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Abstract. Tropospheric ozone (O3) is the third most im-
portant anthropogenic greenhouse gas. O3 is detrimental to
plant productivity, and it has a significant impact on crop
yield. Currently, the Joint UK Land Environment Simula-
tor (JULES) land surface model includes a representation of
global crops (JULES-crop) but does not have crop-specific
O3 damage parameters and applies default C3 grass O3 pa-
rameters for soybean that underestimate O3 damage. Phys-
iological parameters for O3 damage in soybean in JULES-
crop were calibrated against leaf gas-exchange measure-
ments from the Soybean Free Air Concentration Enrichment
(SoyFACE) with O3 experiment in Illinois, USA. Other plant
parameters were calibrated using an extensive array of soy-
bean observations such as crop height and leaf carbon and
meteorological data from FLUXNET sites near Mead, Ne-
braska, USA. The yield, aboveground carbon, and leaf area
index (LAI) of soybean from the SoyFACE experiment were
used to evaluate the newly calibrated parameters. The result
shows good performance for yield, with the modelled yield
being within the spread of the SoyFACE observations. Al-
though JULES-crop is able to reproduce observed LAI sea-
sonality, its magnitude is underestimated. The newly cali-
brated version of JULES will be applied regionally and glob-
ally in future JULES simulations. This study helps to build a
state-of-the-art impact assessment model and contribute to

a more complete understanding of the impacts of climate
change on food production.

1 Introduction

Surface ozone (O3) pollution is one of the major threats to
global food security due to the detrimental effects of ozone
exposure on crops (Ainsworth et al., 2012; Avnery et al.,
2011b; Leung et al., 2020; Long et al., 2005; Tai et al., 2014;
Tai and Val Martin, 2017). In the United States alone, crop
loss due to tropospheric O3 costs more than USD 5 billion
annually (Ainsworth et al., 2012; Avnery et al., 2011a; Van
Dingenen et al., 2009).

Soybean is one of the main staple crops for human con-
sumption; it also serves as an important source of animal
feed. It is a cheap source of proteins, and therefore soybean
products are consumed around the world. The impact of O3
on soybean physiology and growth has been studied exten-
sively (Ainsworth et al., 2012; Betzelberger et al., 2012; Der-
mody et al., 2008; Morgan et al., 2003). Crop yield losses to
tropospheric O3 have been quantified using model projection
and experiments. The National Crop Loss Assessment Net-
work and European Open Top Chamber programmes have
established the air quality guideline, which derived dose–
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response relationships from comparable experimental data.
These campaigns provided critical information such as the
O3 response relationship and estimated yield loss due to
O3 damage that enabled regional projections of O3 effects
on crop yields (Fuhrer, 2009). However, open top chambers
modify plant response to O3 due to the “chamber effects”
which create microclimates (Elagöz and Manning, 2005) and
environmental differences between the chamber and open air
micrometeorology in which yield loss is underestimated (Van
Dingenen et al., 2009). Recently the introduction of free-
air concentration enrichment (FACE) technology avoids the
artefacts from enclosed chambers, and O3 fumigation was
adapted to FACE facilities (Agathokleous et al., 2017; Pao-
letti et al., 2017). The application of FACE experiment on
crops took place in China (Zhu et al., 2011) and the USA,
including experiments with soybean at the SoyFACE facility
in Champaign, Illinois (Morgan et al., 2004; Betzelberger et
al., 2010, 2012).

Crops are a significant component of the land surface;
e.g. croplands and pasturelands represent 12 % and 26 % of
the global terrestrial land, respectively (Van den Hoof et al.,
2011). Moreover, the phenology of crops is very different
from that of natural vegetation and is characterised by high
growth, turnover rate, and strong seasonality. It is thus nec-
essary to include a crop-specific parameterisation scheme to
improve simulations of land surface fluxes and regional cli-
mate in agroecosystems (Van den Hoof et al., 2011). The
Joint UK Land Environment Simulator with crops (JULES-
crop) is a crop parameterisation (Osborne et al., 2015) within
the land surface model JULES (Best et al., 2011; Clark et
al., 2011). Global simulations have been performed with
JULES-crop for rice, wheat, maize, and soybean (Osborne
et al., 2015). These four crop types contribute more than
70 % of human calorie intake (Ray et al., 2013). JULES-
crop includes routines representing growth, development,
and harvesting of crops driven by the overlying meteoro-
logical inputs. In JULES-crop, four new prognostic variables
have been added: crop development index (DVI), root carbon
(Croot), harvest carbon (Charv), and reserve carbon (Cresv).
DVI controls the duration of the crop growing season in four
distinct stages – sowing, emergence, flowering, and maturity
– and it determines when changes in carbon partitioning oc-
cur (Osborne and Hooker, 2011). Croot, Charv, and Cresv are
the carbon pools for roots, harvested organs (e.g. grains of
cereal, fruits, and root), and stem reserves, respectively. Car-
bon pools for stem and leaves are determined from the ex-
isting prognostic variables, leaf area index (LAI) and canopy
height. In Osborne et al. (2015), global runs of maize, wheat,
soybean, and rice were carried out using JULES-crop. Site
runs were performed at four FLUXNET sites with soybean–
maize rotation: Bondville (US-Bo1), Fermi (US-IB1), and
Mead (US-Ne2 and US-Ne3). Simulated yield was com-
pared against country and global FAO crop yields. Osborne et
al. (2015) used generic representations for each of the crops
in their global study. For the plant parameters that are needed

