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Abstract. Fire is one of the primary disturbances to the
distribution and ecological properties of the world’s ma-
jor biomes and can influence the surface fluxes and climate
through vegetation–climate interactions. This study incorpo-
rates a fire model of intermediate complexity to a biophys-
ical model with dynamic vegetation, SSiB4/TRIFFID (The
Simplified Simple Biosphere Model coupled with the Top-
down Representation of Interactive Foliage and Flora Includ-
ing Dynamics Model). This new model, SSiB4/TRIFFID-
Fire, updating fire impact on the terrestrial carbon cycle ev-
ery 10 d, is then used to simulate the burned area during
1948–2014. The simulated global burned area in 2000–2014
is 471.9 Mha yr−1, close to the estimate of 478.1 Mha yr−1

in Global Fire Emission Database v4s (GFED4s), with a spa-
tial correlation of 0.8. The SSiB4/TRIFFID-Fire reproduces
temporal variations of the burned area at monthly to inter-
annual scales. Specifically, it captures the observed decline
trend in northern African savanna fire and accurately simu-
lates the fire seasonality in most major fire regions. The sim-
ulated fire carbon emission is 2.19 Pg yr−1, slightly higher
than the GFED4s (2.07 Pg yr−1).

The SSiB4/TRIFFID-Fire is applied to assess the long-
term fire impact on ecosystem characteristics and surface en-
ergy budget by comparing model runs with and without fire
(FIRE-ON minus FIRE-OFF). The FIRE-ON simulation re-
duces tree cover over 4.5 % of the global land surface, ac-
companied by a decrease in leaf area index and vegetation
height by 0.10 m2 m−2 and 1.24 m, respectively. The surface
albedo and sensible heat are reduced throughout the year,

while latent heat flux decreases in the fire season but in-
creases in the rainy season. Fire results in an increase in sur-
face temperature over most fire regions.

1 Introduction

Wildfire, whether natural or human-made, is one of the pri-
mary ecosystem disturbances and it plays a major role in the
terrestrial biogeochemical cycles and ecological succession
across spatial and temporal scales (Sousa, 1984; Bowman et
al., 2009). Every year in the dry season, wildfires burn about
400 Mha of land vegetated areas, leaving behind numerous
scars in the landscape (Giglio et al., 2013; Chuvieco et al.,
2016). Fires affect the climate through modification of wa-
ter, energy, and momentum exchange between land and at-
mosphere (Chambers and Chapin, 2002; Bond-Lamberty et
al., 2009) and can interact with monsoons by affecting at-
mospheric circulations (De Sales et al., 2016; Saha et al.,
2016). Fires are also important sources of global carbon,
aerosols, and trace gas emissions. Based on the latest satel-
lite estimates, global fires emit 1.5–4.2 Pg C yr−1 carbon, 7–
8.2 Pg C yr−1 CO2, and 1.9–6.0 Tg C yr−1 black carbon to
the atmosphere (Chuvieco et al., 2016; van der Werf et al.,
2017; Li et al., 2019). Fire emissions contribute to increases
in greenhouse gases and cloud condensation nuclei through
geochemistry processes (Scholes et al., 1996), affecting ra-
diative forcing, the hydrology cycle (Ward et al., 2012; Jiang
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et al., 2016; Hamilton et al., 2018), and air quality (van der
Werf et al., 2010; Johnston et al., 2012).

Since the early 2000s, fire models have been developed
within Dynamic Global Vegetation Models (DGVMs) to ex-
plicitly describe the burned area, fire emissions, and fire dis-
turbance on terrestrial ecosystems (Thonicke et al., 2001;
Venevsky et al., 2002; Arora and Boer, 2005; Thonicke et
al., 2010; Li et al., 2012; Pfeiffer et al., 2013; Lasslop et al.,
2014; Yue et al., 2014; Rabin et al., 2018; Burton et al., 2019;
Venevsky et al., 2019). These fire models have various lev-
els of complexity, from simple statistical models (SIMFIRE;
Knorr et al., 2016) to complicated process-based ones such
as SPITFIRE (Thonicke et al., 2010) and MC2 (Bachelet et
al., 2015). With increasing complexity, more fire processes
and fire characteristics are considered in fire models. In gen-
eral, current fire models broadly capture the global amounts
and spatial distribution of burned area and carbon emissions,
as compared to different observations. However, many em-
pirically determined parameters are included in the compli-
cated process-based models, which leads to large uncertain-
ties. There is no model that outperforms other models across
all fire variables (Hantson et al., 2020). Moreover, current fire
models have deficiencies in simulating the peak fire month,
fire season length, and interannual variability, as reported by
the Fire Model Intercomparison Project (FireMIP; Hantson
et al., 2020; Li et al., 2019). Most fire models show a 1–2
month shift in peak burned area and simulate a longer fire
season compared to observations.

