
Geosci. Model Dev., 13, 6265–6284, 2020
https://doi.org/10.5194/gmd-13-6265-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

A fast and efficient MATLAB-based MPM solver:
fMPMM-solver v1.1
Emmanuel Wyser1, Yury Alkhimenkov1,2,3, Michel Jaboyedoff1,2, and Yury Y. Podladchikov1,2,3

1Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland
2Swiss Geocomputing Centre, University of Lausanne, 1015 Lausanne, Switzerland
3Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, 119899, Russia

Correspondence: Emmanuel Wyser (manuwyser@gmail.com)

Received: 3 June 2020 – Discussion started: 20 July 2020
Revised: 12 October 2020 – Accepted: 27 October 2020 – Published: 10 December 2020

Abstract. We present an efficient MATLAB-based imple-
mentation of the material point method (MPM) and its
most recent variants. MPM has gained popularity over the
last decade, especially for problems in solid mechanics in
which large deformations are involved, such as cantilever
beam problems, granular collapses and even large-scale snow
avalanches. Although its numerical accuracy is lower than
that of the widely accepted finite element method (FEM),
MPM has proven useful for overcoming some of the limita-
tions of FEM, such as excessive mesh distortions. We demon-
strate that MATLAB is an efficient high-level language for
MPM implementations that solve elasto-dynamic and elasto-
plastic problems. We accelerate the MATLAB-based imple-
mentation of the MPM method by using the numerical tech-
niques recently developed for FEM optimization in MAT-
LAB. These techniques include vectorization, the use of na-
tive MATLAB functions and the maintenance of optimal
RAM-to-cache communication, among others. We validate
our in-house code with classical MPM benchmarks includ-
ing (i) the elastic collapse of a column under its own weight;
(ii) the elastic cantilever beam problem; and (iii) existing ex-
perimental and numerical results, i.e. granular collapses and
slumping mechanics respectively. We report an improvement
in performance by a factor of 28 for a vectorized code com-
pared with a classical iterative version. The computational
performance of the solver is at least 2.8 times greater than
those of previously reported MPM implementations in Julia
under a similar computational architecture.

1 Introduction

The material point method (MPM), developed in the 1990s
(Sulsky et al., 1994), is an extension of a particle-in-cell
(PIC) method to solve solid mechanics problems involving
massive deformations. It is an alternative to Lagrangian ap-
proaches (updated Lagrangian finite element method) that is
well suited to problems with large deformations involved in
geomechanics, granular mechanics or even snow avalanche
mechanics. Vardon et al. (2017) and Wang et al. (2016c) in-
vestigated elasto-plastic problems of the strain localization of
slumping processes relying on an explicit or implicit MPM
formulation. Similarly, Bandara et al. (2016), Bandara and
Soga (2015), and Abe et al. (2014) proposed a poro-elasto-
plastic MPM formulation to study levee failures induced by
pore pressure increases. Additionally, Baumgarten and Kam-
rin (2019), Dunatunga and Kamrin (2017), Dunatunga and
Kamrin (2015), and Więckowski (2004) proposed a general
numerical framework of granular mechanics, i.e. silo dis-
charge or granular collapses. More recently, Gaume et al.
(2019, 2018) proposed a unified numerical model in the fi-
nite deformation framework to study the whole process (i.e.
from failure to propagation) of slab avalanche releases.

The core idea of MPM is to discretize a continuum with
material points carrying state variables (e.g. mass, stress
and velocity). The latter are mapped (accumulated) to the
nodes of a regular or irregular background finite element
(FE) mesh, on which an Eulerian solution to the momen-
tum balance equation is explicitly advanced forward in time.
Nodal solutions are then mapped back to the material points,
and the mesh can be discarded. The mapping from mate-
rial points to nodes is ensured using the standard FE hat

Published by Copernicus Publications on behalf of the European Geosciences Union.

6266 E. Wyser et al.: A fast and efficient MATLAB-based MPM solver

function that spans over an entire element (Bardenhagen and
Kober, 2004). This avoids a common flaw of the finite ele-
ment method (FEM), which is an excessive mesh distortion.
We will refer to this first variant as the standard material point
method (sMPM).

MATLAB© allows a rapid code prototyping, although it
is at the expense of significantly lower computational perfor-
mance than compiled language. An efficient MATLAB im-
plementation of FEM called MILAMIN (Million a Minute)
was proposed by Dabrowski et al. (2008) that was capable
of solving two-dimensional linear problems with 1 million
unknowns in 1 min on a modern computer with a reasonable
architecture. The efficiency of the algorithm lies in the com-
bined use of vectorized calculations with a technique called
blocking. MATLAB uses the Linear Algebra PACKage (LA-
PACK), written in Fortran, to perform mathematical oper-
ations by calling basic linear algebra subprograms (BLAS,
Moler, 2000). The latter results in an overhead each time a
BLAS call is made. Hence, mathematical operations over a
large number of small matrices should be avoided, and oper-
ations on fewer and larger matrices should be preferred. This
is a typical bottleneck in FEM when local stiffness matrices
are assembled during the integration point loop within the
global stiffness matrix. Dabrowski et al. (2008) proposed an
algorithm in which a loop reordering is combined with oper-
ations on blocks of elements to address this bottleneck. How-
ever, data required for a calculation within a block should en-
tirely reside in the CPU’s cache; otherwise, additional time is
spent on the RAM-to-cache communication, and the perfor-
mance decreases. Therefore, an optimal block size exists, and
it is solely defined by the CPU architecture. This technique of
vectorization combined with blocking significantly increases
the performance.

More recently, Bird et al. (2017) extended the vectorized
and blocked algorithm presented by Dabrowski et al. (2008)
to the calculation of the global stiffness matrix for discontin-
uous Galerkin FEM considering linear elastic problems us-
ing only native MATLAB functions. Indeed, the optimiza-
tion strategy chosen by Dabrowski et al. (2008) also relied
on non-native MATLAB functions, e.g. sparse2 of the
SuiteSparse package (Davis, 2013). In particular, Bird et al.
(2017) showed the importance of storing vectors in a column-
major form during calculation. Mathematical operations are
performed in MATLAB by calling LAPACK, written in For-
tran, in which arrays are stored in column-major order form.
Hence, element-wise multiplication of arrays in column-
major form is significantly faster; thus, vectors in column-
major form are recommended whenever possible. Bird et al.
(2017) concluded that vectorization alone results in a per-
formance increase of between 13.7 and 23 times, whereas
blocking only improved vectorization by an additional 1.8
times. O’Sullivan et al. (2019) recently extended the works
of Bird et al. (2017) and Dabrowski et al. (2008) to optimized
elasto-plastic codes for continuous Galerkin (CG) or discon-
tinuous Galerkin (DG) methods. In particular, they proposed

an efficient native MATLAB function, accumarray(), to
efficiently assemble the internal force vector. This kind of
function constructs an array by accumulation. More gener-
ally, O’Sullivan et al. (2019) reported a performance gain of
25.7 times when using an optimized CG code instead of an
equivalent non-optimized code.

As MPM and FEM are similar in their structure, we aim
to improve the performance of MATLAB up to the level re-
ported by Sinaie et al. (2017) using the Julia language envi-
ronment. In principal, Julia is significantly faster than MAT-
LAB for an MPM implementation. We combine the most
recent and accurate versions of MPM: the explicit general-
ized interpolation material point method (GIMPM, Barden-
hagen and Kober, 2004) and the explicit convected parti-
cle domain interpolation with second-order quadrilateral do-
mains (CPDI2q and CPDI; Sadeghirad et al., 2013, 2011)
variants with some of the numerical techniques developed
during the last decade of FEM optimization in MATLAB.
These techniques include the use of accumarray(), op-
timal RAM-to-cache communication, minimum BLAS calls
and the use of native MATLAB functions. We did not con-
sider the blocking technique initially proposed by Dabrowski
et al. (2008), as an explicit formulation in MPM excludes the
global stiffness matrix assembly procedure. The performance
gain mainly comes from the vectorization of the algorithm,
whereas blocking has a less significant impact over the per-
formance gain, as stated by Bird et al. (2017). The vectoriza-
tion of MATLAB functions is also crucial for a straight trans-
pose of the solver to a more efficient language, such as the
C-CUDA language, which allows the parallel execution of
computational kernels of graphics processing units (GPUs).

In this contribution, we present an implementation of an
efficiently vectorized explicit MPM solver, fMPMM-solver
(v1.1 is available for download from Bitbucket at https://
bitbucket.org/ewyser/fmpmm-solver/src/master/, last access:
6 October 2020), taking advantage of the vectorization ca-
pabilities of MATLAB©. We extensively use native func-
tions of MATLAB©, such as repmat(), reshape(),
sum() or accumarray(). We validate our in-house
code with classical MPM benchmarks including (i) the elas-
tic collapse of a column under its own weight; (ii) the elastic
cantilever beam problem; and (iii) existing experimental and
numerical results, i.e. granular collapses and slumping me-
chanics respectively. We demonstrate the computational effi-
ciency of a vectorized implementation over an iterative one
for an elasto-plastic collapse of a column. We compare the
performance of the Julia and MATLAB language environ-
ments for the collision of two elastic discs problem.

Geosci. Model Dev., 13, 6265–6284, 2020 https://doi.org/10.5194/gmd-13-6265-2020

https://bitbucket.org/ewyser/fmpmm-solver/src/master/
https://bitbucket.org/ewyser/fmpmm-solver/src/master/

E. Wyser et al.: A fast and efficient MATLAB-based MPM solver 6267

2 Overview of the material point method (MPM)

2.1 A material point method implementation

The material point method (MPM), originally proposed by
Sulsky et al. (1995, 1994) in an explicit formulation, is an
extension of the particle-in-cell (PIC) method. The key idea
is to solve the weak form of the momentum balance equa-
tion on an FE mesh while state variables (e.g. stress, veloc-
ity or mass) are stored at Lagrangian points discretizing the
continuum, i.e. the material points, which can move accord-
ing to the deformation of the grid (Dunatunga and Kamrin,
2017). MPM could be regarded as a finite element solver
in which integration points (material points) are allowed to
move (Guilkey and Weiss, 2003) and are, thus, not always
located at the Gauss–Legendre location within an element,
resulting in higher quadrature errors and poorer integration
estimates, especially when using low-order basis functions
(Steffen et al., 2008a, b).

A typical calculation cycle (see Fig. 1) consists of the three
following steps (Wang et al., 2016a):

1. a mapping phase, during which properties of the mate-
rial point (mass, momentum or stress) are mapped to the
nodes;

2. an updated Lagrangian FEM (UL-FEM) phase, during
which the momentum equations are solved on the nodes
of the background mesh, and the solution is explicitly
advanced forward in time;

3. a convection phase, during which (i) the nodal solutions
are interpolated back to the material points, and (ii) the
properties of the material point are updated.

