
Geosci. Model Dev., 13, 6253–6263, 2020
https://doi.org/10.5194/gmd-13-6253-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

DiRong1.0: a distributed implementation for improving routing
network generation in model coupling
Hao Yu1, Li Liu1,3, Chao Sun1, Ruizhe Li1, Xinzhu Yu1, Cheng Zhang1, Zhiyuan Zhang2, and Bin Wang1,4

1Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science,
Tsinghua University, Beijing, China
2Hydro-Meteorological Center of Navy China, Beijing, China
3Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
4State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG),
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Correspondence: Li Liu (liuli-cess@tsinghua.edu.cn)

Received: 4 April 2020 – Discussion started: 21 April 2020
Revised: 23 October 2020 – Accepted: 28 October 2020 – Published: 10 December 2020

Abstract. A fundamental functionality of model coupling in
an Earth system model is to efficiently handle data trans-
fer between component models. An approach of M ×N

communication following a routing network has been used
widely used for data transfer, and routing network genera-
tion becomes a major step required to initialize data transfer
functionality. Some existing coupling software such as the
Model Coupling Toolkit (MCT) and the existing versions of
the Community Coupler (C-Coupler) employ a global im-
plementation of routing network generation that relies on
gather–broadcast communications, which can be very ineffi-
cient under a case of a large number of processes. This is an
important reason why the initialization cost of a coupler in-
creases with the number of processor cores. In this paper, we
propose a “distributed implementation for routing network
generation, version 1.0” (DiRong1.0), which does not intro-
duce any gather–broadcast communication. Empirical evalu-
ations show that DiRong1.0 is much more efficient than the
global implementation. DiRong1.0 has already been imple-
mented in C-Coupler2, and we believe that some other cou-
plers can also benefit from it.

1 Introduction

Coupled Earth system models and numerical weather fore-
casting models highly depend on existing couplers (Hill et
al., 2004; Craig et al., 2005, 2012, 2017; Larson et al., 2005;

Balaji et al., 2006; Redler et al., 2010; Valcke, 2013; Liu et
al., 2014, 2018; Hanke et al., 2016). A coupler combines dif-
ferent component models into a whole system and handles
data interpolation between different model grids and data
transfer between component models (Valcke et al., 2012).

The process of data interpolation generally requires two
major steps: preparing remapping weights that are read from
a file or are calculated online when initializing the cou-
pler and conducting parallel interpolation calculations based
on sparse matrix–vector multiplication with the remapping
weights throughout the coupled model integration. Couplers
perform data transfer by transferring scalar variables or fields
on a model grid (hereafter called gridded fields) from one
component model to another via Message Passing Interface
(MPI). Component models are often parallelized by decom-
posing the cells of a model grid into distinct subsets, each of
which is assigned to an MPI process for cooperative concur-
rent computation (e.g., the sample parallel decompositions in
Fig. 1a and b). To efficiently transfer gridded fields in paral-
lel, Jacob et al. (2005) proposed an approach of M×N com-
munication (called the M ×N approach) following a rout-
ing network, where each pair of processes from two com-
ponent models have a communication connection only when
they share a common grid cell (e.g., Fig. 1c). The M×N ap-
proach has been used in existing couplers for more than 10
years. As the parallel decompositions of component models
generally remain constant throughout the whole integration,
a routing network can also remain constant. Thus, the M×N

Published by Copernicus Publications on behalf of the European Geosciences Union.



6254 H. Yu et al.: DiRong1.0

Figure 1. Two sample parallel decompositions of an 8× 8 grid under eight processes (a, b) and the routing network between them (c).
Each color corresponds to a process. The left (for processes S0–S7) and the right (for processes D0–D7) in (c) correspond to the parallel
decompositions in (a, b) respectively. A smallest square in (c) represents four continuous grid points in a column in (a) or (b), where a square
that corresponds to local grid points of a process is in brown.

approach is realized through two major steps: generating the
routing network when initializing the coupler and transfer-
ring gridded fields based on the routing network throughout
the coupled model integration.

Due to the trend in model development towards higher
grid resolutions and the resulting increased computation,
the parallel efficiency of a coupled model on modern high-
performance computers has become more critical. Any mod-
ule in a coupled model, including the coupler, can impact the
parallel efficiency of the whole model. Most existing cou-
plers achieve scalable data transfer and data interpolation
throughout the coupled model integration; i.e., the data trans-
fer and data interpolation are generally faster when using
more processor cores. However, experiences with OASIS3-
MCT and C-Coupler2 have shown that the initialization cost

of a coupler can increase rapidly when using more processor
cores (Craig et al., 2017; Liu et al., 2018). A further inves-
tigation based on MCT shows that the initialization of data
transfer (i.e., generating routing networks) is an important
source of the initialization cost (see Fig. 2).

This paper explores the first step toward lowering the ini-
tialization cost of a coupler by focusing on the generation
of routing networks and proposes the new “distributed im-
plementation for routing network generation, version 1.0”
(DiRong1.0). The evaluation based on C-Coupler2 shows
that it is much faster than the existing approach. The re-
mainder of this paper is organized as follows. We investigate
the existing implementations of routing network generation
in Sect. 2, present and then evaluate DiRong1.0 in Sects. 3

Geosci. Model Dev., 13, 6253–6263, 2020 https://doi.org/10.5194/gmd-13-6253-2020



H. Yu et al.: DiRong1.0 6255

Figure 2. The total time of routing network generation (router time)
and the remaining time for initializing a two-way MCT coupling be-
tween two toy component models. One toy component model uses a
longitude–latitude grid with 4 million points and a regular 2-D par-
allel decomposition, while the other uses a cubed-sphere grid with
a resolution of 0.3◦ and a round-robin parallel decomposition. The
time for reading an offline remapping weight file has been taken
into account in the remaining time. The supercomputer, as well as
the corresponding software stacks described in Sect. 4, is used for
this test.

and 4, respectively, and conclude with a discussion of this
work in Sect. 5.

