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Abstract. The authors developed a three-dimensional vari-
ational (3-DVAR) aerosol extinction coefficient (AEC) and
aerosol mass concentration (AMC) data assimilation (DA)
system for aerosol variables in the Weather Research and
Forecasting–Chemistry (WRF–Chem) model with the WRF–
Chem using the Model for Simulating Aerosol Interactions
and Chemistry (MOSAIC) scheme. They establish an AEC
observation operator and its corresponding adjoint based on
the Interagency Monitoring of Protected Visual Environ-
ments (IMPROVE) equation and investigate the use of li-
dar AEC and surface AMC DA to forecast mass concen-
tration (MC) profiles of PM2.5 (particulate matter with an
aerodynamic diameter of less than 2.5 µm) across China.
Two sets of data were assimilated: AEC profiles captured by
five conventional Mie scattering lidars (positioned in Beijing,
Shijiazhuang, Taiyuan, Xuzhou, and Wuhu) and PM2.5 and
PM10 MC data obtained from over 1500 ground environmen-
tal monitoring stations across China. Three DA experiments
(i.e., a PM2.5 (PM10) DA experiment, a lidar AEC DA exper-
iment, and a simultaneous PM2.5 (PM10) and lidar AEC DA
experiment) with a 12 h assimilation period and a 24 h fore-
cast period were conducted. The PM2.5 (PM10) DA reduced
the root mean square error (RMSE) of the surface PM2.5
MC in the initial field of the model by 38.6 µg m−3 (64.8 %).

When lidar AEC data were assimilated, this reduction was
10.5 µg m−3 (17.6 %), and a 38.4 µg m−3 (64.4 %) reduction
occurred when the two data sets were assimilated simulta-
neously, although only five lidars were available within the
simulation region (approximately 2.33 million km2 in size).
The RMSEs of the forecasted surface PM2.5 MC 24 h after
the DA period in the three DA experiments were reduced
by 6.1 µg m−3 (11.8 %), 1.5 µg m−3 (2.9 %), and 6.5 µg m−3

(12.6 %), respectively, indicating that the assimilation and
hence the optimization of the initial field have a positive ef-
fect on the PM2.5 MC forecast performance over a period of
24 h after the DA period.

1 Introduction

Aerosol data assimilation (DA) generates a three-
dimensional (3D) gridded analysis field capable of de-
scribing the spatial distribution of aerosols by integrating
numerical forecasts produced by an air quality model (AQM)
and measured aerosol data. With integrated information
from various sources, this analysis field can more accurately
describe the 3D distribution pattern of aerosols (Carmichael
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et al., 2008; Benedetti et al., 2009; Sandu and Chai, 2011;
Bannister, 2017). The analysis field generated by DA can be
used to effectively study atmospheric aerosol transmission
patterns through an analysis of the products of a certain
time series and, on this basis, further examine the effects of
aerosols on human health, the environment, the weather, and
the climate (Baraskar et al., 2016; Haywood and Boucher,
2020). The analysis field can also be used to determine
the initial chemical conditions for an AQM. Therefore,
improving the accuracy of the initial chemical conditions
and enhancing the forecasting performance of the AQM for
aerosols (Wu et al., 2015).

Compared to those of meteorological and marine DA,
aerosol DA techniques are still undeveloped, and there is a
lack of variety when it comes to assimilable measured data,
which mainly include conventional surface aerosol mass con-
centration (AMC) data and satellite-derived aerosol optical
depth (AOD) data. Of these two types of data, surface AMC
data provide mass concentration (MC) information for near-
surface aerosols directly. AOD is a measure of the total ex-
tinction effects of aerosols in the vertical atmospheric col-
umn, which indirectly provide atmospheric column aerosol
concentration information. Assimilating either of these two
types of data can significantly improve the accuracy of the
aerosol analysis field (Tombette et al., 2009; Niu et al., 2008;
Schwartz et al., 2012; Jiang et al., 2013; Li et al., 2013; Saide
et al., 2013; Yumimoto et al., 2015, 2016; Tang et al., 2017;
Peng et al., 2017; Xia et al., 2019; Wang et al., 2020). How-
ever, neither AOD nor surface AMC data are able to provide
vertical aerosol profiles. Consequently, while these two types
of data are abundant, have relatively high horizontal resolu-
tions, and have excellent coverage, they play a limited role
in optimizing the vertical structure of aerosols in the anal-
ysis field. To further improve the accuracy of the simulated
vertical structure, it is necessary to assimilate data that con-
tain vertical aerosol profile information. Zang et al. (2016)
assimilated aircraft-measured vertical concentration profiles
of aerosol components and found that while the profile data
were limited in quantity and covered a relatively small area,
they could still significantly improve the forecast accuracy of
an AQM. Since direct observations of concentration profiles
are labor-intensive and expensive, relatively few studies in-
volving the acquisition and assimilation of this type of data
have been reported.

Aerosol lidar can be used to capture aerosol-backscattered
laser signals at various heights. By inverting these signals, the
aerosol extinction coefficient (AEC) and aerosol backscat-
tering coefficient (ABC), which indirectly provide vertical
AMC profile information, can be determined (Fernald et al.,
1984; Sugimoto et al., 2008; Raut et al., 2009). Assimilating
these lidar aerosol data can help to improve the accuracy of
the vertical structure of aerosols in the analysis field (Tesche
et al., 2007; Ganguly et al., 2009; Young and Vaughan, 2009;
Burton et al., 2010; Milroy et al., 2011; Sugimoto et al.,
2014; Chen et al., 2015). In addition, with the increasing

number of lidar stations and the development of lidar net-
work detection technology, studying lidar DA in order to gen-
erate more accurate 3D aerosol analysis fields has great po-
tential.

Compared to the assimilation of direct AMC measure-
ments, the assimilation of lidar AEC data faces myriad diffi-
culties, of which establishing an observation operator for the
DA cost function is the most challenging. The AEC is the ob-
ject of the DA (i.e., observation variable), whereas the AMCs
of various types of aerosol variables in the AQM must be
optimized. To directly determine the optimal model aerosol
variables by solving the DA cost function, it is necessary
to map the aerosol variables in the AQM to the observation
space by conducting a forward process on the observation op-
erator (Kahnert et al., 2008), corresponding to the calculation
of the AEC from the AMC. In addition, in three-dimensional
variational (3-DVAR) DA, it is also necessary to conduct the
adjoint process on the observation operator when calculat-
ing the gradient of the cost function (Sandu and Chai, 2011).
The computational program for this adjoint process on the
observation operator relies on its forward process, leading
to a large computational load, and the size of the program
code increases nonlinearly with the complexity of the for-
ward process. Moreover, when it comes to aerosol variables,
there are many kinds of chemicals and particle-size bins so
that the chemical model inherently involves a large compu-
tational load. Therefore, when using a variational method to
assimilate lidar data, it is necessary to consider both the ac-
curacy and complexity of the observation operator. Currently,
there are three main methods that are used to design obser-
vation operators:

1. use of the Mie equation directly. Under the assumption
that aerosol particles are uniform and spherical, the Mie
equation describes the scattering and extinction prop-
erties of aerosol particles of any scale with any chem-
ical and physical parameters (Wiscombe, 1980; Cheng
et al., 2019). However, because accurately solving the
Mie equation involves a nonlinear calculation process
that contains iterations, it is extremely complicated to
implement, upgrade, and maintain the program for the
reverse process on the observation operator. In addi-
tion, because of the lack of reliable measurements of es-
sential aerosol parameters (e.g., complex refractive in-
dex, particle number spectrum, and hygroscopicity), it is
necessary to introduce assumptions about these param-
eters in DA schemes. This renders it difficult to realize
the high-accuracy advantage of DA schemes in practice.

