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Abstract. Accurately monitoring river flows can be challeng-
ing, particularly under high-flow conditions. In recent years,
there has been considerable development of remote sensing
techniques for the determination of river flow dynamics. Im-
age velocimetry is one particular approach which has been
shown to accurately reconstruct surface velocities under a
range of hydro-geomorphic conditions. Building on these ad-
vances, a new software package, KLT-IV v1.0, has been de-
signed to offer a user-friendly graphical interface for the de-
termination of river flow velocity and river discharge using
videos acquired from a variety of fixed and mobile platforms.
Platform movement can be accounted for when ground con-
trol points and/or stable features are present or where the
platform is equipped with a differential GPS device and iner-
tial measurement unit (IMU) sensor. The application of KLT-
IV v1.0 is demonstrated using two case studies at sites in
the UK: (i) river Feshie and (ii) river Coquet. At these sites,
footage is acquired from unmanned aerial systems (UASs)
and fixed cameras. Using a combination of ground control
points (GCPs) and differential GPS and IMU data to ac-
count for platform movement, image coordinates are con-
verted to real-world distances and displacements. Flow mea-
surements made with a UAS and fixed camera are used to
generate a well-defined flow rating curve for the river Fes-
hie. Concurrent measurements made by UAS and fixed cam-
era are shown to deviate by < 4 % under high-flow conditions
where maximum velocities exceed 3 m s−1. The acquisition
of footage on the river Coquet using a UAS equipped with
differential GPS and IMU sensors enabled flow velocities
to be precisely reconstructed along a 180 m river reach. In-
channel velocities of between 0.2 and 1 m s−1 are produced.
Check points indicated that unaccounted-for motion in the
UAS platform is in the region of 6 cm. These examples are

provided to illustrate the potential for KLT-IV to be used for
quantifying flow rates using videos collected from fixed or
mobile camera systems.

1 Introduction

1.1 Challenges in hydrometry

Observed flow rates in rivers represent the integration of wa-
ter basin input, storage, and water transfer processes. Accu-
rate long-term records are essential to understand variability
in hydrological processes such as the rainfall-runoff response
(Hannah et al., 2011; Borga et al., 2011). This information
provides the foundation for accurate predictions of hydro-
logical response to catchment perturbations and is the basis
of informed water resources planning and the production of
effective catchment-based management plans.

Current approaches for the quantification of river flow
are generally applied at strategic locations along river net-
works through the installation of fixed monitoring stations.
Many of these stations are reliant on the development of
an empirical stage–discharge rating curve, which is often
achieved by developing an empirical function between paired
measurements of river flow (combining measurements of
velocity and cross-section area) and river stage measure-
ments. This empirical function is then applied to a con-
tinuous record of stage measurements to predict flow dis-
charge (Coxon et al., 2015). Obtaining accurate flow gaug-
ings using traditional approaches can be challenging, often
costly and time-consuming, with flow observations during
flood conditions being hazardous to operatives. Resultantly,
considerable progress has been made in the development
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of remotely operated fixed and mobile systems capable of
providing quantitative estimates of instantaneous and time-
averaged flow characteristics. Examples of successful devel-
opments include acoustic Doppler current profilers (Le Coz
et al., 2008) and microwave radar sensors (Welber et al.,
2016). Whilst advances in technology have led to more ac-
curate and safer flow gaugings in some areas, these devices
can be costly, thereby limiting their adoption to locations of
high priority. In contrast to the investment required to im-
plement these new techniques and technologies, continued
funding and resource pressures faced by competent author-
ities in Europe and North America have led to a decline in
investment in recent years, with reductions in the number of
monitoring stations (Stokstad, 1999). This poses a real threat
to the continuity of river flow data archives and has the poten-
tial to compromise our ability to detect future hydrological
change.

As a consequence, innovative solutions are required to re-
duce the cost- and time-intensive nature of generating river
discharge data in order to ensure the long-term sustainability
of hydrometric infrastructure and hydrological records. With
the development and implementation of new solutions, im-
provements in monitoring from ground-based and remotely
operated platforms may ensue, with hydrometric monitoring
networks becoming tailored to meet the demands of modern
water resources management (Cosgrove and Loucks, 2015).

1.2 Aim

Taking into consideration the aforementioned challenges to
monitoring hydrological processes, KLT-IV aims to provide
the user with an easy-to-use graphical interface for the de-
termination of flow rates using videos acquired from fixed or
mobile platforms. In this article, the following sections are
presented: (i) an overview of existing image-based hydro-
metric solutions, (ii) details of the underlying methodology
of KLT-IV and the features that are supported, (iii) exam-
ples demonstrating several KLT-IV workflows including the
associated outputs generated by the software, and (iv) per-
spectives on the challenges relating to further development
of image velocimetry software.

1.3 Image-based hydrometric solutions: existing
workflows and limitations

Amongst the recently developed approaches offering a great
deal of promise for monitoring surface flows is image ve-
locimetry. The fundamental basis of the image velocimetry
approach to flow gauging is that the detection and subse-
quent rate at which optically visible or thermally distinct
surface features, e.g. materials floating on the water surface
(foam, seeds, etc.) and water surface patterns (ripples, tur-
bulent structures), are displaced downstream can be used to
estimate the surface velocity of the waterbody. The surface
velocity may then be converted to a depth-averaged veloc-

ity by fitting a power or logarithmic law to vertical veloc-
ity profile observations (Welber et al., 2016), or this may be
theoretically derived assuming a logarithmic velocity profile
(Wilcock, 1996). Image velocimetry is an innovative solu-
tion for measuring streamwise velocities and understanding
flow patterns and hydrodynamic features. This information
can later be supplemented with topographic and bathymetric
observations to determine the discharge of surface waterbod-
ies.

The first step in any large-scale image velocimetry work-
flow is obtaining image sequences for subsequent analy-
sis. Due to technological advancements, this is commonly
achieved through the recording of videos in high definition
and at a consistent frame rate. Camera sensors also have a
range of sizes and focal lengths, which offers the opportu-
nity for the choice of instrument to be defined based on the
conditions of operation (e.g. distance to area of interest, re-
quired angle of view). Following video capture, images are
extracted for subsequent analysis along with metadata (e.g.
video duration, frame rate, number of frames).

Following image acquisition, image pre-processing can
be performed to alter the colour properties of the images.
Example operations include histogram equalisation, contrast
stretching, application of a high-pass filter, and binarisation.
Image pre-processing is usually applied to enhance the visi-
bility of surface water features against the background, elim-
inate the presence of the riverbed, or to reduce glare. These
options are present within some existing image velocimetry
software packages (e.g. Thielicke and Stamhuis, 2014) and
also open-source image processing software packages (e.g.
ImageJ, Fiji, 2020; Schindelin et al., 2012).

Following image enhancement, the choice of image pairs
used to determine displacement needs to be carefully consid-
ered in most workflows, and this is a function of the sensor
resolution, acquisition frame rate, ground sampling distance,
and flow conditions (Legleiter and Kinzel, 2020). Image pair-
ings must be selected to ensure that the displacement of sur-
face features is sufficient to be captured by the sensor but
short enough to minimise the potential for surface structures
to transform, degrade, or disappear altogether, or for external
factors to influence the measurement (e.g. camera movement
in the case of unmanned aerial system (UAS) deployments;
Lewis and Rhoads, 2018). Therefore, the optimum image
sampling rate needs to be established on a case-by-case basis
and requires the operator to have a level of experience and
expertise (Meselhe et al., 2004). These considerations also
feed into the selection of an appropriate size of interrogation
area (or equivalent). This needs to be large enough for suf-
ficient surface features to form a coherent pattern for cross-
correlation algorithms to be applied. However as this area
increases so does the uncertainty in valid vector detection
as a result of the size the correlation peak decreasing (Raf-
fel et al., 2018). Whilst recommendations have been made
over the determination of these settings (e.g. Raffel et al.,
2018; Pearce et al., 2020), they have the potential to signif-
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icantly alter the quality of the velocity computations. The
recent application of multiple-pass or ensemble-correlation
approaches has however been shown to improve the analysis
accuracy and the production of results in closer agreement
to reference values than single-pass approaches (Strelnikova
et al., 2020).