Fire models have been used to reconstruct fire history be-
fore the satellite era (Yang et al., 2015; van Marle et al., 2017;
Li et al., 2019). In addition, they are widely used to attribute
historical variability of burned area to various climate and
anthropogenic driving factors (Kloster et al., 2012; Andela
et al., 2017; Forkel et al., 2019; Teckentrup et al., 2019).
Some fire models have been used to assess long-term fire im-
pact on the terrestrial carbon cycle by comparing a reference
simulation with fire and a sensitivity simulation representing
“a world without fire”. However, the simulated responses of
vegetation and carbon cycle are divergent. Bond et al. (2005)
reported that forest cover would double in a world without
fire, while in the recent fire-coupled DGVMs, a much smaller
tree cover reduction by 10 % (ranges between 3 % and 25 %)
is simulated when fire is taken into account (Lasslop et al.,
2020). Earlier model-based studies reported that fire reduced
terrestrial carbon uptake. However, the range of the quan-
tified reduction was fairly broad (0.05–3.60 Pg C yr−1), and
most studies did not consider the fire effects on vegetation
distribution and related mechanisms (Li et al., 2014; Yue et
al., 2015; Poulter et al., 2015; Yang et al., 2015; Seo and Kim,
2019; Zou et al. 2020).

Thus far, only the fire model developed by Li et al. (2012,
2013) has been used to investigate the long-term fire effects
on surface energy. By comparing the simulated climate with
and without fire, Li et al. (2017) concluded that fire caused
a significant decrease in surface radiation, latent heat, and

a slight decrease in sensible heat fluxes through changes in
biophysical properties such as albedo, Bowen ratio, and aero-
dynamic resistance. An increase in surface temperature was
found over most fire regions. However, the long-term fire im-
pact on vegetation distribution was not taken into account in
Li et al. (2017), which has been widely observed on site-level
studies (Higgins et al., 2007; Smit et al., 2010) and can cause
substantial changes in aerodynamic resistance due to conver-
sions of dominant plant functional type (PFT) (Huang et al.,
2020b). Moreover, Li et al. (2017) focused on the annual fire
impact on energy fluxes. However, fire’s effects on energy
budget can have large seasonal variations associated with the
vegetation loss during the fire seasons and vegetation recov-
ery during post-fire rainy seasons. The seasonal variations in
fire effects have not been investigated in any fire studies.

In the original SSiB4/TRIFFID, the carbon disturbance
caused by fire and insects was assumed to be a constant,
which depended solely on PFT without spatial and tempo-
ral changes (Cox et al., 2001; Liu et al., 2019). However,
the fire disturbance is varies greatly with climate, vegeta-
tion productivity, and socioeconomic conditions, which has
a strong influence on vegetation dynamics, carbon cycling,
and soil processes. In this study, we develop the fire mod-
eling by incorporating the fire scheme of Li et al. (2012,
2013) to SSiB4/TRIFFID (hereafter, SSiB4/TRIFFID-Fire).
The SSiB4/TRIFFID-Fire model updates fire-induced carbon
loss every 10 d, which has been rarely employed in current
process-based fire models, and is used to provide a quanti-
tative assessment of fire impact on ecosystem characteristics
and surface energy at subseasonal, seasonal, interannual, and
long-term scales. Specifically, our objectives are (1) to evalu-
ate the climatology and interannual variability of burned area
and carbon emissions simulated by offline SSiB4/TRIFFID-
Fire, (2) to assess the ability of SSiB4/TRIFFID-Fire in cap-
turing the fire seasonality in major fire regions, and (3) to
assess the long-term fire impact on PFT distribution and veg-
etation properties and the resultant changes in seasonal sur-
face energy budget and temperature. In Sect. 2, we provide
a brief description of the DGVM, SSiB4/TRIFFID; the fire
model, taken from Li et al. (2012, 2013); and the coupling
procedures. The experimental design and data for model in-
put and validation are introduced in Sect. 3. The fire model
evaluation on a global scale and the application of long-term
fire impact on ecosystem characteristics and surface proper-
ties are presented in Sect. 4. Discussions and conclusions are
given in Sect. 5.