2 Existing implementations of routing network
generation

In some existing coupling software such as MCT and C-
Coupler, the global information of a parallel decomposition
is originally distributed among all processes of a component
model. This is because a process only records its local par-
allel decomposition on the grid cells assigned to it. There-
fore, these couplers generally use the following four steps for
generating a routing network between the parallel decompo-
sitions of a source (src) and a destination (dst) component
model.

1. Gathering global parallel decomposition. The src or dst
root process gathers the global information of the src or
dst parallel decomposition from all src or dst processes.

2. Exchanging global parallel decomposition. The src or
dst root process first exchanges the src or dst global par-
allel decomposition with the dst or src root process and
then broadcasts the dst or src global parallel decompo-
sition to all src or dst processes.

3. Detecting common grid cells. Each src or dst process
detects its common grid cells with each dst or src pro-

cess based on its local parallel decomposition and the
dst or src global parallel decomposition.

4. Generating the routing network. Each src or dst process
generates its local routing network according to the in-
formation about common grid cells.

Assuming that each of the src and dst component models
uses K processes on a grid of size N (i.e., the grid has N

cells), the first and second steps when using C-Coupler corre-
spond to gather–broadcast communications with a time com-
plexity of at least O(N × logK) and a memory complex-
ity of O(N). The average time complexity of the third step
is O(N), as C-Coupler first generates a map corresponding
to the global parallel decomposition and then detects com-
mon cells by looking at the map. Although this implemen-
tation tries to lower the time complexity, it introduces inef-
ficient and irregular memory access. As the last step does
not depend on any global parallel decomposition, its average
time complexity is O(N/K). MCT (as well as CPL6/CPL7
and OASIS3-MCT, which employ MCT for data transfer)
has similar complexities to C-Coupler, even if a compressed
global index description is, in the case of regular parallel de-
compositions, used to reduce the memory and the time re-
quired to detect common grid cells corresponding to regular
parallel decompositions (the compressed description may not
work for irregular, such as round-robin, parallel decomposi-
tions).

Given the gather–broadcast communications and the cor-
responding time complexity of O(N × logK), and the time
complexity of O(N) corresponding to common grid cell de-
tection, such existing implementations of routing network
generation are of course inefficient with an increasing num-
ber of processor cores. Moreover, due to the memory com-
plexity of O(N), more memory is consumed as the model
grid becomes finer.

In the following, the existing implementations relying
on gather–broadcast communications will be called “global
routing network generation”.

3 Design and implementation

3.1 Overall design

The design and implementation of DiRong1.0 significantly
benefits from the general idea of distributed directories (Pinar
and Hendrickson, 2001), which have already been used in
coupler development (Dunlap and Liu, 2015; Hanke et al.,
2016). Another different kind of specific distributed directo-
ries is defined and used in DiRong1.0.

Each cell of a grid can be numbered with a unique index
from 1 to N called the “global” cell index, while each grid
cell assigned to the same process can be numbered with a
unique “local” cell index. Thus, the information of a given
parallel decomposition can be recorded as a cell local–global

https://doi.org/10.5194/gmd-13-6253-2020 Geosci. Model Dev., 13, 6253–6263, 2020



6256 H. Yu et al.: DiRong1.0

Table 1. The cell local–global mapping table (CLGMT) of the parallel decomposition in Fig. 1a.

Process ID Cell local–global mapping table entries

0 <0,0,0>, <1,0,1>, <8,0,2>, <9,0,3>, <16,0,4>, <17,0,5>, <24,0,6>, <25,0,7>

1 <2,1,0>, <3,1,1>, <10,1,2>, <11,1,3>, <18,1,4>, <19,1,5>, <26,1,6>, <27,1,7>

2 <4,2,0>, <5,2,1>, <12,2,2>, <13,2,3>, <20,2,4>, <21,2,5>, <28,2,6>, <29,2,7>

3 <6,3,0>, <7,3,1>, <14,3,2>, <15,3,3>, <22,3,4>, <23,3,5>, <30,3,6>, <31,3,7>

4 <32,4,0>, <33,4,1>, <40,4,2>, <41,4,3>, <48,4,4>, <49,4,5>, <56,4,6>, <57,4,7>

5 <34,5,0>, <35,5,1>, <42,5,2>, <43,5,3>, <50,5,4>, <51,5,5>, <58,5,6>, <59,5,7>

6 <36,6,0>, <37,6,1>, <44,6,2>, <45,6,3>, <52,6,4>, <53,6,5>, <60,6,6>, <61,6,7>

7 <38,7,0>, <39,7,1>, <46,7,2>, <47,7,3>, <54,7,4>, <55,7,5>, <62,7,6>, <63,7,7>

Table 2. The cell local–global mapping table (CLGMT) of the parallel decomposition in Fig. 1b.

