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Abstract. As the deep learning algorithm has become a pop-
ular data analysis technique, atmospheric scientists should
have a balanced perception of its strengths and limitations
so that they can provide a powerful analysis of complex data
with well-established procedures. Despite the enormous suc-
cess of the algorithm in numerous applications, certain issues
related to its applications in air quality forecasting (AQF) re-
quire further analysis and discussion. This study addresses
significant limitations of an advanced deep learning algo-
rithm, the convolutional neural network (CNN), in two com-
mon applications: (i) a real-time AQF model and (ii) a post-
processing tool in a dynamical AQF model, the Community
Multi-scale Air Quality Model (CMAQ). In both cases, the
CNN model shows promising accuracy for ozone prediction
24h in advance in both the United States of America and
South Korea (with an overall index of agreement exceeding
0.8). For the first case, we use the wavelet transform to de-
termine the reasons behind the poor performance of CNN
during the nighttime, cold months, and high-ozone episodes.
We find that when fine wavelet modes (hourly and daily)
are relatively weak or when coarse wavelet modes (weekly)
are strong, the CNN model produces less accurate fore-
casts. For the second case, we use the dynamic time warping
(DTW) distance analysis to compare post-processed results
with their CMAQ counterparts (as a base model). For CMAQ
results that show a consistent DTW distance from the obser-
vation, the post-processing approach properly addresses the
modeling bias with predicted indexes of agreement exceed-
ing 0.85. When the DTW distance of CMAQ versus observa-
tion is irregular, the post-processing approach is unlikely to
perform satisfactorily. Awareness of the limitations in CNN
models will enable scientists to develop more accurate re-

gional or local air quality forecasting systems by identifying
the affecting factors in high-concentration episodes.

1 Introduction

Currently, atmospheric scientists have shown significant in-
terest in applying machine learning (ML) algorithms in their
field, specifically for air quality forecasting, remote sensing
data retrieval, and hurricane tracking. ML is a technique used
for developing data-driven algorithms that learn to mimic hu-
man behavior on the basis of a prior example or experience.
It is a tool that allows systems to more effectively deal with
knowledge-intensive problems in complex domains, which
occurs via learning that involves gathering information from
a training dataset and using a certain logic to purposefully
detect a pattern of behavior. The fundamental goal of ML
models is to apply the detected patterns to make generaliza-
tions beyond the examples in the training set.
Generalizations stemming from ML models provide a
scope of improvement in a number of physical applications.
Evidence of the growing interest in applying ML is the rapid
increase in the number of scientific publications in this area,
illustrated in Fig. S1 in the Supplement. However, the focus
of these studies was the general performance of the model
ML models compared to that of conventional statistical mod-
els rather than identifying the shortcomings of such models
in explaining the uncertainties of prediction models. Such ex-
amples can be found in studies by Eslami et al. (2019, 2020a,
b), Choi et al. (2019), Sayeed et al. (2020), and Lops et al.
(2019). To achieve more reasonable outcomes, we must first
explore the current challenges we face when forecasting am-
bient air quality and then assess how or even whether ML
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models can address these challenges to produce more accu-
rate forecasting.

To develop a capable air quality forecasting tool, atmo-
spheric scientists often turn to chemical transport models
(CTMs) and statistical models, both of which use meteoro-
logical parameters and chemical precursors from previous
atmospheric conditions to estimate the following conditions.
A brief summary of these models appears in Zhang et al.
(2012). Although CTMs, with their dynamical implemen-
tation of atmospheric chemistry and physics, have shown
promise in forecasting, they are too computationally inten-
sive for real-time operational forecasts. Thus, computation-
ally efficient statistical models such as ML have emerged as
alternative approaches. Unlike CTMs, however, these mod-
els mainly rely on data from a network of monitoring stations
that are sparsely distributed and measure a limited number of
meteorology and air quality variables (Eslami et al., 2020a).
Given the complexity of the formation and depletion of air
pollutants such as ozone, this limitation may be vital in pre-
dicting extreme events (Eslami et al., 2020b).

Another challenge in predicting ozone concentration is the
“external” relationships among predictors. For instance, as
important meteorological parameters, temperature and solar
radiation are synoptic factors, while the wind field is in-
fluenced by regional factors such as geography and urban-
ization. Such conditions particularly affect ozone variability
since locally produced NO; emissions under certain meteo-
rological circumstances lead to the formation of ozone that
is later transported by the wind and detected by monitoring
stations (Pan et al., 2015). Nevertheless, station-specific ML
models use such chemical and meteorological variables as a
footprint of local conditions.

Although local emissions of ozone precursors are the dom-
inant source of ozone, particularly in urban areas, ozone pol-
lution arising from sources outside of a target region, such as
background ozone, inevitably degrade local air quality (Ca-
malier et al., 2007). The lack of measurable environmental
variables that indicate the potential long-range transport of
air pollutants poses an unprecedented challenge for an ML
model to estimate ozone concentrations over downwind com-
munities (Eslami et al., 2020a). Because of the nonlinear spa-
tial relationships between neighboring monitoring stations,
ML models as operational real-time forecasting systems pro-
duce relative uncertainty.