Prior to the application of image velocimetry algorithms,
a series of image-processing steps may be required. In some
cases, small-scale vibrations (e.g. by wind, traffic) can re-
sult in random movement of a fixed camera, or alternatively,
if the camera is attached to a UAS or helicopter the cam-
era may drift over time (Lewis and Rhoads, 2018). This can
result in image sequences that are not stable with apparent
ground movement in parts of the image where there is none.
Many image velocimetry software packages currently ne-
glect this stage, with the notable exception of Fudaa, RiVER,
and FlowVeloTool. These software packages are able to ac-
count for small amounts of camera movement through the
application of projective or similarity transformations based
on automated selection and tracking of features within stable
parts of the image. However, these approaches require sig-
nificant elements within the image field of view to be static,
which may not always be possible. Furthermore, this ap-
proach does not allow for the complete translation of a scene
(e.g. Detert et al., 2017).

Upon the compilation of a sequence of stabilised images,
pixel coordinates of the image are usually scaled to repre-
sent real-world distance. This can be applied using a direct
scaling function where the relationship between pixel and
metric coordinates is already known and is stable across the
image and throughout the image sequence (i.e. the lens is
rectilinear (or the distortion has been removed); lens is posi-
tioned orthogonal to the water surface and stable). Alterna-
tively, in instances where these assumptions do not hold true,
image orthorectification can be conducted. In this process,
ground control points (GCPs) may be used to establish the
conversion coefficients, which are then used to transform the
images. In this approach the transformation matrix implic-
itly incorporates both the external camera parameters (e.g.
camera perspective) and the internal camera parameters (e.g.
focal length, sensor size, and lens distortion coefficients).
Where ground control points are located planar to the water
surface, a minimum of four GCPs is required (Fujita et al.,
1998; Fujita and Kunita, 2011), or in the case of a three-
dimensional plan-to-plan perspective projection a minimum
of six GCPs distributed across the region of interest are re-
quired for the determination of orthorectification coefficients
(Jodeau et al., 2008; Muste et al., 2008). Alternatively, the
sources of image distortion may be explicitly modelled (e.g.
Heikkilä and Silvén, 2014), enabling intrinsic parameters to
be determined through calibration and applied to alternative
scenes (e.g. Perks et al., 2016). This reduces the dependency
on ground control points provided that intrinsic parameters
are known, and optimisation is limited to the external camera
parameters (i.e. camera location, view direction). More re-

cently, the integration of supplementary sensors (e.g. differ-
ential GPS, inertial measurement unit (IMU)) and associated
measurements for determining orthorectification parameters
has been advocated for (e.g. Legleiter and Kinzel, 2020), but
this approach has yet to be embedded into image velocimetry
software.

Upon the determination, or optimisation of the transfor-
mation matrix, which is used to map pixel coordinates to
ground coordinates, there are two divergent approaches of
how to use this information to generate velocity informa-
tion in real-world distances. The most widely used approach
is to use the transformation coefficients to generate a new
sequence of images where ground distances are equivalent
across all pixels across the image. Image velocimetry anal-
ysis is then conducted on this orthorectified imagery. How-
ever, some workflows neglect this stage, instead conducting
image velocimetry analysis on the raw images and applying
a vector correction factor to the velocity vectors (e.g. Fujita
and Kunita, 2011; Perks et al., 2016; Patalano et al., 2017).
The benefit of the latter approach is that image velocime-
try analysis is conducted on footage that has not been ma-
nipulated or transformed, and therefore there is no oppor-
tunity for image processing artefacts to influence the veloc-
ity outputs. Conversely, an advantage of direct image trans-
formation is that the parameters being applied by the image
velocimetry algorithms are consistent throughout the image
(e.g. 32 px× 32 px represents the same ground sampling area
across the entirety of the image).

Following image pre-processing, stabilisation, and or-
thorectification (when required), a range of image velocime-
try approaches may be used to detect motion of the free sur-
face. Large-scale particle image velocimetry (LSPIV) is built
upon the particle image velocimetry (PIV) approach com-
monly employed in laboratory settings. This approach ap-
plies two-dimensional cross-correlation between image pairs
to determine motion. The first image is broken into cells
(search areas) within a grid of pre-defined dimensions, and
these search areas are used as the template for the two-
dimensional cross-correlation. In the second image, an area
around each search area is defined, and the highest value in
the two-dimensional cross-correlation plane is extracted and
is used as an estimate of fluid movement. Space–time im-
age velocimetry (STIV) was inspired by LSPIV and searches
for gradients between sequences of images by stacking se-
quential frames and searching for linear patterns of image
intensity (Fujita et al., 2007, 2019). Similarly to PIV, parti-
cle tracking velocimetry (PTV) can also be based on cross-
correlation, but rather than utilising an aggregation of sur-
face features (patterns) to determine movement, individual
surface features are selected and their likely displacement de-
termined. Upon acquisition of displacement estimates, post-
processing in the form of vector filtering can be applied. This
may take the form of correlation thresholds, manual vec-
tor removal, a standard deviation filter, local median filter
(Westerweel and Scarano, 2005; Strelnikova et al., 2020),
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trajectory-based filtering (Tauro et al., 2019), or imposing
limits to the velocity detection thresholds.

A final element in image velocimetry workflows for the
determination of river discharge involves the incorporation
of external data. Firstly, the free-surface image velocity mea-
surements must be translated into a depth-averaged velocity.
Buchanan and Somers (1969) and Creutin et al. (2003) pro-
vided estimates of 0.85–0.90 as an adequate ratio between
surface and depth-averaged velocities under the condition of
a logarithmic profile. This has been found to hold true for
a number of environmental conditions (e.g. Le Coz et al.,
2007; Kim et al., 2008), with maximal deviations from these
default values of less than 10 % (Le Coz et al., 2010). How-
ever, this should ideally be informed by direct measurements
made in the area of interest. It may also be the case that deter-
mining the displacement across the entire cross section is not
possible (e.g. due to lack of visible surface features). There-
fore, interpolation and extrapolation may need to be under-
taken. This may be achieved using the assumption that the
Froude number varies linearly or is constant within a cross
section (Le Coz et al., 2010) or based on theoretical flow field
distributions (Leitão et al., 2018). Upon a complete profile,
unit discharge can be calculated based on the specified water
depth at a number of locations in the cross section, and this
is then aggregated to provide the total river flow.

Building on the existing image velocimetry software pack-
ages that are currently available, and seeking to address some
of their limitations, KLT-IV v1.0 seeks to offer a novel, flex-
ible approach to acquiring hydrometric data using image-
based techniques. The specific details of this approach are
introduced in Sect. 2.