2. use of the Community Radiative Transfer Model
(CRTM). This model is advantageous because it gives
the Jacobian term needed for the adjoint process on the
observation operator when conducting its forward pro-
cess. Therefore, introducing the CRTM to a DA scheme
does not require separate numerical computational pro-
gramming for the adjoint process on the observation
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operator (Liu and Weng, 2006). DA schemes based on
the CRTM have been applied in AOD DA research and
yielded excellent results (Liu et al., 2011). However,
the CRTM was developed for the Goddard Chemistry
Aerosol Radiation and Transport (GOCART) aerosol
scheme in the Weather Research and Forecasting–
Chemistry (WRF–Chem) model. As a result, when ap-
plying the CRTM to other AQMs and aerosol schemes,
it is necessary to design corresponding variable transfor-
mation interfaces (Cheng et al., 2019), which introduces
additional errors.

3. use of the interagency monitoring of protected visual
environments (IMPROVE) equation. The IMPROVE
equation maps the relationship between the AMC and
the AEC (Lowenthal et al., 2003; Ryan et al., 2005;
Pitchford et al., 2007; Gordon et al., 2018). With rel-
atively high computational accuracy, this method has
been used to evaluate model performance and the ex-
tinction contributions of various aerosols (Kim et al.,
2006; Roy et al., 2007; Tao et al., 2009, 2012, 2014; Cao
et al., 2012a, b). In addition, as its highest-order term
is quadratic, the IMPROVE equation has low nonlin-
earity. Therefore, using the IMPROVE equation to de-
sign an observation operator can significantly reduce the
complexity of the DA program. To date, no observation
operator design based on the IMPROVE equation and
subsequent variational lidar DA have been reported.

Some progress has been made in lidar DA. For example,
Sekiyama et al. (2010) used the Kalman filter DA method
to assimilate the ABC and AEC profiles acquired by the
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Obser-
vations mission and applied the assimilated data to a global
chemical transport model. Wang et al. (2013, 2014a, b) stud-
ied the assimilation of range-corrected lidar signals using
the optimal interpolation DA method and conducted an as-
similation experiment based on data captured by 12 lidars
positioned in the Mediterranean Basin from the ACTRIS
(Aerosols, Clouds, and Trace Gases Research InfraStruc-
ture)/EARLINET (European Aerosol Research Lidar Net-
work) and one lidar positioned on the French island Cor-
sica from the framework of the pre-ChArMEx (Chemistry-
Aerosol Mediterranean Experiment)/TRAQA (TRAnsport
àlongue distance et Qualité de l’Air). They found that DA
improved the PM2.5 forecast performance for approximately
36 h. However, in the above-mentioned studies, sequential
DA methods were used, and there was no particular need
to take into consideration the complexity of the observation
operator. Cheng et al. (2019) assimilated lidar AEC profiles
using a 3-DVAR DA method with an observation operator
based on the CRTM that was designed for a relatively simple
GOCART dust aerosol scheme.

This study presents an observation operator and corre-
sponding adjoint module developed for lidar AEC DA based
on the IMPROVE equation, which was introduced into the

Figure 1. The double-nested experimental domain. Red triangles
and labeling indicate the locations and names of five lidars, and
blue circles indicate the locations of 1500 ground environmental
monitoring stations.

DA system by Li et al. (2013) and Zang et al. (2016) for
the Model for Simulating Aerosol Interactions and Chem-
istry (MOSAIC) aerosol scheme oriented to the WRF–
Chem model. By applying the DA system, DA and fore-
cast experiments were conducted to investigate the applica-
tion of lidar AEC DA in PM2.5 forecasts across China based
on data captured by five lidars (located in Beijing, Shiji-
azhuang, Taiyuan, Xuzhou, and Wuhu, respectively) as well
as on PM2.5 and PM10 data collected at approximately 1500
ground environmental monitoring stations across China.

2 Materials and methods

2.1 AQM

The WRF–Chem model version 3.9.1 was selected as the
AQM. The model has 40 vertical layers between the sur-
face and 50 hPa, with the resolution gradually decreasing
from the bottom up. The model domains are double-nested,
and the second domain (D02) is centered at 114.57◦ E and
37.98◦ N and has 175× 166 grid points with a grid inter-
val of 9 km. D02 covers the central and eastern regions of
China (most of North China, northern Central China, north-
ern East China, and eastern Northwest China) (Fig. 1). The
MOSAIC_4bin aerosol scheme was adopted for the simu-
lations. This scheme, which will be described in Sect. 2.4,
can be used to predict the profiles of eight aerosol types. For
each aerosol type, there are four particle-size bins (4bins).
The following summarizes the other physical and chemi-
cal schemes used in this study: the carbon-bond mechanism
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version Z (CBMZ) chemical reaction mechanism, the fast-
J photolysis calculation scheme, the rapid radiative transfer
model for general circulation model (RRTMG) shortwave ra-
diation scheme, the RRTMG longwave radiation scheme, the
WRF single-moment 5-class microphysical scheme, the uni-
fied Noah land-surface parameterization scheme, the Grell
3D ensemble cumulus parameterization scheme, the Yonsei
University planetary boundary layer scheme, and the revised
MM5 Monin–Obukhov near-surface layer scheme.

2.2 Data

The AEC profiles used in this study were derived from
data captured by five conventional Mie scattering lidars
(positioned in Beijing, Shijiazhuang, Taiyuan, Xuzhou, and
Wuhu; Fig. 1) at a wavelength of 532 nm between 00:00 and
12:00 Coordinated Universal Time (UTC) on 13 Novem-
ber 2018 (Chen et al., 2019; Zhang et al., 2020). The tem-
poral resolution of the data measured by the lidars in Shiji-
azhuang, Taiyuan, Xuzhou, and Wuhu was 1 min; that is, data
were captured, and a vertical AEC profile was derived every
minute. The vertical resolution of these data was 7.5 m; that
is, one AEC was determined in one profile 7.5 m away from
the next one. The blind zone of these lidars was 100 m; that
is, these systems could not effectively capture AEC data be-
tween the surface and the height of 100 m. The temporal and
vertical resolutions of the AEC profiles captured by the lidar
in Beijing were 1 h and 15 m, respectively, and the blind zone
of this lidar was 210 m. The relative standard deviation of the
aerosol parameter profiles captured by the lidar over Beijing
was 20.4 % in the height range of 1–2 km. This lidar was cal-
ibrated via comparative observation of several lidars (Chen
et al., 2019). The precision of the AEC profiles released by
the other four lidars was below the quality margins (25 %
of the typical AEC observed in the planetary boundary layer
or ±0.01 km−1), as defined by Matthias et al. (2004). How-
ever, the relative standard deviation of the aerosol parameter
profiles in the height range of 2–5 km released by lidar over
Beijing was 35.9 %. To improve the effectiveness of the DA,
it was necessary to first perform quality control on and pre-
process the original AEC profiles. This ensured that the lidar
data matched the numerical model in terms of temporal and
spatial resolution. Quality control involved four steps:

1. Entire AEC profiles passing through low clouds and
AEC measurements in mid- and high-cloud regions
were eliminated. Clouds were defined as regions in
which the AEC was higher than 5000× 10−6 m−1 (as-
suming the AEC in the near-surface layer (below 150 m)
was lower than 3000× 10−6 m−1).