A number of studies have proposed solutions address-
ing the above limitations of ML models. Eslami et al.
(2020a) implement a deep convolutional neural network
(CNN) (Krizhevsky et al., 2012) model that uses hourly val-
ues of several meteorological and air pollution variables to
predict hourly ozone concentrations 24 h in advance. Even
though the accuracy of the forecasting system guarantees a
reasonable level of accuracy, it fails to address high-ozone
episodes owing to the infrequent occurrences of such events,
which led to the undertraining of the CNN model. In an-
other study, Eslami et al. (2020b) propose a data ensemble
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approach that mitigates this issue by regularizing the train-
ing dataset toward capturing high-ozone episodes. While the
authors remove a significant portion of the underprediction
biases of the CNN model, its predictions of ozone during
the nighttime and on rainy days are unreliable. Sayeed et al.
(2020) use historical data covering a longer period within a
diverse geographical domain (Texas) to train a similar CNN
model. Their results from stations for which fewer measure-
ments are available, while more accurate, are prone to un-
certainty. Using the outputs of air quality and meteorolog-
ical forecast models to map the hourly ozone concentra-
tions at station locations, Choi et al. (2019) train a similar
deep CNN model, a spatially generalized model that bias-
corrects ozone forecasts of the community multi-scale air
quality (CMAQ) model for all monitoring stations in the EPA
AirNow network. Even though the model significantly im-
proved CMAQ forecasts, the bias-correction process and the
unbalanced CMAQ modeling outputs are unclear.

This paper discusses certain limitations of the machine
learning model using wavelet transform and dynamic time
warping (DTW). Wavelet transform is a powerful technique
for analyzing the temporal variation of a time series (Grin-
sted et al., 2004). Wavelet analysis uses an adjustable reso-
lution to translate time series data and then decomposes the
data into a certain frequency level that cannot be achieved by
other conventional methods such as Fourier analysis (Huang
et al., 2010). DTW is a nonlinear technique that measures
any alignment between two time series (i.e., model predic-
tion and observation in this study) by warping them to match
their similarities (Berndt and Clifford, 1994). By introducing
two applications of CNN in the real-time ozone forecasting
system, we use these analytical tools to identify the source of
the prediction biases of the CNN model. In this paper, we do
not describe the forecasting results in detail but instead refer
the reader to studies by Eslami et al. (2020a, b), Choi et al.
(2019), and Sayeed et al. (2020).

2 Materials and methods
2.1 Deep convolutional neural networks

The deep CNN model (Krizhevsky et al., 2012) is a com-
mon deep learning architecture that has long been used in
numerous applications (Deng and Yu, 2014; Schmidhuber,
2015; Goodfellow et al., 2016; Litjens et al., 2017; Chen
et al., 2018; Kamilaris and Prenafeta-Boldu, 2018; Higham
and Higham, 2019). Unlike other methods, the CNN model
is capable of analyzing joint features and attaining greater
accuracy on large-scale datasets. Deep CNNs can be trained
to approximate smooth, highly nonlinear functions (LeCun
et al., 2015), rendering them appropriate for analyzing non-
linear processes in the atmosphere. In addition, feature ex-
traction using deep learning algorithms is more efficient than
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using other neural network methods, particularly when mul-
tiple hidden layers are structured (Krizhevsky et al., 2012).

A schematic for the deep CNN used in this paper appears
in Fig. 1. The figure shows the input layer of the CNN al-
gorithm, which represents the normalized time series of all
input variables. The normalization process prevents a steep
cost function and averts one feature from overbearing oth-
ers. A filter passes through a set of units located in a small
neighborhood in the previous convolutional layer. With local
receptive fields, neurons can extract the elementary features
of inputs that are then combined with those of higher lay-
ers. The outputs of such a set of neurons constitute a feature
map (see Fig. 3). At each position, various types of units in
different feature maps compute various types of features. A
sequential implementation of this procedure for each feature
map is used for scanning the input data with a single neu-
ron in a local receptive field and storing the states of this
neuron at corresponding locations in the feature map. The
constrained units in a feature map perform the same opera-
tion on different instances in a time series, and several feature
maps (with different weight vectors) can comprise one con-
volutional layer. Thus, multiple features can be extracted in
each instance. Once a feature is detected, its exact “location”
becomes less important as long as its approximate position
relative to the other features is preserved (Krizhevsky et al.,
2012; LeCun et al., 2015).

CNN uses a kernel of a given size to capture changes in
the temporal variation of the input data by sweeping through
time series. The various sections of the data are represented
by feature maps. An additional layer performs local averag-
ing, called “pooling,” and subsampling reduces the resolution
of the feature map and the sensitivity of the output to possible
shifts and distortions. This step could potentially discard im-
portant information (e.g., sudden ozone peaks) as explained
in Sabour et al. (2017). Hence, this study uses the convolu-
tion layer without pooling. The feature maps are connected
to a fully connected layer, which helps us to map each feature
of multiple inputs to the hourly ozone output (see Fig. 1).