2 Methods

2.1 Software background

A new branch of PTV has recently been explored, whereby
features are detected based on two-dimensional gradients in
pixel intensity across the image using one of a range of au-
tomated corner point detection algorithms (e.g. SIFT, GFTT,
FAST). These features are subsequently tracked from frame
to frame using optical flow techniques. This approach has
only recently been used for the characterisation of hydrologi-
cal processes with examples including monitoring of a fluvial
flash flood using a UAS (Perks et al., 2016), application of
optical tracking velocimetry (OTV) on the Tiber and Brenta
rivers using fixed gauge cams (Tauro et al., 2018), and in
the development of FlowVeloTool (Eltner et al., 2020). Op-
tical flow-based approaches have the benefit of being com-
putationally efficient whilst being capable of automatically
extracting and tracking many thousands of visible features
within the field of view. In a recent benchmarking exercise
where the performance of a range of image velocimetry tech-
niques was compared under low-flow conditions and high

seeding densities, KLT-IV was shown to have comparable
performance with other more established techniques includ-
ing PIVlab and PTVlab, with performance being less sensi-
tive to the user-defined parameters (Pearce et al., 2020).

The underlying approach of KLT-IV is the detection of
features using the “good features to track” (GFTT) algo-
rithm (Shi and Tomasi, 1994) and subsequent tracking us-
ing the pyramidal Kanade–Lucas–Tomasi tracking scheme
(Lucas and Kanade, 1981; Tomasi and Kanade, 1991). The
three-level pyramid scheme allows for a degree of flexibility
in the user-specified interrogation area (block size). The in-
terrogation area is refined between pyramid levels by down-
sampling the width and height of the interrogation areas of
the previous level by a factor of 2. An initial solution is found
for the lowest resolution level, and this is then propagated
through to the highest resolution. This enables features to be
tracked that extend beyond the initial interrogation area. A
total of 30 search iterations are completed for the new loca-
tion of each point until convergence. Error detection is es-
tablished by calculating the bidirectional error in the feature
tracking (Kalal et al., 2010). If the difference between the for-
ward and backward tracking between image pairs produces
values that differ by more than 1 px, the feature is discarded.
Depending on the configuration adopted (see Sect. 2.2.2),
feature tracking is conducted on either orthorectified imagery
with the resultant feature displacement in metric units or on
the raw imagery with vector scaling occurring after anal-
ysis. When pixel size is not explicitly known in advance,
the transformation between pixel and physical coordinates is
achieved through the generation and optimisation of a dis-
torted camera model (Messerli and Grinsted, 2015; Perks
et al., 2016), which in the case of moving platforms is up-
dated iteratively based upon GCPs or differential GPS data.
KLT-IV is a stand-alone graphical user interface (GUI) devel-
oped in MATLAB 2019, with the incorporation of Cascad-
ing Style Sheets (CSS) to enable flexibility of interface de-
sign (StackOverflowMATLABchat, 2016). The application
is compiled as a stand-alone executable and is packaged with
Ffmpeg (version N-93726-g7eba264513) (see “Code avail-
ability”).

2.2 Interface

The interface is split up into five sections: (i) video inputs,
(ii) settings, (iii) ground control, (iv) analysis, and (v) dis-
charge (Fig. 1). Within each of these categories are a number
of options which automatically activate and deactivate de-
pending on the type of orientation selected. Consequently,
there are a number of potential workflows, and these will be
outlined in this section. All inputs are in units of metres un-
less specified otherwise.
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Figure 1. Graphical user interface (GUI) of KLT-IV version 1.0.

2.2.1 Video inputs

The first section – video inputs – is where the video acqui-
sition details are provided. Within v1.0 of the software, only
“Single Video” mode can be selected, meaning that only one
video at a time can be analysed, and this video may be se-
lected using the file selection dialogue box. There is flexibil-
ity in the video formats that may be used within the software
as outlined in Appendix A. Upon selecting a video, the user
is provided with the option to re-encode the footage. Under
most instances this is not required. However, on some occa-
sions Internet Protocol (IP) cameras may fail to embed the
correct metadata (e.g. image resolution, frame rate) within
the video. Accurate metadata are an essential prerequisite to
accurate analysis, and re-encoding the video can restore this
information. If re-encoding is selected this process is auto-
matically undertaken using the libx264 encoder. This results
in the generation of a new video within the same folder as the
input with the suffix “_KLT” appended to the input file name.
It should be noted however that videos cannot be re-encoded
if the text “KLT” is present within the input file name.

The next option allows the user to specify the camera
type used to acquire the footage. A number of IP, hand-held,
and UAS-mounted cameras are available for selection. If the
user selects a camera, the calibrated internal camera param-
eters will be used during the orthorectification process. This
enables fewer parameters to be solved for in the optimisa-
tion process. However, if the “Not listed” option is chosen,
then the internal camera parameters are optimised during or-
thorectification process. If orientation [A] or [F] is selected
(Table 1), the camera model is a required input, otherwise it
is optional. The camera models used in KLT-IV have been

developed through the use of a checkerboard pattern and the
Camera Calibrator App within MATLAB.

Next, one of six camera orientations can be chosen, and
these are outlined in Table 1. Each of the chosen options has
different input requirements from this point forward (Fig. 2).
Some workflows require the input of the camera location [X,
Y, Z] and camera view direction [yaw, pitch, roll]. If the ori-
entation uses GCPs, this positioning information is used as
the starting point for the development of the camera model.
If “Stationary: Nadir” is selected as the orientation, the cam-
era [z] coordinate should be precisely defined relative to the
water surface elevation (see Sect. 2.2.3), as the distance be-
tween camera and water surface is used to define the conver-
sion between pixel size and metric coordinates. The camera
yaw, pitch, and roll settings should be provided in radians. In
the case of the yaw angle, 0 equates to east, 1.57 equates
to north, 3.14 equates to west, and 4.71 equates to south.
These bearings are provided relative to the GCP coordinate
system. A pitch of 1.57 equates to the camera oriented at
nadir with each degree of inclination subtracting 0.017 from
this value. Generally, camera roll is negligible and the default
value (zero) can be adopted.

2.2.2 Settings

The settings section provides the user with the opportunity
to customise the settings used in the feature tracking pro-
cess and therefore the determination of velocities. The fea-
ture tracking procedure is designed to identify and track vis-
ible features between each frame of the video. However, the
user may define the length of time that features are tracked
for before their displacement is calculated. If for example,
the extract rate is defined as 1 s and the video frame rate is
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Table 1. A summary of the assumptions, requirements, advantages, and limitations of the different orientation options found with Section 1:
video inputs of KLT-IV v1.0.

Orientation Assumptions Requirements Advantages Limitations

Stationary:
Nadir [A]

The camera is station-
ary and view is nadir

Defined camera loca-
tion and camera model,
camera oriented at
nadir, known water
surface elevation

No GCPs required Assumption of stable and
nadir camera

Stationary:
GCPs [B]

The camera is station-
ary and GCPs are
present

Estimated camera loca-
tion, estimated view
direction, GCPs, water
surface elevation

Camera calibration
leading to accurate
trajectories

Assumption of stable cam-
era

Dynamic:
GCPs [C]

The camera may be
mobile and GCPs are
present

Estimated camera start-
ing location, estimated
view direction, GCPs,
water surface elevation

Camera calibration
using GCPs tracked
between frames, scene
can be dynamic with
addition of GCPs over
time

GCPs should be clearly vis-
ible

Dynamic:
GCPs & Stabil-
isation [D]

The camera may be
mobile, and GCPs are
present but may be dif-
ficult to track

Estimated camera start-
ing location, estimated
view direction, GCPs,
water surface elevation

Frames are stabilised
relative to the first
frame to account for
movement, GCPs do
not need to be clearly
visible

Assumption that the area
outside of the defined ROI
is stable, camera perspec-
tive (i.e. pitch) does not al-
ter significantly, bank-side
features are at similar eleva-
tions

Dynamic:
Stabilisation
[E]