2. AEC profile data were subjected to maximum and
minimum control. AEC measurements higher than
3000× 10−6 m−1 were each reassigned with a value
of 3000× 10−6 m−1. AEC measurements lower than
20× 10−6 m−1 were eliminated.

3. For spatial continuity, data were required to be contin-
uous within a vertical space Lcon, which was set to be
90 m in this study. Specifically, two metrics were used
to examine the spatial continuity of the data. First, the
profile with vertical resolutionLres was examined. After
the first two steps of quality control, the remaining num-
ber of data points (Nremain) within the Lcon could not be
less than one-third the total number of data points within
the Lcon (Ntotal = Lcon/Lres). Otherwise, no valid data
would be available for the center of the Lcon. Second,
the deviation of the valid data from the mean value of
the data within the Lcon could not exceed 3 times the
standard deviation (SD).

4. Data within the blind zone of a lidar were eliminated. In
addition, because lidar signals are relatively weak and
AMCs are extremely low above 5000 m, data for the re-
gion above 5000 m were also eliminated in this study.
After the quality control process, 84.32 % of the original
AEC data from the lidar over Beijing were accepted as
valid data, and 88.75 %, 54.10 %, 26.74 %, and 10.95 %
of the data from the Taiyuan, Wuhu, Shijiazhuang, and
Xuzhou lidars, respectively, were valid.

Preprocessing of quality control-treated AEC profiles in-
volved two steps:

1. Temporal and spatial smoothing. Profiles were sub-
jected to moving averaging over 30 m in the vertical
direction. Temporally, the AEC profiles were averaged
over the previous hour.

2. Data thinning. If there were multiple data points be-
tween two adjacent model layers in the vertical direc-
tion, only one was selected for assimilation. In this
study, the nearest data point below each model layer was
selected for assimilation. After processing, the number
of assimilated AEC measurements per profile did not
exceed 25, as there were no more than 25 model layers
between the top of the lidar blind zone and the height of
5000 m.

PM2.5 and PM10 data (hereinafter referred to as PM
data) used in this study, including 1 h MC data collected at
more than 1500 ground environmental monitoring stations,
originated from the China National Environmental Moni-
toring Center. Most of the monitoring stations were dis-
tributed in cities in economically developed regions, includ-
ing the Yangtze River Delta, the Beijing–Tianjin–Hebei re-
gion, and the Pearl River Delta. Of these monitoring stations,
more than 790 were located within the D02 region (Fig. 1).
The assimilated PM data were collected between 00:00 and
12:00 UTC on 13 November 2018. After assimilation, fore-
casts for PM2.5 from 12:00 UTC on 13 November 2018 to
12:00 UTC on 14 November 2018 were produced. In addi-
tion, the effects of DA on the forecast performance of the
model were evaluated based on surface PM2.5 measurements.
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To improve the DA performance and the representativeness
of the evaluation metrics, the original PM data were sub-
jected to quality-control and preprocessing treatments. Qual-
ity control involved two main steps:

1. Anomalous elimination. Measurements that remained
unchanged over a continuous period of 24 h were con-
sidered anomalous and removed.

2. Maximum and minimum control. PM2.5 MC measure-
ments higher than 600 µg m−3, PM10 MC measure-
ments higher than 1200 µg m−3, and PM MC measure-
ments less than 0 were considered anomalies and were
removed.

During the DA and verification processes, there could be
multiple PM MC measurements for one grid cell. To allow
the measurements to represent the average PM MC within
a certain area, the PM data used for DA and verification
were subjected to grid-cell averaging. The PM data used for
assimilation were averaged within 5× 5 grid cells. Specifi-
cally, the PM data within the same 5× 5 grid cell area were
first examined to determine their spatial consistency. Data
greater than twice the SD were removed. Next, the arith-
metic mean of the data within the area was calculated and
assimilated. The PM2.5 MC measurements used for verifi-
cation and model forecasts were averaged within 1× 1 grid
cells. Specifically, model forecasts were first interpolated to
the location of each ground environmental monitoring sta-
tion. Next, the arithmetic mean of the measured and fore-
casted values within the same grid cell was calculated and
used as a sample for quantifying the evaluation metrics. The
processed PM MC data for the D01 and D02 regions were
assimilated, while only the PM2.5 MC data for the D02 re-
gion were used to evaluate the effects of the DA. After the
grid-cell averaging treatment, approximately 190 data points
in the D02 region were assimilated each time.

2.3 Basic theoretical DA model

To mathematically achieve 3-DVAR DA, it is necessary to
establish an objective function to transform the DA problem
to a problem of finding the extreme values of the function. By
calculating the extreme values of the function using the vari-
ational method, an “optimal” analysis field is obtained. The
following shows the mathematical form of such a function:

J (x)=
1
2

(
x− xb

)T
B−1

(
x− xb

)
+

1
2
(Hx− y)TR−1(Hx− y). (1)

This function describes the sum of the distance between
the analysis field (x) and the background field (xb) and the
distance between the analysis field (x) and the observation
field (y), with the background error covariance B and the
observation error covariance R as weights, respectively. In

Eq. (1), x is the control variable in the DA system, which is a
one-dimensional (1D) vector composed of aerosol variables
at all the 3D grid cells in the DA analysis field; xb is the
background value (or best guess) of the control variable (as
the forecast level of AQM increases, model forecasts are gen-
erally used as background fields); B is the background error
covariance; y is the observation variable, which is a 1D vec-
tor composed of all the measurements; H is the observation
operator, which maps the control variable to the observation
space to ensure that the observation data can provide obser-
vation information for the control variable even if they are
not direct measurements of the control variable; and R is the
observation error covariance. For simultaneous assimilation
of two or more types of observation data, the second term on
the right side of Eq. (1) can be expanded to multiple terms,
each of which corresponds to one type of observation data.
This will facilitate the simultaneous assimilation of observa-
tional data from various sources.

2.4 Control variables and B

The MOSAIC_4bins aerosol scheme adopted in this
study accommodated eight aerosol types, namely,
black / elemental carbon (EC /BC), organic carbon (OC),
sulfates (SO2−

4 ), nitrates (NO−3 ), ammonium salts (NH+4 ),
chlorides (Cl−), sodium salts (Na+), and other unclassified
inorganic compounds (OIN). There were four particle-size
bins (4bins) for each aerosol type, namely, 0.039–0.1,
0.1–1.0, 1.0–2.5, and 2.5–10 µm. Thus, there were 32 model
variables that represented the various aerosols. However,
limitations in computer memory and computational capacity
necessitated a reduction in the total number of control
variables. In addition, the AECs of fine (PM2.5) and coarse
(PM2.5−10) particles differed significantly. Thus, two control
variables for each aerosol type were designed – one corre-
sponding to fine particles (formed by combining the first
three particle-size bins) and one corresponding to coarse
particles (the fourth particle-size bin). Thus, there were
16 control variables in the DA scheme, namely, EC2.5,
EC2.5−10, OC2.5, OC2.5−10, SO42.5 , SO42.5−10, NO32.5 ,
NO32.5−10, NH42.5 , NH42.5−10, CL2.5, CL2.5−10, NA2.5,
NA2.5−10, OIN2.5, and OIN2.5−10.