Compared to fully-connected multilayer perceptrons
(MLPs) and recurrent neural networks (RNNs), which have
been extensively used as regression models, CNNs are attrac-
tive for several reasons. MLPs and RNNs are not explicitly
designed to model variance within an estimation that results
from a complex interaction between several inputs and out-
puts. While MLPs of sufficient size could indeed capture in-
variance, they require large networks with a large training
set. Compared to the CNNs proposed in this study, RNNs
are challenging to implement and computationally expensive
(Eslami et al., 2020a; Sayeed et al., 2020; Lops et al., 2019).

2.2 Wavelet transform
Wavelet transformation decomposes a signal into a scale

frequency space, allowing the determination of the relative
contributions of each temporal scale present within a signal
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(Mallat, 1989). Wavelet decompositions are powerful tools
for analyzing the variation in signal properties across differ-
ent resolutions of geophysical variables (Mallat, 1989; Grin-
sted et al., 2004; Foufoula-Georgiou and Kumar, 2014). Us-
ing a fully scalable modulated window that shifts along with
the signal, the wavelet transform overcomes the inability of
the Fourier transform to represent a signal in the time and
frequency domain at the same time (see Fig. S2 in the Sup-
plement). The spectrum is calculated for every position. Af-
ter repeating the process, each time with a different window
size, the results constitute a collection of time—frequency
representations of the signal, all with different resolutions.
The data are separated into multiresolution components, each
of which is studied with a resolution that matches its scale
(Aiazzi et al., 2002). While high-resolution components cap-
ture fine-scale features in the signal, low-resolution compo-
nents capture the coarse-scale features.

As wavelet analysis represents any arbitrary (nonlinear)
function by a linear combination of a set of wavelets or al-
ternative basis functions, they are highly suitable for use as
both an integration kernel for analysis to extract information
about the process and a basis for representation or charac-
terization of processes (Kaheil et al., 2008). Figure S3 in the
Supplement shows the hourly ozone time series of a monitor-
ing station in downtown Seoul, South Korea, with a wavelet
transform for the year 2017. Here, the wavelet transform ex-
hibits strong power levels associated with a period of 24 h
and a period of 168h in the middle of the year, indicating
dominant daily (24 h) and weekly variation (168 h).

2.3 Dynamic time warping

To assess the similarity between two time series, DTW ex-
pands or contracts a given time series to minimize the differ-
ence between the two of them (Berndt and Clifford, 1994).
The advantage it has over Euclidean distance, a conventional
distance analysis method, is that it highlights when a shift
(e.g., a time lag) occurs between two time steps in two time
series (see Fig. S4 in the Supplement). Euclidean distance
takes pairs of data within the time series and compares them.
DTW calculates the smallest distance between all points,
matching one time step to many counterpart steps on the
linked time series (see Fig. S4 in the Supplement). Owing to
its nonlinear mapping capability, it is widely used in various
domains, from time series classification (Jeong et al., 2011)
to bioinformatics (Giorgino, 2009), health signal processing
(Tormene et al., 2009), and speech recognition (Berndt and
Clifford, 1994).

One benefit of DTW is that it will classify two time series
of the same shape as similar even if their absolute values dif-
fer or if one time series contains large variability. Figure S5 in
the Supplement compares the DTW distance between the ob-
servation time series and two prediction models for an ozone
monitoring station in Texas. DTW detects the differences be-
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Figure 1. Schematic of the deep CNN model in our approach.

tween CMAQ estimation and observation with the highest
difference in the middle of 2014.

3 Results and discussion

3.1 Case 1: CNN as a real-time ozone forecasting
system

In this case, we used the modeling experience reported in
Eslami et al. (2020a). Briefly, the system employs a deep
CNN model that uses an hourly variation of seven meteo-
rological and two air quality parameters from the day before
as inputs to predict hourly ozone concentrations on the fol-
lowing day for 25 monitoring stations in Seoul, South Ko-
rea. Figures S7 and S8 in the Supplement show the accu-
racy of the CNN model (using the index of agreement; IOA)
and the time series comparison of average ozone concentra-
tions between the observation and the CNN prediction, re-
spectively. Note that IOA is a standardized measure of the
degree of model prediction error and varies between 0 and
1. The agreement value of 1 indicates a perfect match, and 0
indicates no agreement at all. While the model maintained a
proper level of prediction accuracy, it was prone to two main
limitations: (i) its performance at various times of the year
varied (see Fig. S6 in the Supplement); and (ii) nighttime
predictions showed higher relative bias and lower model-
ing performance than daytime predictions (see Fig. S7 in the
Supplement). In general, wavelet transform can explain vary-
ing, time-dependent modeling performance; nevertheless, the
significant difference between modeling performance dur-
ing daytime and nighttime indicates an undertrained CNN
model.