Since the 1990s, several variants have been introduced to
resolve a number of numerical issues. The generalized inter-
polation material point method (GIMPM) was first presented
by Bardenhagen and Kober (2004). They proposed a gener-
alization of the basis and gradient functions that were con-
voluted with a characteristic domain function of the material
point. A major flaw in sMPM is the lack of continuity of the
gradient basis function, resulting in spurious oscillations of
internal forces as soon as a material point crosses an element
boundary while entering into its neighbour. This is referred
to as cell-crossing instabilities due to the C0 continuity of the
gradient basis functions used in sMPM. This issue is mini-
mized by the GIMPM variant (Acosta et al., 2020).

GIMPM is categorized as a domain-based material point
method, unlike the later development of the B-spline material
point method (BSMPM, e.g. de Koster et al., 2020; Gan et al.,
2018; Gaume et al., 2018; Stomakhin et al., 2013) which
cures cell-crossing instabilities using B-spline functions as
basis functions. Whereas only nodes belonging to an element
contribute to a given material point in sMPM, GIMPM re-
quires an extended nodal connectivity, i.e. the nodes of the

element enclosing the material point and the nodes belong-
ing to the adjacent elements (see Fig. 2). More recently, the
convected particle domain interpolation (CPDI and its most
recent development CPDI2q) has been proposed by Sadeghi-
rad et al. (2013, 2011).

We choose the explicit GIMPM variant with the modified
update stress last scheme (MUSL; see Nairn, 2003, and Bar-
denhagen et al., 2000, for a detailed discussion), i.e. the stress
of the material point is updated after the nodal solutions are
obtained. The updated momentum of the material point is
then mapped back to the nodes a second time in order to
obtain an updated nodal velocity, which is further used to
calculate derivative terms such as strains or the deformation
gradient of the material point. The explicit formulation also
implies the well-known restriction on the time step, which is
limited by the Courant–Friedrichs–Lewy (CFL) condition to
ensure numerical stability.

Additionally, we implemented a CPDI/CPDI2q version
(in an explicit and quasi-static implicit formulation) of the
solver. However, in this paper, we do not present the theo-
retical background of the CPDI variant nor the implicit im-
plementation of an MPM-based solver. Therefore, interested
readers are referred to the original contributions of Sadeghi-
rad et al. (2013, 2011) for the background of the CPDI vari-
ant and to the contributions of Acosta et al. (2020), Charl-
ton et al. (2017), Iaconeta et al. (2017), Beuth et al. (2008),
and Guilkey and Weiss (2003) for an implicit implementa-
tion of an MPM-based solver. Regarding the quasi-static im-
plicit implementation, we strongly adapted our vectorization
strategy to some aspects of the numerical implementation
proposed by Coombs and Augarde (2020) in the MATLAB
code AMPLE v1.0. However, we did not consider blocking,
because our main concern regarding performance is on the
explicit implementation.

2.2 Domain-based material point method variants

Domain-based material point method variants could be
treated as two distinct groups:

1. the material point’s domain is a square for which the
deformation is always aligned with the mesh axis, i.e.
a non-deforming domain uGIMPM (Bardenhagen and
Kober, 2004), or it is a deforming domain cpGIMPM,
(Wallstedt and Guilkey, 2008), where the latter is usu-
ally related to a measure of the deformation, e.g. the
determinant of the deformation gradient;

2. the material point’s domain is either a deforming paral-
lelogram that has its dimensions specified by two vec-
tors, i.e. CPDI (Sadeghirad et al., 2011), or it is a de-
forming quadrilateral solely defined by its corners, i.e.
CPDI2q (Sadeghirad et al., 2013). However, the defor-
mation is not necessarily aligned with the mesh any-
more.

https://doi.org/10.5194/gmd-13-6265-2020 Geosci. Model Dev., 13, 6265–6284, 2020

6268 E. Wyser et al.: A fast and efficient MATLAB-based MPM solver

Figure 1. Typical calculation cycle of an MPM solver for a homogeneous velocity field, inspired by Dunatunga and Kamrin (2017). (a) The
continuum (orange) is discretized into a set of Lagrangian material points (red dots), at which state variables or properties (e.g. mass, stress
and velocity) are defined. The latter are mapped to an Eulerian finite element mesh made of nodes (blue square). (b) Momentum equations
are solved at the nodes, and the solution is explicitly advanced forward in time. (c) The nodal solutions are interpolated back to the material
points, and their properties are updated.

Figure 2. Nodal connectivities of the (a) standard MPM, (b) GIMPM and (c) CPDI2q variants. The material point’s location is marked by
the blue cross. Note that the particle domain does not exist for sMPM (or BSMPM), unlike GIMPM or CPDI2q (the blue square enclosing
the material point). Nodes associated with the material point are denoted by filled blue squares, and the element number appears in green in
the centre of the element. For sMPM and GIMPM, the connectivity array between the material point and the element is p2e, and the array
between the material point and its associated nodes is p2N. For CPDI2q, the connectivity array between the corners (filled red circles) of the
quadrilateral domain of the material point and the element is c2e, and the array between the corners and their associated nodes is c2N.

We first focus on the different domain-updating methods for
GIMPM. Four domain-updating methods exists: (i) the do-
main is not updated, (ii) the deformation of the domain is
proportional to the determinant of the deformation gradient
det(Fij) (Bardenhagen and Kober, 2004), (iii) the domain
lengths lp are updated according to the principal compo-
nent of the deformation gradient Fii (Sadeghirad et al., 2011)
or (iv) the domain lengths lp are updated with the principal
component of the stretching part of the deformation gradient
Uii (Charlton et al., 2017). Coombs et al. (2020) highlighted
the suitability of generalized interpolation domain-updating
methods according to distinct deformation modes. Four dif-
ferent deformation modes were considered by Coombs et al.
(2020): simple stretching, hydrostatic compression or exten-

sion, simple shear and pure rotation. Coombs et al. (2020)
concluded the following:

– Not updating the domain is not suitable for simple
stretching and hydrostatic compression or extension.

– A domain update based on det(Fij) will results in an ar-
tificial contraction or expansion of the domain for sim-
ple stretching.

– The domain will vanish with increasing rotation when
using Fii .

– The domain volume will change under isochoric defor-
mation when using Uii .

Consequently, Coombs et al. (2020) proposed a hybrid do-
main update inspired by CPDI2q approaches: the corners of

Geosci. Model Dev., 13, 6265–6284, 2020 https://doi.org/10.5194/gmd-13-6265-2020

E. Wyser et al.: A fast and efficient MATLAB-based MPM solver 6269

the material point domain are updated according to the nodal
deformation, but the midpoints of the domain limits are used
to update the domain lengths lp to maintain a rectangular do-
main. Even though Coombs et al. (2020) reported an excel-
lent numerical stability, the drawback is to compute specific
basis functions between nodes and material point’s corners,
which has an additional computational cost. Hence, we did
not selected this approach in this contribution.

Regarding the recent CPDI/CPDI2q version, Wang et al.
(2019) investigated the numerical stability under stretch-
ing, shear and torsional deformation modes. CPDI2q was
found to be erroneous in some case, especially when the tor-
sion mode was involved, due to distortion of the domain.
In contrast, CPDI and even sMPM showed better perfor-
mance with respect to modelling torsional deformations. Al-
though CPDI2q can exactly represent the deformed domain
(Sadeghirad et al., 2013), care must be taken when deal-
ing with very large distortion, especially when the material
has yielded, which is common in geotechnical engineering
(Wang et al., 2019).

Consequently, the domain-based method and the domain-
updating method should be carefully chosen according to the
deformation mode expected for a given case. The domain-
updating method will be clearly mentioned for each case
throughout the paper.

3 MATLAB-based MPM implementation

3.1 Rate formulation and elasto-plasticity

The large deformation framework in a linear elastic contin-
uum requires an appropriate stress–strain formulation. One
approach is based on the finite deformation framework,
which relies on a linear relationship between elastic loga-
rithmic strains and Kirchhoff stresses (Coombs et al., 2020;
Gaume et al., 2018; Charlton et al., 2017). In this study, we
adopt another approach, namely a rate-dependent formula-
tion using the Jaumann stress rate (e.g. Huang et al., 2015;
Bandara et al., 2016; Wang et al., 2016c, b). This formula-
tion provides an objective (invariant by rotation or frame-
indifferent) stress rate measure (de Souza Neto et al., 2011)
and is simple to implement. The Jaumann rate of the Cauchy
stress is defined as

Dσij
Dt
=

1
2
Cijkl

(
∂vl

∂xk
+
∂vk

∂xl

)
, (1)

where Cijkl is the fourth rank tangent stiffness tensor, and
vk is the velocity. Thus, the Jaumann stress derivative can be
written as

Dσij
Dt
=

Dσij
Dt
− σikωjk − σjkωik, (2)

where ωij = (∂ivj − ∂jvi)/2 is the vorticity tensor, and
Dσij/Dt denotes the material derivative

Dσij
Dt
=
∂σij

∂t
+ vk

∂σij

∂xk
. (3)

Plastic deformation is modelled with a pressure-dependent
Mohr–Coulomb law with non-associated plastic flow, i.e.
both the dilatancy angle ψ and the volumetric plastic strain
ε

p
v are null (Vermeer and De Borst, 1984). We have adopted

the approach of Simpson (2017) for a two-dimensional lin-
ear elastic, perfectly plastic (elasto-plasticity) continuum be-
cause of its simplicity and its ease of implementation. The
yield function is defined as

f = τ + σ sinφ− ccosφ, (4)

where c is the cohesion, φ the angle of internal friction,

σ = (σxx + σyy)/2 (5)

and

τ =

√
(σxx − σyy)2/4+ σ 2

xy . (6)

The elastic state is defined when f < 0; however, when
f > 0, plastic state is declared and stresses must be corrected
(or scaled) to satisfy the condition f = 0, as f > 0 is an inad-
missible state. Simpson (2017) proposed the following sim-
ple algorithm to return stresses to the yield surface:

σ ∗xx = σ + (σxx − σyy)β/2, (7)
σ ∗yy = σ − (σxx − σyy)β/2, (8)

σ ∗xy = σxyβ, (9)

where β = (| ccosφ− σ sinφ |)/τ , and σ ∗xx , σ ∗yy and σ ∗xy are
the corrected stresses, i.e. f = 0.