There were two problems associated with calculations in-
volving B:

1. In this scheme, B contained 3.5× 1014 (square of 16
(number of control variables) ×175× 166× 40 (num-
ber of grid cells)) elements. Thus, it was necessary to
mathematically treat and simplify B to facilitate numer-
ical calculations. Following the method used by Li et
al. (2013) and Zang et al. (2016), B was decomposed
into a background-error standard deviation (BESD) ma-
trix, a background-error horizontal correlation coeffi-
cient (BEHCC) matrix, and a background-error verti-
cal correlation coefficient (BEVCC) matrix for calcula-
tions.
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2. As the true value of B was unknown, it was necessary
to develop a reasonable statistical method to estimate
it. The National Meteorology Center (NMC) method
(Parrish and Derber, 1992) was employed in this study
to statistically estimate B. Specifically, the differences
between the 48 and 24 h forecasts of the control vari-
ables were assumed to be a proxy of the background
error. Next, B was estimated based on the covariance of
the difference field, which was obtained by producing
continuous 24 and 48 h forecasts for a month using the
WRF–Chem model.

2.5 Observation operator and its adjoint

Obtaining the observation operator involved two calcula-
tions:

1. The control variables at each grid cell were mapped to
the observation space; that is, the control variables were
mapped to the AEC values (or PM2.5 and PM10 MCs).

2. The mapped values at the eight vertices of the model
grid cell associated with the observation data were in-
terpolated using the inverse distance-weighted method
to the observation location. Here, we only describe the
first step of the derivation of the observation operators,
which are different for different observation data.

The AEC observation operator was based on the IM-
PROVE equation. The following shows the specific form of
the IMPROVE equation:

Ext= 0.025× fs(RH)×[Small Sulfate] + 6.6× fl(RH)
×[Large Sulfate] + 3.096× fs(RH)×[Small Nitrate]
+ 6.579× fl(RH)×[Large Nitrate]
+ 5.04×[Small Organic Mass]
+ 10.98×[Large Organic Mass]
+ 10.0×[Elemental Carbon]
+ 1.0×[Fine Soil] + 1.7× fss(RH)×[Sea Salt]
+ 1.0×[Coarse Mass]. (2)

The left side of Eq. (2) is the AEC value Ext (unit:
10−6 m−1). The variables in the brackets on the right side
of Eq. (2) are combinations of the 16 control variables
(unit: µg m−3). The coefficient variables fs(RH), fl(RH), and
fss(RH) reflect the effects of hygroscopicity of fine, coarse,
and sea-salt aerosols, respectively, under various relative hu-
midity (RH) conditions. The values of the parameters given
by Gordon et al. (2018) were used in this study. The variables
(in square brackets) at each grid cell were obtained by com-
bining the 16 control variables using the following method:

Sulfate= SO42.5 +α×NH42.5 .

The principle for determining α involved preferentially allo-
cating NH42.5 to SO42.5 . The remaining NH42.5 was allocated

to NO32.5 .

[Small Sulfate] ={
0, Sulfate>=20(

1− Sulfate
20

)
×Sulfate, Sulfate< 20

[Large Sulfate] = Sulfate− [Small Sulfate]

Nitrate= NO32.5 + (1−α)× (NH42.5)

[Small Nitrate] ={
0, Nitrate>=20(

1− Nitrate
20

)
×Nitrate, Nitrate< 20 (3)

[Large Nitrate] = Nitrate− [Small Nitrate]

[Organic Mass] = OC2.5

[Small Organic Mass] =
0, [Organic Mass]>=20(

1− [Organic Mass]
20

)
×[Organic Mass], [Organic Mass]< 20

[Large Organic Mass] =

[Organic Mass] − [Small Organic Mass]

[Elemental Carbon] = EC2.5

[Fine Soil] = OIN2.5

[Sea Salt] = CL2.5+NA2.5

[Coarse Mass] = SO42.5−10 +NO32.5−10 +NH42.5−10

+OC2.5−10+EC2.5−10+CL2.5−10

+NA2.5−10+OIN2.5−10

The observation operators for PM2.5 and PM10 were the
sums of control variables in the corresponding particle-size
bin, that is,

PM2.5 = SO42.5 +NO32.5 +NH42.5 +OC2.5+EC2.5 (4)
+CL2.5+NA2.5+OIN2.5

PM10 = PM2.5+SO42.5−10 +NO32.5−10 +NH42.5−10 (5)
+OC2.5−10+EC2.5−10+CL2.5−10+NA2.5−10

+OIN2.5−10.

The corresponding adjoint process on the operators for PM
and AEC were developed and passed the adjoint sensitiv-
ity test. For the adjoint test method, please refer to Zou et
al. (1997).
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Table 1. Numerical experiment schemes. n/a – not applicable.

Experiment Assimilated data Assimilation region DA period Forecast com-
parison period

Control n/a n/a n/a 13 Nov 12:00–
14 Nov 12:00

DA_PM PM2.5+PM10 D01/D02 13 Nov 00:00–
13 Nov 12:00

13 Nov 12:00–
14 Nov 12:00

DA_Ext Ext D01/D02 13 Nov 00:00–
13 Nov 12:00

13 Nov 12:00–
14 Nov 12:00

DA_PM_Ext PM2.5+PM10+Ext D01/D02 13 Nov 00:00–
13 Nov 12:00

13 Nov 12:00–
14 Nov 12:00

2.6 DA and forecast experimental design and
verification analysis method

To analyze the effects of DA on aerosol analysis and fore-
casts, one control experiment and three DA experiments
were designed for a pollution event that occurred from 13
to 14 November 2018 (Table 1). In the control experiment,
no chemical observation data were assimilated. Forecasts
were produced for a 36 h period, starting at 00:00 UTC on
13 November 2018. In the DA experiments, aerosol data
were assimilated every hour for the DA period of 00:00–
12:00 UTC on 13 November 2018. Next, with the analysis
field obtained from the DA as the initial chemical field, fore-
casts were performed for a 24 h period starting at 12:00 UTC
on 13 November 2018. For the first DA cycle in each of the
three DA experiments, the initial field of the control experi-
ment was used as the background field, the observation data
for 00:00 UTC on 13 November 2018 were assimilated, and a
DA analysis field was generated. With this DA analysis field
as the initial field at 00:00 UTC on 13 November 2018 in
the DA experiment, 1 h forecasts were produced. The fore-
casts produced for 01:00 UTC on 13 November 2018 were
used as the background field for the second DA cycle. The
process was repeated for 13 assimilation cycles. Thus, a DA
analysis field for 12:00 UTC on 13 November 2018 was gen-
erated. The effects of DA on forecast performance during the
forecast comparison period from 12:00 UTC on 13 Novem-
ber 2018 to 12:00 UTC on 14 November 2018 were analyzed
by comparing the forecast performance of the DA and control
experiments. In the first DA experiment, PM data alone were
assimilated (DA_PM). In the second DA experiment, the li-
dar data alone were assimilated (DA_Ext). In the third DA
experiment, PM and lidar data were assimilated simultane-
ously (DA_PM_Ext). Furthermore, 0.25◦×0.25◦ 6 h reanal-
ysis data provided by the US National Centers for Environ-
mental Prediction (NCEP) were used as the meteorological
field of the model.