Process ID Cell local–global mapping table entries

0 <0,0,0>, <8,0,1>, <16,0,2>, <24,0,3>, <32,0,4>, <40,0,5>, <48,0,6>, <56,0,7>

1 <1,1,0>, <9,1,1>, <17,1,2>, <25,1,3>, <33,1,4>, <41,1,5>, <49,1,6>, <57,1,7>

2 <2,2,0>, <10,2,1>, <18,2,2>, <26,2,3>, <34,2,4>, <42,2,5>, <50,2,6>, <58,2,7>

3 <3,3,0>, <11,3,1>, <19,3,2>, <27,3,3>, <35,3,4>, <43,3,5>, <51,3,6>, <59,3,7>

4 <4,4,0>, <12,4,1>, <20,4,2>, <28,4,3>, <36,4,4>, <44,4,5>, <52,4,6>, <60,4,7>

5 <5,5,0>, <13,5,1>, <21,5,2>, <29,5,3>, <37,5,4>, <45,5,5>, <53,5,6>, <61,5,7>

6 <6,6,0>, <14,6,1>, <22,6,2>, <30,6,3>, <38,6,4>, <46,6,5>, <54,6,6>, <62,6,7>

7 <7,7,0>, <15,7,1>, <23,7,2>, <31,7,3>, <39,7,4>, <47,7,5>, <55,7,6>, <63,7,7>

mapping table (CLGMT), each element of which is a triple
of global cell index, process ID, and local cell index. For
example, Tables 1 and 2 are the CLGMTs corresponding to
the parallel decompositions in Fig. 1a and b, respectively.

Generally, the CLGMT entries of a parallel decomposition
are distributed among the processes of a component model,
which means a process only stores part of the CLGMT.
The distribution of the CLGMT entries is determined by
the model but not the coupler. The key idea of existing
global implementations is to reconstruct the global CLGMT
of the peer parallel decomposition in each process for rout-
ing network generation. To be an efficient solution though,
DiRong1.0 should be fully based on a distributed CLGMT
without reconstructing any global CLGMT.

Motivated by the above analysis, the key challenge in
DiRong1.0 is achieving efficient rearrangement of the orig-
inal distribution of the CLGMT entries of a given parallel
decomposition into a regular intermediate distribution and
efficiently generating the routing network based on the inter-
mediate distribution. Specifically, we employ a regular inter-
mediate distribution that evenly distributes the CLGMT en-
tries among processes based on the global cell indices placed
in ascending order. Such an intermediate distribution is not
only simple, but it also enables a straightforward rearrange-
ment of the CLGMT entries into the intermediate distribu-
tion via a sorting procedure similar to distributed sort. With
that, DiRong1.0 takes the following major steps to generate a
routing network between the src and dst component models.

1. The src or dst component model rearranges the origi-
nal distribution of the CLGMT entries of the src or dst
parallel decomposition into the regular intermediate dis-
tribution.

2. The src and dst component models exchange the
CLGMT entries in the intermediate distributions.

3. Based on the src and dst CLGMT entries in the interme-
diate distributions, each src or dst process generates ta-
ble entries of the sharing relationship, which describes
how each grid cell is shared between the processes of
the src and dst component models.

4. The src or dst component model rearranges the inter-
mediate distribution of the entries in the sharing rela-
tionship table (SRT) into the original distribution of the
CLGMT entries of the src or dst parallel decomposition.

5. Each src or dst process generates its local routing net-
work based on the local SRT entries.

The remainder of this section details the implementation of
each major step, except the last one because it is similar to
the last major step in the global implementation.

3.2 Rearranging CLGMT entries within a component
model

The rearrangement of CLGMT entries within a component
model is achieved via a divide-and-conquer sorting proce-
dure, similar to a merge sort using the global cell index as

Geosci. Model Dev., 13, 6253–6263, 2020 https://doi.org/10.5194/gmd-13-6253-2020



H. Yu et al.: DiRong1.0 6257

Figure 3. The distributed sort corresponding to the CLGMT entries in Table 1. Each iteration makes the CLGMT entries with larger global
cell indices reserved in the processes with larger IDs. For example, after the first iteration, the CLGMT entries with global cell indices
between 0 and 31 are reserved in P0–P3, while the remaining CLGMT entries are reserved in P4–P7.

Table 3. The distributed CLGMT after rearranging the CLGMT entries in Table 2.

Process ID CLGMT entries

0 <0,0,0>, <1,1,0>, <2,2,0>, <3,3,0>, <4,4,0>, <5,5,0>, <6,6,0>, <7,7,0>

1 <8,0,1>, <9,1,1>, <10,2,1>, <11,3,1>, <12,4,1>, <13,5,1>, <14,6,1>, <15,7,1>

2 <16,0,2>, <17,1,2>, <18,2,2>, <19,3,2>, <20,4,2>, <21,5,2>, <22,6,2>, <23,7,2>

3 <24,0,3>, <25,1,3>, <26,2,3>, <27,3,3>, <28,4,3>, <29,5,3>, <30,6,3>, <31,7,3>

4 <32,0,4>, <33,1,4>, <34,2,4>, <35,3,4>, <36,4,4>, <37,5,4>, <38,6,4>, <39,7,4>

5 <40,0,5>, <41,1,5>, <42,2,5>, <43,3,5>, <44,4,5>, <45,5,5>, <46,6,5>, <47,7,5>

6 <48,0,6>, <49,1,6>, <50,2,6>, <51,3,6>, <52,4,6>, <53,5,6>, <54,6,6>, <55,7,6>

7 <56,0,7>, <57,1,7>, <58,2,7>, <59,3,7>, <60,4,7>, <61,5,7>, <62,6,7>, <63,7,7>

https://doi.org/10.5194/gmd-13-6253-2020 Geosci. Model Dev., 13, 6253–6263, 2020



6258 H. Yu et al.: DiRong1.0

Table 4. The sharing relationship table (SRT) calculated from the rearranged distributed CLGMT entries in Fig. 3 and Table 3.