A similar approach is used to return stresses when consid-
ering a non-associated Drucker–Prager plasticity (see Huang
et al., 2015, for a detailed description of the procedure). In
addition, their approach also allows one to model associated
plastic flows, i.e. ψ > 0 and εp

v 6= 0.

3.2 Structure of the MPM solver

The solver procedure is shown in Fig. 3. In the main.m
script, the respective meSetup.m and mpSetup.m func-
tions define the geometry and related quantities such as the
nodal connectivity (or element topology) array, e.g. the e2N
array. The latter stores the nodes associated with a given ele-
ment. As such, a material point p located in an element e can
immediately identify which nodes n it is associated with.

After initialization, a while loop solves the elasto-dynamic
(or elasto-plastic) problem until a time criterion T is reached.
This time criterion could be restricted to the time needed for
the system to reach an equilibrium or if the global kinetic
energy of the system has reached a threshold.

https://doi.org/10.5194/gmd-13-6265-2020 Geosci. Model Dev., 13, 6265–6284, 2020

6270 E. Wyser et al.: A fast and efficient MATLAB-based MPM solver

Figure 3. Workflow of the explicit GIMPM solver and the calls to
functions within a calculation cycle. The role of each function is
described in the text.

At the beginning of each cycle, a connectivity array p2e
between the material points and their respective element (a
material point can only reside in a single element) is con-
structed. As (i) the nodes associated with the elements and
(ii) the elements enclosing the material points are known,
it is possible to obtain the connectivity array p2N be-
tween the material points and their associated nodes, e.g.
p2N=e2N(p2e,:) in a MATLAB syntax (see Fig. 2 for
an example of these connectivity arrays). This array is of di-
mension (np,nn). Here, np is the total number of material
points; nn is the total number of nodes associated with an
element (16 in two-dimensional problems); and ni,j is the
node number, where i corresponds to the material point and
j corresponds to its j -th associated nodes, which results in
the following:

p2N=

 n1,1 · · · n1,nn
...

. . .
...

nnp,1 · · · nnp,nn

 . (10)

The following five functions are called successively during
one calculation cycle:

1. SdS.m calculates the basis functions, the derivatives
and assembles the strain-displacement matrix for each
material point.

2. p2Nsolve.m projects the quantities of the material
point (e.g. mass and momentum) to the associated
nodes, solves the equations of motion and sets bound-
ary conditions.

3. mapN2p.m interpolates nodal solutions (acceleration
and velocity) to the material points with a double-
mapping procedure (see Zhang et al., 2016, or Nairn,
2003, for a clear discussion of update stress first, update
stress last and MUSL algorithms).

4. DefUpdate.m updates incremental strains and
deformation-related quantities (e.g. the volume of the
material point or the domain half-length) at the level
of the material point based on the remapping of the
updated material point momentum.

5. constitutive.m calls two functions to solve for the
constitutive elasto-plastic relation, namely

(a) elastic.m, which predicts an incremental objec-
tive stress assuming a purely elastic step, further
corrected by

(b) plastic.m, which corrects the trial stress by a
plastic correction if the material has yielded.

When a time criterion is met, the calculation cycle stops and
further post-processing tasks (visualization, data exportation)
can be performed.

The numerical simulations are conducted using MAT-
LAB© R2018a within a Windows 7 64-bit environment on
an Intel Core i7-4790 (fourth-generation CPU with four
physical cores of base frequency at 3.60 GHz up to a maxi-
mum turbo frequency of 4.00 GHz) with 4×256 kB L2 cache
and 16 GB DDR3 RAM (clock speed 800 MHz).

3.3 Vectorization

3.3.1 Basis functions and derivatives

The GIMPM basis function (Coombs et al., 2018; Steffen
et al., 2008a; Bardenhagen and Kober, 2004) results from
the convolution of a characteristic particle function χp (i.e.
the material point spatial extent or domain) with the standard
basis function Nn(x) of the mesh, which results in

Sn(xp)=

1− (4x2
+ l2p)/(4hlp)

if | x |< lp/2
1− | x | /h

if lp/2≤| x |< h− lp/2(
h+ lp/2− | x |

)2
/(2hlp)

if h− lp/2≤| x |< h+ lp/2
0 otherwise .

(11)

Here, lp is the length of the material point domain; h is the
mesh spacing; and x = xp−xn, where xp is the coordinate of
a material point and xn the coordinate of its associated node
n. The basis function of a node n with its material point p is
constructed for a two-dimensional model, as follows:

Sn
(
xp
)
= Sn(xp)Sn(yp). (12)

Here, the derivative is defined as

∇Sn
(
xp
)
=
(
∂xSn(xp)Sn(yp),Sn(xp)∂ySn(yp)

)
. (13)

Geosci. Model Dev., 13, 6265–6284, 2020 https://doi.org/10.5194/gmd-13-6265-2020

E. Wyser et al.: A fast and efficient MATLAB-based MPM solver 6271

Similar to the FEM, the strain-displacement matrix B con-
sists of the derivatives of the basis function and is assigned
to each material point, which results in the following:

B(xp)=

∂xS1 0 · · · ∂xSnn 0
0 ∂yS1 · · · 0 ∂ySnn
∂yS1 ∂xS1 · · · ∂ySnn ∂xSnn

 , (14)

where nn is the total number of associated nodes to an ele-
ment e, in which a material point p resides.

The algorithm outlined in Fig. 4 (the function [mpD] =
SdS(meD,mpD,p2N) called at the beginning of each cy-
cle; see Fig. 4) represents the vectorized solution of the com-
putation of basis functions and their derivatives.

Coordinates of the material points mpD.x(:,1:2) are
first replicated and then subtracted by their associated nodes’
coordinates, e.g. meD.x(p2N) and meD.y(p2N) respec-
tively (lines 3 or 5 in Fig. 4). This yields the array D with the
same dimension of p2N. This array of distance between the
points and their associated nodes is sent as an input to the
nested function [N,dN] = NdN(D,h,lp), which com-
putes the one-dimensional basis function and its derivative
through matrix element-wise operations (operator .*) (ei-
ther in line 4 for x coordinates or line 6 for y coordinates in
Fig. 4).

Given the piece-wise Eq. (11), three logical arrays (c1,
c2 and c3) are defined (lines 21–24 in Fig. 4), whose ele-
ments are either one (the condition is true) or zero (the con-
dition is false). Three arrays of basis functions are calculated
(N1, N2 and N3, lines 26–28) according to Eq. (12). The ar-
ray of basis functions N is obtained through a summation of
the element-wise multiplications of these temporary arrays
with their corresponding logical arrays (line 29 in Fig. 4).
The same holds true for the calculation of the gradient ba-
sis function (lines 31–34 in Fig. 4). It is faster to use log-
ical arrays as multipliers of precomputed basis function ar-
rays rather than using these in a conditional indexing state-
ment, e.g. N(c2==1) = 1-abs(dX(c2==1))./h. The
performance gain is significant between the two approaches,
i.e. an intrinsic 30 % gain over the wall-clock time of the ba-
sis functions and derivatives calculation. We observe an in-
variance of such gain with respect to the initial number of
material points per element or to the mesh resolution.

3.3.2 Integration of internal forces

Another computationally expensive operation for MAT-
LAB© is the mapping (or accumulation) of the material point
contributions to their associated nodes. It is performed by the
function p2Nsolve.m in the workflow of the solver.

The standard calculations for the material point contribu-
tions to the lumped massmn, the momentum pn, the external

Figure 4. Code fragment 1 shows the vectorized solution to the cal-
culation of the basis functions and their derivatives within SdS.m.
Table B1 lists the variables used.

f en and internal f in forces are given by

mn =
∑
p∈n

Sn(xp)mp, (15)

pn =
∑
p∈n

Sn(xp)mpvp, (16)

f en =
∑
p∈n

Sn(xp)mpbp, (17)

f in =
∑
p∈n

vpBT (xp)σp, (18)

where mp is the material point mass, vp is the material point
velocity, bp is the body force applied to the material point
and σp is the material point Cauchy stress tensor in the Voigt
notation.

Once the mapping phase is achieved, the equations of mo-
tion are explicitly solved forward in time on the mesh. Nodal
accelerations an and velocities vn are given by

at+1tn =m−1
n (f en−f

i
n), (19)

vt+1tn =m−1
n pn+1ta

t+1t
n . (20)

Finally, boundary conditions are applied to the nodes that be-
long to the boundaries.

The vectorized solution comes from the use of the built-in
function accumarray() of MATLAB© combined with
reshape() and repmat(). The core of the vector-
ization is to use p2N as a vector (i.e. flattening the ar-
ray p2N(:) results in a row vector) of subscripts with

https://doi.org/10.5194/gmd-13-6265-2020 Geosci. Model Dev., 13, 6265–6284, 2020

6272 E. Wyser et al.: A fast and efficient MATLAB-based MPM solver

Figure 5. Code fragment 2 shows the vectorized solution to the
nodal projection of material point quantities (e.g. mass and mo-
mentum) within the local function p2Nsolve.m. The core of the
vectorization process is the extensive use of the built-in function of
MATLAB© accumarray(), for which we detail the main fea-
tures in the text. Table B1 lists the variables used.

accumarray, which accumulates material point contribu-
tions (e.g. mass or momentum) that share the same node.

In the function p2Nsolve (code fragment 2, shown in
Fig. 5), the first step is to initialize nodal vectors (e.g. mass,
momentum and forces) to zero (lines 4–5 in Fig. 5). Then,
temporary vectors (m, p, f and fi) of material point con-
tributions (namely, mass, momentum, and external and in-
ternal forces) are generated (lines 10–17 in Fig. 5). The ac-
cumulation (nodal summation) is performed (lines 19–26 in
Fig. 5) using either the flattened p2n(:) or l2g(:) (e.g.
the global indices of nodes) as the vector of subscripts. Note
that for the accumulation of material point contributions of
internal forces, a short for-loop iterates over the associated
node (e.g. from 1 to meD.nNe) of every material point to
accumulate their respective contributions.

To calculate the temporary vector of internal forces (fi
at lines 15–17 in Fig. 5), the first step consists of the matrix
multiplication of the strain-displacement matrix mpD.B
with the material point stress vector mpD.s. The vectorized
solution is given by (i) element-wise multiplications of
mpD.B with a replication of the transposed stress vector
repmat(reshape(mpD.s,size(mpD.s,1),1,
mpD.n),1,meD.nDoF(1)), whose result is then
(ii) summed by means of the built-in function sum()
along the columns and, finally, multiplied by a repli-

Figure 6. (a) The wall-clock time to solve for a matrix multiplica-
tion between a multidimensional array and a vector with an increas-
ing number of the third dimension with a double arithmetic pre-
cision, and (b) the number of floating point operations per second
(flops) for single and double arithmetic precisions. The continuous
line represents the average values, and the shaded area denotes the
standard deviation.

cated transpose of the material point volume vector, e.g.
repmat(mpD.V’,meD.nDoF(1),1).