The camera may be
mobile, GCPs are not
present but pixel size is
known

Pixel scaling (px m−1),
water surface elevation

Frames are stabilised
relative to the first
frame to account for
movement, GCPs are
not required

Assumption that pixel scal-
ing is constant across im-
age, the area outside of the
defined ROI is stable, cam-
era perspective does not al-
ter significantly

Dynamic:
GPS & IMU
[F]

The camera may be mo-
bile, differential GPS
and IMU data are used
to define the camera
model and sequential
images are stabilised

High rate PPK/RTK
GPS and IMU data,
water surface elevation,
camera at nadir

No GCPs are required
and the platform can be
mobile

Precision is dependent on
GPS and IMU quality and
sample rate, stable features
must be visible

20 Hz, features would be detected in frame one and tracked
until frame 21, at which point the displacement of the fea-
tures is stored. The sequence would then be restarted at frame
21 and continue until 41, etc. The smaller the value given as
the extraction rate, the greater the number of trajectories that
will be produced, and any areas of unsteady flow elements
will be well characterised. However, small feature displace-
ments can be adversely affected by residual camera move-
ment. Higher extract rates provide a smoothing of the tra-
jectories, averaging particle motion over a greater distance.
This makes the process more robust, and greater confidence
can be placed on the resultant values. However, trajectory
numbers will be reduced, and a higher degree of spatial av-
eraging will occur. In most instances, values of between 0.5

and 2 s are generally appropriate. The block size determines
the interrogation area during the feature tracking process.
As KLT-IV employs a pyramidal scheme and tracks features
frame by frame, analysis is relatively insensitive to this value
provided the frame rate is sufficiently high (i.e. < 5 fps) and
pixel ground sampling distance of the order of decimetres or
less. The minimum block size value is 5 px, and a default
value of 31 px proves sufficient for most deployments. Dur-
ing the determination of features to track, features present
close to the edges of the video (outer 10 %) can either be
ignored or included in the analysis. If using a camera with
significant levels of distortion (e.g. DJI Phantom 2 Vision+),
it is recommended that the edges are ignored as residual dis-
tortion may persist, thereby negatively affecting the results

Geosci. Model Dev., 13, 6111–6130, 2020 https://doi.org/10.5194/gmd-13-6111-2020



M. T. Perks: KLT-IV: image velocimetry software 6117

(Perks et al., 2016). In the present version of the software the
velocity magnitude is provided in metres per second, along
with the X and Y components as defined by spatial orienta-
tion of the GCPs.

2.2.3 Ground control

Ground control points may be used to transform the infor-
mation within the imagery from pixel scale to metric scale
i.e. to establish how distances between pixels relate to real-
world distance. To achieve this, the physical locations [X, Y,
Z] of ground control points (GCPs) within the image are re-
quired. The locations of the GCPs can be input in one of sev-
eral ways. If the pixel coordinates are known, these can be
manually input into the table within the GUI, ensuring that
pixel indices are appropriately referenced with [0, 0] corre-
sponding to the upper left corner of the image. Alternatively,
if the data are already saved in a spreadsheet (.csv format),
this can be loaded directly using the file selection dialogue
box. The format should match that of the GUI table (includ-
ing headers). Finally, if the pixel locations are not yet known,
these can be selected directly from the image. If “Dynamic:
GCPs” is selected as the orientation, GCPs are tracked it-
eratively between frames. If GCPs are difficult to visually
identify (and therefore difficult to track), it may be beneficial
to enable the “Check GCPs” option. This enables the user
to manually check the location of the GCPs and offers the
option to add additional GCPs should they come into view
during the video. The GCP data can also be exported as a
.csv file for easy import in future. It is recommended that a
minimum of six GCPs are defined in this process. Next the
user defines the spatial extent (field of view – FOV) of the
images. This can either be defined as a buffer around the ini-
tial GCPs or can be defined explicitly. For example, if a GCP
buffer of 10 m is used (default), orthophotos will be gener-
ated that extend 10 m beyond the GCP network. Conversely,
if a custom FOV is defined, orthophotos will be generated for
this specified area. This input is required even if orthophotos
are not exported (see Sect. 2.2.4). Finally, the user is required
to provide the water surface elevation (WSE) in metres. This
should be provided in the same coordinate system as the cam-
era and the GCPs. For example, if the camera is located at an
elevation of 10 m and the imaged water surface is located 7 m
below, the water surface elevation would be defined as 3 m.

2.2.4 Analysis

The configuration of the outputs is specified in the “Analy-
sis” section (Fig. 3). The location where the outputs are to be
stored is defined using the pop-up dialogue box. The region
of interest (ROI) is manually provided by drawing a polygon
around the area which defines areas within the image where
velocity measurements will be calculated. Features tracked
outside of the ROI are not stored during the analysis. This is
an optional input; if this is not provided, then the extent will

match the area defined by the GCP buffer or custom FOV as
specified in ground control. The exception to this is if “Dy-
namic GCPs + Stabilisation” or “Dynamic Stabilisation” is
selected, in which case the ROI is required. For these two
configurations, the area defined as being outside of the ROI
(outside of the polygon) is used to stabilise the image se-
quence. It is therefore important that there is no actual move-
ment outside of the polygon when using these configurations.
There is an option to export the velocities of the tracked parti-
cles as a .csv file. Orthophotos may also be generated for the
frames at the beginning and end of each tracking sequence.
The user can define the resolution of the orthophotos that are
generated (up to a maximum of 180 million cells, equivalent
to an area of 134× 134 m2 at a resolution of 0.01 m px−1).
If this area is exceeded, the resolution will automatically be
scaled by a factor of 2 (or multiples thereof) until below this
threshold. The user can also specify whether they wish to vi-
sualise the estimated movement of the platform (when “Dy-
namic: GCPs” is selected) and whether they would like to
plot the particle trajectories. Finally, it is possible to export
and load the application settings for future use, and these are
saved to the output location.

Upon selecting “RUN”, the analysis begins. Firstly, in the
case of configurations using GCPs, a camera model is cre-
ated and optimised using the GCP information provided. An
RMSE of the GCP re-projection error is provided along with
a visualisation of the precision of the orthorectification pro-
cess. If the solution is poorly defined, the user may halt the
process at this stage and provide inputs that better describe
the camera [X, Y, Z, view direction] and/or GCPs before
re-running. The user is also provided with the opportunity
to limit the analysis to a specific number of seconds of the
video. Processing is undertaken on the video, and updates
on the progress are provided within the GUI. A complete
overview of the processes undertaken for each configuration
is provided in Fig. 3. Any exports that the user chooses will
be saved in the defined output location. Orthophotos are ex-
ported as greyscale .jpg at the defined pixel resolution, and
velocity outputs are exported as a .csv file. The velocity out-
put includes the starting location of tracking (X, Y), the ve-
locity magnitude, and the X and Y flow components which
are within the same orientation as the GCP survey. The es-
timated movement [X, Y, Z] of the platform is also shown
if selected. Successfully tracked features and their trajecto-
ries are displayed within the specified ROI, and the user may
choose how many features to plot. For an overview, 10 000
features is usually sufficient, but this may be increased to
100 000+ if more detail is required. However, as the number
of features selected to display increases so does the demand
on the PC memory (RAM). Following successful comple-
tion of the analysis and export of the selected outputs, the
user may continue through to the “Discharge” section of the
workflow and determine the river discharge.
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Figure 2. Workflow for Sect. 1–3 of KLT-IV v1.0. Different workflow scenarios are provided based on the choice of camera orientation.
Letters correspond to the orientation defined in Table 1. Grey, yellow, and green colours relate to items within the (1) video inputs, (2) settings,
and (3) ground control sections respectively. Notes: either the GCP buffer [1] or custom FOV [2] should be provided.

