion (higher than initially expected). More importantly, the
forecast range is significantly narrowed. This provides criti-
cal guidance to the financial decisions on the field develop-
ment. It also in return confirms the value of the information
of the newly drilled wells. In total, the whole application of
AutoBEL to this test case took about 45 min (not including
the time on prior modeling) when run on a laptop with an
Intel Core i7-7820HQ processor and 64 GB of Ram.

To test the posterior, we perform posterior falsification us-
ing data from validating boreholes (w5 and w6). Figure 22
plots the result from applying robust Mahalanobis distance
outlier detection to the posterior data of the two wells. The
statistical test shows that the test borehole observation falls
within the main population of data variables, below the 97.5
threshold percentile. We also want to further examine if the
posterior models can predict the validating boreholes (re-
garded as future drilling wells) with reduced uncertainty. To
do so, we compare the prior and posterior predicted thick-

ness at the two borehole locations, together with their actual
measurements (Fig. 23). For 3-D models of facies, porosity,
log-perm, and Sw, this comparison is performed on vertical
average values across the 75 layers. We notice that these fu-
ture borehole observations are predicted by posterior models
with significantly reduced uncertainty.

4 Discussion

One main purpose of this paper is to introduce automation
to geological uncertainty quantification when new borehole
data are acquired. We tackle this challenge by following the
protocol of Bayesian evidential learning to build an auto-
mated UQ framework. BEL formulates a protocol involving
falsification, global sensitivity analysis, and statistical learn-
ing uncertainty reduction. When establishing such a frame-
work for geological UQ, three important questions have to
be addressed. The first is on how to preserve the hierarchical
relationships and correlations that commonly exist in geo-
logical models. We propose a sequential decomposition by
following the chain rule under Bayes’ theorem. This allows
us to assess the joint distribution of multiple model compo-
nents while honoring the geological rules. The second one
is on how to falsify the geological model hypotheses, es-
pecially when data become highly dimensional. We employ
multivariate outlier detection methods. They provide quanti-
tative and robust statistical calculations when attempting to
falsify the model using high-dimensional data. The last but
most practical one, is to deploy data-science-driven uncer-
tainty reduction. Uncertainty reduction in geological mod-
els is usually time-consuming because conventional inverse
methods require iterative model rebuilding. When it comes to
real cases, the daunting time consumption and computational
efforts of conventional methods can hamper practical imple-
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Figure 14. Results from global sensitivity analysis using DGSA at (a) porosity„ (b) log-perm and (c) Sw.

Figure 15. First canonical covariates of data and model variables from (a) porosity, (b) log-perm, and (c) Sw.
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Figure 16. Reduction in uncertainty of the first model canonical component: (a) porosity, (b) log-perm, and (c) Sw.

Figure 17. Prior and posterior distribution of the scores of the two sensitive PCs with highest variances: (a) porosity, (b) log-perm, and
(c) Sw.

mentations of automation. Direct forecasting helps to avoid
this, as it mitigates the uncertainty reduction to a linear prob-
lem in a much lower dimension. There are many dimension
reduction methods for complex models, such as deep neural
network (Laloy et al., 2017, 2018), but here we use PCA be-
cause it is simple and bijective, and the structure models are
not complex (e.g., channels). However, direct forecasting of
geological model is faced with two new challenges. One is to
accommodate a direct forecasting algorithm to the sequential
model decomposition. This is achieved by additionally con-
ditioning to the posterior from previous sequences. The other
challenge is that DF cannot be directly applied to categorical
models such as lithological facies. We therefore introduce
a signed distance function to convert categorical models to
continuous properties before performing the DF. Field appli-
cation has shown the benefits of using the proposed frame-
work. Since the posterior in the case study cannot be falsi-
fied, its uncertainty can be further reduced by repeating the
automated procedures with validating borehole observations.
This suggests that the proposed framework has potentials for
life-of-field uncertainty quantification for applications where
new boreholes are regularly drilled.

The main challenge addressed in this paper is to apply such
an uncertainty quantification within a Bayesian framework.
Most methods applied in this context simply rebuild the mod-
els by repeating the same geostatistical methods that were
used to construct the prior model. In such an approach, all

global variables and their uncertainty need to be reassessed.
The problem with such an approach is twofold. First, it does
not address the issue of falsification: the original models may
not be able to predict the data. Hence, using the same ap-
proach to update models with a prior that may have been
falsified may lead again to falsification, thereby leading to
invalid and ineffective uncertainty quantification. As a re-
sult, the uncertainty quantification of some desirable prop-
erty, such as volume, exhibits a yo-yo effect (low variance in
each UQ but shifting mean). Second, there is no consistent
updating of global model variables. Often such uncertain-
ties are assessed independently of previous uncertainties. The
challenge addressed in this paper is to jointly update global
and spatial variables and do this jointly for all properties.