outside the crop model such as leaf nitrogen and leaf respira-
tion parameters, these are set to those of the C3 or C4 grass
functional types. Osborne et al. (2015) suggested that these
parameters could be tuned to be more crop specific to im-
prove fit to observations. These JULES parameters have been
calibrated against observations for maize, using data from the
Mead FLUXNET sites in Nebraska (Williams et al., 2017).
However, to date, these parameters have not been calibrated
to soybean data.

There are many crop models developed by institu-
tions/organisations around the world. Most are designed for
application to an individual field up to the regional scale and
do not include O3 impacts on vegetation. Supplement Ta-
ble S1 compares a selection of land surface models which
include crop tiles and have the functions to model climate
impact on crop productivity. JULES-crop is of particular in-
terest because it is a development of the global land sur-
face component JULES of the Met Office numerical weather
prediction and climate models and contains a detailed rep-
resentation of plant physiological processes at sub-diurnal
timescales, including consideration of O3 effects on natural
vegetation, thus making it suitable for this study. JULES-
crop has been accepted into the JULES trunk with the in-
tention to be coupled with the Hadley Centre Global Envi-
ronment Model (HadGEM) in the near future. HadGEM is
recognised as one of the best performing climate models with
smaller errors than typical climate models (Gleckler et al.,
2008; Knutti et al., 2013).

The calibration of O3 damage on soybean would allow
land surface and crop models to more realistically and re-
liably simulate present-day and future O3 damage and sub-
sequently to quantify its economic impacts. The objective of
this study is to calibrate soybean representation for JULES-
crop, with a particular focus on the response of soybean to
O3 exposure.

This paper is organised as follows: Sect. 2 describes the
model set-up and observations used for the JULES cali-
bration. Section 3 compares the results from the calibrated
JULES runs against independent observations. Section 4 as-
sesses the suitability of the model for modelling soybean un-
der O3 damage and discusses ways of future model improve-
ment.

2 Methods

A flowchart demonstrating the calibration and evaluation
procedure is given in Fig. 1. We first tuned the JULES-crop
soybean parameterisation at the US-Ne2 and US-Ne3 Mead
sites, where three years of soybean physiological and me-
teorological observations were available, at ambient ozone
(Fig. 1, steps 1–5). The three years are 2004, 2006, and 2008
in which soybeans were grown in Mead; maize was grown in
other years.
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Figure 1. Flowchart of tuning the parameters and calibrating the model.

Secondly, to calibrate the JULES ozone damage param-
eters (Fig. 1, step 6) we made the assumption that there is a
negligible damage to crop yield at ambient background levels
of O3 at both the SoyFACE and Mead sites. This is consistent
with Mills et al. (2007), who reviewed over 700 published pa-
pers and conference proceedings and found that O3 level of
AOT40 over 3 months of 5 ppm h reduced soybean yield by
less than 5 %. Then we calibrated specifically the soybean O3
response using leaf gas exchange measurements from soy-
bean grown under elevated O3 concentrations at SoyFACE.

Finally, we applied JULES-crop newly calibrated for soy-
bean and its O3 sensitivity at the leaf level and evaluated
model performance against observed yield and leaf area in-
dex from SoyFACE, taken for the full range of rings and cul-
tivars (Fig. 1, step 7).

2.1 Calibration of soybean in the absence of ozone
damage, using observations from Mead

We followed the standard tuning procedure performed on
maize by Williams et al. (2017) but applied to soybean
(Fig. 1, steps 1–5). Step 1 involves using Mead observa-
tion to tune the parameters needed by all plant functional
types (PFTs) in JULES with the crop model switched off.
Step 2 is to evaluate the model performance of gross pri-
mary productivity (GPP) using Mead meteorology and LAI.
Step 3 tunes the parameters needed by crop only. Step 4 eval-
uates the JULES-crop run performance with observed car-
bon pools in leaf, stem, harvest, etc. Step 5 demonstrates the
full JULES-crop runs at Mead using Mead meteorology and
compared the model with observed GPP, aboveground car-
bon, etc. Step 6 tunes ozone damage using SoyFACE LI-
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COR measurements. And finally step 7 evaluates JULES-
crop performance using SoyFACE meteorology and com-
pares with observed yield and LAI. This method is described
in detail in the Supplement, and the resulting parameters are
given in Tables 1–3. These are compared to the parameters
used in Osborne et al. (2015), which we refer to as the “Os-
borne 2015 tuning”. Note that the parameters in Table 3 in
the Osborne 2015 tuning are typical defaults for C3 grass,
rather than soybean-specific.