2.2.5 Discharge

The input of a known cross section is required in order to
compute the river discharge. This can be provided in one of
two ways. Firstly, if the cross-section data have the same spa-
tial reference as the camera location/GCP data, then a “Ref-
erenced survey” can be selected. This method enables the
user to input the known locations of each survey point in the
cross section. This is most likely to be appropriate when the
same method is used for surveying the GCPs and cross sec-
tion (e.g. survey conducted using a differential GPS device
exported into a local coordinate system). Secondly, if mea-
surements of the cross section were made at known inter-
vals from a known starting and finishing position that can be
identified from within the video footage, the option “Rela-
tive distances” may be selected. In selecting the latter option,
the first frame of the video is displayed, and the user is in-
structed to choose the start and stop of the surveyed cross
section. Next, the user may define the survey data as being
either (i) true bed elevation or (ii) water depth. In the former,

the actual bed elevation is provided, whereas in the latter the
absolute water depth is provided. The user is then instructed
to load the .csv file containing the survey data. In the case of
a referenced survey, the columns should be [X, Y, Z/Depth]
(including a header in the first row), whereas in the case of
relative distances the .csv should be in the format [Chainage,
Z/Depth]. Each measurement along the transect is treated as
a node for which a paired velocity measurement is assigned.
The user provides a “search distance”, which is a search ra-
dius around each node. Using the velocities found within this
search radius, the median is stored. In parts of the channel
where no features are tracked or visible, it may be necessary
to interpolate between or extrapolate beyond measurements.
This can be achieved in one of three ways:

– (i) Quadratic (second-order) polynomials work well
where peak velocities occur in the centre of the chan-
nel and decrease symmetrically towards both banks.
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Figure 3. Workflow for Sect. 4 of KLT-IV (shown in blue) and an outline of the image processing routine used in the determination of
velocity magnitudes. Capitalised letters in square brackets correspond to the orientation defined in Table 1. Dashed icons represent optional
inputs/outputs, which are dependent on the settings provided in Sect. 1–4. Red icons represent user inputs which are prompted once the
“RUN” button has been pushed.
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– (ii) Cubic (third-order) polynomials work well where
flow distribution is asymmetrical or secondary peaks are
present.

– (iii) The constant Froude method – the Froude number
(Fr= V/

√
gD) (Le Coz et al., 2008; Fulford and Sauer,

1986) – is calculated for each velocity and depth pair-
ing, with this function being used to predict velocities
in areas where no features are tracked. This approach
may be particularly beneficial when the flow distribu-
tion does not conform to (i) or (ii).

Finally, an alpha value needs to be provided. This is the ra-
tio used to convert the measured surface velocities to depth-
averaged velocity, which is then used in the calculation of
discharge. A default value of 0.85 is generally appropriate if
no supplementary data are available to inform the user (see
Sect. 1.3 for more information).

2.3 Case study descriptions

Within the following sections, descriptions are provided of
two example case studies where footage has been acquired
for image velocimetry purposes. These field sites are located
in the UK with footage acquired during low- and high-flow
conditions using fixed cameras and mobile platforms (UAS).
A presentation of the processing times for analysis of the
videos is provided in Appendix B.

2.3.1 Case study 1: river Feshie, Scotland

The river Feshie, in the Highlands of Scotland, is one of the
most geomorphologically active rivers in the UK. The head-
waters originate in the Cairngorm National Park at an eleva-
tion of 1263 m above the Newlyn Ordnance Datum (AOD)
before joining the river Spey at an elevation of 220 m AOD.
Approximately 1 km upstream of this confluence is a Scot-
tish Environmental Protection Agency (SEPA) gauging sta-
tion (Feshie Bridge). This monitoring station at the outlet of
the 231 km2 Feshie catchment is a critical but challenging
location for the measurement of river flows. The channel is
liable to scour and fill during high-flow events, and the nat-
ural control is prone to movement in moderate to extreme
spates.

At this location, a Hikvision DS-2CD2646G1-IZS
AcuSense 4MP IR Varifocal Bullet Network Camera has
been installed for the primary purpose of using the acquired
footage to compute surface velocities using image velocime-
try techniques. The camera has a varifocal lens, which was
adjusted to optimise the FOV captured by the camera. Cam-
era calibration was therefore undertaken at the site following
installation. The camera captures a 10 s video at a frame rate
of 20 Hz and resolution of 2688 px× 1520 px every 15 min.
Ground control points and river cross sections have been sur-
veyed using a Riegl VZ4000 terrestrial laser scanner and Le-
ica GS14 GPS. Between 30 August and 2 September 2019, a

high-flow event occurred on the river Feshie, and the footage
acquired from the fixed camera is used here to illustrate the
functionality of KLT-IV. The processing workflow for this
footage acquired from a fixed monitoring station follows the
“Stationary: GCPs” approach.

In addition to the fixed camera footage, a DJI Phantom 4
Pro UAS was flown at an elevation of approximately 20 m
above the water surface during the rising limb of the hy-
drograph and at the peak river stage. These videos were
acquired at a resolution of 4096 px× 2160 px at a frame
rate of 29.97 fps. The footage was acquired with the cam-
era at 21–31◦ from nadir, and video durations of between
30 s and 2 min are selected for analysis. Two processing op-
tions could be considered for the specific site/flight charac-
teristics: (i) “Dynamic: GCPs + Stabilisation” or (ii) “Dy-
namic: GCPs”. In using (i), image stabilisation would first
be carried out before orthorectification, under the assump-
tion that stabilisation results in a consistent image sequence,
whereas in (ii) ground control points would be identified and
tracked throughout the image sequence, enabling platform
movement to be accounted for. The main limitation for op-
tion (i) is that the banks of the channel are heavily vege-
tated with variations in elevations of up to 10 m. The use of
features at different elevations for stabilisation negates the
assumption of a planar perspective (Dale et al., 2005), and
features may appear to move at different rates or directions,
and this may be enhanced by the off-nadir perspective of the
camera (Schowengerdt, 2006). However, in the case of (ii),
GCPs are clearly visible and distinctive across both sides of
the channel for the duration of the video. Therefore, these
GCPs may be selected and automatically tracked throughout
the image sequence. This information would then be used
to automatically correct the displacement of features on the
water surface for movement of the UAS platform. For the
reasons outlined above, option (ii) was chosen for analysis
of this case study.

2.3.2 Case study 2: river Coquet, England

The middle reaches of the river Coquet at Holystone in the
north-east of England, UK, are located 25 km downstream
from the river’s source in the Cheviot Hills, draining a catch-
ment area of 225 km2. This is a wandering gravel-bed river
with a well-documented history of lateral instability (Charl-
ton et al., 2003). On 22 March 2020, during a period of low-
flow, a DJI Phantom 4 Pro UAS undertook a flight to acquire
imagery along the long profile of the river. The video footage
was acquired at a resolution of 2720 px× 1530 px and a
frame rate of 29.97 fps. Prior to the flight, an Emlid Reach
RS+ GPS module was set up nearby to obtain baseline GPS
data, and the UAS was equipped with an Emlid M+ GPS sen-
sor. Both the base and UAS-mounted GPS acquired L1 GPS
data at 14 Hz, and the base station data were used to correct
the UAS-mounted GPS logs (i.e. providing a post-processed
kinematic (PPK) solution). This enabled the precise position
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of the UAS to be determined throughout the flight. Taking
advantage of this approach, the platform was used to traverse
the river corridor at a height of 46 m above the water sur-
face. The way points of the pre-planned route were uploaded
to the drone using flight management software and the route
automatically flown at a speed of 5 km h−1. Given the GPS
sampling rate and flight speed, the UAS location was logged
10 times for every 1 m travelled. Synchronisation between
the video and GPS was ensured through the mounting of ad-
ditional hardware. Each time a video begins recording on the
DJI Phantom 4 Pro, the front LEDs blink and this was de-
tected using a phototransistor. This event was then logged by
the GPS providing a known time that recording began. Tim-
ing offsets are also accounted for in this process. Following
the flight, inertial measurement unit (IMU) data were down-
loaded from the UAS. In the case of the DJI Phantom 4 Pro,
this is logged at 30 Hz and is used to determine the camera
orientation during the flight. The process is based upon the
assumption that the camera is focussed at nadir and that the
camera gimbal accounts for deviation in the platform pitch.