2 Method

2.1 Land and vegetation model

The Simplified Simple Biosphere Model (SSiB, Xue et al.,
1991; Zhan et al., 2003) is a biophysical model which sim-
ulates fluxes of surface radiation, momentum, sensible and
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latent heat, runoff, soil moisture, surface temperature, and
vegetation gross and net primary productivity (GPP and
NPP) based on energy and water balance. The SSiB was
coupled with a dynamic vegetation model, the Top-down
Representation of Interactive Foliage and Flora Including
Dynamics Model (TRIFFID), to calculate leaf area index
(LAI), canopy height, and PFT fractional coverage accord-
ing to the carbon balance (Cox, 2001; Zhang et al., 2015;
Harper et al., 2016; Liu et al., 2019). We have improved
the PFT competition strategy and plant physiology processes
to make the SSiB4/TRIFFID suitable for seasonal, interan-
nual, and decadal studies (Zhang et al., 2015; Liu et al.,
2019). SSiB4/TRIFFID includes seven PFTs: (1) broadleaf
evergreen trees (BET), (2) needleleaf evergreen trees (NET),
(3) broadleaf deciduous trees (BDT), (4) C3 grasses, (5) C4
plants, (6) shrubs, and (7) tundra. The coverage of a PFT is
determined by net carbon availability, competition between
species, and disturbance, which implicitly includes mortal-
ity due to fires, pests, and windthrow. A detailed description
and validation of SSiB4/TRIFFID can be found in Zhang et
al. (2015) and Liu et al. (2019).

2.2 Fire model and modifications

In this study, a process-based fire model of intermediate
complexity has been implemented in the SSiB4/TRIFFID,
called SSiB4/TRIFFID-Fire. The fire model developed by
Li et al. (2012, 2013) was first built on the model platform
of CLM-DGVM and has been incorporated in IAP-DGVM
(Zeng et al., 2014), CLM4.5 (Oleson et al., 2013), CLM5
(Lawrence et al., 2019), LM3 in Earth system model GFDL-
ESM (Rabin et al., 2018; Ward et al., 2018), AVIM in Cli-
mate System Model BCC-CSM (Weiping Li, personal com-
munication, 2016), E3SM Land Model (ELM; Ricciuto et al.,
2018), NASA GEOS catchment-CN4.5 model (Zeng et al.,
2019), and DLEM (Yang et al., 2014), and it has been partly
used in GLASS-CTEM (Melton and Arora, 2016). The fol-
lowing briefly describes the fire schemes adapted from Li et
al. (2012, 2013), Li and Lawrence (2017), and our own mod-
ifications.

The fire model is comprised of three parts: fire occurrence,
fire spread, and fire impact. The basic equation is that the
burned area in a grid cell (Ab, km2 s−1) is determined by the
number of fires per time step (Nf, count s−1) and the average
spread area per fire (a, km2 count−1):

Ab =Nfa. (1)

2.2.1 Fire occurrence

Nf is the product of the number of potential ignition counts
due to both natural causes (In, count s−1 km−2) and human
ignitions (Ia, count s−1 km−2), fuel availability (fb), fuel
combustibility (fm), and human suppression factors (feo). In
this paper, we only consider non-crop fire by excluding the

cropland fraction (fcrop) from burning:

Nf = (In+ Ia)fbfmfeo(1− fcrop)Ag, (2)

where Ag is the land area of the grid cell (km2). Fires in the
croplands are excluded here due to their small extent within
the major fire regions and their relatively low intensity (Bisti-
nas et al., 2014). Cropland fire is still a major uncertainty in
remote sensing datasets (Randerson et al., 2012), and more
data and investigation are needed.

The number of natural ignitions is related to lightning
flashes (Il, count s−1); cloud-to-ground lightning fraction,

1
5.16+2.16 cos[3,min(60,λ)] , which depends on latitude λ (Pren-
tice and Mackerras, 1977); and ignition efficiency (ψ =
0.22). The anthropogenic ignition, Ia, is parameterized using
the number of potential anthropogenic ignitions by a person
(α = 1.35× 10−9 count per person s−1) and population den-
sity (Dp; person) (Venevsky et al. 2002):

In =
ψ

5.16+ 2.16cos[3,min(60,λ)]
Il, (3)

Ia = αDp × (6.8D−0.6
p ). (4)

The fuel availability fb(fraction, range 0−1) is given as fol-
lows:

fb =


0 Bag ≤ Blow
Bag−Blow
Bup−Blow

Blow < Bag < Bup

1 Bag ≥ Bup

, (5)

where Bag (g C m−2) is the aboveground biomass (leaf and
stem in SSiB4/TRIFFID-Fire) of all PFTs. Following Li et
al. (2012), we use Blow = 155 g C m−2 as the lower fuel
threshold, below which fire does not occur and Bup =

1050 g C m−2 as the upper fuel threshold, above which fuel
load is not a constraint for fire occurrence.