2.2 Calibration of JULES ozone damage parameters

2.2.1 Ozone effects on vegetation (exposure response)

Many studies have shown that the impacts of O3 are closely
related to accumulated exposure above a threshold concen-
tration rather than the mean growing season concentration
(Gerosa et al., 2012; Mills et al., 2007). An index of accu-
mulated exposure above a threshold concentration of x ppb
(AOTx) has thus been developed as a measure of assessing
O3 pollution effects on vegetation. AOTx is calculated as the
summed product of the concentration above the threshold
concentration and time (T ), with values expressed in ppb h
or ppm h (Mills et al., 2007).

The O3 exposure index AOT40 (accumulated O3 expo-
sure over a threshold of 40 parts per billion; Eq. 1) has been
widely used by crop impact models in the forestry and agri-
culture industry and was used at SoyFACE.

AOT40=
∫

max(O3− 40ppb,0.0)dt (1)

The metric ensures only O3 concentrations above 40 ppb are
included. The integral is taken over daytime hours between
07:00 to 19:00 LT (UTC-6). AOT40 does not account for the
actual uptake of O3 by plants and how this varies with on-
togenetic (life span of the plant) and climatic factors such as
temperature, irradiance, vapour pressure deficit, and/or soil
moisture (Ashmore, 2005; Fuhrer et al., 1997).

There is a drawback of the cumulative O3 exposure indices
(Pleijel et al., 2000), which assume an instantaneously fixed
threshold flux below which there is no effect of O3, which
may not be realistic. Also in nature, the threshold value is un-
likely to be constant (Ashmore, 2005) since the capacity of
detoxification of O3 varies with climate and plant species. To
improve these indices, the Stockholm Environment Institute
developed the Deposition of Ozone for Stomatal Exchange
model (DO3SE) (Emberson et al., 2007; ICP Vegetation,
2017). DO3SE was developed to estimate the risk of O3 dam-
age to European vegetation and is capable of providing O3
flux estimation by evaluating the soil water deficits and their
influence on stomatal conductance which affect plant O3 up-
take. Phyto-toxic O3 dose (POD) above a stomatal threshold
over a growing season (the accumulated stomatal flux above
threshold Y ) PODY can differentiate species sensitivity to
rising background concentration, while AOT40 can only in-

corporate the effect of rising global background O3 above the
threshold 40ppb. This difference means the AOT40 metric is
less sensitive to O3 peaks, and stomatal flux-based metrics
(e.g. PODY and DO3SE) perform better on O3 damage esti-
mation in general (Büker et al., 2012; Dentener et al., 2010;
Pleijel et al., 2007).

2.2.2 Description of ozone response scheme in JULES

The current O3 scheme in JULES uses a dose-response ap-
proach to model O3 damage (Sitch et al., 2007; Clark et al.,
2011). It uses the O3 concentration in the atmosphere to mod-
ify net photosynthesis Ap by an O3 uptake factor F :

A= ApF, (2)

where F represents the fractional reduction of plant produc-
tion:

F = 1− aUO>FO3crit
. (3)

It assumes that O3 suppresses the potential net leaf photosyn-
thesis in proportion to the O3 flux through stomata above a
specified critical threshold (Clark et al., 2011).

UO>FO3crit
is the instantaneous leaf uptake of O3

over a plant functional type specific threshold (FO3crit
)

(nmol m−2 s−1), and the plant type specific parameter a is
the fractional reduction of photosynthesis with O3 uptake by
leaves (Clark et al., 2011; Sitch et al., 2007).

UO>FO3crit
=max

[(
FO3 −FO3crit

)
, 0.0

]
(4)

From Eqs. (3) and (4), F depends on the O3 uptake rate by
stomata (FO3 ) over a critical (plant functional type specific)
threshold for damage. It uses an analogy of Ohm’s law, the
O3 flux through stomata, FO3 (nmol O3 m−2 s−1), which is
given by

FO3 =
[O3]

Ra+
[
κO3
gl

] , (5)

where [O3] is the molar concentration of O3 at reference
level (nmol m−3) and Ra is the combined aerodynamic and
boundary layer resistance between leaf surface and reference
level (s m−1). gl is the leaf conductance for H2O (m s−1), and
κO3 = 1.67 is the ratio of leaf resistance for O3 to leaf resis-
tance for water vapour (Sitch et al., 2007). The uptake flux is
dependent on the stomatal conductance, which is reliant on
the photosynthetic rate in JULES. Given that gl and photo-
synthetic rate are linearly related, gl is given by

gl = gpF, (6)

where gp is the leaf conductance in the absence of O3 effects.
The set of Eqs. (3, 5, 6) produces a quadratic relationship as

Geosci. Model Dev., 13, 6201–6213, 2020 https://doi.org/10.5194/gmd-13-6201-2020



F. Leung et al.: Calibrating soybean parameters in JULES 5.0 6205

Table 1. JULES module switches, in which F (false) means turned off and T (true) means turned on.