The proposed method offers a Bayesian consistency to un-
certainty quantification in the geological modeling setting.
However, unlike geostatistical methods, the posterior mod-
els do not fully match local borehole observations. The cur-
rent method is only designed to globally adjust the model,
not locally at the borehole observation. This can be an im-
portant issue if using the model for subsurface flow simu-
lations. To tackle this problem, one possible path we would
like to explore in the future is to combine geostatistical con-
ditional simulation as posterior step to the current method-
ology. A second limitation is that the method does not (yet)
treat discrete global variables, such as a geological interpre-
tation. In the case study, only one interpretation of the lithol-
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Figure 18. Ensemble mean and variance of posterior and prior geological models: (a) porosity; (b) log-perm; (c) water saturation. The dots
represent locations of the boreholes, where the color of the dots represents observation values.

Figure 19. Prior and posterior facies, porosity and log-perm of realization no. 1 (a) prior model; (b) posterior model from the sequential
decomposition; (c) posterior from joint uncertainty reduction without sequential decomposition.

ogy was used. The way such variables would be treated is by
assigning prior probabilities to each interpretation (e.g., of a
depositional system) and then updating them into posterior
probabilities. This has been done by treating the interpreta-
tion independent of other model variables in some studies
(e.g., Aydin and Caers, 2017; Grose et al., 2018; Wellmann

et al., 2010). For example, one could first update the prob-
abilities of geological scenarios, then update the other vari-
ables (Lopez-Alvis et al., 2019). Regarding the automation
of BEL, its intermediate steps can also be adjusted depending
on users’ specific applications. Taking the direct forecasting
step for example, here we adapt it for uncertainty quantifica-
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Figure 20. Bivariate distribution between porosity and log-perm
model of realization no. 1 (a) prior, (b) posterior from the sequential
decomposition, (c) posterior without performing sequential decom-
position. The correlation coefficient is examined for each facies.

tion using borehole data, which is a linear problem. But for
more complex nonlinear inverse problems, it may be difficult
to use CCA to derive a Bayes–linear-Gauss relationship in
DF. Statistical estimation approaches such as kernel density
estimation (Lopez-Alvis et al., 2019) can be used for such
cases, and there are also extensions of CCA to tackle nonlin-
ear problems (e.g., Lai and Fyfe, 1999). AutoBEL can also be
adapted if other types of parameters (other than spatial model
parameters) are used for uncertainty quantification. This can
be done by simply adding the additional parameters to the
model variable m. A final, and perhaps more fundamental,
concern not limited to our approach is what should be done
when the prior model is falsified with new data. According
to the Bayesian philosophy this would mean that any of the
following could have happened: uncertainty ranges are too
small, the model is too simple, or some combination of both.
The main problem is that it is difficult to assess what the
problem is exactly. Our future work will focus on this issue.

Figure 21. The prior and posterior prediction of GIIP.

Figure 22. Posterior falsification using robust Mahalanobis distance
outlier detection method using the data from w5 and w6.

5 Conclusions

In conclusion, we generalized a Monte Carlo-based frame-
work for geological uncertainty quantification and updating.
This framework, based on Bayesian evidential learning, was
demonstrated in the context of geological model updating us-
ing borehole data. Within the framework, a sequential model
decomposition was proposed, to address the geological rules
when assessing the joint uncertainty distribution of multiple
model components. For each component, we divided model
parameters into global and spatial ones, thus facilitating the
uncertainty quantification of complex spatial heterogeneity.
When new borehole observations are measured, instead of
directly reducing model uncertainty, we first strengthen the
model hypothesis by attempting to falsify it via statistical
tests. Our second contribution was to show how direct fore-
casting can jointly reduce model uncertainty under the se-
quential decomposition. This requires a posterior model from
previous sequences as additional inputs to constrain the cur-
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Figure 23. Prior and posterior predicted thickness, facies, porosity, log-perm, and Sw at validating boreholes. The blue and brown colored
dots, respectively, represent the prior and posterior prediction, while the red squares are the actual observations.

rent prior. Such sequential direct forecasting was shown to
maintain important geological model features of hierarchy
and correlation, whilst avoiding the time-consuming conven-
tional model rebuilding. In terms of discrete models, such
as lithology, a signed distance function was employed, be-
fore applying direct forecasting to reduce uncertainty. The
third contribution, but maybe a more important one, is that
the proposed framework allows the automation of geolog-
ical UQ. We developed an open-source Python project for
this implementation. Its application to a large reservoir model
showed that the automated framework ensures that the model
is objectively informed by data at each step of uncertainty
quantitation. It jointly quantified and updated uncertainty
of all model components, including structural thickness, fa-
cies, porosity, permeability, and water saturation. The pos-
terior model was shown to be constrained by new borehole
observations globally and locally, with dependencies and
correlations between the model components preserved from
the prior. It predicted validating observations (future drilling
boreholes) with reduced uncertainty. Since the posterior can-
not be falsified, the uncertainty-reduced GIIP prediction can
be used for decision makings. The whole process takes less
than 1 h on a laptop workstation for this large field case, thus
demonstrating the efficiency of the automation

Code availability. AutoBEL is a free, open-source Python li-
brary. It is available at GitHub: https://github.com/sdyinzhen/
AutoBEL-v1.0 (last access: 13 January 2020; Yin, 2019) under an
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