To illustrate the numerical efficiency of the vectorized
multiplication between a matrix and a vector, we have de-
veloped an iterative and vectorized solution of B(xp)T σp
with an increasing np and considering single (4 bytes) and
double (8 bytes) arithmetic precision. The wall-clock time
increases with np with a sharp transition for the vectorized
solution around np ≈ 1000, as shown in Fig. 6a. The math-
ematical operation requires more memory than available in
the L2 cache (1024 kB under the CPU architecture used),
which inhibits cache reuse (Dabrowski et al., 2008). A peak
performance of at least 1000 Mflops (million floating point
operations per second), shown in Fig. 6b, is achieved when
np = 1327 or np = 2654 for simple or double arithmetic pre-
cision respectively, i.e. it corresponds exactly to 1024 kB for
both precisions. Beyond this value, the performance drops
dramatically to approximately half of the peak value. This
drop is even more severe for a double arithmetic precision.

3.3.3 Update of material point properties

Finally, we propose a vectorization of the function
mapN2p.m that (i) interpolates updated nodal solutions to
the material points (velocities and coordinates) and (ii) the
double-mapping (DM or MUSL) procedure (see Fern et al.,

Geosci. Model Dev., 13, 6265–6284, 2020 https://doi.org/10.5194/gmd-13-6265-2020

E. Wyser et al.: A fast and efficient MATLAB-based MPM solver 6273

2019). The material point velocity vp is defined as an inter-
polation of the solution of the updated nodal accelerations,
which is given by

vt+1tp = vtp +1t

nn∑
n=1

Sn(xp)at+1tn . (21)

The material point updated momentum is found by
pt+1tp =mpv

t+1t
p . The double-mapping procedure of the

nodal velocity vn consists of the remapping of the updated
material point momentum on the mesh, divided by the nodal
mass, given as

vt+1tn =m−1
n

∑
p∈n

Sn(xp)pt+1tp , (22)

and for which boundary conditions are enforced. Finally, the
material point coordinates are updated based on the follow-
ing:

xt+1tp = xtp +1t
nn∑
n=1

Sn(xp)vt+1tn . (23)

To solve for the interpolation of updated nodal solu-
tions to the material points, we rely on a combination of
element-wise matrix multiplication between the array of ba-
sis functions mpD.S with the global vectors through a trans-
form of the p2N array, i.e. iDx=meD.DoF*p2N-1 and
iDy=iDx+1 (lines 3–4 in code fragment 3 in Fig. 7), which
are used to access the x and y components of global vectors.

When accessing global nodal vectors by means of iDx and
iDy, the resulting arrays are naturally of the same size as
p2N and are, therefore, dimension-compatible with mpD.S.
For instance, a summation along the columns (e.g. the asso-
ciated nodes of material points) of an element-wise multipli-
cation of mpD.S with meD.a(iDx) results in an interpola-
tion of the x component of the global acceleration vector to
the material points.

This procedure is used for the velocity update (line 6 in
Fig. 7) and for the material point coordinate update (line 22
in Fig. 7). A remapping of the nodal momentum is carried
out (lines 11 to 14 in Fig. 7), which allows for the calculation
of the updated nodal incremental displacements (line 15 in
Fig. 7). Finally, boundary conditions of nodal incremental
displacements are enforced (lines 19–20 in Fig. 7).

3.4 Initial settings and adaptive time step

Regarding the initial setting of the background mesh of the
demonstration cases presented in the following, we select a
uniform mesh and a regular distribution of material points
within the initially populated elements of the mesh. Each el-
ement is evenly filled with four material points, e.g. npe = 22,
unless otherwise stated.

In this contribution, Dirichlet boundary conditions are re-
solved directly on the background mesh, as in the standard

Figure 7. Code fragment 3 shows the vectorized solution for the
interpolation of nodal solutions to material points with a double-
mapping procedure (or MUSL) within the function mapN2p.m.

finite element method. This implies that boundary condi-
tions are resolved only in contiguous regions between the
mesh and the material points. Deviating from this contiguity
or having the mesh not aligned with the coordinate system
requires specific treatments for boundary conditions (Cortis
et al., 2018). Furthermore, we ignore the external tractions as
their implementation is complex.

As explicit time integration is only conditionally stable,
any explicit formulation requires a small time step 1t to en-
sure numerical stability (Ni and Zhang, 2020), e.g. smaller
than a critical value defined by the Courant–Friedrichs–Lewy
(CFL) condition. Hence, we employ an adaptive time step (de
Vaucorbeil et al., 2020), which considers the velocity of the
material points. The first step is to compute the maximum
wave speed of the material using (Zhang et al., 2016; Ander-
son Jr., 1987)

(cx,cy)=

(
max
p

(
V+ | (vx)p |

)
,max
p

(
V+ | (vy)p |

))
, (24)

where the wave speed is V = ((K + 4G/3)/ρ)
1
2 , K and G

are the bulk and shear moduli respectively, ρ is the material
density, and (vx)p and (vy)p are the material point velocity
components. 1t is then restricted by the CFL condition as
follows:

1t = αmin
(
hx

cx
,
hy

cy

)
, (25)

where α ∈ [0;1] is the time step multiplier, and hx and hy are
the mesh spacings.

4 Results

In this section, we first demonstrate our MATLAB-based
MPM solver to be efficient at reproducing results from other
studies, i.e. the compaction of an elastic column (Coombs
et al., 2020; e.g. quasi-static analysis), the cantilever beam

https://doi.org/10.5194/gmd-13-6265-2020 Geosci. Model Dev., 13, 6265–6284, 2020

6274 E. Wyser et al.: A fast and efficient MATLAB-based MPM solver

problem (Sadeghirad et al., 2011; e.g. large elastic deforma-
tion) and an application to landslide dynamics Huang et al.,
2015; e.g. elasto-plastic behaviour). Then, we present both
the efficiency and the numerical performance for a selected
case, e.g. the elasto-plastic collapse. We offer conclusions on
and compare the performance of the solver with respect to
the specific case of an impact of two elastic discs previously
implemented in a Julia language environment by Sinaie et al.
(2017).

Regarding the performance analysis, we investigate the
performance gain of the vectorized solver considering a dou-
ble arithmetic precision with respect to the total number of
material points for the following reasons: (i) the mesh res-
olution, i.e. the total number of elements nel, influences the
wall-clock time of the solver by reducing the time step due
to the CFL condition, thereby increasing the total number of
iterations. In addition, (ii) the total number of material points
np increases the number of operations per cycle due to an
increase in the size of matrices, i.e. the size of the strain-
displacement matrix depends on np and not on nel. Hence,
np consistently influences the performance of the solver,
whereas nel determines the wall-clock time of the solver. The
performance of the solver is addressed through both the num-
ber of floating point operations per second (flops) and via the
average number of iteration per second (iterations s−1). The
number of floating point operations per second was manually
estimated for each function of the solver.

4.1 Validation of the solver and numerical efficiency

4.1.1 Convergence: the elastic compaction of a column
under its own weight

Following the convergence analysis proposed by Coombs
and Augarde (2020), Wang et al. (2019) and Charlton et al.
(2017), we analyse an elastic column of an initial height
l0 = 10 m subjected to an external load (e.g. the gravity).
We selected the cpGIMPM variant with a domain update
based on the diagonal components of the deformation gradi-
ent. Coombs et al. (2020) showed that such a domain update
is well suited for hydrostatic compression problems. We also
selected the CPDI2q variant as a reference, because of its
superior convergence accuracy for such problems compared
with GIMPM (Coombs et al., 2020).

The initial geometry is shown in Fig. 8. The background
mesh is made of bi-linear four-noded quadrilaterals, and
roller boundary conditions are applied on the base and the
sides of the column, initially populated by four material
points per element. The column is 1 element wide and n ele-
ments tall, and the number of elements in the vertical direc-
tion is increased from 1 to a maximum of 1280 elements. The
time step is adaptive, and we selected a time step multiplier
of α = 0.5, e.g. minimal and maximal time step values of
1tmin = 3.1× 10−4 s and 1tmax = 3.8× 10−4 s respectively
for the finest mesh of 1280 elements.

Figure 8. Initial geometry of the column.

To consistently apply the external load for the explicit
solver, we follow the recommendation of Bardenhagen and
Kober (2004), i.e. a quasi-static solution (given that an ex-
plicit integration scheme is chosen) is obtained if the total
simulation time is equal to 40 elastic wave transit times. The
material has a Young’s modulus E = 1× 104 Pa and a Pois-
son’s ratio ν = 0 with a density ρ = 80 kg m−3. The gravity
g is increased from zero to its final value, i.e. g = 9.81 m s−2.
We performed additional implicit quasi-static simulations
(named iCPDI2q) in order to consistently discuss the results
with respect to what was reported in Coombs and Augarde
(2020). The external force is consistently applied over 50
equal load steps. The vertical normal stress is given by the
analytical solution (Coombs and Augarde, 2020) σyy(y0)=

ρg(l0− y0), where l0 is the initial height of the column, and
y0 is the initial position of a point within the column.

The error between the analytical and numerical solutions
is as follows:

error=
np∑
p=1

||(σyy)p − σyy(yp)||(V0)p

(ρgl0)V0
, (26)

where (σyy)p is the stress along the y axis of a material point
p (Fig. 8) of an initial volume (V0)p, and V0 is the initial
volume of the column, i.e. V0 =

∑np
p=1(V0)p.

The convergence toward a quasi-static solution is shown
in Fig. 9a. It is quadratic for both cpGIMPM and CPDI2q;
however, contrary to Coombs et al. (2020); Coombs and Au-
garde (2020), who reported a full convergence, it stops at
error≈ 2× 10−6 for the explicit implementation. This has
already been outlined by Bardenhagen and Kober (2004) as
a saturation of the error caused by resolving the dynamic
stress wave propagation, which is inherent to any explicit
scheme. Hence, a static solution could never be achieved, be-
cause unlike quasi-static implicit methods, the elastic waves
propagate indefinitely and the static equilibrium is never re-
solved. This is consistent when compared to the iCPDI2q
solution we implemented, whose behaviour is still converg-
ing below the limit error≈ 2× 10−6 reached by the explicit
solver. However, the convergence rate of the implicit algo-
rithm decreases as the mesh resolution increases. We did not
investigate this as our focus is on the explicit implementation.
The vertical stresses of material points are in good agreement
with the analytical solution (see Fig. 9b). Some oscillations
are observed for a coarse mesh resolution, but these rapidly
decrease as the mesh resolution increases.