Process ID Sharing relationship table entries

0 <0,0,0,0,0>, <1,0,1,1,0>, < 2,1,0,2,0>, <3,1,1,3,0>, < 4,2,0,4,0>, <5,2,1,5,0>, <6,3,0,6,0>, < 7,3,1,7,0>

1 <8,0,2,0,1>, <9,0,3,1,1>, < 10,1,2,2,1>, <11,1,3,3,1>, < 12,2,2,4,1>, <13,2,3,5,1>, < 14,3,2,6,1>, <15,3,3,7,1>

2 <16,0,4,0,2>, <17,0,5,1,2>, < 18,1,4,2,2>, <19,1,5,3,2>, < 20,2,4,4,2>, <21,2,5,5,2>, < 22,3,4,6,2>, <23,3,5,7,2>

3 <24,0,6,0,3>, <25,0,7,1,3>, < 26,1,6,2,3>, <27,1,7,3,3>, < 28,2,6,4,3>, <29,2,7,5,3>, < 30,3,6,6,3>, <31,3,7,7,3>

4 <32,4,0,0,4>, <33,4,1,1,4>, < 34,5,0,2,4>, <35,5,1,3,4>, < 36,6,0,4,4>, <37,6,1,5,4>, < 38,7,0,6,4>, <39,7,1,7,4>

5 <40,4,2,0,5>, <41,4,3,1,5>, < 42,5,2,2,5>, <43,5,3,3,5>, < 44,6,2,4,5>, <45,6,3,5,5>, < 46,7,2,6,5>, <47,7,3,7,5>

6 <48,4,4,0,6>, <49,4,5,1,6>, < 50,5,4,2,6>, <51,5,5,3,6>, < 52,6,4,4,6>, <53,6,5,5,6>, < 54,7,4,6,6>, <55,7,5,7,6>

7 <56,4,6,0,7>, <57,4,7,1,7>, < 58,5,6,2,7>, <59,5,7,3,7>, < 60,6,6,4,7>, <61,6,7,5,7>, < 62,7,6,6,7>, <63,7,7,7,7>

Table 5. The SRT entries distributed in the src component model after rearranging the SRT in Table 4.

Process ID Sharing relationship table entries

0 <0,0,0,0,0>, <1,0,1,1,0>, < 8,0,2,0,1>, <9,0,3,1,1>, < 16,0,4,0,2>, <17,0,5,1,2>, <24,0,6,0,3>, < 25,0,7,1,3>

1 <2,1,0,2,0>, <3,1,1,3,0>, < 10,1,2,2,1>, <11,1,3,3,1>, < 18,1,4,2,2>, <19,1,5,3,2>, < 26,1,6,2,3>, <27,1,7,3,3>

2 <4,2,0,4,0>, <5,2,1,5,0>, < 12,2,2,4,1>, <13,2,3,5,1>, < 20,2,4,4,2>, <21,2,5,5,2>, < 28,2,6,4,3>, <29,2,7,5,3>

3 <6,3,0,6,0>, <7,3,1,7,0>, < 14,3,2,6,1>, <15,3,3,7,1>, < 22,3,4,6,2>, <23,3,5,7,2>, < 30,3,6,6,3>, <31,3,7,7,3>

4 <32,4,0,0,4>, <33,4,1,1,4>, < 40,4,2,0,5>, <41,4,3,1,5>, < 48,4,4,0,6>, <49,4,5,1,6>, < 56,4,6,0,7>, <57,4,7,1,7>

5 <34,5,0,2,4>, <35,5,1,3,4>, < 42,5,2,2,5>, <43,5,3,3,5>, < 50,5,4,2,6>, <51,5,5,3,6>, < 58,5,6,2,7>, <59,5,7,3,7>

6 <36,6,0,4,4>, <37,6,1,5,4>, < 44,6,2,4,5>, <45,6,3,5,5>, < 52,6,4,4,6>, <53,6,5,5,6>, < 60,6,6,4,7>, <61,6,7,5,7>

7 <38,7,0,6,4>, <39,7,1,7,4>, < 46,7,2,6,5>, <47,7,3,7,5>, < 54,7,4,6,6>, <55,7,5,7,6>, < 62,7,6,6,7>, <63,7,7,7,7>

the keyword. This procedure first sorts the CLGMT entries
locally in each process and then iteratively conducts a dis-
tributed sort via a main loop of logK iterations, where K is
the number of processes of the src or dst component model.
In each iteration, processes are divided into distinct pairs
and the two processes in each pair swap the CLGMT entries
based on a point-to-point communication. Figure 3 shows an
example of the distributed sort corresponding to the CLGMT
entries in Table 1, and Table 3 shows the distributed CLGMT
after rearranging the CLGMT entries in Table 2. As shown
in Fig. 3, the distributed sort employed in DiRong1.0 uses
a similar butterfly communication pattern to the optimized
MPI implementations of various collective communication
operations (Brooks, 1986; Thakur et al., 2005).

3.3 Exchanging CLGMT entries between component
models

After the rearrangement of the CLGMT in a component
model, the CLGMT entries are sorted into ascending order
based on their global cell index and are evenly distributed
among processes. The CLGMT entries reserved in each pro-
cess therefore have a determinate and non-overlapping range
of global cell indices, and such a range can be easily calcu-
lated from the grid size, the total number of processes, and
the process ID. Thus, it is straightforward to calculate the
overlapping relationship of the global cell index range be-
tween a src process and a dst process. As it is only necessary
to exchange CLGMT entries between a pair of src and dst

processes with overlapping ranges, point-to-point communi-
cations suffice to handle the exchange of the CLGMT entries.

3.4 Generation of SRT

Following the previous major step, each process reserves two
sequences of CLGMT entries corresponding to the src and
dst parallel decompositions. Given that the two sequences
contain n1 and n2 entries, respectively, the time complexity
of detecting the sharing relationship is O(n1+ n2), because
the entries in each sequence have already been ordered by as-
cending global cell index, and a procedure similar to the ker-
nel of merge sort, which merges two ordered data sequences,
can handle such a detection.