Osborne et al.
(2015)

This study Discussion

can_rad_mod 5 (6 was not
available)

6 Recommended option for
layered canopy in version 4.6

l_irrig_dmd F T Irrigation on demand

irr_crop – 0

l_trait_phys F F

l_scale_resp_pm F T

l_leaf_n_resp_fix F – Bug fix, affects
can_rad_mod=5 but
not can_ rad_mod=6

l_prescsow T T Sowing dates available

Parameters Description

Canopy radiation
model

Number 6 is a multi-layer approach for radiation interception following the two-
stream approach of Sellers et al. (1992). This approach takes into account leaf
angle distribution and zenith angle and differentiates absorption of direct and
diffuse radiation. It has a decline of leaf N with canopy height. Additionally
includes inhibition of leaf respiration in the light, including
sunfleck penetration though the canopy.
Division of sunlit and shaded leaves within each canopy level.
A modified version of inhibition of leaf respiration in the light.
Exponential decline of leaf N with canopy height proportional to LAI, following
Beer’s law.

L_irrid_dmd Switch controlling the implementation of irrigation demand code.

Irr_crop Irrigation season (i.e. season in which crops might be growing on the grid box)
lasts the entire year.

l_trait_phys Switch for using trait-based physiology. Vcmax is calculated based on parameters
nl0 (kgN kgC−1-1) and neff.

l_scale_resp_pm Soil moisture stress reduces leaf, root, and stem maintenance respiration.

l_leaf_n_resp_fix Switch for bug fix for leaf nitrogen content used in the calculation of plant
maintenance respiration.

l_prescsow Sowing dates prescribed

a function of F that can be solved analytically (Sitch et al.,
2007).

Fractional reduction of photosynthesis with the instanta-
neous uptake of O3 by leaves (mmol m−2) determines the
sensitivity of soybean to O3, and the PFT-specific O3 critical
level (FO3crit

) determines the threshold O3 flux above which
would cause damage to photosynthesis (Oliver et al., 2018;
Sitch et al., 2007). The higher the sensitivity of plants to O3
the lower photosynthesis the plant has at a given constant
critical threshold. Sitch et al. (2007) configured plant func-
tional types with two different O3 sensitivities (fractional
reduction of photosynthesis by O3, F , Eqs. 2, 3), where
a = 1.40 is high sensitivity, and a = 0.25 is lower sensitivity

for C3 grass (Sitch, 2007), using monthly average O3 data
and calibration to yield observations.

2.2.3 Calibrating the ozone effects on crop leaf
photosynthesis in JULES using SoyFACE

The SoyFACE experiment in Illinois allows controlled CO2
or O3 enrichment across large plots within a soybean field
without an enclosure. SoyFACE O3 fumigation typically be-
gan after the emergence of soybean, and the plots were fumi-
gated with O3 for 8–9 h daily except when leaves were wet.
In 2009 and 2010, soybeans were exposed to nine different
concentrations of O3 ranging from the ambient level to a tar-
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Table 2. Parameter values in JULES-crop that are used to represent soybean. Asterisk indicates parameter was hardwired.

Osborne et
al. (2015)

This study Discussion

Tb Base temperature (K) 278.15 278.15 Kept at Osborne et al. (2015)
value

To Optimum temperature (K) 313.15 313.15 Kept at Osborne et al. (2015)
value

Tm Maximum temp (K) 300.15 300.15 Kept at Osborne et al. (2015)
value

Psen Sensitivity of development rate to photoperiod
(h−1)

0.0 0.0 Kept at Osborne et al. (2015)
value

Pcrit Critical photoperiod (hours) – – Not used when Psen = 0

rdir Coefficient determining relative growth of roots
vertically and horizontally

0.0 0.0 Kept at Osborne et al. (2015)
value

αroot Coefficient of partitioning to root 20.0 19.8 Supplement Sect. 1.4.1

αstem Coefficient of partitioning to stem 18.5 18.5 Supplement Sect. 1.4.1

αleaf Coefficient of partitioning to leaf 19.5 19.2 Supplement Sect. 1.4.1

βroot Coefficient of partitioning to root −16.5 −15.47 Supplement Sect.1.4.1

βstem Coefficient of partitioning to stem −14.5 −13.195 Supplement Sect. 1.4.1

βleaf Coefficient of partitioning to leaf −15.0 −14.287 Supplement Sect. 1.4.1

γ Coefficient of specific leaf area (m2 kg−1) 25.9 24.0 Supplement Sect. 1.4.3

δ Coefficient of specific leaf area (m2 kg−1) −0.1451 0.15 Supplement Sect. 1.4.3