Geosci. Model Dev., 13, 6265–6284, 2020 https://doi.org/10.5194/gmd-13-6265-2020

E. Wyser et al.: A fast and efficient MATLAB-based MPM solver 6275

Figure 9. (a) Convergence of the error: a limit is reached at error≈
2× 10−6 for the explicit solver, whereas the quasi-static solution
still converges. This was demonstrated in Bardenhagen and Kober
(2004) as an error saturation due to the explicit scheme, i.e. the equi-
librium is never resolved. (b) The stress σyy along the y axis pre-
dicted at the deformed position yp by the CPDI2q variant is in good
agreement with the analytical solution for a refined mesh.

We finally report the wall-clock time for the cpGIMPM
(iterative), cpGIMPM (vectorized) and the CPDI2q (vector-
ized) variants. As claimed by Sadeghirad et al. (2013, 2011),
the CPDI2q variant induces no significant computational
cost compared to the cpGIMPM variant. However, the abso-
lute value between vectorized and iterative implementations
is significant. For np = 2560, the vectorized solution com-
pleted in 1161 s, whereas the iterative solution completed in
52 856 s. The vectorized implementation is roughly 50 times
faster than the iterative implementation.

4.1.2 Large deformation: the elastic cantilever beam
problem

The cantilever beam problem (Sinaie et al., 2017; Sadeghirad
et al., 2011) is the second benchmark that demonstrates the
robustness of the MPM solver. Two MPM variants are im-
plemented, namely (i) the contiguous GIMPM (cpGIMPM),
which relies on the stretching part of the deformation gra-
dient (see Charlton et al., 2017) to update the particle do-
main as large rotations are expected during the deformation
of the beam, and (ii) the convected particle domain interpo-
lation (CPDI, Leavy et al., 2019; Sadeghirad et al., 2011).
We selected the CPDI variant as it is more suitable to large

Figure 10. The wall-clock time for cpGIMPM (vectorized and it-
erative solutions) and the CPDI2q solution with respect to the total
number of material points np . There is no significant differences
between the CPDI2q and cpGIMPM variants regarding the wall-
clock time. The iterative implementation is also much slower than
the vectorized implementation.

Figure 11. Initial geometry for the cantilever beam problem; the
free end material point appears in red, and a red cross marks its
centre.

torsional deformation modes (Coombs et al., 2020) than the
CPDI2q variant. Two constitutive elastic models are selected,
i.e. neo-Hookean (Guilkey and Weiss, 2003) or linear elas-
tic (York et al., 1999) solids. For consistency, we use the
same physical quantities as in Sadeghirad et al. (2011), i.e.
an elastic modulus E = 106 Pa, a Poisson’s ratio ν = 0.3, a
density ρ = 1050 kg/m3, the gravity g = 10.0 m/s and a real-
time simulation t = 3 s with no damping forces introduced.

The beam geometry is depicted in Fig. 11 and is dis-
cretized by 64 four-noded quadrilaterals, each of them ini-
tially populated by nine material points (e.g. np = 576) with
a adaptive time step determined by the CFL condition, i.e.
the time step multiplier is α= 0.1, which yields minimal
and maximal time step values of 1tmin = 5.7× 10−4 s and
1tmax = 6.9× 10−4 s respectively. The large deformation is
initiated by suddenly applying the gravity at the beginning of
the simulation, i.e. t = 0 s.

As indicated in Sadeghirad et al. (2011), the cpGIMPM
simulation failed when using the diagonal components of the
deformation gradient to update the material point domain,
i.e. the domain vanishes under large rotations as stated in
Coombs et al. (2020). However, as expected, the cpGIMPM
simulation succeeded when using the diagonal terms of the
stretching part of the deformation gradient, as proposed by

https://doi.org/10.5194/gmd-13-6265-2020 Geosci. Model Dev., 13, 6265–6284, 2020

6276 E. Wyser et al.: A fast and efficient MATLAB-based MPM solver

Figure 12. Vertical deflection 1u for the cantilever beam problem.
The black markers denote the solutions of Sadeghirad et al. (2011)
(circles for CPDI and squares for FEM). The line colour indicates
the MPM variant (blue for CPDI and red for cpGIMP), solid lines
refer to a linear elastic solid and dashed lines refer to a neo-Hookean
solid. 1u corresponds to the vertical displacement of the bottom
material point at the free end of the beam (the red cross in Fig. 11).

Coombs et al. (2020) and Charlton et al. (2017). The numer-
ical solutions, obtained by the latter cpGIMPM and CPDI, to
the vertical deflection 1u of the material point at the bottom
free end of the beam (e.g. the red cross in Fig. 11) are shown
in Fig. 12. Some comparative results reported by Sadeghirad
et al. (2011) are depicted by black markers (squares for the
FEM solution and circles for the CPDI solution), whereas the
results of the solver are depicted by lines.

The local minimal and the minimal and maximal values
(in timing and magnitude) are in agreement with the FEM
solution of Sadeghirad et al. (2011). The elastic response
is in agreement with the CPDI results reported by Sadeghi-
rad et al. (2011), but it differs in timing with respect to the
FEM solution. This confirms our numerical implementation
of CPDI when compared to the one proposed by Sadeghirad
et al. (2011). In addition, the elastic response does not sub-
stantially differ from a linear elastic solid to a neo-Hookean
one. It demonstrates the incremental implementation of the
MPM solver to be relevant in capturing large elastic defor-
mations for the cantilever beam problem.

Figure 13 shows the finite deformation of the material
point domain (panel a or c) and the vertical Cauchy stress
field (panel b or d) for CPDI and cpGIMPM. The stress oscil-
lations due to the cell-crossing error are partially cured when
using a domain-based variant compared with the standard
MPM. However, spurious vertical stresses are more devel-
oped in Fig. 13d than in Fig. 13b, where the vertical stress
field appears even smoother. Both CPDI and cpGIMPM give
a decent representation of the actual geometry of the de-
formed beam.

We also report quite a significant difference in execu-
tion time between the CPDI variant compared with the
CPDI2q and cpGIMPM variants: CPDI executes in an av-
erage of 280.54 iteration per second, whereas both CPDI2q

Figure 13. Finite deformation of the material point domain and ver-
tical Cauchy stress σyy for CPDI (panels a and b respectively) and
cpGIMPM (panels c and d respectively). The CPDI variant gives
a better and more contiguous description of the material point’s
domain and a slightly smoother stress field compared with the
cpGIMPM variant, which is based on the stretching part of the de-
formation gradient.

and cpGIMPM execute in an average of 301.42 iterations s−1

and an average of 299.33 iterations s−1 respectively.

4.1.3 Application: the elasto-plastic slumping dynamics

We present an application of the MPM solver (vector-
ized and iterative version) to the case of landslide me-
chanics. We selected the domain-based CDPI variant as it
performs better than the CPDI2q variant in modelling tor-
sional and stretching deformation modes (Wang et al., 2019)
coupled to an elasto-plastic constitutive model based on a
non-associated Mohr–Coulomb (M-C) plasticity (Simpson,
2017). We (i) analyse the geometrical features of the slump
and (ii) compare the results (the geometry and the failure
surface) to the numerical simulation of Huang et al. (2015),
which is based on a Drucker–Prager model with tension cut-
off (D-P).

The geometry of the problem is shown in Fig. 14; the soil
material is discretized by 110× 35 elements with npe = 9,
resulting in np = 21 840 material points. A uniform mesh
spacing hx,y = 1 m is used, and rollers are imposed at the
left and right domain limits, while a no-slip condition is en-
forced at the base of the material. We closely follow the nu-
merical procedure proposed in Huang et al. (2015), i.e. no
local damping is introduced in the equation of motion and

Geosci. Model Dev., 13, 6265–6284, 2020 https://doi.org/10.5194/gmd-13-6265-2020

E. Wyser et al.: A fast and efficient MATLAB-based MPM solver 6277

Figure 14. Initial geometry for the slump problem from Huang et al.
(2015). Roller boundary conditions are imposed on the left and right
of the domain, while a no-slip condition is enforced at the base of
the material.

Figure 15. MPM solution to the elasto-plastic slump. The red lines
indicate the numerical solution of Huang et al. (2015), and the
coloured points indicate the second invariant of the accumulated
plastic strain εII obtained by the CPDI solver. An intense shear zone
progressively develops backwards from the toe of the slope, result-
ing in a circular failure mode.

the gravity is suddenly applied at the beginning of the sim-
ulation. As in Huang et al. (2015), we consider an elasto-
plastic cohesive material of density ρ = 2100 kg m3, with an
elastic modulus E = 70 MPa and a Poisson’s ratio ν = 0.3.
The cohesion is c = 10 Pa, and the internal friction angle is
φ = 20◦ with no dilatancy, i.e. the dilatancy angle is ψ = 0.
The total simulation time is 7.22 s, and we select a time step
multiplier α = 0.5. The adaptive time steps (considering the
elastic properties and the mesh spacings hx,y = 1 m) yield
minimal and maximal values of 1tmin = 2.3× 10−3 s and
1tmax = 2.4× 10−3 s respectively.

The numerical solution to the elasto-plastic problem is
shown in Fig. 15. An intense shear zone, highlighted by the
second invariant of the accumulated plastic strain εII, devel-
ops at the toe of the slope as soon as the material yields and
propagates backwards to the top of the material. It results in
a rotational slump. The failure surface is in good agreement
with the solution reported by Huang et al. (2015) (continuous
and discontinuous red lines in Fig. 15), but we also observe
differences, i.e. the crest of the slope is lower compared with
the original work of Huang et al. (2015). This may be ex-
plained by the problem of spurious material separation when
using sMPM or GIMPM (Sadeghirad et al., 2011), with the
latter being overcome with the CPDI variant, i.e. the crest

Figure 16. Initial geometry for the elasto-plastic collapse (Huang
et al., 2015). Roller boundaries are imposed on the left and right
boundaries of the computational domain, while a no-slip condition
is enforced at the bottom of the domain. The aluminium-bar as-
semblage has dimensions of l0×h0 and is discretized by npe = 4
material points per initially populated element.

of the slope experiences considerable stretching deformation
modes. Despite some differences, our numerical results ap-
pear coherent with those reported by Huang et al. (2015).

The vectorized and iterative solutions are resolved within
approximately 630 s (a wall-clock time of ≈ 10 min and an
average of 4.20 iterations s−1) and 14 868 s (a wall-clock
time of ≈ 1 h and an average of 0.21 iterations s−1) respec-
tively. This corresponds to a performance gain of 23.6. The
performance gain is significant between an iterative and a
vectorized solver for this problem.