Two metrics, the regional mean and root-mean-square er-
ror (RMSE), were used to evaluate simulation and forecast

accuracy of the PM2.5 MC in the experiments. The closer
the mean of the simulated values to the mean of the mea-
surements and the smaller the RMSE, the higher the perfor-
mance. Let Mi , Oi , N , M , and O be the simulated value
sample, the measured value sample, the number of samples,
the mean of simulated values, and the mean of the measure-
ments, respectively. The following summarizes the equations
for calculating the metrics:

M =
1
N

N∑
i=1

Mi (6)

O =
1
N

N∑
i=1

Oi (7)

RMSE=

√√√√ 1
N

N∑
i=1
(Mi −Oi)

2. (8)

3 Results

3.1 BESD and BEVCC

Under the same conditions, the larger the BESD, the larger
the DA increment field (the difference between the “optimal”
analysis field and the background field). Therefore, the struc-
tural pattern of the BESD significantly affected the distribu-
tion pattern of the DA increment field. The vertical BESD
profiles of the 16 control variables are shown in Fig. 2.
The BESD differed significantly among the control variables.
The seven control variables with the largest BESDs below
the height of 1000 m (corresponding to the 22nd layer of
the model) in descending order of BESD were OIN2.5−10,
NO32.5 , OIN2.5, NH42.5 , SO42.5 , OC2.5, and EC2.5. As height
increased, the BESD of each control variable decreased. The
rates of decrease were the highest above the boundary layers
at heights of 1000–2000 m (corresponding to the 20th–25th
layers of the model).
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Figure 2. Vertical BESD profiles of the 16 control variables.

The BEVCC matrix can spread the observation informa-
tion contained in measurements around one model layer to
nearby vertical layers. Therefore, even if the PM data are
only available at the surface, there will still be increments
of PM near the surface (in-air) after DA. Furthermore, even
though the lidar AEC data are not available at the surface,
assimilating lidar data can still correct the surface PM2.5
MC distribution. Figure 3 shows the BEVCC matrices of
six control variables with relatively large BESDs (OIN2.5−10,
NO32.5 , OIN2.5, NH42.5 , SO42.5 , and OC2.5). The BEVCCs of
the six control variables share certain common characteris-
tics. The correlation decreases as the interlayer spacing of
the model increases. Each in-air layer is positively correlated
with the surface layer, although the correlation decreases as
height increases. For OIN2.5−10, the correlation coefficient
between the surface and 10th layers is 0.34, compared with
0.49–0.51 for other variables. This indicates that OIN2.5−10
has a significantly weaker vertical correlation, and hence DA
increments of these particles settle more rapidly than the
other variables do. This is mainly because coarse particles
settle faster vertically than fine particles and are concentrated
near the surface in larger quantities.

3.2 Analysis of the pollution process

Figure 4 shows the evolutionary process of the surface PM2.5
MC and the NCEP reanalysis surface wind field in the D02
region for the period from 00:00 UTC on 13 November 2018
to 12:00 UTC on 14 November 2018 (the time interval be-
tween Fig. 4a–d is 12 h). At 00:00 UTC on 13 Novem-
ber 2018, the D02 region was predominantly controlled by
a high-pressure circulation centered over Zibo. There was a
clockwise wind field around the high-pressure center. There-
fore, the northerlies (easterlies) east (south) of the high-

pressure center brought clean air over the sea land-ward.
As a result, the PM2.5 MCs over East China were rela-
tively low. For example, the mean PM2.5 MC measured at
the ground environmental monitoring stations in Nanjing was
41.8 µg m−3. There were relatively slow southerlies west and
northwest of the high-pressure center, which led to favor-
able conditions for pollutant accumulation east of the Tai-
hang Mountains and south of the Yan Mountains. As a re-
sult, North China was heavily polluted by PM2.5. For exam-
ple, the mean PM2.5 MCs in Beijing and Shijiazhuang were
122.7 and 149.3 µg m−3, respectively. In addition, within the
D02 region, there was a northeast–southwest-trending cold
front near Buyant-Ovoo–Bayan-Ovoo in Mongolia. As time
passed (Fig. 4b–d), the high-pressure center gradually moved
northeastward and reached near the eastern boundary of the
D02 region by 12:00 UTC on 14 November 2018 (Fig. 4d).
The cold front gradually moved southeastward and reached
the Chaoyang–Beijing–Taiyuan–Xi’an line by 12:00 UTC on
14 November 2018 (Fig. 4d). As the high-pressure center and
the cold front moved, the level of pollution in North China
continued to rise, and pollution gradually expanded north-
eastward to Chaoyang, southward to Zhengzhou, and west-
ward to Taiyuan. The level of pollution gradually increased
in the Wei and Yellow river valleys east of Xi’an due to the
dual action of advection by the easterlies and the narrow ter-
rain, while the PM2.5 MCs decreased considerably with the
passing of the cold front due to the good dispersion condi-
tions. There were no significant changes in the PM2.5 MCs
in East China due to the continuous impact of sea winds.

3.3 Analysis of the direct effects of DA

Figure 5 shows the AEC profile measurements, the AEC
profiles in the analysis fields of the control and DA ex-
periments, and the simulated RH profiles at four lidar sta-
tions at 00:00 UTC on 13 November 2018, when the first
DA cycle was performed. The results of the control exper-
iment were used as the background field in the three DA
experiments. Figure 5a–d show the results for Beijing, Shi-
jiazhuang, Taiyuan, and Wuhu, respectively. As the in-air
RH profile (brown lines) below 1 km was basically consis-
tent with that of the surface RH, the vertical changes in the
AEC values in this region were only slightly affected by the
RH. Thus, the AEC profiles were used to study the vertical
changes in the PM2.5 MC. For Beijing, the simulated AEC re-
sults from the control experiment (blue lines) agreed with the
lidar AEC measurements well (Fig. 5a – black lines). How-
ever, for Shijiazhuang and Taiyuan, the simulation underesti-
mated the empirical results (Fig. 5b and c, respectively), par-
ticularly near the height of 100 m (the lowest height of valid
lidar data), while for Wuhu, it overestimated them (Fig. 5d).

The DA increments of AEC values from the DA_PM, that
is, the AEC values obtained from the DA_PM experiment
(green lines) minus those from the control experiment (blue
lines), were negative for Beijing (Fig. 5a), Taiyuan (Fig. 5c),
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Figure 3. BEVCCs of six control variables.

and Wuhu (Fig. 5d) at the surface. They were also negative
from the near-surface to a height of about 1000 m, although
their absolute values were smaller than those at the surface.
This is because the BEVCCs between each in-air layer and
the surface layer were positive and decreased with height
(Fig. 3) so that the information contained in the surface PM
MC measurements was spread to the air. However, the results
of the adjustment of the AEC profiles were not always posi-
tive, because the aerosol bias of the control experiment at the
surface was not always the same as it was in the atmosphere.
Thus, they were overall positive for Beijing and Wuhu but
negative for Taiyuan, reflecting the fact that the PM DA did
not effectively account for the vertical aerosol distribution
adjustment.