τ Remobilisation factor, fraction of stem growth
partitioned to RESERVEC

0.18 0.26 Supplement Sect. 1.4.3

fC,root Carbon fraction for dry root 0.5 0.47 Supplement Sect. 1.4.4

fC,stem Carbon fraction for dry stem 0.5 0.49 Supplement Sect. 1.4.4

fC,leaf Carbon fraction for dry leaf 0.5 0.46 Supplement Sect. 1.4.4

fC,harv Carbon fraction for harvest 0.5 0.53 Supplement Sect. 1.4.4

κ Allometric coefficient relating STEMC to CANHT 1.6 1.9 Supplement Sect. 1.4.2

λ Allometric coefficient relating STEMC to CANHT 0.4 0.47 Supplement Sect. 1.4.2

µ Allometric coefficient for calculation of senescence 0.05∗ 5.0 Supplement Sect. 1.4.2

ν Allometric coefficient for calculation of senescence 0.0∗ 6.0 Supplement Sect. 1.4.2

DVIsen DVI at which leaf senescence begins 1.5∗ 1.25 Supplement Sect. 1.5

Cinit Carbon in crop at emergence in kgC m−2. 0.01∗ 3.5E-3
(Mead),
7.0E-3
(SoyFACE)

Supplement Sect. 1.4.5

DVIinit DVI at which the crop carbon is set to initial carbon 0.0∗ 0.2 Supplement Sect. 1.4.5

Tmort Soil temperature (second level) at which to kill crop
if DVI>1

t_bse_io∗ 263.15 Sect. 2.3

fyield Fraction of the harvest carbon pool converted to
yield carbon

1.0∗ 0.74 Sect. 2.3
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Table 3. JULES plant functional type parameters extended to represent soybean.

Osborne et al. (2015) This study Discussion

c3 c3_io 1 1 Soybean is a C3 plant.

dr rootd_ft_io 0.5 0.5 Not important in irrigated runs, so could not
be tuned using US-Ne2 data. Kept at Os-
borne et al. (2015) value

dqcrit dq_crit_io 0.1 0.1 Kept at Osborne et al. (2015) value

fd fd_io 0.015 0.008 Supplement Sect. 1.4.6

f0 f0_io 0.9 0.9 Kept at Osborne et al. (2015) value

neff neff_io 8.0× 10−4 12.0× 10−4 Table 1

nl(0) nl0_io 0.073 0.1 Table 1

Tlow tlow_io 0.0 0.0 Kept at Osborne et al. (2015) value

Tupp tupp_io 36.0 36.0 Kept at Osborne et al. (2015) value

kn kn_io 0.78 – Default for C3 grass for can_rad_mod 5.

knl knl_io – 0.2 Default for C3 grass for can_rad_mod 6.

Q10,leaf q10_leaf_io 2.0 2.0 Kept at Osborne et al. (2015) value

µrl nr_nl_io 1.0 0.390 Supplement Figs. S1–S3

µsl ns_nl_io 1.0 0.51 Supplement Figs. S1–S3

rg r_grow_io 0.25 0.32 Supplement Sect. 1.4.6

orient_io 0 0 Kept at Osborne et al. (2015) value

α alpha_io 0.12 0.12 Kept at Osborne et al. (2015) value

ωPAR omega_io 0.15 0.15 Kept at Osborne et al. (2015) value

αPAR alpar_io 0.1 0.1 Kept at Osborne et al. (2015) value

fsmc_mod_io 0 0 Not important in irrigated runs, so could not
be tuned using US-Ne2 data. Kept at Os-
borne et al. (2015) value.

fsmc_p0_io 0.0 0.5 FAO document 56 (Allen and Pereira, 2006)

a can_struct_a_io 1.0 1.0 Kept at Osborne et al. (2015) value

get level of 200 ppb (Supplement Fig. S2). The fumigation
ended when soybean was mature.

Plant damage from O3 is cumulative, and the target con-
centration for the experiment was not always met (e.g. when
wind speeds are low, during rain, or when O3 generators or
analysers are down). Therefore, the 8 h mean and the AOT40
index (accumulated ozone exposure above the threshold of
40 ppb) were used for the analysis in SoyFACE instead of
using the target O3 concentration. The planting dates were
6 June 2009 (day 159) and 27 May 2010 (day 157). Fumi-
gation began on 29 June 2009 (day 179–260) and 6 June
2010 (day 167–271), and harvest occurred on 20 October
2009 (day 293) and 20 September 2010 (day 273). O3 con-
centrations measured at SoyFACE fluctuated greatly, as they

were strongly influenced by weather conditions, especially
by wind speed. The magnitude of O3 concentration fluctua-
tions in the high targeted concentration was greater than the
low concentration (Supplement Fig. S2). On some days of
the year when the fumigation was off, very low O3 concen-
trations were recorded for all target rings.