3.1.1 Time-dependent model performance
The performance of the CNN model is directly dependent

on how well the model understands the relationship between
the inputs (meteorology and ozone precursors) and output
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(ozone concentration). Compared with meteorological vari-
ables, emission sources from volatile organic compounds
(VOCs) and NO, experience less variability in time. Thus,
meteorological variables play an important role in govern-
ing the variation of the ozone at different times throughout
the year (Choi, 2014; Pan et al., 2019). Temperature, wind
speed, and relative humidity (RH) are among the most im-
portant meteorological parameters affecting ozone variation.

Figure 2 shows the wavelet power transform of the afore-
mentioned meteorological variables for 2017. Since we used
an hourly time series to calculate the wavelet powers, both
the index and the period are in hours. The figure also locates
five time periods, which indicates significant performance
variations. From Fig. S6 in the Supplement, the CNN model
under-performed during weeks 3-9 and 44-51, labeled the
“Worst CNN results” in Fig. 2. For weeks 14-22 and 42—
44, the CNN model showed the best forecasting results. Be-
tween weeks 29 and 33, the CNN model produced signif-
icant underestimations, labeled “Large under-prediction” in
Fig. 2. The figure shows strong wavelet powers during a 24 h
(daily) period for all variables, the results of strong diurnal
variation of these parameters, which are directly or indirectly
controlled by sunlight (e.g., temperature, relative humidity,
etc.). While the wavelet powers for wind speed were gener-
ally larger than RH, the temperature showed lower but more
consistent daily modes. This finding is important since the
CNN model can more accurately detect specific “patterns” in
the temperature than those in the wind speed and RH. Thus,
when the daily modes are stronger in temperature, the CNN
model likely performs better. In contrast, when the daily
modes of the meteorological variables are relatively weak,
the CNN model performs poorly (see Fig. 2).

The large coarse modes in the wind speed and RH lead
to significant over and underestimation of the CNN model.
Figure S8 shows the polar frequency (influenced by the
wind speed) of the CNN modeling bias in various months.
As the figure shows, while southwesterly winds in August
2017 were associated with relatively large underpredictions
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Figure 2. Wavelet power transform of (a) temperature, (b) wind speed, and (¢) RH % for 2017 in Seoul, South Korea.

boosted by pollution transport from the Incheon area, north—
northwesterly winds with air coming from less urbanized re-
gions were allied with notable overpredictions.

Figure S9 in the Supplement compares the CNN model
predictions with observational data for the seasons with re-
spect to levels of RH. The figure showed the largest differ-
ences in the CNN model predictions (both overpredictions
and underpredictions) when the level of RH was close to the
extreme (very high and very low). This finding was particu-
larly evident for the summer months when the model showed
poor performance at capturing high-ozone episodes. This
finding underscores the importance of coarse models from
the wavelet analysis during the warm months. Directly indi-
cating the overpredictions or underpredictions by the model
through these modes, however, is challenging. For instance,
Fig. S10 in the Supplement shows one high-ozone episode
in July 2017, when the daily ozone peak exceeded 90 ppb
on 2 continuous days at most stations. Here, the overpredic-
tion of the CNN model was associated with high RH, while
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the underprediction was linked to low RH, indicating more
complexity among the relationships between meteorological
factors and ozone formation or depletion.

Another reason for the poor performance of the CNN
model during the selected time period was the relatively large
coarse modes (period > 24 h). The CNN model received in-
formation about only the last day; hence, it was unable to
address the bi-daily and weekly trends with the input data.
For instance, for time periods with large underpredictions,
coarse modes in the wind speed were even larger than the
daily modes. Thus, employing a longer history would ad-
equately explain the relationship between wind speed and
ozone. In the comparison of the average wavelet powers in
various periods (from daily to weekly modes) of CNN pre-
dictions and observational data, Fig. 3 shows that the pow-
ers for both time series match periods of approximately 24 h.
After 32 h, however, the wavelet power of the CNN model
shrinks to a relatively constant power while that for the ob-
servation reaches local extrema at around 3, 5, and 7 d.
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Although wavelet analysis indicates that modes coarser
than 24 h are important components of the ozone time se-
ries, their relationship to CNN model accuracy can be com-
plicated. Figure 4 compares wavelet powers for both fine and
coarse modes with a correlation coefficient (r) in 25 ozone
stations in Seoul. For stations closer to the downtown area
(i.e., those with station numbers under 11), the fine modes
had fewer wavelet powers than those for stations in less ur-
banized areas, indicating that the relationship between ozone
concentrations with local emissions was evident in the less
urbanized areas than it was in the other areas. The coarse
modes, however, varied from station-to-station with rela-
tively high coarse wavelet power for those in less urbanized
areas. Nonetheless, no evidence points to a clear relationship
between either coarse or fine wavelet modes and the accuracy
of the model. Figure 4 shows that the CNN model generally
performed better for stations close to downtown Seoul. Be-
cause Seoul has only one meteorological station, these sta-
tions had access to more realistic weather parameters in their
training and prediction process.