Fuel combustibility fm (fraction, 0–1) is given as follow:

fm = fRHfθ , (6)

where fRH and fθ represent the dependence of fuel com-
bustibility on relative humidity (RH; %) and the root zone
soil moisture (θ ), respectively (Li and Lawrence, 2017). Fol-
lowing Li et al. (2013), we assume fm = 0 when surface air
temperature T is below −10 ◦C. fRH reflects the impact of
real-time climate conditions on fuel combustibility, while fθ
reflects the response of fuel combustibility to the preceding
climate conditions (Shinoda and Yamaguchi, 2003):

fRH =


0 RH≥ RHup

(
RHup−RH

RHup−RHlow
)1.3 RHlow < RH< RHup

1 RH≤ RHlow

, (7)

fθ =


0 θ ≥ θup

(
θup−θ

θup−θlow
)0.7 θlow < θ < θup

1 θ ≤ θlow

. (8)

Relative humidity suppresses fire occurrence when it is larger
than RHup = 70 %, and relative humidity does not con-
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Table 1. The upper (θup) and lower (θlow) thresholds of root zone
soil moisture for PFTs in SSiB4/TRIFFID-Fire.

Vegetation types θup θlow

BET 0.80 0.30
NET 0.80 0.30
BDT 0.80 0.30
C3 grasses 0.75 0.30
C4 plants 0.75 0.30
Shrubs 0.60 0.30
Tundra 0.60 0.30

strain fire when it is smaller than RHlow = 30 %. The PFT-
dependent θup and θlow are used as the upper and lower
thresholds of soil moisture in a similar way to the thresh-
olds of relative humidity (Table 1). In the Li et al. (2012)
fire scheme, this factor (fθ ) is parameterized using root zone
soil moisture potential factor β (0–1.0), a model-dependent
variable used to calculate transpiration in CLM (Li and
Lawrence, 2017). βlow = 0.85 and βup = 0.98 are used as
the lower and upper thresholds for all PFTs, yet the narrow
range of β in CLM5 has led to fire model too sensitive to
drought. In SSiB4/TRIFFID-Fire, the root zone soil moisture
θ is found to be the best variable to describe the dependence
of fuel combustibility on the preceding climate.

The human suppression factor (feo; 0–1) reflects the de-
mographic (fd) and economic (fe) impact on fire occurrence
in populated areas (population density Dp > 0.1 per person
km−2):

fseo = fdfe. (9)

The human suppression is assumed to be negligible (fseo =

1) when Dp ≤ 0.1 person km−2. A detailed description of
fd and fe parameterization can be found in Li et al. (2012,
2013).

2.2.2 Average spread area after fire ignition

The average spread area of a fire is assumed to be elliptical
in shape, with the ignition point located at one of the foci
and the fastest spread occurring along the major axis. The
average burned area of a fire a (km2 per count) is represented
as follows (Li et al., 2012):

a = πLB(umaxg0Fmτ/1000)2Fse, (10)

where LB is the length-to-breadth ratio of the ellipse shape
and is related to the wind speed, W (m s−1):

LB = 1.0+ 10.0
[
1− exp(−0.06W)

]
. (11)

umax is the PFT-dependent maximum fire spread rate (m s−1;
Table S1). g0 = 0.05 is the dependence of fire spread rate
perpendicular to the wind direction. Fm is the influence of

fuel wetness on fire spread and is assumed to be related to
fm in the fire occurrence Eq. (6):

Fm = f
0.5
m . (12)

τ (= 3600× 24 s) is the global average fire duration, which
is simply taken to be 1 d, as reported by Giglio et al. (2006).
The human suppression factor, Fse, reflects the human impact
on fire spread through firefighting activities and is parameter-
ized following Li et al. (2013).