4.2 Computational performance

4.2.1 Iterative and vectorized elasto-plastic collapses

We evaluate the computational performance of the solver, us-
ing the MATLAB version R2018a on an Intel Core i7-4790,
with a benchmark based on the elasto-plastic collapse of the
aluminium-bar assemblage, for which numerical and experi-
mental results were initially reported by Bui et al. (2008) and
Huang et al. (2015) respectively.

We vary the number of elements of the background
mesh, which results in a variety of different regular mesh
spacings hx,y . The number of elements along the x and
y directions are nel,x = [10,20,40,80,160,320,640] and
nel,y = [1,2,5,11,23,47,95] respectively. The number of
material points per element is kept constant, i.e. npe = 4,
and this yields a total number of material points np =

[10,50,200,800,3200,12800,51200]. The initial geometry
and boundary conditions used for this problem are depicted
in Fig. 16. The total simulation time is 1.0 s, and the time step
multiplier is α = 0.5. According to Huang et al. (2015), the
gravity g = 9.81 m s−2 is applied to the assemblage, and no
damping is introduced. We consider a non-cohesive granu-
lar material (Huang et al., 2015) of density ρ = 2650 kg m3,
with a bulk modulus K = 0.7 MPa and a Poisson’s ratio
ν = 0.3. The cohesion is c = 0 Pa, the internal friction angle
is φ = 19.8◦ and there is no dilatancy, i.e. ψ = 0.

We conducted preliminary investigations using either
uGIMPM or cpGIMPM variants – the latter with a domain

https://doi.org/10.5194/gmd-13-6265-2020 Geosci. Model Dev., 13, 6265–6284, 2020

6278 E. Wyser et al.: A fast and efficient MATLAB-based MPM solver

Figure 17. Final geometry of the collapse: in the intact region (hor-
izontal displacement ux < 1 mm), the material points are coloured
in green; in the deformed region (horizontal displacement ux >
1 mm), they are coloured in red and indicate plastic deformations
of the initial mass. The transition between the deformed and unde-
formed regions marks the failure surface of the material. The ex-
perimental results of Bui et al. (2008) are depicted by the blue dot-
ted lines. The computational domain is discretized by a background
mesh made of 320× 48 quadrilateral elements with np = 4 per ini-
tially populated element, i.e. a total np = 12 800 material points dis-
cretize the aluminium assemblage.

update based either on the determinant of the deformation
gradient or on the diagonal components of the stretching part
of the deformation gradient. We concluded that the uGIMPM
was the most reliable, even though its suitability is restricted
to both simple shear and pure rotation deformation modes
(Coombs et al., 2020).

We observe a good agreement between the numerical sim-
ulation and the experiments (see Fig. 17), considering either
the final surface (blue square dotted line) or the failure sur-
face (blue circle dotted line). The repose angle in the numer-
ical simulation is approximately 13◦, which is in agreement
with the experimental data reported by Bui et al. (2008), who
reported a final angle of 14◦.

The vectorized and iterative solutions (for a total of
np = 12 800 material points) are resolved within approxi-
mately 1595 s (a wall-clock time of ≈ 0.5 h and an aver-
age of 10.98 iterations s−1) and 43 861 s (a wall-clock time
of ≈ 12 h and an average of 0.38 iterations s−1) respectively.
This corresponds to a performance gain of 28.24 for a vec-
torized code over an iterative code to solve this elasto-plastic
problem.

The performance of the solver is demonstrated in Fig. 18.
A peak performance of ≈ 900 Mflops is reached as soon
as np exceeds 1000 material points, and a residual perfor-
mance of ≈ 600 Mflops is further resolved (for np ≈ 50 000
material points). Every function provides an even and fair
contribution on the overall performance, except the func-
tion constitutive.m for which the performance ap-
pears delayed or shifted. First of all, this function treats
the elasto-plastic constitutive relation, in which the dimen-

Figure 18. Number of floating point operations per second (flops)
with respect to the total number of material points np for the vector-
ized implementation. The discontinuous lines refer to the functions
of the solver, and the continuous line refer to the solver. A peak
performance of 900 Mflops is reached by the solver for np > 1000,
and a residual performance of 600 Mflops is further resolved for an
increasing np .

Figure 19. Number of iterations per second with respect to the to-
tal number of material points np . The greatest performance gain
is reached around np = 1000, which is related to the peak perfor-
mance of the solver (see Fig. 18). The gains corresponding to the
peak performance and residual performance are 46 and 28 respec-
tively.

sions of the matrices are smaller when compared with the
other functions. Hence, the number of floating point oper-
ations per second is lower compared with other functions,
e.g. p2Nsolve.m. This results in lower performance for
an equivalent number of material points. It also requires a
greater number of material points to increase the dimensions
of the matrices in order to exceed the L2 cache maximum
capacity.

These considerations provide a better understanding of the
performance gain of the vectorized solver shown in Fig. 19:
the gain increases, reaches a plateau and then ultimately de-
creases to a residual gain. This is directly related to the peak
and the residual performance of the solver showed in Fig. 18.

Geosci. Model Dev., 13, 6265–6284, 2020 https://doi.org/10.5194/gmd-13-6265-2020

E. Wyser et al.: A fast and efficient MATLAB-based MPM solver 6279

Table 1. Efficiency comparison of the Julia implementation of
Sinaie et al. (2017) and the MATLAB-based implementation for the
two elastic disc impact problems.

Mesh npe np Iterations s−1

Julia MATLAB Gain

20× 20 22 416 132.80 450.27 3.40
20× 20 42 1624 33.37 118.45 3.54
40× 40 22 1624 26.45 115.59 4.37
80× 80 42 25 784 1.82 5.21 2.86

4.2.2 Comparison between Julia and MATLAB

We compare the computational efficiency of the vectorized
CPDI2q MATLAB implementation and the computational
efficiency reported by Sinaie et al. (2017) of a Julia-based
implementation of the collision of two elastic discs problem.
However, we note a difference between the actual implemen-
tation and the one used by Sinaie et al. (2017); the latter is
based on a USL variant with a cut-off algorithm, whereas
the present implementation relies on the MUSL (or double-
mapping) procedure, which necessitates a double-mapping
procedure. The initial geometry and parameters are the same
as those used in Sinaie et al. (2017). However, the time step is
adaptive, and we select a time step multiplier α = 0.5. Given
the variety of mesh resolution, we do not present minimal
and maximal time step values.

Our CPDI2q implementation, in MATLAB R2018a, is at
least 2.8 times faster than the Julia implementation proposed
by Sinaie et al. (2017) for similar hardware (see Table 1).
Sinaie et al. (2017) completed the analysis with an Intel Core
i7-6700 (four cores with a base frequency of 3.40 GHz up to
a turbo frequency of 4.00 GHz) with 16 GB RAM, whereas
we used an Intel Core i7-4790 with similar specifications (see
Sect. 2). However, the performance ratio between MATLAB
and Julia seems to decrease as the mesh resolution increases.

5 Discussion

In this contribution, a fast and efficient explicit MPM
solver is proposed that considers two variants (e.g. the
uGIMPM/cpGIMPM and the CPDI/CPDI2q variants).

Regarding the compression of the elastic column, we re-
port good agreement of the numerical solver with previous
explicit MPM implementations, such as Bardenhagen and
Kober (2004). The same flaw of an explicit scheme is also
experienced by the solver, i.e. a saturation of the error due
to the specific usage of an explicit scheme that resolves the
wave propagation, thereby preventing any static equilibrium
from being reached. This confirms that our implementation
is consistent with previous MPM implementations. However,
the implicit implementation suffers from a decrease in the

convergence rate for a fine mesh resolution. Further work
would be needed to investigate this decrease in the conver-
gence rate. This case also demonstrated that cpGIMPM and
CPDI variants have a similar computational cost, and this
confirms the suitability of cpGIMPM with respect to CPDI,
as previously mentioned by Coombs et al. (2020) and Charl-
ton et al. (2017).

For the cantilever beam, we report good agreement of the
solver with the results of Sadeghirad et al. (2011), i.e. we
report the vertical deflection of the beam to be very close in
both magnitude and timing (for the CPDI variant) to the FEM
solution. However, we also report a slower execution time for
the CPDI variant when compared with both the cpGIMPM
and CPDI2q variants.

The elasto-plastic slump also demonstrates the solver to
be efficient at capturing complex dynamics in the field of ge-
omechanics. The CDPI solution showed that the algorithm
proposed by Simpson (2017) to return stresses when the ma-
terial yields is well suited to the slumping dynamics. How-
ever, as mentioned by Simpson (2017), such return mapping
is only valid under the assumption of a non-associated plas-
ticity with no volumetric plastic strain. This particular case
of isochoric plastic deformations raises the issue of volumet-
ric locking. In the actual implementation, no regularization
techniques are considered. As a result, the pressure field ex-
periences severe locking for isochoric plastic deformations.
One way to overcome locking phenomena would be to im-
plement the regularization technique initially proposed by
Coombs et al. (2018) for quasi-static sMPM and GIMPM im-
plementations.

Regarding the elasto-plastic collapse, the numerical results
demonstrate the solver to be in agreement with both previous
experimental and numerical results (Huang et al., 2015; Bui
et al., 2008). This confirms the ability of the solver to address
elasto-plastic problems. However, the choice of whether to
update the material point domain or not remains critical.
This question remains open and would require a more thor-
ough investigation of the suitability of each of these domain-
updating variants. Nevertheless, the uGIMPM variant is a
good candidate as (i) it is able to reproduce the experimen-
tal results of Bui et al. (2008), and (ii) it ensures numeri-
cal stability. However, one must consider its limited range
of suitability regarding the deformation modes involved. If
a cpGIMPM is selected, the splitting algorithm proposed in
Gracia et al. (2019) and Homel et al. (2016) could be imple-
mented to mitigate the amount of distortion experienced by
the material point domains during deformation. We did not
selected the domain-updating method based on the corners
of the domain as suggested in Coombs et al. (2020). This
is because a domain-updating method necessitates the calcu-
lation of additional shape functions between the corners of
the domain of the material point with their associated nodes.
This results in an additional computational cost. Neverthe-
less, such a variant is of interest and should also be addressed
when computational performance is not the main concern.

https://doi.org/10.5194/gmd-13-6265-2020 Geosci. Model Dev., 13, 6265–6284, 2020

6280 E. Wyser et al.: A fast and efficient MATLAB-based MPM solver

The computational performance comes from the combined
use of the connectivity array p2N with the built-in function
accumarray() to (i) accumulate material point contri-
butions to their associated nodes or (ii) to interpolate the
updated nodal solutions to the associated material points.
When a residual performance is resolved, an overall perfor-
mance gain (e.g. the number of iterations per second) of 28
is reported. As an example, the functions p2nsolve.m and
mapN2p.m are 24 and 22 times faster than an iterative algo-
rithm when the residual performance is achieved. The overall
performance gain is in agreement with other vectorized FEM
codes, i.e. O’Sullivan et al. (2019) reported an overall gain
of 25.7 for a optimized continuous Galerkin finite element
code.