To record the sharing relationship, an SRT entry is de-
signed as a quintuple of global cell index, src process ID,
src local cell index, dst process ID, and dst local cell index.
Given a quintuple <q1, q2,q3, q4, q5>, the data on global cell
q1 in the src component model, corresponding to local cell q3
in process q2, are transferred to local cell q5 in process q4 in
the dst component model. Table 4 shows the SRT in the src
component model calculated from the rearranged, distributed
CLGMT entries in Fig. 3 and Table 3.

It is possible that multiple src CLGMT entries correspond
to the same global cell index. In such a case, any src CLGMT
entry can be used for generating the corresponding SRT en-
tries, because the src component model guarantees that the
data copies on the same grid cell are identical. Given a dst
CLGMT entry, if there is no src CLGMT entry with the
same global cell index, no SRT entry will be generated. In

Geosci. Model Dev., 13, 6253–6263, 2020 https://doi.org/10.5194/gmd-13-6253-2020



H. Yu et al.: DiRong1.0 6259

Table 6. The SRT entries distributed in the dst component model after rearranging the SRT in Table 4.

Process ID Sharing relationship table entries

0 <0,0,0,0,0>, <8,0,2,0,1>, < 16,0,4,0,2>, <24,0,6,0,3>, < 32,4,0,0,4>, <40,4,2,0,5>, < 48,4,4,0,6>, <56,4,6,0,7>

1 <1,0,1,1,0>, <9,0,3,1,1>, < 17,0,5,1,2>, <25,0,7,1,3>, < 33,4,1,1,4>, <41,4,3,1,5>, < 49,4,5,1,6>, <57,4,7,1,7>

2 <2,1,0,2,0>, <10,1,2,2,1>, < 18,1,4,2,2>, <26,1,6,2,3>, < 34,5,0,2,4>, <42,5,2,2,5>, < 50,5,4,2,6>, <58,5,6,2,7>

3 <3,1,1,3,0>, <11,1,3,3,1>, < 19,1,5,3,2>, <27,1,7,3,3>, < 35,5,1,3,4>, <43,5,3,3,5>, < 51,5,5,3,6>, <59,5,7,3,7>

4 <4,2,0,4,0>, <12,2,2,4,1>, < 20,2,4,4,2>, <28,2,6,4,3>, < 36,6,0,4,4>, <44,6,2,4,5>, < 52,6,4,4,6>, <60,6,6,4,7>

5 <5,2,1,5,0>, <13,2,3,5,1>, < 21,2,5,5,2>, <29,2,7,5,3>, < 37,6,1,5,4>, <45,6,3,5,5>, < 53,6,5,5,6>, <61,6,7,5,7>

6 <6,3,0,6,0>, <14,3,2,6,1>, < 22,3,4,6,2>, <30,3,6,6,3>, < 38,7,0,6,4>, <46,7,2,6,5>, < 54,7,4,6,6>, <62,7,6,6,7>

7 <7,3,1,7,0>, <15,3,3,7,1>, < 23,3,5,7,2>, <31,3,7,7,3>, < 39,7,1,7,4>, <47,7,3,7,5>, < 55,7,5,7,6>, <63,7,7,7,7>

the case that multiple dst CLGMT entries correspond to the
same global cell index and there is at least one src CLGMT
entry with the same global cell index, an SRT entry will be
generated for every dst CLGMT entry.

3.5 Rearranging SRT entries within a component
model

After the previous major step, the SRT entries are distributed
among processes of a component model according to the in-
termediate distribution. Because a process can only use the
SRT entries corresponding to its local cells for the last ma-
jor step of local routing network generation, the SRT entries
need to be rearranged among the processes of a component
model. We find that such a rearrangement can be achieved via
a sorting procedure similar to a distributed sort using the src
or dst process ID as a keyword or even via the sorting pro-
cedure implemented in the first major step. Tables 5 and 6
show the SRT entries distributed in the src and dst compo-
nent model, respectively, after the rearrangement.

3.6 Time complexity and memory complexity

As DiRong1.0 does not reconstruct the global CLGMT, it
does not rely on any gather–broadcast communication and its
average memory complexity is O(N/K) for each process.
Because the implementation of its most time-consuming
steps is similar to a merge sort, and the time complexity of a
merge sort is O(N × logN), the average time complexity of
DiRong1.0 for each process is O(N × (logN)/K), and the
average communication complexity is O(N × (logK)/K).

To facilitate the implementation of the sorting procedure,
we force the number of processes in the first to fourth major
steps to be the maximum power of 2 (2n) no larger than the
total number of processes of the src or dst component model.
For a process whose ID I is not smaller than 2n, its CLGMT
entries are merged into the process with ID I -2n before the
first major step, and the SRT entries corresponding to it are
obtained from the process with ID I -2n after the fourth major
step. This strategy does not change the aforementioned time
complexity and memory complexity of DiRong1.0, as 2n is
larger than half of the total number of processes.

4 Evaluation

To evaluate DiRong1.0, we implement it in C-Coupler2,
which enables us to compare it with the original global rout-
ing network generation. We develop a toy coupled model
for the evaluation consisting of two toy component mod-
els and C-Coupler2, which allows us to flexibly change the
model settings in terms of grid size and number of proces-
sor cores (processes). The toy coupled model is run on a su-
percomputer, where each computing node includes two Intel
Xeon E5-2678 v3 CPUs (Intel(R) Xeon(R) CPU, 24 proces-
sor cores in total), and all computing nodes are connected
with an InfiniBand network. The codes are compiled by an
Intel Fortran and C++ compiler at the optimization level O2
using an Intel MPI library (2018 Update 2). A maximum of
6400 cores are used for running the toy coupled model, and
all test results are from the average of multiple runs.