2.2.3 Carbon emissions, post-fire mortality, and
emissions of aerosols and trace gases

In post-fire regions, the fire carbon emission, ϕj (g C s−1),
from the j th PFT is calculated based on the burned area (Ab;
km2 s−1), Carbon density Cj , and carbon combustion com-
pleteness CCj :

ϕj = AbCj ·CCj . (13)

Cj = (Cleaf,Cstem,Croot,Clitter)j is carbon density vector
(g C km−2) for leaf, stem, root, and litter of the j th PFT
calculated in TRIFFID. As the carbon cycle in current
SSiB4/TRIFFID does not explicitly represent the litter car-
bon storage and decomposition, we assume the litter carbon
and woody debris account for about 25 % of aboveground
biomass for global forest and about 30 % for savanna and
grassland based on previous studies (Pan et al., 2011; de
Oliveira et al., 2019). CCj is the corresponding combustion
completeness for leaf, stem, root, and litter of the j th PFT
(Table S2). Meanwhile, fire-induced mortality transfers car-
bon from uncombusted leaf, stem, and root to litter:

ψj = AbCj · (1−CCj ) ·Mj , (14)

where Mj = (Mleaf,Mstem,Mroot)j is the corresponding
mortality factor for the j th PFT(Table S2).

Finally, the emissions of trace gases and aerosols species
x for the j th PFT (EMx,j , g s−1) can be calculated from car-
bon emissions (ϕj ) using the PFT-dependent emission factor
(EFx,j , g species (kg dm)−1):

EMx,j = EFx,j
ϕj

[C]
, (15)

where [C] (= 0.5 g C (kg dm)−1) is a unit conversion factor
from dry matter to carbon (Li et al., 2019). The emission
factors, EFx,j , of trace gases and aerosols in Table S3 are
based on Andreae (2019). The emissions of trace gases and
aerosols can be applied in the atmospheric chemistry model
to calculate the production of secondary aerosols, transport
of pollutants, and the resultant aerosol direct and indirect ef-
fects on climate.

2.2.4 Including the fire effect on the carbon pool

When the Li et al. (2012) fire model is coupled with CLM,
the vegetation distribution is prescribed using satellite-based
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land cover, and therefore the fire impact on vegetation cover
is not simulated. In SSiB4/TRIFFID-Fire, the fire-related
carbon loss due to combustion and post-fire mortality is
transferred to changes of PFT fraction based on carbon bal-
ance.

In TRIFFID (Cox, 2001), the fractional change of the j th
PFT ( dfj

dt ) is governed by the Lotka–Volterra equation:

dfj
dt
=
λjNPPj fj

Cvj

[
1−

∑
j
cijfj

]
− γjfj , (16)

where fj is the fractional coverage of the j th PFT; λjNPPj is
the carbon available for spreading; Cvj is the carbon density
(g C km−2); cij is the competition coefficient between the ith
and j th PFTs; and γj (s−1) is the constant disturbance repre-
senting the loss of PFT fraction due to fires, pests, windthrow,
and many other processes.

When the fire model is coupled to SSiB4/TRIFFID, the
loss of PFT fraction due to fires (βj ) can be explicitly derived
from the fire-induced carbon loss:

βj =
(ϕj +ψj ) · fj

Cvj
, (17)

where ϕj and ψj are PFT-dependent carbon loss due to com-
bustion and post-fire mortality, respectively. The fire-caused
PFT fraction loss results in bare soil for vegetation spreading
decided by the competition strategy in TRIFFID. As such,
fire disturbance is explicitly represented and varies in space
and time, and the original γj is adjusted to γ ′j to exclude fire
disturbance (Table 2):

dfj
dt
=
λj ·NPPj · fj

Cj

[
1−

∑
j
cijfj

]
−

(
γ ′j +βi

)
fj . (18)

2.3 Implementing the fire model in SSiB4/TRIFFID

In SSiB4/TRIFFID, SSiB4 provides GPP, autotrophic res-
piration, and other physical variables such as canopy tem-
perature and soil moisture every 3 h for TRIFFID (Fig. 1).
TRIFFID accumulates the 3-hourly GPP and respiration and
provides biotic carbon, PFT fractional coverage, vegetation
height, and LAI every 10 d, which are used to update sur-
face properties (albedo, canopy height, roughness length, and
aerodynamic/canopy resistances) in SSiB4. When the fire
model is included, it uses the meteorological forcings and
physical variables provided by SSiB4 every 3 h and the bio-
physical properties (PFT fraction and biotic carbon) provided
by TRIFFID every 10 d. The fire model calculates the burned
area, carbon combustion, post-fire mortality, and emissions
every 3 h, and the fire-induced carbon loss is subtracted from
fuel load. The carbon loss is accumulated within 10 d in
the fire model and is transferred to TRIFFID on day 10.
TRIFFID updates the vegetation dynamics based on carbon

balance on day 10, using the net primary production, fire-
induced carbon loss, and PFT competition strategy. The up-
dated vegetation dynamics are transferred to SSiB4 to reflect
fire effects on surface properties.