To calibrate the O3 parameters for soybean in JULES-
crop, we used midday photosynthetic gas-exchange measure-
ments from Betzelberger et al. (2012). These were taken at
four stages during the growing season, from seven soybean
cultivars growing at nine different O3 concentrations, us-
ing open gas exchange systems (LI-6400 and LI-6400-40).
These observations were used in conjunction with the day-
time 8 h mean O3 concentration measurements and the pa-
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Figure 2. Net leaf CO2 assimilation rate for calibrated JULES, sim-
ulated using the Leaf Simulator (black crosses) and observations
from Betzelberger et al. (2012) (grey circles). X axis is the daytime
8 h mean O3 concentration (ppb).

rameters calibrated at the Mead site to drive the Leaf Sim-
ulator computer package, which reproduces the calculation
of leaf photosynthesis within JULES. We then tuned the O3
parameterisation of fractional reduction of photosynthesis by
O3 (sensitivity) and threshold of O3 flux (nmol m−2 s−1) to
match the modelled leaf photosynthesis rate to the observed
rate (Fig. 2). The tuned parameters are shown in Table 4.

2.3 Model configuration for the JULES-crop SoyFACE
runs

The meteorological forcing data measured at Champaign,
Illinois, in 2009 were used to drive the JULES-crop model.
The downward longwave radiation and diffuse radiation data
from NOAA at Bondville site (SURFRAD) were used as
SoyFACE does not have these variables available. The driv-
ing data were repeatedly applied (recycled 25 times) to spin
up the model from an arbitrary starting point with soil tem-
perature initially set to 278 K and soil moisture to 75 % of
saturation. A single crop type was modelled – soybean – us-
ing a single plant tile. Observed CO2 (NOAA) and 8 h mean
observed O3 concentrations from the SoyFACE rings (aver-
aged over a month) were used as the driving data of the model
since natural O3 is produced around 8 h in daytime, and it
is a typical temporal resolution for O3 fumigation. The soil
ancillary parameters used in SoyFACE were extracted from
the global dataset of soil ancillary from the HadGEM2-ES
model (a coupled Earth system model that was used by the
Met Office Hadley Centre for the CMIP5). Observed ambi-
ent O3 was used as the control. The new parameters for soy-
bean were used, which we calibrated to observations from
the Mead FLUXNET sites as described in the Supplement.

The exception is the initial carbon: since the row spacing at
the SoyFACE facility is half that used at the Mead sites, we
doubled the initial carbon for SoyFACE compared to Mead.
The resulting model yield, above ground carbon, and LAI
were compared to the SoyFACE observations.

3 Results and discussion

Results from JULES runs with crop model and ozone dam-
age turned on are shown in Figs. 3 and 4. Figure 3 shows
the evaluation of the soybean aboveground biomass carbon
for different O3 exposure levels (AOT40) using the O3 dam-
age parameters in Table 4. The model aboveground carbon
(solid lines) is compared to the line fitted in Betzelberger et
al. (2012) to their aboveground carbon observations. The run
with the newly-calibrated parameters overestimated the car-
bon at ambient ozone levels. One contributing factor could
be that water stress is underestimated in the new configura-
tion, since it was not possible to evaluate the response to soil
water availability using the Mead site data, so we instead de-
rived a value for fsmc_p0 (parameterised in the calculation of
the threshold for water stress; see Table 3) from the literature.
We tested the sensitivity to this choice by re-running this con-
figuration with fsmc_p0=0, which represents water-stressed
conditions, and this caused a 12 % reduction in aboveground
carbon (plots shown in Supplement). In addition, the repre-
sentation of the soil properties in the JULES SoyFACE run
could be improved by calibration to site measurements. In
contrast, the Osborne 2015 tuning intersects the line fitted
to observed aboveground carbon at zero ozone concentration
(partially because of higher water stress) but then shows a
sharp decrease from zero to ambient levels, which is not real-
istic. Note that no observations were taken for below-ambient
ozone concentrations at SoyFACE, so this section of the fit-
ted line is an extrapolation. The slope of the aboveground
carbon response to increasing ozone concentrations is similar
for all three runs and compares very well to the Betzelberger
et al. (2012) fitted line.