3.1.2 Low modeling performance during the nighttime

In their discussion of several air quality forecasting mod-
els that incorporated machine learning algorithms, includ-
ing CNN, deep neural networks, and decision trees, Eslami
et al. (2020a) and Eslami et al. (2020b) claimed that the algo-
rithms encounter a significant modeling bias while estimat-
ing air quality concentrations during the nighttime. This bias
reduced the prediction accuracy of nighttime ozone concen-
trations, compared to daytime concentrations, by more than
20%. A similar issue is also encountered by CTMs, even
those with complex physical and chemical equations that ex-
plain the diurnal variation of ozone concentrations.

One reason for this modeling bias was likely the result of
variation among the meteorological inputs during the night-
time. Although their absolute values were generally higher
they were during the daytime, the relative frequency of vari-
ation was more pronounced during the nighttime, causing
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a discontinuity in the learning process of the CNN model.
Since both daytime and nighttime hours were inputs, the
CNN model minimized the cost function that contained “nor-
malized” errors during both daytime and nighttime hours
(the cost function was the mean-squared errors or 24 h ozone
predictions at each step). Generally, there are more daytime
hours than nighttime hours (see Fig. S11 in the Supplement).
Also, the accumulation of NO, concentrations for these ex-
treme cases was mainly due to stagnant atmospheric condi-
tions with wind speeds close to their yearly minimum values
(see Fig. S12a in the Supplement for scatterplots with levels
of wind speeds). As a result, the CNN model was vulnera-
ble to characteristic bias in nighttime ozone estimations. As
a customized cost function could be a potential solution to
this limitation, it requires further investigation.

The performance of the CNN model in predicting night-
time ozone concentrations also suffered because of the mis-
interpretation of extreme conditions of the input parameters.
Figure 5 shows scatterplots that compare CNN predictions
and observations by the levels of two important ozone pre-
cursors (NO; concentrations) and meteorological variables
(RH %) separated into daytime and nighttime. The NO, con-
centration was generally higher during the nighttime when
the ozone concentration was near zero for extreme NO; val-
ues because of conditions amenable to ozone depletion with
the absence of sunlight. Unable to capture this relationship,
however, the CNN model overestimated these cases (See
Fig. 5a).

In contrast to the above-mentioned overestimated events,
Fig. 5b shows an underestimation of nighttime ozone when
the level of RH % was generally high, primarily during warm
days. A similar pattern occurred when the surface pressure
was accounted for (Fig. S12b in the Supplement). Such un-
derestimated events occurred for two reasons. One is that
high (or low) levels of RH % and surface pressure generally
occur at about the same time during the early morning (or late
afternoon) when the planetary boundary layer (PBL) is at its
lowest (or highest) level during the day. In these extreme con-
ditions, the earlier sunrise (or later sunset) during the summer
months established a condition that elevated ozone concen-
trations. As these events normally occurred only during short
periods of time, the CNN model was not sufficiently trained
to capture these relationships.

3.2 Case 2: CNN as a post-processing tool in a
real-time ozone forecasting system

In this case, a generalized bias-correction CNN model in-
troduced by Choi et al. (2019) was used. Their model is
a computationally efficient deep learning-based model that
produces more reliable numerical results. The authors used
a deep CNN model to map ozone precursors from CMAQ
and meteorological parameters from the weather research
and forecasting (WRF) model (as input variables) to observe
hourly ozone concentrations at a monitoring station (as a tar-
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Figure 4. Relationship between (a) fine and (b) coarse wavelet power modes and correlation coefficients in all stations in Seoul, South Korea.

get). Their model, the CMAQ-CNN model, significantly im-
proves the performance of the CMAQ model in both accu-
racy and bias. Figure S13 in the Supplement shows the statis-
tical improvements (in correlation, root-mean-squared error,
and standard deviation) of the CMAQ-CNN model over the
CMAQ model (as a base model) in different months. Fig-
ure S14 in the Supplement compares the daily maximum
ozone estimated by CMAQ and CMAQ-CNN in 48 states for
which the CMAQ-CNN significantly moderated the overpre-
dictions of the CMAQ.

It was clear that the likelihood of the CMAQ-CNN model
producing accurate results was strongly associated with the
quality of CMAQ forecasts; when CMAQ forecasted hourly
ozone concentrations with a station-specific yearly IOA of
more than 0.5, the IOA of the CMAQ-CNN model was more
than 0.8 for most cases. The probability of such accuracy
was generally unrelated to that of the CMAQ model. For in-
stance, the CMAQ-CNN model was unable a reach the yearly
I0A =0.8 even though the CMAQ IOA was more than 0.7
(e.g., EPA no. 101, Tennessee: CMAQ IOA =0.7; CMAQ-
CNN IOA =0.78). In some cases, however, the yearly IOA
following the post-processing approach was less than 0.7
(e.g., EPA no. 1011, California: CMAQ-CNN IOA =0.63).
Here, we used the distance analysis from DTW to explain
(1) why CMAQ-CNN produced satisfactory results at some
stations but not others, and (ii) why it performed poorly at
some stations.
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3.2.1 Satisfactory post-processing scenarios