3 Results

3.1 Case study 1: river Feshie, Scotland

Upon analysis of 10 videos acquired from the fixed camera,
as well as 4 videos acquired from the UAS, flows are recon-
structed for a river stage ranging from 0.785 to 1.762 m, on
both the rising and falling limb of the hydrograph. Analy-
sis of the footage acquired from the UAS and fixed camera
enables the generation of a well-defined rating curve relat-
ing river stage to flow, with deviations between reconstructed
discharge of 4 % and 1 % in the case of a river stage of 1.762
and 1.518 m respectively.

Analysis of each UAS video generated over 1 million
within-channel trajectories, of which 20 % are shown in the
examples within Fig. 5. Velocity magnitudes of individual
trajectories are presented using a linear colour map with
points falling outside of the lower 99th percentile being plot-
ted in black. The plots in Fig. 5 are examples of KLT-IV out-
puts for videos acquired at the peak stage in the observed
high flow event on 30 August. At this time, peak surface ve-
locities approximated 4 m s−1 across the central portion of
the channel, decreasing asymmetrically towards the banks.
Figure 5a and b represent the outputs generated from the
UAS, whereas panels (c) and (d) represent those from the
fixed camera. Due to the vegetated channel boundaries, the
UAS was unable to image the flow on the right bank, re-
sulting in approximately 6.5 m of the water surface requir-
ing extrapolation. However, the main body of flow was suc-
cessfully captured with no interpolation required. The cu-
bic extrapolation replicates the cross-section flow dynamics
well, resulting in just a slight step between the observed and

Figure 4. Stage–discharge rating curve developed for the river Fes-
hie following image velocimetry analysis using KLT-IV v1.0. The
rating curve (grey solid line) is an empirical function with least-
squares optimisation of two parameters with the value of 0.2780
representing the stage of zero flow. The dashed lines represent the
95 % confidence intervals of the rating curve coefficients. River
discharge observations produced using the fixed camera are indi-
cated by black circles, whereas the UAS-derived observations are
indicated by red crosses. Note: the stage [m] values are consistent
with the WSE input when using the videos acquired with the UAS,
whereas the WSE inputs associated with the fixed camera are offset
by +232.1755 m relative to the stage presented here.

predicted velocities. The computed discharge using the UAS
was 82.11 m3 s−1 at a stage of 1.762 m.

At the same time, the fixed camera recorded a 10 s video
with the results illustrated in Fig. 5c and d. In contrast to
the 1 million within-channel trajectories obtained using the
UAS (over 60 s), 7433 within-channel trajectories were re-
constructed, with the vast majority being detected in the cen-
tral, fastest flowing part of the channel. As a result of the
reduced number of trajectories, some interpolation, as well
as extrapolation, to both banks is required. However, the cu-
bic function again clearly replicates the general flow distri-
bution. The lack of trajectories obtained on the left bank
may be caused by the camera poorly resolving the features
in the near-field, proximal of the camera. Conversely, at the
far (right) bank, there are few detectable features in the video,
and the ground sampling distance of the camera pixels will
be relatively low. The peak surface velocities are in excess of
4 m s−1, which are converted to a maximum depth-averaged
velocity of approximately 3.5 m s−1. Using the fixed cam-
era, the computed discharge was 85.38 m3 s−1 at a stage of
1.762 m. Despite the comparable discharge outputs gener-
ated by the fixed camera and UAS, some visual differences
in the velocity profiles are apparent. Most notably, the ve-
locity profile generated using the UAS footage is smoother
and produces a more complete profile (with the exception
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Figure 5. KLT-IV example outputs for the river Feshie at a river stage of 1.762 m using a DJI Phantom 4 Pro unmanned aerial system
(UAS) (a, b) and a fixed Hikvision camera (c, d). The reconstructed discharge was 82.11 and 85.38 m3 s−1 for the UAS and fixed platform
respectively. Panels (a) and (c) illustrate the trajectories and displacement rates of objects tracked on the river surface. Features were tracked
for a period of 1 and 0.5 s for (a) and (c) respectively. Panels (b) and (d) illustrate the depth-averaged velocity for the river cross section.
Black points indicate observations whereas red points indicate nodes of interpolation/extrapolation.

of the area of flow close to the right bank which is out of
shot). Several factors may influence this. Firstly, as the du-
ration of the UAS footage is 6 times longer than the fixed
camera, a greater number of features are detected and tracked
throughout the sequence, and unsteady flow is therefore av-
eraged over a longer time frame. Secondly, the water surface
of the river is not planar, which is a necessary assumption
of the software. Localised variations in the water height (e.g.
breaking waves, moving waves) may have an influence on
the direction and also the magnitude of the reconstructed tra-
jectories. This will have a greater effect in the fixed camera
footage due to the oblique angle of video capture.

An illustration of how the generated outputs vary with
changes to user-defined settings of extract rate (s) and block
size (px) is demonstrated for a selection of the fixed videos
acquired at the Feshie monitoring station (Appendix C).

Generally, varying these two parameters results in relatively
small changes to the velocity profile, with the mean values
of the reconstructed velocity profile ranging 0.89–0.94 m s−1

(Video 8), 1.18–1.29 m s−1 (Video 2), and 1.68–1.80 m s−1

(Video 6). In each of these examples, the selection of a broad
range of input settings resulted the cross-sectional average
velocity varying by less than 10 %. Of note, however, is
that deviations in the velocity profile are most sensitive to
changes in these parameters in the near-field where features
may transit the scene rapidly and the far field where features
are difficult to resolve.

3.2 Case study 2: river Coquet, England

A 125 s flight of the river Coquet generated 3746 sequen-
tial images spanning a long-profile distance of 180 m. Upon
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Figure 6. UEN indicates how the location of individual GCPs varies
relative to the central position of the GCP throughout the stabilised
image sequence. Time-averaged results are presented (a) in the form
of box plots with UEN indicating the distance (px) of GCPs in in-
dividual frames relative to the central position of the GCP. The lo-
cations of GCPs were manually determined for every 10th frame in
the stabilised image sequence. The variation of the GCP locations
over time, relative to the central position, is provided in (b). Line
colours are consistent with the GCP numbers provided in (a).

orthorectification of the imagery using Emlid M+ GPS and
UAS IMU data, image sequences were coarsely aligned. To
further reduce the registration error of the imagery, frame-to-
frame stabilisation was employed. Following this, the root-
mean-square error of the ground control point locations was
3.25 px (i.e. 6.5 cm). For GCPs 1, 2, and 4, the median dis-
tance between the location of individual GCPs relative to the
central position of the GCP (UEN) is below 2 px, with the
highest median error reported for GCP 3 (4.5 px) (Fig. 6).
The interquartile range across GCPs is broadly stable, being
less than 2.3 px for all except GCP 3, which has an interquar-
tile range of 5.7 px. Individual GCPs are kept within the FOV
for a minimum of 26 s through to a maximum of 60 s. These
findings indicate that the pixel locations of the GCPs are gen-
erally stable over time and that the reconstruction is geomet-
rically consistent: features that appear in a certain location
appear in the same location in all predictions where they are
in view (Luo et al., 2015).