The yield-O3 response curve in Fig. 4 shows that new
parameterisation slightly overestimates yield in the ambient
SoyFACE ring, compared to the spread of SoyFACE yield
observations from Betzelberger et al. (2012). The Osborne
2015 tuning with high ozone sensitivity is within the spread
of measured yield in ambient conditions, but note that the
modelled yield has decreased sharply from zero ozone con-
centration to ambient levels, which is undesirable. The mag-
nitude of the gradient of yield against AOT40 for all three
model configurations is within the spread of the observa-
tions. However, the slope is underestimated for the new, cali-
brated run and overestimated for the Osborne 2015 tuning,
especially for the range from ambient to 40 ppm h. Recall
that ozone concentration modifies net leaf CO2 assimilation
rate in JULES and that the model parameters governing this
process (Fo3crit, a) are calibrated directly to net leaf CO2
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Table 4. Summary of ozone parameter configurations employed in JULES-crop for the default Osborne et al. (2015) value and the tuned as
calibrated to SoyFACE leaf gas-exchange measurements (note that these have been calibrated to daytime 8 h concentrations and therefore
will be different to parameters calibrated to monthly 24 h means).

JULES ozone damage
parameters

Fractional reduction of photo-
synthesis by O3 (sensitivity)
(mmol−1 m2) (dfp_dcuo_io)

Threshold of ozone flux
(nmol m−2 s−1)
(fl_ o3_ ct_ io)

Tuned value 0.5 15.0
Osborne et al. (2015): high sensitivity 5.0 1.4
Osborne et al. (2015): low sensitivity 5.0 0.25

Figure 3. Aboveground carbon biomass of soybean at harvest stage
for calibrated Joint UK Land Environment Simulator with Crop
module turned on (JULES-crop) using the Mead soybean tun-
ing (red), Osborne et al. (2015) standard parameters with Sitch
et al. (2007) low ozone sensitivity (blue), high ozone sensitiv-
ity (green), and observation from SoyFACE from Betzelberger et
al. (2012).

assimilation rate observations from SoyFACE in our new
configuration (Sect. 2). Reductions in the modelled net leaf
CO2 assimilation rate lead to the reductions in model above-
ground biomass, yield, and LAI, which we show in this sec-
tion. However, Betzelberger et al. (2012) also reported addi-
tional impacts of ozone damage, such as changes in leaf ab-
sorptance and specific leaf mass, that are not represented in
JULES, and therefore our tuning does not account for them.
In contrast, the values of Fo3crit and a in the high and low
sensitivity versions of the Osborne 2015 tuning simulations
(Table 4) were calibrated in Sitch et al. (2007) to yield obser-
vations. Therefore, they can be seen as “effective” parame-
ters in these configurations, since they incorporate the effect
of the ozone damage processes that are not explicitly repre-
sented in JULES.

Note that we plot AOT40 on the x axis for illustrative pur-
poses only, to be comparable with results presented in Bet-

Figure 4. Black dashed line is the line of best fit from SoyFACE ob-
servation, and the blue and green lines with crosses are the modelled
output for each ozone concentration using the Osborne et al. (2015)
tuning with Sitch et al. (2007) low and high sensitivity, respec-
tively. The red line and crosses are the tuned parameters with Mead
FLUXNET observation and SoyFACE ozone damage according to
Table 4.

zelberger et al. (2012) – AOT40 was not used in the JULES
run. An alternative would be to plot ring number or ring
target concentration. Ideally, we would plot the x axis with
the metric phytotoxic ozone dose (POD) for JULES and ob-
served data, which account for the dosage of O3 that get into
the stomata of soybean, but this is beyond the scope of the
present study.

Figure 5 compares the model and observed LAI at Soy-
FACE for different O3 concentrations. JULES was able to
reproduce LAI seasonality; however, it underestimated the
amplitude. The maximum LAI for calibrated JULES peaked
around day 240 in September, and observations peaked at
DoY 220–230. The peak LAI in the model runs was less than
half the observed LAI in all cases. While the Mead model
runs also showed a slight underestimation of peak LAI com-
pared to observation (Supplement), the majority of the under-
estimation of the modelled SoyFACE LAI is due to a differ-
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Figure 5. Time series of leaf area index (LAI) responses on different target ozone concentration at SoyFACE. Black line is observed LAI
from Betzelberger et al. (2012), and the other lines are JULES-crop LAI with different tunings. Blue: calibrated JULES-crop using Mead
observations. Green: Osborne 2015 tuning with low sensitivity. Red: Osborne 2015 tuning with high sensitivity to ozone.

ence between the observed relationships between peak LAI
and yield at the Mead and SoyFACE sites. At both sites, ob-
served maximum yield increases with observed peak LAI.
However, for similar observed yields, the observed SoyFACE
yield tends to be higher than the observed Mead LAI. Given
that our calibration is based on Mead observations, it is there-
fore not surprising that our model runs at SoyFACE underes-
timate peak LAI compared to the SoyFACE observations.

A contributing factor to the different relationship be-
tween observed peak LAI and observed yield at SoyFACE
compared to Mead could be the different methods used to
measure LAI at the Mead sites (which this parameter set
was tuned against) and at SoyFACE. At Mead, destructive
measurements were taken, whereas at SoyFACE, LAI was
measured indirectly, using radiation attenuation through the
canopy.