An iterative implementation would require multiple nested
for-loops and a larger number of operations on smaller ma-
trices, which increase the number of BLAS calls, thereby in-
ducing significant BLAS overheads and decreasing the over-
all performance of the solver. This is limited by a vectorized
code structure. However, as shown by the matrix multiplica-
tion problem, the L2 cache reuse is the limiting factor, and
it ultimately affects the peak performance of the solver due
to these numerous RAM-to-cache communications for larger
matrices. This problem is serious, and its influence is demon-
strated by the delayed response in terms of performance for
the function constitutive.m. However, we also have to
mention that the overall residual performance was resolved
only for a limited total number of material points. The perfor-
mance drop of the function constitutive.m has never
been achieved. Consequently, we suspect an additional de-
crease in the overall performance of the solver for larger
problems.

The overall performance achieved by the solver is higher
than expected, and it is even higher than what was reported
by Sinaie et al. (2017). We demonstrate that MATLAB is
even more efficient than Julia, i.e. a minimum 2.86 perfor-
mance gain achieved compared with a similar Julia CPDI2q
implementation. This confirms the efficiency of MATLAB
for solid mechanics problems, provided that a reasonable
amount of time is spent on the vectorization of the algorithm.

6 Conclusions

We have demonstrated the capability of MATLAB as an effi-
cient language with regard to a material point method (MPM)
implementation in an explicit formulation when bottleneck
operations (e.g. calculations of the shape function or mate-
rial point contributions) are properly vectorized. The com-
putational performance of MATLAB is even higher than the
performance previously reported for a similar CPDI2q im-
plementation in Julia, provided that built-in functions such
as accumarray() are used. However, the numerical effi-
ciency naturally decreases with the level of complexity of the
chosen MPM variant (sMPM, GIMPM or CPDI/CPDI2q).

The vectorization activities that we performed provide a
fast and efficient MATLAB-based MPM solver. Such vector-
ized code could be transposed to a more efficient language,
such as the C-CUDA language, which is known to efficiently
take advantage of vectorized operations.

As a final word, a future implementation of a poro-elasto-
plastic mechanical solver could be applied to complex ge-
omechanical problems such as landslide dynamics while
benefiting from a faster numerical implementation in C-
CUDA, thereby resolving high three-dimensional resolutions
in a decent and affordable amount a time.

Geosci. Model Dev., 13, 6265–6284, 2020 https://doi.org/10.5194/gmd-13-6265-2020

E. Wyser et al.: A fast and efficient MATLAB-based MPM solver 6281

Appendix A: Acronyms used throughout the paper

PIC Particle in cell
FLIP Fluid implicit particle
FEM Finite element method
sMPM Standard material point method
GIMPM Generalized material point method
uGIMPM Undeformed generalized material point

method
cpGIMPM Contiguous particle generalized material

point method
CPDI Convected particle domain interpolation
CPDI2q Convected particle domain interpolation

second-order quadrilateral

Appendix B: fMPMM-solver variables

Table B1. Variables of the structure arrays for the mesh meD and
the material point mpD used in code fragments 1 and 2 shown
in Figs. 4 and 5. nDF stores the local and global number of de-
grees of freedom, i.e. nDF=[nNe,nN*DoF]. The constant nstr
is the number of stress components, according to the standard def-
inition of the Cauchy stress tensor using the Voigt notation, e.g.
σp = (σxx ,σyy ,σxy).

Variable Description Dimension

nNe Nodes per element (1)
nN Number of nodes (1)
DoF Degree of freedom (1)
nDF Number of DoF (1,2)

meD. h Mesh spacing (1,DoF)
x Node coordinates (nN,1)
y Node coordinates (nN,1)
m Nodal mass (nN,1)
p Nodal momentum (nDF(2),1)
f Nodal force (nDF(2),1)

n Number of points (1)
l Domain half-length (np,DoF)
V Volume (np,1)
m Mass (np,1)
x Point coordinates (np,DoF)

mpD. p Momentum (np,DoF)
s Stress (np,nstr)
S Basis function (np,nNe)
dSx Derivative in x (np,nNe)
dSy Derivative in y (np,nNe)
B B matrix (nstr,nDF(1),np)

https://doi.org/10.5194/gmd-13-6265-2020 Geosci. Model Dev., 13, 6265–6284, 2020

6282 E. Wyser et al.: A fast and efficient MATLAB-based MPM solver

Code availability. The fMPMM-solver developed in this study is
licensed under the GPLv3 free software licence. The latest ver-
sion of the code is available for download from Bitbucket at https://
bitbucket.org/ewyser/fmpmm-solver/src/master/ (last access: 6 Oc-
tober 2020; Wyser et al., 2020b). The fMPMM-solver archive (v1.0
and v1.1) is available from a permanent DOI repository (Zenodo) at
https://doi.org/10.5281/zenodo.4068585 (Wyser et al., 2020a). The
fMPMM-solver software includes the reproducible codes used for
this study.

Author contributions. EW wrote the original draft of the paper.
EW and YP developed the first version the solver (fMPMM-solver,
v1.0). YA provided technical support, assisted EW with the revision
of the latest version of the solver (v1.1) and corrected specific parts
of the solver. EW and YA wrote and revised the final version of the
paper. MJ and YP supervised the early stages of the study and pro-
vided guidance. All authors reviewed and approved the final version
of the paper.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. Yury Alkhimenkov gratefully acknowledges
support from the Swiss National Science Foundation (grant no.
172691). Yury Alkhimenkov and Yury Y. Podladchikov gratefully
acknowledge support from the Russian Ministry of Science and
Higher Education (project no. 075-15-2019-1890). The authors
gratefully thank Johan Gaume for his comments that contributed
to improving the overall quality of the article.

Financial support. This research has been supported by the Swiss
National Science Foundation (grant no. 172691). This research has
been supported by the Russian Ministry of Science and Higher Ed-
ucation (project no. 075-15-2019-1890).

Review statement. This paper was edited by Alexander Robel and
reviewed by two anonymous referees.

References

Abe, K., Soga, K., and Bandara, S.: Material point method for
coupled hydromechanical problems, J. Geotechn. Geoenviron.
Eng., 140, 04013033, https://doi.org/10.1061/(ASCE)GT.1943-
5606.0001011, 2014.

Acosta, J. L. G., Vardon, P. J., Remmerswaal, G., and Hicks, M. A.:
An investigation of stress inaccuracies and proposed solution
in the material point method, Comput. Mechan., 65, 555–581,
2020.

Anderson Jr., C. E.: An overview of the theory of hydrocodes, Int.
J. Impact Eng., 5, 33–59, 1987.

Bandara, S. and Soga, K.: Coupling of soil deformation and pore
fluid flow using material point method, Comput. Geotech., 63,
199–214, 2015.

Bandara, S., Ferrari, A., and Laloui, L.: Modelling landslides in
unsaturated slopes subjected to rainfall infiltration using mate-
rial point method, Int. J. Num. Anal. Method. Geomechan., 40,
1358–1380, 2016.

Bardenhagen, S., Brackbill, J., and Sulsky, D.: The material-point
method for granular materials, Comput. Method. Appl. M., 187,
529–541, 2000.

Bardenhagen, S. G. and Kober, E. M.: The generalized interpolation
material point method, Comp. Model. Eng., 5, 477–496, 2004.

Baumgarten, A. S. and Kamrin, K.: A general fluid–sediment
mixture model and constitutive theory validated in many flow
regimes, J. Fluid Mechan., 861, 721–764, 2019.

Beuth, L., Benz, T., Vermeer, P. A., and Więckowski, Z.: Large de-
formation analysis using a quasi-static material point method, J.
Theor. Appl. Mechan., 38, 45–60, 2008.

Bird, R. E., Coombs, W. M., and Giani, S.: Fast native-MATLAB
stiffness assembly for SIPG linear elasticity, Comput. Mathe.
Appl., 74, 3209–3230, 2017.

Bui, H. H., Fukagawa, R., Sako, K., and Ohno, S.: Lagrangian
meshfree particles method (SPH) for large deformation and fail-
ure flows of geomaterial using elastic–plastic soil constitutive
model, Int. J. Num. Anal. Method. Geomechan., 32, 1537–1570,
2008.

Charlton, T., Coombs, W., and Augarde, C.: iGIMP: An implicit
generalised interpolation material point method for large defor-
mations, Comput. Struct., 190, 108–125, 2017.

Coombs, W. M. and Augarde, C. E.: AMPLE: A Material
Point Learning Environment, Adv. Eng. Softw., 139, 102748,
https://doi.org/10.1016/j.advengsoft.2019.102748, 2020.

Coombs, W. M., Charlton, T. J., Cortis, M., and Augarde, C. E.:
Overcoming volumetric locking in material point methods, Com-
put. Method. Appl. Mechan., 333, 1–21, 2018.

Coombs, W. M., Augarde, C. E., Brennan, A. J., Brown,
M. J., Charlton, T. J., Knappett, J. A., Motlagh, Y. G.,
and Wang, L.: On Lagrangian mechanics and the im-
plicit material point method for large deformation elasto-
plasticity, Comput. Method. Appl. Mechan., 358, 112622,
https://doi.org/10.1016/j.cma.2019.112622, 2020.

Cortis, M., Coombs, W., Augarde, C., Brown, M., Brennan, A.,
and Robinson, S.: Imposition of essential boundary conditions in
the material point method, Int. J. Num. Method., 113, 130–152,
2018.

Dabrowski, M., Krotkiewski, M., and Schmid, D.: MIL-
AMIN: MATLAB-based finite element method solver
for large problems, Geochem. Geophys. Geosyst., 9, 4,
https://doi.org/10.1029/2007GC001719, 2008.

Davis, T. A.: Suite Sparse, available at: https://people.engr.tamu.
edu/davis/research.html (last access: 6 October 2020), 2013.

de Koster, P., Tielen, R., Wobbes, E., and Möller, M.: Extension
of B-spline Material Point Method for unstructured triangular
grids using Powell–Sabin splines, Comput. Part. Mechan., 1–16,
https://doi.org/10.1007/s40571-020-00328-3, 2020.

de Souza Neto, E. A., Peric, D., and Owen, D. R.: Computa-
tional methods for plasticity: theory and applications, John Wi-
ley & Sons, John Wiley & Sons Ltd, The Atrium, Southern Gate,
Chichester, West Sussex, PO19 8SQ, United Kingdom, 2011.