This stabilised imagery was subsequently used for im-
age velocimetry analysis. This yielded a total of 19 million
tracked features, of which 5 % are displayed in Fig. 7. Ve-
locity magnitudes of individual trajectories are presented us-
ing a linear colour map with points being displayed if they
lie within the lower 99.99th percentile. The vast majority of
tracked features exhibit negligible apparent movement, with
a median displacement of 0.01 m s−1, as would be expected
given the significant areas of vegetated surfaces imaged by
the UAS. The interquartile range of measurements spans

0.008–0.02 m s−1. The data are positively skewed (s = 10.4)
as a result of the majority of the identified features repre-
senting static areas of the landscape (i.e. features beyond the
extent of the active channel), with the long tail of the distribu-
tion representing areas of motion. A total of 25 % of tracked
features exhibit a velocity in excess of 0.2 m s−1. These are
predominantly located within the active channel margins, al-
though a cluster of points is also evident to the lower-left cor-
ner of Fig. 7. Whereas trajectories plotted within the main
channel represent detected motion of the water surface, the
movement to the lower-left represents apparent motion of
vegetation. These elements of the landscape were not used
in the stabilisation process due to the treetops being at a
significantly different elevation from the river channel. This
apparent motion therefore illustrates the way in which parts
of the image of different elevations can generate differential
displacement rates (as discussed in Sect. 2.3.1). Maximum
velocities within the main channel approximate 1 m s−1 to-
wards the lower extent of the FOV. Within this part of the
river reach, the active width narrows and depth does not
appreciably increase, therefore resulting in the localised in-
crease in velocity magnitude.

4 Discussion

KLT-IV offers a flexible PTV-based approach for the deter-
mination of river flow velocity and river discharge across
a range of hydrological conditions. The software offers the
user a range of options that may be chosen depending on the
site conditions, environmental factors at the time of acquisi-
tion, and the desired outputs. Platform movement can be ac-
counted for through the use of either ground control points or
features that are stable within the FOV. These approaches are
consistent with workflows provided in other image velocime-
try software packages. However, additional features are also
provided. KLT-IV offers the user the opportunity to deter-
mine river flow velocities without the presence of ground
control points. For example, under the assumption that the
camera is at nadir, the camera model is selected, and the sen-
sor height above the water surface is known, flow velocities
can be determined. This has the potential to be used for op-
portunistic flow gauging from a bridge or using UAS plat-
forms where the platform is stable, camera is at nadir, and
ground control points are not visible. This may be particu-
larly useful for wide river cross sections or where surveying
of ground control points is problematic. It is also possible
for workflows to be combined. For example, in the situa-
tion where UAS-based footage has been acquired at nadir,
an initial analysis could be achieved using the “Stationary:
Nadir” approach, which would provide an estimate under the
assumption that the platform is stable. If, however, move-
ment in the platform does occur, the orthorectified footage
could be subsequently analysed using the “Dynamic: Stabil-
isation” approach to address any movement in the platform.
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Figure 7. KLT-IV v1.0 outputs illustrating the apparent velocities of features within the river corridor of the river Coquet (UK) following
analysis using differential GPS and IMU data to orthorectify the imagery prior to stabilisation and image velocimetry analysis.

These approaches have the potential to streamline the data
acquisition procedure for image velocimetry analysis under
conditions where image velocimetry measurements may be
problematic (e.g. during flood flow conditions where site ac-
cess is limited).

Within KLT-IV, a novel approach of integrating external
sensors (namely GPS and IMU data) has the potential to ex-
tend the adoption of image velocimetry approaches beyond
the local scale and enable reach-scale variations in hydraulic
processes to be examined. Navigating a UAS platform for
several hundreds of metres (and potentially kilometres) for
the purposes of acquiring distributed longitudinal velocity
measurements has several applications including the map-
ping and monitoring of physical habitats (Maddock, 1999),
for the calibration and validation of hydraulic models in ex-
treme floods, and quantification of forces driving morpholog-
ical adjustment (e.g. bank erosion). However, this approach
does require further testing and validation. As outlined by
Huang et al. (2018), the reliance on sensors to determine the
three-dimensional position of a UAS platform at the instance
when measurements (e.g. images) are acquired can be af-
fected by the time offset between instruments, the quality of
the differential GPS data, the accuracy of the IMU, and abil-
ity of the camera gimbal to account for platform tilt and roll.
However, when using a UAS for image velocimetry analysis,
the requirement of low speeds (e.g. 5 km h−1) will diminish
the influence of timing discrepancies (e.g. between camera
trigger and GPS measurement) on positional errors. For ex-

ample, an unaccounted time offset of 15 ms would equate
to a positional error of 0.021 m assuming a flight speed of
5 km h−1, a value within the tolerance of most differential
GPS systems. More precise orthophotos could be generated
using IMU and GPS devices with higher sensitivity, but this
would come at increased cost (Bandini et al., 2020). To over-
come potential hardware limitations, the proposed GPS +
IMU workflow utilises stable features within the camera’s
FOV to account for positional errors, and this has resulted in
the generation of geometrically consistent image sequences
for use within an image velocimetry workflow (Fig. 7). How-
ever, the transferability of this approach should be the subject
of further research and testing across a range of conditions
(e.g. higher density and diversity of vegetation cover). In in-
stances where the GPS+ IMU data alone (i.e. without stabil-
isation) produce sufficiently accurate orthophotos, the gener-
ated orthophotos may be subsequently used with the “Dy-
namic: Stabilisation” orientation, which would eliminate the
need for the stabilisation routine and the requirement of the
user identifying stable features within the frame sequence.
Finally, this approach operates under the assumption that the
distance between the camera and water surface is consistent
throughout the footage. Whilst this approximation may hold
for relatively short sections or river reaches with shallow gra-
dients, this may become problematic when the surface slope
is considerable and/or the surveyed reach is sufficiently long.
An alternative solution for ensuring that the distance between
the UAS and water surface remains constant over time may
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be to use flight planning software (e.g. Fly Litchi mission
planner). This would enable the user to define the altitude
of the flight above the earth’s surface (as defined by a digi-
tal elevation model), rather than above the elevation at take-
off. However, in this instance, the GPS log would need to be
modified to ensure the recorded GPS height was constant and
that this value minus the specified WSE corresponds with the
known flight height above the water surface.

5 Challenges and future development

As KLT-IV utilises a particle tracking scheme, detection and
tracking of individual features is contingent on the ground
sampling distance (GSD) of the images being appropriate
for the features being tracked. This is largely governed by
distance between the camera and the ROI, image size, sensor
size, and the camera focal length. Processing errors may en-
sue where the sizes of the surface features being detected and
tracked are smaller than the GSD. In this instance, the sub-
pixel location of the feature (corner) may be erroneously as-
signed. This issue is likely to be most pervasive during high-
altitude UAS deployments when individual features may be
difficult to resolve. Users may therefore find the use a ground
sampling distance calculator beneficial to check that cam-
era and flight settings are optimised to acquire footage of
sufficiently high resolution (e.g. Pix4D, 2020). In instances
where individual surface features cannot be resolved, cross-
correlation methods may be more robust provided that a
sufficient number of features are homogeneously distributed
across the flow field.