Another plausible contributing factor for the different re-
lationship between observed peak LAI and observed yield at
SoyFACE compared to Mead is the row density of the soy-
bean. The SoyFACE row spacing was half that of Mead, so
as described above we set the initial carbon to twice that ob-
served at Mead. The denser planting allowed soybean at Soy-
FACE to reach higher LAI earlier in the growing season. If
this also resulted in thinner leaves at the beginning of the
season than with the Mead row spacing, then this could ex-
plain the difference in the peak LAI to yield relationship be-

tween the two sites. Ricaurte et al. (2016) showed that higher
sowing density would increase phyllochron in a linear rela-
tionship, which results in a higher LAI measured, which is
consistent with our study. JULES also does not account for
leaf age on leaf assimilation rate – in reality a lower leaf as-
similation is observed in the late season associated with leaf
ageing, and it is plausible that this could also be affected by
row spacing.

Figure 5 also demonstrates that model LAI responds more
to ozone concentrations than the observed LAI. One con-
tributing factor is the observed decrease in specific leaf area
at SoyFACE in increased ozone (Betzelberger et al., 2012).
As mentioned above, this process is not captured by JULES.
This issue is particularly pronounced in the Osborne 2015
tuning runs, where the modelled LAI in the ring with target
200 ppb is roughly a third of the peak LAI in the ambient
ring.

4 Conclusions

Climate change and air pollution are a great threat to food
production. JULES-crop has been developed to represent
crops in the land surface model and allows us to estimate
the future climate and air pollution impact on crops. The O3
impact on crops could be quantified with an improved param-
eterisation to the existing O3 damage scheme for C3 plants.
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The default soybean biochemical and respiratory parameters
in JULES were based on C3 grass parameters. Characteris-
tics of soybean are more similar to a shrub than grass; there-
fore, parameter calibration is needed to improve the perfor-
mance of soybean in JULES-crop.

In this paper, the parameters needed to describe soybean
in JULES-crop were first revised against observations from
the Mead FLUXNET sites to ensure that the crop biochem-
ical and respiratory parameters explicitly represented soy-
bean. Comparison with observations from these sites showed
that GPP and LAI were well represented for irrigated soy-
bean at Mead. The O3 damage parameterisation was sub-
sequently calibrated against leaf gas exchange observations
from the Soybean Free Air Concentration Enrichment (Soy-
FACE) facility for the O3 damage, by tuning the sensitivity
and critical threshold of O3 damage. On the whole, JULES-
crop reproduces the observed negative correlation between
yield and O3 exposure. It also reproduced the negative im-
pacts of ozone on LAI and the seasonality of phenology, al-
though the simulated LAI was underestimated at SoyFACE.
This method of calibrating soybean could be replicated for
other crops once data become available and would contribute
to more accurate parameters for crop models. The calibration
will be applied to a regional and transient run and eventually
the newly calibrated JULES-crop for soybean and its sensi-
tivity to O3 damage, coupled within an Earth system model.

Code availability. This study uses JULES version 5.0 releases. The
code and configuration for the SoyFACE runs can be downloaded
via the Met Office Science Repository Service (MOSRS) at https://
code.metoffice.gov.uk/trac/roses-u/browser/a/r/8/6/6/trunk (JULES
Collaboration, 2018) (registration required) and are freely available
subject to accepting the terms of the software licence. The Leaf
Simulator can be downloaded from https://code.metoffice.gov.uk/
trac/utils (Williams et al., 2018) (login required).

Data availability. Unless otherwise noted, all site observations
discussed in this paper were obtained from the site infor-
mation pages of the AmeriFlux website hosted by the Oak
Ridge National Laboratory (http://fluxnet.fluxdata.org/, Ameri-
Flux collaboration, 2018) or by personal communication with
the Mead site research technologist. The longwave radia-
tion, diffuse radiation, and air pressure from Bondville, Illi-
nois, site can be obtained by the SURFRAD (surface radia-
tion) network from ftp://aftp.cmdl.noaa.gov/data/radiation/surfrad/
Bondville_IL/ (NOAA, 2018). The SoyFACE data used for
the run are available on MOSRS at https://code.metoffice.gov.
uk/trac/roses-u/browser/a/r/8/6/6/trunk/driving_data (Ainsoworth,
2017a), https://code.metoffice.gov.uk/trac/roses-u/browser/a/r/8/6/
6/trunk/bin/SoyFACE_gas_exchange_data_2009.csv (Ainsoworth,
2017b), and https://code.metoffice.gov.uk/trac/roses-u/browser/a/r/
8/6/6/trunk/ancil_data (Ainsoworth, 2017c).

Accessing the MOSRS requires registration, but once you access
the system, there is no information about who is downloading or
viewing which pages.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-13-6201-2020-supplement.
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