In Tables 7–10, we evaluate the effect of varying the num-
ber of processes; the two component models use the same
number of processor cores. For a grid size of 500 000 (Ta-
ble 7), the execution time of DiRong1.0 does not significantly
decrease when using more processor cores. This result is rea-
sonable, although it does not match the time complexity of
DiRong1.0. The communication complexity of DiRong1.0
is O(N × (logK)/K), where logK stands for the number
of point-to-point communications in each process and N/K

stands for the average message size in each communica-
tion. The average message size corresponding to Table 7 is
small (about 160 KB with 60 cores and about 6 KB with
1600 cores for each toy component model), but the execution
time of point-to-point communication does not vary linearly
with message size and may be unstable when the message
size is small. In contrast to DiRong1.0, the execution time
of the global implementation increases rapidly with increas-
ing number of cores. As a result, DiRong1.0 outperforms the
global implementation more significantly when using more
cores. When the grid size increases (e.g., from 4 000 000 in
Table 8 to 32 000 000 in Table 10), DiRong1.0 still signifi-
cantly outperforms the global implementation and also has
better scalability.

Considering that a model can use more processor cores
for acceleration when its resolution becomes finer, we fur-

https://doi.org/10.5194/gmd-13-6253-2020 Geosci. Model Dev., 13, 6253–6263, 2020



6260 H. Yu et al.: DiRong1.0

Table 7. Performance of DiRong1.0 and the comparison with the original global routing network generation (Global) using different numbers
of cores numbers and the grid size of 500 000.

Core number of each DiRong1.0 Global Global/DiRong1.0

toy component model Time (s) Speedup Time (s) Speedup

60 0.031 1.000 0.129 1.000 4.110
120 0.040 0.774 0.278 0.462 6.888
240 0.047 0.671 0.243 0.530 5.205
480 0.029 1.076 0.478 0.269 16.461
960 0.033 0.943 1.169 0.110 35.224
1600 0.034 0.912 1.737 0.074 50.641
3200 0.036 0.862 2.573 0.050 70.900

Table 8. Performance of DiRong1.0 and the comparison with the original global routing network generation (Global) using different numbers
of cores numbers and the grid size of 4 000 000.

Core number of each DiRong1.0 Global Global/DiRong1.0

toy component model Time (s) Speedup Time (s) Speedup

60 0.161 1.000 0.863 1.000 5.349
120 0.117 1.375 0.517 1.668 4.409
240 0.081 1.990 0.437 1.974 5.391
480 0.060 2.669 0.649 1.329 10.737
960 0.051 3.184 1.308 0.660 25.811
1600 0.045 3.548 1.949 0.443 42.858
3200 0.039 4.098 2.623 0.329 66.598

Table 9. Performance of DiRong1.0 and the comparison with the original global routing network generation (Global) using different numbers
of cores numbers and the grid size of 16 000 000.

Core number of each DiRong1.0 Global Global/DiRong1.0

toy component model Time (s) Speedup Time (s) Speedup

60 0.702 1.000 3.437 1.000 4.899
120 0.447 1.571 2.351 1.462 5.263
240 0.276 2.547 2.363 1.455 8.575
480 0.169 4.163 2.529 1.359 15.006
960 0.109 6.429 3.135 1.097 28.721
1600 0.106 6.628 3.065 1.121 28.956
3200 0.098 7.133 3.242 1.060 32.960

ther evaluate the weak scalability of DiRong1.0 by concur-
rently increasing the grid size and number of cores to achieve
similar numbers of grid points per process. As shown in Ta-
ble 11, the execution time of DiRong1.0 increases slowly,
whereas the execution time of the global implementation in-
creases rapidly with larger grid sizes and increasing number
of cores. This demonstrates that DiRong1.0 achieves much
better weak scalability than the global implementation.

5 Conclusion and discussion

This paper proposes a new distributed implementation,
DiRong1.0, for routing network generation. It is much more
efficient than the global implementation as it does not intro-
duce any gather–broadcast communication, and it achieves
much lower complexity in terms of time, memory, and com-
munication. This conclusion is demonstrated by our evalu-
ation results. DiRong1.0 has already been implemented in
C-Coupler2. Its code is publicly available in a C-Coupler2
version and will be further used in future C-Coupler ver-
sions. We believe that some existing couplers such as
MCT, OASIS3-MCT, and CPL6/CPL7 can also benefit from

Geosci. Model Dev., 13, 6253–6263, 2020 https://doi.org/10.5194/gmd-13-6253-2020



H. Yu et al.: DiRong1.0 6261

Table 10. Performance of DiRong1.0 and the comparison with the original global routing network generation (Global) using different
numbers of cores numbers and the grid size of 32 000 000.

Core number of each DiRong1.0 Global Global/DiRong1.0

toy component model Time (s) Speedup Time (s) Speedup

60 1.438 1.000 6.878 1.000 4.782
120 0.960 1.499 4.206 1.635 4.383
240 0.554 2.597 4.739 1.451 8.557
480 0.340 4.234 5.083 1.353 14.964
960 0.199 7.222 6.098 1.128 30.616
1600 0.176 8.182 5.758 1.195 32.756
3200 0.165 8.704 5.500 1.251 33.286

Table 11. Performance of DiRong1.0 and the comparison with the original global routing network generation (Global) when concurrently
increasing the grid size and number of cores.

Core number of each Execution time Execution time
toy component model Grid size (s) of DiRong1.0 (s) of Global Global/DiRong1.0

250 500 000 0.032 0.262 8.19
450 1 000 000 0.034 0.492 14.47
900 2 000 000 0.041 1.158 28.24
1600 4 000 000 0.045 1.949 43.31
3200 8 000 000 0.063 2.850 45.24

DiRong1.0, as it accelerates the routing network generation
as well as the coupler initialization.