Figure 6 shows the time-series of CMAQ, CMAQ-CNN, and
observed daily ozone concentrations at three EPA stations.
These stations were selected because the IOA accuracy of
the CMAQ-CNN model was either more than 0.9 (Fig. 6a
and b) or 20 % more than that of CMAQ (Fig. 6¢). Fig-
ure 7 compares the DTW distance analysis of CMAQ and
CMAQ-CNN for the same stations. These are three typical
cases of satisfactory improvement by the CMAQ-CNN post-
processing approach:

Figures 6a—7a show that observed ozone concentrations
in this California location were higher at the beginning of
the ozone season, followed by relatively steady values rang-
ing between 20—40 ppb. After May, however, CMAQ signifi-
cantly overestimated daily ozone concentrations. The over-
estimation was more pronounced at the end of the ozone
season, resulting in an overall IOA accuracy of 0.73. The
DTW distance analysis showed a consistent distance be-
tween CMAQ predictions and observed values. Because of
this consistency, the CMAQ-CNN model recognized the bias
trends in CMAQ, boosting its prediction accuracy by 0.17,
even though the large distance from the CMAQ predictions
(mean distance = 0.52) mirrored a relatively significant over-
estimation in the CMAQ-CNN post-processed results.

Figures 6b—7b show that here the trend in ozone concen-
trations followed a U-shaped curve in the ozone season be-
cause of strong summer winds coming from the large bodies
of water near Florida (the North Atlantic Ocean and the Gulf

Geosci. Model Dev., 13, 6237-6251, 2020



6244

E. Eslami et al.: Limitations of the CNN model as an AQF system

(a) 50 100
1
daylight nightime NO: (ppb)
51 o >70
/ f
/ / 60
/ /
/ /
50
_ / / E
100 /! 7
- / 40
zZ L /
5 A s 30
- g e
= =5 B 20
= 1"-
~ E 10
. 0
T I
50 100
(b) 1 | | | RH'y
daylight nighttime .
il i >80
;{ /f 75
/ /
/ / 70
/ /
100 — 1 . / o 65
-t . e g _:.‘_ - . e |
Z T a2k 60
o 55
50 = e B 50
:.";f'-_'. o ] s 45
E :ﬂ..:'f <40
ad -
P -
I |
50 100

Observation

Figure 5. Scatterplots comparing CNN predictions and observations with respect to levels of (a) NO; concentrations and (b) RH %.

of Mexico). For this station, CMAQ accurately predicted this
trend throughout the ozone season with a relatively constant
bias from July to September. As a result, the overall accuracy
of the IOA was 0.84 for the CMAQ prediction. The CMAQ
was also consistent with the DTW analysis, with two distance
gaps in July and September (at the beginning and the end of
the CMAQ overestimation period). The CMAQ-CNN model,
recognizing the adequate performance of the base model in
its post-processing algorithm, further improved the IOA ac-
curacy of CMAQ by around 10 %.

Figures 6¢—7c show that the trend of observed ozone had a
steady decrease in this northeastern state because of the sig-
nificantly cooler summer and fall months. This trend, along
with the fewer ozone emission sources surrounding this sta-
tion, resulted in the formation of less ozone during the ozone
season. The CMAQ model overestimated ozone concentra-
tions by more than 50 % during most of the season with a rel-
atively large mean DTW distance (0.62). The CMAQ-CNN
model was able to address this issue because of the consis-
tency of the bias trend in CMAQ predictions (see left panel
in Fig. 7c for DTW distance). Thus, overall, the accuracy of
IOA improved by 0.2.

Geosci. Model Dev., 13, 6237-6251, 2020

The satisfactory post-processing results using the CMAQ-
CNN model were mainly characterized by the regularity of
the bias trend in CMAQ as the base model for training the
CNN model. As shown by the DTW distance analysis, when
the DTW distance of CMAQ predictions from observed val-
ues was consistent throughout the ozone season, the CNN
model was able to improve the CMAQ results to a reli-
able level (IOA > 0.8). To test this hypothesis, we used the
CMAQ-CNN post-processing approach in typical unsatisfac-
tory scenarios.

3.2.2 Unsatisfactory post-processing scenarios

Figure 8 compares the time series of ozone observations with
the CMAQ and CMAQ-CNN models at three selected EPA
stations. For all of these stations, the CMAQ-CNN model
failed to reach a reliable IOA accuracy level of 0.8, while the
accuracy of the CMAQ model improved. Figure 9 represents
the DTW distance analysis of the two models and the ozone
observation for the same stations. Unsatisfactory improve-
ment by the CMAQ-CNN model occurred in the following
three cases.