3 Experimental setup and data

3.1 Experimental design

Two sets of offline experiments have been conducted
using SSiB4/TRIFFID-Fire, which consist of FIRE-ON
(SSiB4/TRIFFID-Fire with fire model switched on) and
FIRE-OFF (SSiB4/TRIFFID-Fire with fire model switched
off). To obtain the initial conditions for these two experi-
ments, similar to our previous SSiB4/TRIFFID experiments
(Zhang et al., 2015; Liu et al., 2019), we conducted spin-
up simulations (SPFIRE-ON and SPFIRE-OFF) for 100 years to
reach a quasi-equilibrium PFT distribution with and with-
out fire disturbance. These spin-up simulations were initial-
ized using the quasi-equilibrium state from Liu et al. (2019)
(SPINIT in Fig. 2) and were driven by climatology forcing av-
eraged over 1948–1972 and atmospheric CO2 concentration,
population density, and GDP in 1948 (Fig. 2). Following Liu
et al. (2019), the quasi-equilibrium status is defined as the
rate of relative change in fractional coverage of all PFTs is
less than 2 % over the last 10 years of simulation.

Based on the quasi-equilibrium status with fire disturbance
(SPFIRE-ON), a transient run was performed (FIRE-ON) with
the fire model turned on from 1948 to 2014 (Fig. 2). The
model was forced by 3-hourly meteorological forcings and
yearly updated atmospheric CO2 concentration, population
density, and GDP data. FIRE-ON produced the fire regime,
ecosystem, and surface conditions during 1948–2014. A
FIRE-OFF run, based on SPFIRE-OFF, was carried out with
the fire model switched off during 1948–2014. The vegeta-
tion distribution was allowed to respond to climate variations
in both FIRE-ON and FIRE-OFF simulations and to fire dis-
turbances only in the FIRE-ON.

3.2 Model input and validation data

The meteorological forcings used to drive SSiB4/TRIFFID-
Fire for the period of 1948–2014 are from the Prince-
ton global meteorological dataset for land surface model-
ing (Sheffield et al., 2006), including surface air tempera-
ture, surface pressure, specific humidity, wind speed, down-
ward shortwave radiation flux, downward longwave radia-
tion flux, and precipitation (Table 3). The dataset is con-
structed by combining global observation-based datasets
with the NCEP/NCAR reanalysis. The spatial resolution is
1.0◦× 1.0◦, and the temporal interval is 3 h.

The required inputs for driving the fire model are listed
in Table 3. The 2-hourly climatology lightning flashes data
from NASA LIS/OTD v2.2 at 2.5◦× 2.5◦ resolution are used
to calculate the number of natural ignitions. The population
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Table 2. The disturbance rate implicitly including fire disturbance (γv) and excluding fire disturbance (γ ′v).

BET NET BDT C3 grasses C4 plants Shrubs Tundra

γv 0.004 (0.04 with grasses) 0.004 (0.04 with grasses) 0.004 (0.04 with grasses) 0.1 0.1 0.05 0.05
γ ′v 0.004 0.004 0.004 0.02 0.02 0.04 0.01

Figure 1. Schematic diagram of fire model coupling in SSiB4/TRIFFID-Fire (Tair: air temperature; Pres: surface pressure; Dp: population
density; fcrop: crop fraction; Tc: canopy temperature; Res: autotrophic respiration; SM: soil moisture; LST: land surface temperature; RH:
relative humidity; VHT: vegetation height)

density data are provided by the Gridded Population of the
World version 3 (GPWv3; CIESIN, 2005) for 1990–2005
and Database of the Global Environment version 3.1 (HY-
DEv3.1; Goldewijk et al., 2010) for 1850–1980. GDP per
capita in 2000 is from van Vuuren et al. (2007). The popu-
lation density and GDP data are used to calculate the human
ignitions and suppression in the fire model. The agriculture
fraction is obtained from the GLC2000, which represents the
agriculture distribution for the year 2000 (Bartholome and
Belward, 2005). All the datasets are resampled to 1.0◦× 1.0◦