We did not evaluate the impact of DiRong1.0 on the to-
tal time of a model simulation, because this impact can be
relative. The overhead of routing network generation as well
as coupler initialization is trivial for a long simulation (e.g.,
hundreds of model days or even hundreds of model years) but
may be significant for a short simulation (e.g., several model
days or even several model hours in weather forecasting;
Palmer et al., 2008; Hoskins, 2013). Data assimilation for
weather forecasting may require a model to run for only sev-
eral model hours or even less time. In an operational model,
there is generally a time limitation on producing forecast-
ing results (e.g., finishing a five-day forecast in two hours),
and thus developers always have to carefully optimize vari-
ous software modules, especially when the model resolution
becomes finer. In fact, one of the primary motivations for the
development of DiRong1.0 was to accelerate the initializa-
tion of C-Coupler2 for an operational coupled model used in
China.

Another main reason for developing DiRong1.0 is that
routing network generation will become more important in
later versions of C-Coupler. Recently, a new framework was
developed for weakly coupled ensemble data assimilation
(EDA) based on C-Coupler2, named DAFCC1 (Sun et al.,
2020). DAFCC1 will be an important part of C-Coupler3, the
next version of C-Coupler. For users wanting the atmosphere
component of a coupled system to perform EDA, DAFCC1
will automatically generate an ensemble component corre-

sponding to all ensemble members of the atmosphere com-
ponent for calling the DA algorithm and will automatically
conduct routing network generation for the data transfers be-
tween the ensemble component and each ensemble member.
Thus, routing network generation will be more frequently
used in EDA with DAFCC1. For example, given 50 ensemble
members, the routing network generation with the ensemble
component will be conducted at least 50 times.

We note that the current sequential read of a remapping
weight file is another drawback of C-Coupler2. Similar to
Hanke et al. (2016), we will design a specific distributed
directory for reading in the remapping weights in parallel,
which will allow the remapping weights to be efficiently re-
distributed among processes based on DiRong1.0. Currently,
C-Coupler2 employs a simple global representation for hori-
zontal grids, which means that each process retains all points
of a horizontal grid in memory. The global representation
will become a bottleneck in at least two aspects. First, it will
consume too much memory to run a model simulation. For
example, given a horizontal grid with 16 000 000 points, the
memory required to keep it in each process is large: about
1.3 GB, provided that each point has four vertices and the
data type is double precision. Second, the initialization of the
data interpolation functionality requires model grids to be ex-
changed between different component models, which intro-
duces global communications (e.g., broadcast) for the global
grid representations. To address this bottleneck, we will de-
sign and develop a distributed grid representation that can be
viewed as a specific distributed directory and will enable an

https://doi.org/10.5194/gmd-13-6253-2020 Geosci. Model Dev., 13, 6253–6263, 2020



6262 H. Yu et al.: DiRong1.0

efficient redistribution of horizontal grid points among pro-
cesses based on DiRong1.0.

Code availability. The source code of DiRong1.0 can be viewed
and run with C-Coupler2 and the toy coupled model via
https://doi.org/10.5281/zenodo.3971829 (Yu, 2020). The MCT ver-
sion corresponding to Fig. 2 is 2.10 (https://www.mcs.anl.gov/
research/projects/mct/, last access: 4 December 2020, Jacob et al.,
2020).

Author contributions. HY was responsible for code development,
software testing, and experimental evaluation of DiRong1.0, and
co-led paper writing. LL initiated this research, was responsible for
the motivation and design of DiRong1.0, supervised HY, and co-led
paper writing. CS, RL, XY, and CZ contributed to code develop-
ment and software testing. ZZ and BW contributed to the motivation
and software testing. All authors contributed to the improvement of
ideas and paper writing.

Competing interests. The authors declare that they have no conflict
of interest.

Financial support. This research has been supported by the Natural
Science Foundation of China (grant no. 42075157) and the National
Key Research Project of China (grant no. 2017YFC1501903).

Review statement. This paper was edited by Sophie Valcke and re-
viewed by Moritz Hanke, Vijay Mahadevan, and one anonymous
referee.

References

Balaji, V., Anderson, J., Held, I., Winton, M., Durachta, J., Maly-
shev, S., and Stouffer, R. J.: The Exchange Grid: a mechanism
for data exchange between Earth System components on inde-
pendent grids, in: Proceedings of the 2005 International Confer-
ence on Parallel Computational Fluid Dynamics, College Park,
MD, USA, Elsevier, 2006.

Brooks, E. D.: The Butterfly Barrier, Int. J. Parallel Program, 15,
295–307, 1986.

Craig, A. P., Vertenstein, M., and Jacob, R.: A New Flexible Coupler
for Earth System Modelling developed for CCSM4 and CESM1,
Int. J. High Perform. Comput., 26, 31–42, 2012.

Craig, A. P., Jacob, R. L., Kauffman, B., Bettge, T., Larson, J. W.,
Ong, E. T., Ding, C. H. Q., and He, Y.: CPL6: The New Ex-
tensible, High Performance Parallel Coupler for the Community
Climate System Model, Int. J. High Perform. Comput. Appl., 19,
309–327, 2005.

Craig, A., Valcke, S., and Coquart, L.: Development and
performance of a new version of the OASIS coupler,
OASIS3-MCT_3.0, Geosci. Model Dev., 10, 3297–3308,
https://doi.org/10.5194/gmd-10-3297-2017, 2017.

Dunlap, R. and Liu, F.: Session 2: ESMF Distributed Data Classes,
available at: https://slideplayer.com/slide/6654080/ (last access:
5 December, 2020), 2015.

Hanke, M., Redler, R., Holfeld, T., and Yastremsky, M.: YAC 1.2.0:
new aspects for coupling software in Earth system modelling,
Geosci. Model Dev., 9, 2755–2769, https://doi.org/10.5194/gmd-
9-2755-2016, 2016.