Compared to those from the DA_PM experiments, the
AEC values from the DA_Ext experiments (purple lines) for
Taiyuan (Fig. 5c) at heights of approximately 100 and 700 m
were significantly larger than those from the DA_PM ex-
periment and were consistent with the measurements (black
line), and those for Wuhu (Fig. 5d) were very close to the
measurements across the entire profile. This suggests that
the AEC observation operator whose design was based on
the IMPROVE equation effectively facilitated 3D variational
assimilation of lidar AEC data. In addition, although lidar
data were not available at the surface, the DA_Ext adjusted
the surface PM MCs, corrected the overestimation of surface
PM2.5 MCs in Beijing and Wuhu but increased the overesti-
mation of surface PM2.5 MCs in Taiyuan. This is because the
information contained in the in-air AEC was spread to the

surface, while the aerosol bias of the control experiment in
the air did not always match that at the surface.

The in-air AEC profiles obtained from the DA_PM_Ext
experiment (red lines) for the four cities almost coincided
with those from the DA_Ext experiments above 400 m. The
near-surface AEC values obtained from the DA_PM_Ext ex-
periment for Beijing (Fig. 5a), Taiyuan (Fig. 5c), and Wuhu
(Fig. 5d) almost coincided with those from the DA_PM ex-
periment, were between those from the DA_PM and DA_Ext
experiments, and were smaller than those from both the
DA_PM and DA_Ext experiments. This suggests that simul-
taneously assimilating the two types of data can fully inte-
grate their observation information and reflect their respec-
tive advantages, thereby generating the most accurate analy-
sis field.

Figure 6 shows the AEC profiles measured, simulated by
the control experiment, in the background fields and the anal-
ysis fields of the DA experiments at four lidar stations at
12:00 UTC on 13 November 2018. The time of 12:00 UTC
on 13 November 2018 was the last time point of the DA pe-
riod, the starting time point of the forecast period, and the
time point at which 13 DA cycles had elapsed. The back-
ground field for each of the three DA experiments was gen-
erated during the continuous DA period, whereas the results
of the control experiment were obtained by a 12 h forecast
starting at 00:00 UTC on 13 November 2018. As a result,
there was a significant difference between the background
fields of the three DA experiments and those of the control
experiment.

https://doi.org/10.5194/gmd-13-6285-2020 Geosci. Model Dev., 13, 6285–6301, 2020



6294 Y. Liang et al.: Lidar profile data assimilation and PM2.5 forecasts across China

Figure 4. Surface PM2.5 MC measurements in the D02 region and NCEP reanalysis wind field for the period from 00:00 UTC on 13 Novem-
ber 2018 to 12:00 UTC on 14 November 2018 (Bu-O: Buyant-Ovoo; Ba-O: Bayan-Ovoo; CY: Chaoyang; BJ: Beijing; SJZ: Shijiazhuang;
TY: Taiyuan; ZB: Zibo; X’A: Xi’an; ZZ: Zhengzhou; NJ: Nanjing).

The DA increments of the AEC values from the DA_PM
experiment were significant below 1000 m (green lines).
These adjustments corrected the near-surface overestimation
of the AEC values for the four cities in the control ex-
periment; however, they increased the underestimation for
Taiyuan at heights of 120–400 m (Fig. 6c) and overestima-
tion for Wuhu above 400 m (Fig. 6d). Additionally, it is worth
noting that there were small direct DA increments generated
in the DA_PM experiment at this time point. This means that
for the surface PM DA, a DA period of 11 h or less was suf-
ficient to effectively adjust aerosol distribution in this exper-
iment. This may be because aerosols were primarily concen-
trated near the surface and surface PM data covered a wide
area and had a high spatial resolution. Thus, surface PM data
measured at a few time points contained the main aerosol
distribution information for the whole region.

Compared to the DA_PM experiment, the DA_Ext exper-
iment (purple lines) reflected the advantages of adjusting the
vertical aerosol distribution. The overestimations for Beijing
above 300 m (Fig. 6a), Taiyuan above 600 m (Fig. 6c), and
Wuhu below 400 m (Fig. 6d) in the control experiment were
effectively corrected. The rapid decrease in the AEC from
the surface to a height of 1000 m over Beijing (Fig. 6a) and
the maximum-AEC layer at a height of 1300 m over Wuhu
(Fig. 6d) were accurately reproduced by the DA_Ext experi-
ment. However, the near-surface overestimation for Taiyuan
(Fig. 6c) increased. Moreover, the direct DA increments gen-
erated in the DA_Ext experiment at this time point remained
notable. This suggests that the background field errors at each
lidar station at 12:00 UTC remained relatively large, even af-
ter the continuous DA period. To improve the effects of the
DA, it was necessary to increase the length of the continu-
ous DA period. This may have been due to the limited num-
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Figure 5. AEC profiles measurements (black lines), the AEC pro-
files in the analysis fields of the control (blue lines), DA_PM (green
lines), DA_Ext (purple lines), and DA_PM_Ext (red lines) exper-
iments and the simulated RH profiles (orange lines) at four lidar
stations at 00:00 UTC on 13 November 2018 (BJ: Beijing; SJZ: Shi-
jiazhuang; TY: Taiyuan; WH: Wuhu).

ber of lidars and the fact that the lidars were relatively far
apart from one another. Thus, the simulation error for the re-
gion upstream of a lidar was difficult to correct through DA
and affected the lidar location due to the effects of advection
at the next time point. In addition, because the 12:00 UTC
(20:00 LST) was only 2–3 h after sunset, large changes of
PM concentration profile may occur due to large changes in
the planetary boundary layer height after sunset.

Figure 7 shows the surface PM2.5 MC measurements, the
surface PM2.5 MCs of the initial field of the control exper-
iment and their biases, and the inverse DA increments of
PM2.5 MCs from the DA experiments, that is, the PM2.5 MCs
obtained from the control experiment minus those from the
DA experiments at 12:00 UTC on 13 November 2018. The
measurements (Fig. 7a) showed that the PM2.5 MCs were
relatively high in North China, with a heavily polluted zone
in the Beijing–Shijiazhuang–Zhengzhou region, while the
PM2.5 MCs were relatively low surrounding North China.
The control experiment (Fig. 7b) successfully simulated re-
gions with relatively high and low PM2.5 MCs. However,
the PM2.5 MCs were overestimated for most stations in D02
(Fig. 7c), especially in the Beijing–Shijiazhuang–Zhengzhou
region, and underestimated for stations near Chaoyang.