Figures 8a—9a show that the ozone trend in this station
fluctuated throughout the ozone season with frequent spikes

https://doi.org/10.5194/gmd-13-6237-2020
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Figure 6. Comparison of the time series of CMAQ and CMAQ-CNN predictions for EPA stations (a) no. 3001 (California), (b) no. 33

(Florida), and (c) no. 4 (Vermont).

in May, July, and October, primarily the result of biomass
burning (Choi et al., 2016). While the CMAQ model pre-
dicted ozone concentrations with a relatively small bias
(I0OA =0.7), the bias trend varied from time to time, i.e.,
trends of underpredictions and overpredictions changed fre-
quently. A footprint of these trends, i.e., changes in the path
of the distance trend, is evident in the DTW analysis. This
inconsistency was mirrored in the equivalent DTW analysis
for the CMAQ-CNN model by a consistent distance trend, re-
sulting in an unsatisfactory IOA accuracy level (I0OA =0.78)
with an increased mean DTW distance (0.89 compared to
0.74 for the CMAQ time series).

Figures 8b-9b show that the trend in this California lo-
cation was a relatively constant concentration of ozone gen-
erally ranging between 10-30 ppb. The CMAQ model sig-
nificantly overpredicted ozone concentrations throughout the

https://doi.org/10.5194/gmd-13-6237-2020

entire time period, mostly as a result of the proximity of this
station to the Pacific Ocean (San Diego County), which con-
trols the variation in the daily ozone concentration (Pan et al.,
2017). The DTW distance analysis shows a significant yet
steady spike in the distance between CMAQ and the obser-
vation. Thus, even though the CMAQ-CNN significantly im-
proved the accuracy of the CMAQ model (I0OA =0.63 com-
pared to CMAQ I0A =0.44), the large distance accounted
for the underperformance of the post-processing approach.
This also mirrored the consistent distance in the CMAQ-
CNN distance trend (see the right panel in Fig. 9c¢).

Figures 8c—9c show that, in this station, the ozone con-
centration followed an infrequent trend with lows and highs
spread indiscriminately across the ozone season, the result
of several factors affecting air pollution in this region, in-
cluding biomass burning, a strong frontal system, and other

Geosci. Model Dev., 13, 6237-6251, 2020
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conditions. As a result, the CMAQ model underperformed,
with substantial overestimation during most of the time pe-
riod (IOA =0.55). In addition, the bias of the CMAQ model
did not follow as clear a trend as the DTW distance analysis.
The CMAQ-CNN model improved the prediction results by
more than 10 % with a reduced DTW distance (0.27m versus
0.35 for the CMAQ time series). Nevertheless, the varying
ozone trend accompanying the inconsistency in the predic-
tion bias trend resulted in the low overall accuracy of the
TIOA of the CMAQ-CNN for this station (IOA = 0.67).
Unlike the satisfactory cases, the unsatisfactory post-
processing results using the CMAQ-CNN model stemmed
from the inconsistency in the bias trend found by the DTW

Geosci. Model Dev., 13, 6237-6251, 2020

distance analysis. Another influential factor was the variabil-
ity of observed ozone concentrations. Because of the fre-
quent variation in the observational data, it was more com-
plicated to train the CMAQ-CNN model so that it addressed
the bias in the CMAQ model. The geographical location of a
station was also an important factor in the improvement level
of the post-processing approach. Proximity to the large body
of water and/or sources from biomass burning during the
ozone season were among the influential geographical fea-
tures. Also, as Figs. 8 and 9 show, the DTW distances of the
CMAQ-CNN predictions from the observed ones followed a
consistent trend. Therefore, the information in Figs. 6 and 7
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indicate that a secondary post-processing model might be a
possible solution to boosting prediction accuracy.

3.3 Discussion

Despite the enormous success of the convolutional neural
network (CNN) algorithm in numerous applications, cer-
tain issues related to its applications in air quality forecast-
ing (AQF) require further analysis and discussion. Our main
goal in this paper was to discuss some of these issues in a
few practical applications. To discuss these issues analyti-
cally, we used wavelet transform and dynamic time warping
(DTW) as powerful mathematical tools for time series anal-
ysis and models. Based on the findings that were presented
in the paper, these tools are extremely helpful not only in un-
derstanding the issues with machine learning models but also

https://doi.org/10.5194/gmd-13-6237-2020

in fine-tuning them to improve their performances with a sci-
entific point of view. Awareness of the limitations in CNN
models will enable scientists to develop more accurate re-
gional or local air quality forecasting systems by identifying
the affecting factors in high concentration episodes.

Based on our findings in the base studies presenting the
aforementioned CNN models, in both cases, the CNN model
shows reasonable accuracy for ozone prediction, 24 h in ad-
vance, in two geographical locations (the United States and
South Korea). However, similar to other data-driven predic-
tion tools, in a CNN model the out-of-sample prediction er-
ror is almost always greater than the in-sample prediction er-
ror. Thus, since both CNN models were designed as a real-
time air quality prediction models, the prediction error is in-
evitable, even though (i) both models were configured for op-
timum performance (based on the input or training samples),

Geosci. Model Dev., 13, 6237-6251, 2020
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and (ii) in the development of both models cross-validation
processes were followed to mitigate any systematic biases.
However, the underperformance of the CNN model was de-
pendent on several factors, including modeling configuration
(e.g., the depth of CNN model), arrangements of input vari-
ables (e.g., number of previous days as inputs), the day of
the week (e.g., weekdays versus weekends), the hour of the
day (e.g., daytime versus nighttime) (see Eslami et al. (2019,
2020a, b), Choi et al. (2019), Sayeed et al. (2020), and Lops
et al. (2019), and the discussion within).