Hill, C., DeLuca, C., Balaji, V., Suarez, M., and da Silva, A.: Archi-
tecture of the Earth System Modelling Framework, Comput. Sci.
Eng., 6, 18–28, 2004.

Hoskins, B.: The potential for skill across the range of the seamless
weather-climate prediction problem: a stimulus for our science,
Q. J. Roy. Meteor. Soc., 139, 573–584, 2013.

Jacob, R., Larson, J., and Ong, E.: M×N Communication and Par-
allel Interpolation in Community Climate System Model Version
3 Using the Model Coupling Toolkit, Int. J. High. Perform. Com-
put., 19, 293–307, 2005.

Jacob, R., Larson, J., Loy, R. and Ong, E.: The Model Coupling
Toolkit, available at: https://www.mcs.anl.gov/research/projects/
mct/, last access: 4 December 2020.

Larson, J., Jacob, R., and Ong, E.: The Model Coupling Toolkit: A
New Fortran90 Toolkit for Building Multiphysics Parallel Cou-
pled Models, Int. J. High Perform. Comput. Appl., 19, 277–292,
2005.

Liu, L., Yang, G., Wang, B., Zhang, C., Li, R., Zhang, Z., Ji,
Y., and Wang, L.: C-Coupler1: a Chinese community coupler
for Earth system modeling, Geosci. Model Dev., 7, 2281–2302,
https://doi.org/10.5194/gmd-7-2281-2014, 2014.

Liu, L., Zhang, C., Li, R., Wang, B., and Yang, G.: C-Coupler2:
a flexible and user-friendly community coupler for model
coupling and nesting, Geosci. Model Dev., 11, 3557–3586,
https://doi.org/10.5194/gmd-11-3557-2018, 2018.

Palmer, T. N., Doblas-Reyes, F. J., Weisheimer, A., and Rodwell,
M. J.: Toward seamless prediction: Calibration of climate change
projections using seasonal forecasts, B. Am. Meteorol. Soc., 89,
459–470, 2008.

Pinar, A. and Hendrickson, B.: Communication Support for Adap-
tive Computation, Proceedings of the Tenth SIAM Conference
on Parallel Processing for Scientific Computing, Portsmouth,
Virginia, USA, 12–14 March 2001, SIAM, 2001.

Redler, R., Valcke, S., and Ritzdorf, H.: OASIS4 – a coupling soft-
ware for next generation earth system modelling, Geosci. Model
Dev., 3, 87–104, https://doi.org/10.5194/gmd-3-87-2010, 2010.

Sun, C., Liu, L., Li, R., Yu, X., Yu, H., Zhao, B., Wang, G., Liu,
J., Qiao, F., and Wang, B.: Developing a common, flexible and
efficient framework for weakly coupled ensemble data assim-
ilation based on C-Coupler2.0, Geosci. Model Dev. Discuss.,
https://doi.org/10.5194/gmd-2020-75, in review, 2020.

Thakur, R., Rabenseifner, R., and Gropp, W.: Opti-
mization of Collective Communication Operations in
MPICH, Int. J. High Perform. Comput. Appl., 19, 49–66,
https://doi.org/10.1177/1094342005051521, 2005.

Valcke, S.: The OASIS3 coupler: a European climate mod-
elling community software, Geosci. Model Dev., 6, 373–388,
https://doi.org/10.5194/gmd-6-373-2013, 2013.

Valcke, S., Balaji, V., Craig, A., DeLuca, C., Dunlap, R.,
Ford, R. W., Jacob, R., Larson, J., O’Kuinghttons, R., Ri-
ley, G. D., and Vertenstein, M.: Coupling technologies for

Geosci. Model Dev., 13, 6253–6263, 2020 https://doi.org/10.5194/gmd-13-6253-2020

https://doi.org/10.5281/zenodo.3971829
https://www.mcs.anl.gov/research/projects/mct/
https://www.mcs.anl.gov/research/projects/mct/
https://doi.org/10.5194/gmd-10-3297-2017
https://slideplayer.com/slide/6654080/
https://doi.org/10.5194/gmd-9-2755-2016
https://doi.org/10.5194/gmd-9-2755-2016
https://www.mcs.anl.gov/research/projects/mct/
https://www.mcs.anl.gov/research/projects/mct/
https://doi.org/10.5194/gmd-7-2281-2014
https://doi.org/10.5194/gmd-11-3557-2018
https://doi.org/10.5194/gmd-3-87-2010
https://doi.org/10.5194/gmd-2020-75
https://doi.org/10.1177/1094342005051521
https://doi.org/10.5194/gmd-6-373-2013


H. Yu et al.: DiRong1.0 6263

Earth System Modelling, Geosci. Model Dev., 5, 1589–1596,
https://doi.org/10.5194/gmd-5-1589-2012, 2012.

Yu, H.: yuhao0102/DiRong: DiRong v1.0 (Version v1.0), Zenodo,
https://doi.org/10.5281/zenodo.3971829, 2020.

https://doi.org/10.5194/gmd-13-6253-2020 Geosci. Model Dev., 13, 6253–6263, 2020

https://doi.org/10.5194/gmd-5-1589-2012
https://doi.org/10.5281/zenodo.3971829

	Abstract
	Introduction
	Existing implementations of routing network generation
	Design and implementation
	Overall design
	Rearranging CLGMT entries within a component model
	Exchanging CLGMT entries between component models
	Generation of SRT
	Rearranging SRT entries within a component model
	Time complexity and memory complexity

	Evaluation
	Conclusion and discussion
	Code availability
	Author contributions
	Competing interests
	Financial support
	Review statement
	References