The inverse DA increments of the PM2.5 MCs of the
DA_PM experiment (Fig. 7d) were relatively consistent with
the bias of the control experiment (Fig. 7c), indicating that
the overestimation for most regions and the underestimation
for some regions in the initial field of the control experiment

Figure 6. AEC profiles measurements (solid black lines), the AEC
profiles in the control experiment (solid blue lines), in the back-
ground field of the DA_PM (dotted green lines), DA_Ext (dotted
purple lines), and DA_PM_Ext (dotted red lines) experiments, and
in the analysis fields of the DA_PM (solid green lines), DA_Ext
(solid purple lines), and DA_PM_Ext (solid red lines) experiments
at four lidar stations at 12:00 UTC on 13 November 2018 (BJ: Bei-
jing; SJZ: Shijiazhuang; TY: Taiyuan; WH: Wuhu).

were corrected by the PM DA. The inverse DA increments
of the PM2.5 MCs of DA_Ext (Fig. 7e) were significant in
the regions surrounding and downstream of the five lidar sta-
tions. In addition, certain DA increments were also present
in regions far away from the lidar stations. This indicates
that long-term continuous lidar AEC DA can affect a rela-
tively large area. Overall, the DA_Ext corrects the overesti-
mation for most stations and underestimation for a few sta-
tions in the control experiment. However, the DA_Ext incre-
ments were smaller than the DA_PM increments in terms of
horizontal spatial range and absolute values. This is mainly
because there are relatively few lidars, and these lidars cover
a limited spatial area. It is worth noting that DA_Ext yields a
negative effect for northern Beijing and the region around
Taiyuan, a result which will be discussed later in Sect. 4.
The inverse DA increments of PM2.5 MCs of DA_PM_Ext
(Fig. 7f) were relatively consistent with those of the DA_PM
(Fig. 7c). This is mainly because the quantity and spatial cov-
erage of the PM data were larger and more complete than
those of the lidar data. As a result, the DA increments of the
surface PM2.5 MCs originated primarily from the observa-
tion information contained in the PM data. Because the AEC
profiles of the DA_PM_Ext almost coincided with those of
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Figure 7. Surface PM2.5 MC measurements (a), surface PM2.5 MCs in the initial field of control experiment (b) and its bias (c), the inverse
DA increments of PM2.5 MC of DA experiments, that is, the PM2.5 MCs obtained from the control experiment minus that from the DA
experiments (d–f) at 12:00 UTC on 13 November 2018 (black triangles signify the locations of the lidar stations, and green triangles mark
the locations of the two cities without lidar) (CY: Chaoyang; BJ: Beijing; SJZ: Shijiazhuang; TY: Taiyuan; ZZ: Zhengzhou; XZ: Xuzhou;
WH: Wuhu).

Figure 8. Variation of the regional mean PM2.5 MC over time mea-
sured and simulated by the four experiments (the vertical orange
line separates the DA and forecast periods; the black line signifies
measurements; the blue line signifies that obtained from the control
experiment; the green, purple, and red lines signify that obtained
from the DA_PM, DA_Ext, and DA_PM_Ext experiments, respec-
tively).

the DA_Ext above 400 m (Fig. 5), the DA_PM_Ext reflected
the 3D spatial distribution pattern of the aerosols most accu-
rately.

3.4 Effects of DA on the forecast performance for
surface PM2.5 MCs

In this section, the forecast performances of the DAs for sur-
face PM2.5 are evaluated based on measurements that cover
most of the D02 region.

Figure 8 shows the variation of the regional mean of the
PM2.5 MC over time from the four experiments. The regional
mean of the PM2.5 MC (black line) exhibited a notable diur-
nal pattern. Two notable minimum PM2.5 MC values (69.1
and 77.9 µg m−3) appeared at 08:00 UTC (16:00 local time)
on 13 and 14 November 2018, respectively. High PM2.5 MCs
appeared between 13:00 UTC on 13 November 2018 and
02:00 UTC on 14 November 2018 (from night to morning),
with a maximum PM2.5 MC of 96.0 µg m−3. Meanwhile,
there was a relative minimum PM2.5 MC (87.0 µg m−3) ap-
pearing at 22:00 UTC on 13 November 2018 (around dawn
local time) during the high-PM2.5-MC period.
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The control experiment (blue line) simulated the periodic
variation pattern of the mean PM2.5 MC but significantly
overestimated the value of this parameter during the entire
forecast period. The mean PM2.5 MC of the control experi-
ment at the initial time for the forecast period (12:00 UTC on
13 November 2018) was 128.6 µg m−3, which is 36.3 µg m−3

(39.3 %) larger than that of the measurements (92.3 µg m−3).
The DA_PM (green line, which almost coincides with the
red line) significantly reduced the overestimation of the con-
trol experiment, with a mean PM2.5 MC of 91.4 µg m−3 that
is 0.9 µg m−3 (1.0 %) lower than the measurement. As a re-
sult of the decrease in the MC levels in the initial field,
the PM2.5 MC forecasts of the DA_PM were significantly
lower than those of the control experiment during the en-
tire forecast period. This suggests that the overestimation
of the initial field is the primary cause of the overestimated
forecasts of the control experiment. The overestimation of
the control experiment at the initial time point was reduced
by the DA_Ext (purple line) from 36.3 µg m−3 (39.3 %) to
20.5 µg m−3 (22.2 %), which improved the forecast perfor-
mance significantly (even though there were only five lidars
within the region). There was no significant difference be-
tween the results of the DA_PM_Ext (red line) and DA_PM
(green line) at the surface. This suggests that in these experi-
ments, after DA of surface PM data, the DA of lidar data did
not significantly affect the surface PM2.5 MC levels. There
are two reasons for this. The PM data set was far larger than
the lidar data set in terms of quantity and spatial coverage.
In addition, after surface PM DA, lidar DA mainly directly
adjusted the AMC values not at surface but in-air and hence
affected the surface AMC forecasts only indirectly, via pro-
cesses such as settling. However, in this simulation process,
the surface AMC levels remained relatively high, while the
vertical air movement was weak due to the relatively sta-
ble meteorological conditions, particularly in the heavily pol-
luted zone. Therefore, the effects of the lidar DA on the sur-
face PM2.5 MCs are far smaller after the surface PM DA.

Figure 9 shows the variation in the RMSE of surface
PM2.5 MC forecasts over time. The RMSEs for simulations
and forecasts were relatively large (small) when the mean
PM2.5 MCs were relatively high (low) (Fig. 8). The RMSE
in the control experiment was 59.6 µg m−3 at the initial time
for the forecast period (12:00 UTC on 13 November 2018)
and fluctuated between 44.5 and 67.1 µg m−3 instead of lin-
early increasing or decreasing throughout the forecast pe-
riod. The RMSEs in the DA_PM (green line), DA_Ext
(purple line), and DA_PM_Ext (red line) experiments at
the initial time point were 21.0, 49.1, and 21.2 µg m−3, re-
spectively, which were 38.6 µg m−3 (64.8 %), 10.5 µg m−3

(17.6 %), and 38.4 µg m−3 (64.4 %) lower than that of the
control experiment. Owing to the optimized initial field, the
RMSE of the forecasts of each of the DA experiments was
lower than that of the control experiment during the fore-
cast period. For the 24th forecast hour, the RMSEs of the
forecasts of the Da_PM, Da_Ext, and DA_PM_Ext were

Figure 9. Variation in the RMSE of surface PM2.5 MC forecasts
over time (the vertical orange line separates the DA and forecast
periods; the blue line signifies that obtained from the control exper-
iment; the green, purple, and red lines signify that obtained from the
DA_PM, DA_Ext, and DA_PM_Ext experiments, respectively).