For optimal results, particles should be continuously visi-
ble across the ROI and throughout the duration of the video.
An assessment of the role of seeding densities and clus-
tering on the performance of KLT-IV has yet to be under-
taken. However, a recent benchmarking exercise undertaken
with high seeding densities indicated that the performance of
KLT-IV was comparable to reference measurements (Pearce
et al., 2020). Furthermore, image illumination levels should
be as consistent as possible across the ROI. In instances
where differential illumination levels are present, image pre-
processing may be beneficial (see Sect. 1.3). This will limit
the potential for changes to the intensity values of features
(pixels) being tracked (Altena and Kääb, 2017).

When using PTV-based approaches, it is common for tra-
jectory filtering to be undertaken in order to eliminate the
influence of tracked features that do not accurately repre-
sent movement of the free surface (e.g. Tauro et al., 2018;
Lin et al., 2019; Eltner et al., 2020). Erroneous reconstruc-
tions of the flow field may be caused by environmental fac-
tors including, but not limited to, the presence of a visible
river bed causing near-zero velocities, differential illumina-
tion, hydraulic jumps, and standing waves. This may also oc-
cur as a result of processing errors such as the use of inaccu-
rately defined ground control points or a poorly stabilised im-

age sequence. As KLT-IV does not currently have the option
to filter trajectories, it may be possible for spurious vectors
to negatively affect the generated outputs. In these instances
the user may choose to filter the velocity outputs from within
the exported .csv file using their own criteria.

Following presentation of the current limitations of KLT-
IV, further development of the software is planned, which
will do the following: (i) embed a suite of image pre-
processing methods, (ii) enable post-processing (filtering) of
the feature trajectories to eliminate spurious velocity vectors,
(iii) provide additional feature detection approaches (e.g.
FAST, SIFT) for improved flexibility, and (iv) provide the
option of analysing multiple videos (e.g. from a fixed mon-
itoring station) to facilitate the generation of time series of
river flow observations. This processing will be possible us-
ing the user’s local machine and also enable the user to trans-
fer footage to the Newcastle University High Performance
Computing cluster and file sharing system for remote analy-
sis.

6 Conclusions

KLT-IV v1.0 software provides an easy-to-use graphical in-
terface for sensing flow velocities and determining river dis-
charge in river systems. The basis for the determination of
flow rates is the implementation of a novel PTV-based ap-
proach to tracking visible features on the water surface. Ve-
locities can be determined using either mobile camera plat-
forms (e.g. UAS) or fixed monitoring stations. Camera mo-
tion and scaling from pixel to real-world distances is ac-
counted for using either ground control points, stable fea-
tures within the field of view, or external sensors (consist-
ing of differential GPS and inertial measurement unit data).
Conversely, if the platform is stable, scaling from pixel to
real-world distances may be achieved through the use of ei-
ther ground control points or by defining the known distance
between the camera and the water surface (when the cam-
era model is known and view at nadir). This flexibility offers
the user a range of options depending on the mode of data
acquisition. To illustrate the use of KLT-IV two case studies
from the UK are presented. In the first case study, footage
is acquired from a UAS and fixed camera over the dura-
tion of a high-flow event. Using this footage, a well-defined
flow rating curve is developed with deviations between the
fixed and UAS-based discharge measurements of the order
of < 4 %. In the second case study, a UAS is deployed to ac-
quire footage along a 180 m reach of river. Equipped with a
differential GPS sensor and travelling at a speed of 5 kmh−1,
video footage acquired over a period of 125 s is used to suc-
cessfully reconstruct surface velocities along the river reach
without the use of ground control points. These examples are
provided to illustrate the potential for KLT-IV to be used for
quantifying flow rates using videos collected from fixed or
mobile camera systems.
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Appendix A

List of acceptable video file formats.

.asf ASF file

.asx ASX file

.avi AVI file

.m4v MPEG-4 Video

.mj2 Motion JPEG2000

.mov QuickTime movie

.mp4 MPEG-4

.mpg MPEG-1

.wmv Windows Media Video

Appendix B

Table B1. Total processing time and typical memory utilisation of KLT-IV v1.0 when processing videos from the Feshie and Coquet case
studies. The settings used during processing are defined within the data repository (Perks, 2020). Tests were conducted using a Dell Latitude
7490 laptop running Windows 10, equipped with a four-core Intel i5-8350U CPU at 1.70 GHz and 16 GB RAM. Processing time primarily
increases as a function of the total number of frames analysed, the area (m2) imaged, and the number of features detected and tracked.
Memory utilisation primarily increases with the area (m2) imaged.

Duration Processing Peak memory
Case study analysed (s) time utilisation (GB)

Feshie: fixed camera, Video 1 10 12 min 2.6
Feshie: fixed camera, Video 2 10 14 min 2.6
Feshie: fixed camera, Video 3 10 13 min 2.6
Feshie: fixed camera, Video 4 10 14 min 2.6
Feshie: fixed camera, Video 5 10 12 min 2.6
Feshie: fixed camera, Video 6 10 13 min 2.6
Feshie: fixed camera, Video 7 10 12 min 2.6
Feshie: fixed camera, Video 8 10 15 min 2.6
Feshie: fixed camera, Video 9 10 13 min 2.6
Feshie: fixed camera, Video 10 10 13 min 2.6
Feshie: UAS, Video 01 30 1 h 46 min 3.1
Feshie: UAS, Video 02 55 3 h 17 min 2.8
Feshie: UAS, Video 03 62 3 h 48 min 3.1
Feshie: UAS, Video 04 61 3 h 38 min 2.6
Coquet: UAS, Video 01∗ 125 4 h 30 min 12.0

∗ Note: the processing times presented for the Coquet UAS video do not include the stabilisation and
geometric correction process.
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Appendix C

Figure C1. An illustration of the sensitivity of KLT-IV v1.0 to variations in main settings that can be defined by the user: (i) extract rate
(s) and (ii) block size (px). A number of setting combinations with extract rates varying between 0.2 and 1 s and block sizes ranging from
15 to 127 px are displayed. Outputs displayed are all based on footage acquired using the fixed camera at the river Feshie at river stages of
0.885 m (a), 1.204 m (b), and 1.762 m (c). These correspond with video numbers 8, 2, and 6 respectively in the data repository.
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Code availability. KLT-IV v1.0 is freely available to down-
load from https://sourceforge.net/projects/klt-iv/ (last access:
29 November 2020). During the installation of KLT-IV v1.0 an
active internet connection is required as the MATLAB 2019b
Runtime will be downloaded and installed, if not already present on
the operating system. Datasets used in the production of this article,
along with the settings adopted within KLT-IV v.1.0, can be down-
loaded at https://zenodo.org/record/3882254#.XuCwcUVKj-g
(last access: 29 November 2020). The DOI of the dataset is
https://doi.org/10.5281/zenodo.3882254 (Perks, 2020). A Google
Group has been established for the community of users to pose
questions and comments about the software at https://groups.
google.com/forum/#!forum/klt-iv-image-velocimetry-software
(last access: 29 November 2020).

The software can run on any of the following operating systems:
Windows 10 (version 1709 or higher), Windows 7 Service Pack
1, Windows Server 2019, or Windows Server 2016. The minimum
processor requirement is any Intel or AMD x86-64 processor. How-
ever, it is recommended that the processor has four logical cores
and AVX2 instruction set support. At least 3 GB of HDD space
is required. Minimum memory requirements are 4 GB, but 8 GB
is recommended. No specific graphics card is required; however,
a hardware-accelerated graphics card supporting OpenGL 3.3 with
1 GB GPU memory is recommended.
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