spatial and 3-hourly temporal resolution.
The Global Fire Emission Database (GFED) is a fire

dataset derived mainly from MODIS satellite observations
(van der Werf et al., 2006; van der Werf et al., 2010; Giglio
et al., 2013). The GFED fire product provides the burned
area and fire emissions on the global scale and has been
widely used for fire model validation and calibration (van
Marle et al., 2017; Li et al., 2019). The latest version of
GFED, GFED4s, has included the contribution from small
fires that are below the MODIS detection limit (van der Werf
et al., 2017). The burned area and carbon emissions simu-

lated by SSiB4/TRIFFID-Fire will be validated using grid-
ded monthly GFED4s fire products in 2000–2014 at 0.25◦

spatial resolution.
We also evaluate the simulated vegetation distribution,

CO emission from fire, and GPP with observations. We
use the vegetation fraction from GLC2000 generated in
Liu et al. (2019) by calculating the percentage of each
land cover type in 1.0◦× 1.0◦ and converting to PFTs
in SSiB4/TRIFFID-Fire. The CO emission from Zheng et
al. (2019) is an inversion-based product that uses CO emis-
sion from multiple sources as prior and performs inversion
simulations constrained by atmosphere CO concentration re-
trieved from the satellite. It provides the latest CO emission
estimate from fire in 2000-2017. FLUXNET Model Tree En-
semble (FLUXNET-MTE) GPP is upscaled from FLUXNET
observations to the global scale using the machine learn-
ing technique MTE (Jung et al., 2011). The FLUXNET-
MTE GPP at 0.5◦× 0.5◦ spatial resolution in 1982–2011
has been resampled to 1.0◦× 1.0◦ to be compared with
SSiB4/TRIFFID-Fire.
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Figure 2. Experiment design for FIRE-ON and FIRE-OFF experiments.

Table 3. Datasets used to drive SSIB4/TRIFFID-Fire and evaluate simulations.

Variables Sources Resolution

Surface air temperature
Surface pressure
Specific humidity
Wind speed
Downward shortwave radiation
Downward longwave radiation
Precipitation

Sheffield et al. (2006) 1◦, 3 hourly

Lightning frequency NASA LIS/OTD v2.2 2.5◦, 2 hourly
Population density GPWv3 (CIESIN, 2005);

HYDE v3.1 (Klein Goldewijk et al., 2010)
0.5◦, 5 yearly 1/12◦; 10 yearly

Gross domestic product (GDP) van Vuuren et al. (2007) 0.5◦, in 2000
Agriculture fraction
Vegetation distribution

GLC2000 (Bartholome et al., 2005) 1◦, in 2000

Burned area
Carbon emission

GFED4s (Randerson et al., 2012;
van der Werf et al., 2017)

0.25◦, monthly

CO emission Zheng et al. (2019) 3.75◦ long× 1.9◦ lat, monthly
GPP FLUXNET-MTE (Jung et al., 2011) 0.5◦, monthly

4 Results

This section evaluates the model simulation of burned
area, carbon emissions, PFT fraction, and GPP by com-
paring FIRE-ON results with GFED4s, GLC2000, and
FLUXNET-MTE data. Specifically, we will focus on the
model description of fire seasonality. After model validation,
SSiB4/TRIFFID-Fire is applied to assess the long-term fire
effect on the ecosystem and surface energy budget using the
differences between the FIRE-ON and FIRE-OFF.

4.1 Burned area

The simulations of burned area are evaluated using satellite-
based product GFED4s for the period of 2000–2014. Figure 3