Geosci. Model Dev., 13, 6265–6284, 2020 https://doi.org/10.5194/gmd-13-6265-2020

https://bitbucket.org/ewyser/fmpmm-solver/src/master/
https://bitbucket.org/ewyser/fmpmm-solver/src/master/
https://doi.org/10.5281/zenodo.4068585
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001011
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001011
https://doi.org/10.1016/j.advengsoft.2019.102748
https://doi.org/10.1016/j.cma.2019.112622
https://doi.org/10.1029/2007GC001719
https://people.engr.tamu.edu/davis/research.html
https://people.engr.tamu.edu/davis/research.html
https://doi.org/10.1007/s40571-020-00328-3

E. Wyser et al.: A fast and efficient MATLAB-based MPM solver 6283

de Vaucorbeil, A., Nguyen, V., and Hutchinson, C.: A Total-
Lagrangian Material Point Method for solid mechan-
ics problems involving large deformations, Computer
Methods in Applied Mechanics and Engineering, 360,
https://doi.org/10.1016/j.cma.2019.112783, 2020.

Dunatunga, S. and Kamrin, K.: Continuum modelling and sim-
ulation of granular flows through their many phases, J. Fluid
Mechan., 779, 483–513, 2015.

Dunatunga, S. and Kamrin, K.: Continuum modeling of projectile
impact and penetration in dry granular media, J. Mechan. Phys.
Solids, 100, 45–60, 2017.

Fern, J., Rohe, A., Soga, K., and Alonso, E.: The Material Point
Method for Geotechnical Engineering. Boca Raton: CRC Press,
https://doi.org/10.1201/9780429028090, 2019.

Gan, Y., Sun, Z., Chen, Z., Zhang, X., and Liu, Y.: Enhancement of
the material point method using B-spline basis functions, Int. J.
Num. Method., 113, 411–431, 2018.

Gaume, J., Gast, T., Teran, J., van Herwijnen, A., and Jiang, C.:
Dynamic anticrack propagation in snow, Nat. Commun., 9, 1–
10, 2018.

Gaume, J., van Herwijnen, A., Gast, T., Teran, J., and Jiang,
C.: Investigating the release and flow of snow avalanches
at the slope-scale using a unified model based on the ma-
terial point method, Cold Reg. Sci. Technol., 168, 102847,
https://doi.org/10.1016/j.coldregions.2019.102847, 2019.

Gracia, F., Villard, P., and Richefeu, V.: Comparison of two numeri-
cal approaches (DEM and MPM) applied to unsteady flow, Com-
put. Part. Mechan., 6, 591–609, 2019.

Guilkey, J. E. and Weiss, J. A.: Implicit time integration for the ma-
terial point method: Quantitative and algorithmic comparisons
with the finite element method, Int. J. Num. Method., 57, 1323–
1338, 2003.

Homel, M. A., Brannon, R. M., and Guilkey, J.: Controlling the
onset of numerical fracture in parallelized implementations of the
material point method (MPM) with convective particle domain
interpolation (CPDI) domain scaling, Int. J. Num. Method., 107,
31–48, 2016.

Huang, P., Li, S.-l., Guo, H., and Hao, Z.-m.: Large deformation
failure analysis of the soil slope based on the material point
method, Comput. Geosci., 19, 951–963, 2015.

Iaconeta, I., Larese, A., Rossi, R., and Guo, Z.: Comparison of a
material point method and a galerkin meshfree method for the
simulation of cohesive-frictional materials, Materials, 10, 1150,
2017.

Leavy, R., Guilkey, J., Phung, B., Spear, A., and Brannon, R.:
A convected-particle tetrahedron interpolation technique in the
material-point method for the mesoscale modeling of ceramics,
Comput. Mechan., 64, 563–583, 2019.

Moler, C.: MATLAB Incorporates LAPACK, available at:
https://ch.mathworks.com/de/company/newsletters/articles/
matlab-incorporates-lapack.html?refresh=true (last access: 6
October 2020), 2000.

Nairn, J. A.: Material point method calculations with explicit
cracks, Comput. Model. Eng. Sci., 4, 649–664, 2003.

Ni, R. and Zhang, X.: A precise critical time step formula for the
explicit material point method, Int. J. Num. Method., 121, 4989–
5016, 2020.

O’Sullivan, S., Bird, R. E., Coombs, W. M., and Giani, S.: Rapid
non-linear finite element analysis of continuous and discontin-

uous galerkin methods in matlab, Comput. Mathe. Appl., 78,
3007–3026, 2019.

Sadeghirad, A., Brannon, R. M., and Burghardt, J.: A convected par-
ticle domain interpolation technique to extend applicability of the
material point method for problems involving massive deforma-
tions, Int. J. Num. Method., 86, 1435–1456, 2011.

Sadeghirad, A., Brannon, R., and Guilkey, J.: Second-order con-
vected particle domain interpolation (CPDI2) with enrichment
for weak discontinuities at material interfaces, Int. J. Num.
Method., 95, 928–952, 2013.

Simpson, G.: Practical finite element modeling in earth science us-
ing matlab, Wiley Online Library, 2017.

Sinaie, S., Nguyen, V. P., Nguyen, C. T., and Bordas, S.: Program-
ming the material point method in Julia, Adv. Eng. Softw., 105,
17–29, 2017.

Steffen, M., Kirby, R. M., and Berzins, M.: Analysis and reduction
of quadrature errors in the material point method (MPM), Int. J.
Num. Method., 76, 922–948, 2008a.

Steffen, M., Wallstedt, P., Guilkey, J., Kirby, R., and Berzins, M.:
Examination and analysis of implementation choices within the
material point method (MPM), Comput. Model. Eng. Sci., 31,
107–127, 2008b.

Stomakhin, A., Schroeder, C., Chai, L., Teran, J., and Selle, A.: A
material point method for snow simulation, ACM Transactions
on Graphics (TOG), 32, 1–10, 2013.

Sulsky, D., Chen, Z., and Schreyer, H. L.: A particle method for
history-dependent materials, Comput. Method. Appl. Mechan.
Eng., 118, 179–196, 1994.

Sulsky, D., Zhou, S.-J., and Schreyer, H. L.: Application of a
particle-in-cell method to solid mechanics, Comput. Phys. Com-
mun., 87, 236–252, 1995.

Vardon, P. J., Wang, B., and Hicks, M. A.: Slope failure simulations
with MPM, J. Hydrodynam., 29, 445–451, 2017.

Vermeer, P. A. and De Borst, R.: Non-associated plasticity for soils,
concrete and rock, HERON, 29, 1984, 163–196, 1984.

Wallstedt, P. C. and Guilkey, J.: An evaluation of explicit time inte-
gration schemes for use with the generalized interpolation mate-
rial point method, J. Computat. Phys., 227, 9628–9642, 2008.

Wang, B., Hicks, M., and Vardon, P.: Slope failure analysis using
the random material point method, Géotech. Lett. 6, 113–118,
2016a.

Wang, B., Vardon, P., and Hicks, M.: Investigation of retrogres-
sive and progressive slope failure mechanisms using the material
point method, Comput. Geotech., 78, 88–98, 2016b.

Wang, B., Vardon, P. J., Hicks, M. A., and Chen, Z.: Development of
an implicit material point method for geotechnical applications,
Comput. Geotech., 71, 159–167, 2016c.

Wang, L., Coombs, W. M., Augarde, C., Cortis, E. M., Charlton,
T. J., Brown, M. J., Knappett, J., Brennan, A., Davidson, C.,
Richards, and Blake, D. A.: On the use of domain-based material
point methods for problems involving large distortion, Comput.
Method. Appl. Mechan. Eng., 355, 1003–1025, 2019.

Więckowski, Z.: The material point method in large strain engineer-
ing problems, Comput. Method. Appl. Mechan. Eng., 193, 4417–
4438, 2004.

Wyser, E., Alkhimenkov, Y., Jayboyedoff, M.,
and Podladchikov, Y.: fMPMM-solver, Zenodo,
https://doi.org/10.5281/zenodo.4068585, 2020a.

https://doi.org/10.5194/gmd-13-6265-2020 Geosci. Model Dev., 13, 6265–6284, 2020

https://doi.org/10.1016/j.cma.2019.112783
https://doi.org/10.1201/9780429028090
https://doi.org/10.1016/j.coldregions.2019.102847
https://ch.mathworks.com/de/company/newsletters/articles/matlab-incorporates-lapack.html?refresh=true
https://ch.mathworks.com/de/company/newsletters/articles/matlab-incorporates-lapack.html?refresh=true
https://doi.org/10.5281/zenodo.4068585

6284 E. Wyser et al.: A fast and efficient MATLAB-based MPM solver

Wyser, E., Alkhimenkov, Y., Jayboyedoff, M., and Podlad-
chikov, Y.: fMPMM, available at: https://bitbucket.org/ewyser/
fmpmm-solver/src/master/, last access: 6 October 2020.

York, A. R., Sulsky, D., and Schreyer, H. L.: The material point
method for simulation of thin membranes, Int. J. Num. Method.,
44, 1429–1456, 1999.

Zhang, X., Chen, Z., and Liu, Y.: The material point method:
a continuum-based particle method for extreme loading cases,
Academic Press, ©2017 Tsinghua University Press Limited, El-
sevier Inc., 2016.

Geosci. Model Dev., 13, 6265–6284, 2020 https://doi.org/10.5194/gmd-13-6265-2020

https://bitbucket.org/ewyser/fmpmm-solver/src/master/
https://bitbucket.org/ewyser/fmpmm-solver/src/master/

	Abstract
	Introduction
	Overview of the material point method (MPM)
	A material point method implementation
	Domain-based material point method variants

	MATLAB-based MPM implementation
	Rate formulation and elasto-plasticity
	Structure of the MPM solver
	Vectorization
	Basis functions and derivatives
	Integration of internal forces
	Update of material point properties

	Initial settings and adaptive time step

	Results
	Validation of the solver and numerical efficiency
	Convergence: the elastic compaction of a column under its own weight
	Large deformation: the elastic cantilever beam problem
	Application: the elasto-plastic slumping dynamics

	Computational performance
	Iterative and vectorized elasto-plastic collapses
	Comparison between Julia and MATLAB

	Discussion
	Conclusions
	Appendix A: Acronyms used throughout the paper
	Appendix B: fMPMM-solver variables
	Code availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