6.1 µg m−3 (11.8 %), 1.5 µg m−3 (2.9 %), and 6.5 µg m−3

(12.6 %) smaller than that of the control experiment, respec-
tively. This suggests that the optimization of the initial field
has a lasting (more than 24 h in all cases) positive effect on
model forecasts. It is worth noting that while there are very
few lidar stations, the results of the DA_Ext experiment were
still better than those of the control experiment, and the re-
sults of the DA_PM_Ext experiment were also slightly bet-
ter than those of the DA_PM experiment. This indicates that
even in relatively low quantities, lidar data still improve the
forecast performance of the model. As lidar data become
increasingly rich and provide more vertical and horizontal
aerosol distribution information in the future, lidar DA will
further improve PM2.5 MC forecasts.

4 Discussion

DA_Ext had a negative effect on the surface PM2.5 MC dis-
tributions for regions around Taiyuan and northern Beijing
(Fig. 7e). For Taiyuan, the cause of the negative effect was
similar to that responsible for the results shown in Fig. 5; that
is, the information contained in the in-air AEC was spread to
the surface by DA_Ext. However, the AEC showed an un-
derestimation bias of the control experiment at a height of
100 m, while the PM MC measurements showed an overes-
timation bias at the surface. There are two reasons for the
differences between the bias of the control experiment in-air
and at surface, as reflected by the AEC and PM MC mea-
surements. First, it is not abnormal for the simulation er-
ror of the model to differ in the vertical direction due to
the complex evolution mechanism of aerosols, which we
do not discuss here. Second, the PM2.5 MCs measured at
12:00 UTC on 13 November 2018 at three ground environ-
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mental monitoring stations within 6 km of the Taiyuan lidar
station were 80.0, 137.0, and 146.0 µg m−3, respectively, in-
dicating a large horizontal gradient of AMC and PM MC
around the Taiyuan lidar station. Therefore, the observation
information contained in the lidar profile did not represent
the spatial distribution well and differed significantly from
that contained in the PM data nearby. This suggests that the
spatial representation of lidar data could significantly affect
the impact of the lidar AEC DA. In addition, the vertical res-
olution of the lidar data (smaller than 15 m) is far smaller
than the spacing between adjacent height layers of the model.
As a result, the representative spatial scale of the original li-
dar data does not match the resolution of the model. To im-
prove the accuracy of the horizontal spatial representative-
ness of the lidar data, at each time point, the lidar AEC profile
was based on hourly averaged lidar data (from the previous
hour). The vertical spatial representativeness of the data was
improved by smoothing over 30 m in the vertical direction.
However, the time-averaged lidar data represented observa-
tion information for a certain area downstream of the wind
field. These errors need to be addressed in subsequent stud-
ies. Moreover, the selection of a time-averaging period and
vertical smoothing length also requires further investigation.

For northern Beijing, the underestimation resulted primar-
ily from the notable Beijing lidar overestimation, whereas the
overestimation was relatively small in northern Beijing, the
downstream region of the Beijing lidar. In addition, there was
even underestimation in some of the PM measurement sta-
tions north of Beijing (Fig. 7c). Therefore, the downstream
transference of lidar DA information from Beijing lidar lo-
cation to northern Beijing caused the underestimation in the
continuous DA results. The most direct and effective mea-
sure for addressing this problem is to increase the number
of lidars and the coverage of the lidar network. This mea-
sure will ensure that the simulation bias for the simulation
region will be more comprehensively captured. However, li-
dar detection requires large amounts of labor and financial
resources. Therefore, it is difficult to arrange lidar stations as
densely as ground environmental monitoring stations. A rel-
atively feasible method is to set a relatively small number of
lidars in regions with a relatively uniform simulation bias and
set dense lidars in regions where the simulation bias changes
significantly. This will make it possible to use a limited num-
ber of lidars to capture more useful information. Thus, study-
ing the temporal and spatial distribution of model simulation
bias can provide a useful reference for the future arrange-
ment and planning of the lidar stations. This merits further
investigation.

The AEC observation operator used in this study was de-
signed based on the IMPROVE equation, with parameters
such as the hygroscopicity coefficient set to values reported
in previous studies. On the one hand, data sets from which
the IMPROVE parameters were determined in previous stud-
ies were measured in specific regions and near the ground.
The verification of the IMPROVE parameters had not been

thoroughly conducted for the locations where lidar data were
provided. Therefore, there may have been different biases
between the Mie algorithm and the IMPROVE algorithm
in different regions, inducing inconsistent assimilation per-
formance. Additionally, the values of the coefficients in the
IMPROVE equation were determined by statistical analysis
of extensive data. This dictated that these coefficients repre-
sented average levels under certain pollution and humidity
conditions. There may be certain biases in these coefficients
when applied to a specific observation event. These biases
will accumulate and amplify during the calculation of the
forward and adjoint processes of the observation operator,
resulting in a negative effect DA effect. Hence, another issue
needing to be addressed is how to effectively evaluate the ap-
plicability of the IMPROVE equation and more accurately
adjust its coefficients.

5 Conclusions

In this study, an observation operator and its adjoint for the
AEC DA were designed based on the IMPROVE equation,
and a 3-DVAR DA system was developed for lidar AEC
data and surface AMC data for the MOSAIC_4bin chem-
ical scheme in the WRF–Chem model. Three DA experi-
ments (i.e., a PM2.5 (PM10) DA experiment, a lidar AEC
DA experiment, and a simultaneous PM2.5 (PM10) and li-
dar AEC DA experiment) were conducted based on AEC
profiles captured by five lidars (located in Beijing, Shiji-
azhuang, Taiyuan, Xuzhou, and Wuhu) as well as PM2.5 and
PM10 measurements taken at over 1500 ground environmen-
tal monitoring stations across China in the period from 00:00
to 12:00 UTC on 13 November 2018. A comparison with
the control experiment involving no DA found that the 3-
DVAR DA system was effective at assimilating lidar AEC
data. While there were only five lidars within the simulation
region (approximately 2.33 million km2 in size), assimilating
AEC data alone was still found to effectively improve the ac-
curacy of the initial field, hence improving the forecast per-
formance for PM2.5 for more than 24 h. The lidar AEC DA
can reduce the RMSE of the surface PM2.5 MC in the ini-
tial field of the model by 10.5 µg m−3 (17.6 %). In addition,
a 38.4 µg m−3 (64.4 %) reduction occurred when the PM2.5
(PM10) and lidar AEC data were assimilated simultaneously.
The RMSEs of the forecasted surface PM2.5 MC 24 h after
the DA period in the three DA experiments were reduced
by 6.1 µg m−3 (11.8 %), 1.5 µg m−3 (2.9 %), and 6.5 µg m−3

(12.6 %), respectively. Lidar AEC DA was advantageous for
improving the accuracy of the vertical PM2.5 MC profile.
Surface PM2.5 (PM10) DA was advantageous for optimiz-
ing the near-surface PM2.5 MC distribution. Simultaneous li-
dar AEC and surface PM2.5 (PM10) DA effectively integrated
their observation information to generate a more accurate 3D
aerosol analysis field.
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