Here, we discussed the general limitations of the CNN
model in two common applications: (i) a real-time AQF

Geosci. Model Dev., 13, 6237-6251, 2020

model and (ii) a post-processing tool in a dynamical AQF
model (i.e., CMAQ). These examples are fundamentally dif-
ferent in terms of execution, one being a raw predictor (sta-
tistical approach), while the other is a post-processor (hy-
brid approach). Since both models are commonly used as a
real-time air quality prediction system, we discussed their is-
sues individually to explain specific issues that one may en-
counter in executing either of them. Thus, it will provide both
machine learning researchers and atmospheric scientists with
multiple candidate models and analytical tools to develop any
specific model of their choice.

https://doi.org/10.5194/gmd-13-6237-2020
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For one case (raw prediction model), we used the wavelet
transform to determine the reasons behind the poor per-
formance of CNN during the nighttime, cold months, and
high ozone episodes. We find that when fine wavelet modes
(hourly and daily) were relatively weak or when coarse
wavelet modes (weekly) were strong, the CNN model pro-
duced less accurate forecasts. Since the CNN model has used
only a single precious day of air quality and meteorologi-
cal parameters, the coarse patterns (e.g., weekly) were not
used as a prediction feature, and any connection between
different time series windows (as is revealed in a wavelet
transform analysis) was not considered. Thus, the wavelet
transform can be helpful as a complementary tool for filling
these gaps in CNN prediction model development. It should
be noted that a long short-term memory (LSTM) model can
potentially incorporate some of the aforementioned time-
dependencies (e.g., bi-daily or weekly). However, the focus
of this study is to address such a limitation in a CNN model
as a choice of the ML model.

For the other case (post-processing model), we used the
DTW distance analysis to compare post-processed results
with their CMAQ counterparts (as a base model). For those
CMAQ results with a consistent DTW distance from the ob-
servation, the post-processing approach properly addressed
the CMAQ modeling bias with predicted IOAs exceeding
0.85. When the DTW distance of CMAQ versus observa-
tion is irregular, the post-processing approach is unlikely to
perform satisfactorily. Even though the CMAQ-CNN model
has included several chemical components and meteorolog-
ical variables as its inputs, there was no input feature repre-
senting CMAQ’s own accuracy. By comparing a history of
CMAQ results in different geographical locations with avail-
able observation data, the DTW can provide an “irregularity”
index as an additional input feature.

4 Conclusions

Various applications of deep learning algorithms, particularly
convolutional neural networks, have universally been applied
in the field of atmospheric sciences, especially in air quality
forecasting systems. Although such applications supported
easy-to-use, computationally efficient frameworks, and flex-
ible capabilities appeared to generate accurate prediction re-
sults, the risk of exaggerated expectations may be a cause
for concern. In an effort to elucidate both the advantages and
limitations of deep learning models in air quality forecasting
(AQF) systems, this paper addressed several common issues
raised by the use of these models.

To explore the limitation, we chose two applications of two
similar CNN models: (i) CNN as an independent real-time
AQF and (ii) CNN as a post-processing model of a state-
of-the-art dynamical model, the Community Multi-scale Air
Quality Model (CMAQ). For both cases, the CNN model re-
sulted in an acceptable 24 h in advance, hourly ozone con-
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centration prediction with an index of agreement (I0A) of
more than 0.8 for two networks of monitoring stations in
South Korea and the United States. We selected two power-
ful statistical data analytic techniques, wavelet transform and
dynamic time warping (DTW), to identify the limitations of
the proposed models in both cases. By applying these tech-
niques, researchers find discrepancies in the input data and
their temporal trends and thus gain awareness of the limita-
tions of deep learning models.

When the CNN model was used as a real-time AQF system
in South Korea, it underperformed during both cold months
and high ozone episodes. In these scenarios, we found that
the fine wavelet modes (daily and hourly) were relatively
weaker than they were in other conditions. Also, when the
coarse modes were strong, the predictions of the CNN model
were fraught with a large number of errors. We also found
that the model underperformed during the nighttime hours,
the results of an undertrained model and extreme values of
the input parameters during the nighttime.

For the post-processing CNN model, the level of improve-
ment depended on the DTW distance of the CMAQ model
to the observations. When the calculated distance followed
a consistent trend, the post-processing model was able to
address the bias of CMAQ, independent from its accuracy
level or error range. When such consistency was absent or
when observed ozone varied frequently, however, the errors
in the CMAQ model were mirrored in the results of the post-
processing model.

Given this discussion of the limitations of deep learn-
ing models, we suggest that researchers configure their deep
learning models based on temporal trends within the input
parameters, geographical locations, and variation frequency
of target pollutants. To predict ambient hourly ozone concen-
trations, we have restricted our discussions to a multi-output
regression problem in supervised settings. While our study
approach might be valid for other supervised algorithms, we
leave a detailed study of other supervised methods for future
work.
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