shows the 2000–2014 annual burned fraction in GFED4s
and SSiB4/TRIFFID-Fire and their latitudinal distribution.
The simulated global burned area is 471.9 Mha yr−1, slightly
higher than the estimate from MODIS Collection 6 in 2002–
2016 (423 Mha yr−1; Giglio et al., 2018) but very close to
the value from GFED4s (478.1 Mha yr−1). The spatial dis-
tribution of observed burned area is well captured in the
SSiB4/TRIFFID-Fire simulation with a spatial correlation of
0.80. Both GFED4s and SSiB4/TRIFFID-FIRE show that the
major burned area is concentrated in the tropical savannas
(5–15◦ N; 5–20◦ S), including Northern Hemisphere Africa
(NHAF), Southern Hemisphere African (SHAF), Southern
Hemisphere South America (SHSA), and northern Australia
(Fig. 3a and c). GFED4s shows that the Northern African sa-
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vanna has a larger latitudinal burned area in a narrower fire
band compared to the Southern African savanna (Fig. 3b).
SSiB4/TRIFFID-Fire captures the latitudinal band in burned
Northern African savanna but underestimates its magnitude
(Fig. 3d). Another burned area peak occurs around 50◦ N in
Boreal Asia (BOAS) and Boreal North America (BONA).
The humid climate there suppresses fire ignition yet the high
level of aboveground biomass and a lack of human suppres-
sion facilitate fire occurrence and spread, which results in
an intermediate burned area in the boreal regions. The low
burned fraction for deserts and tropical rainforests, which
is caused, respectively, by low fuel availability and com-
bustibility, are also well simulated (Fig. 3a), leading to the
minimum burned area around the Equator and subtropical re-
gions.

We also evaluate the 14 sub-regions following the def-
inition in GFED according to the fire behavior similarity
(van der Werf et al., 2006). The burned area in African sa-
vanna accounts for more than 60 % of the global burned
area in both GFED4s and SSiB4/TRIFFID-Fire (Fig. 4b).
The simulated burned areas in SHAF and NHAF are 168.3
and 124.5 Mha, respectively, very close to GFED4s burned
areas in SHAF (167.9 Mha) but slightly underestimated in
NHAF (155.5 Mha). The negative bias in NHAF burned area
is the main cause of the underestimation in the latitudinal
fire distribution around 10◦ N (Fig. 3d). SSiB4/TRIFFID-
Fire also captures the burned fraction in other major fire re-
gions such as Australia (AUST) and SHSA (Fig. 4b), which
are dominated by savanna fire. We notice that the burned
area in western and central parts of temperate North Amer-
ica (TENA) is overestimated (Figs. 3c and 4b). Neverthe-
less, the burned area there is relatively small compared to
that in major fire regions such as SHAF and NHAF. This
shortcoming has been reported in a number of fire models
(Pfeiffer et al., 2013; Lasslop et al., 2014; Yue et al., 2014;
Venevsky et al., 2019). The reasons include an underestimate
of anthropogenic suppression, inaccurate description of fuel
pattern/grassland fraction, and landscape fragmentation from
roads and other anthropogenic features. The burned area in
the Middle East (MIDE) is also overestimated (Fig. 4b) as
a larger burned area is simulated at the northern boundary
of the Sahara Desert and south of the Black Sea (Fig. 3c).
The simulated burned area is underestimated in BONA and
BOAS where fire has a lower incidence but a longer duration
compared to the global average (Ward et al., 2018; Venevsky
et al., 2019). As we assume all fires persist for 1 d, the burned
area in boreal regions is therefore underestimated. Further
improvements, such as multiday burning and a deliberate
scheme for anthropogenic effect, are necessary in regional
applications.

In 8 out of the 14 sub-regions, SSiB4/TRIFFID-Fire repro-
duces the observed interannual variability (IAV) of burned
area well, with the correlation between simulations and ob-
servations significant at p < 0.05 (Fig. 4c). The regions are
NHAF, SHSA, AUST, TENA, Central America (CEAM),

Europe (EURO), Southeast Asia (SEAS), and Equatorial
Asia (EQAS). In particular, a decline in NHAF burned area
is found in both SSiB4/TRIFFID-Fire and GFED4s, which
has been attributed to agricultural expansion and intensifica-
tion in recent fire studies (Andela et al., 2017; Teckentrup et
al., 2019). Although our model does not have an explicit de-
scription of agriculture fraction and intensification changes,
the anthropogenic effect is implicitly included by relating fire
suppression to population density and GDP (Li et al., 2013).
Meanwhile, SSiB4/TRIFFID-Fire also captures the IAV in
SEAS and EQAS, which is known to be driven by climate
factors such as relative humidity and soil moisture.

The simulated IAV of SHAF burned area is not as good as
other savanna fire regions (e.g., NHAF, SHSA, and AUST),
although the IAV is small there (Fig. 4c). Some studies have
reported that humans have a substantial impact on SHAF fire,
which limits the effect of climate-induced IAV (Archibald et
al., 2010; Venevsky et al., 2019). In addition, the simulated
IAV of burned areas is lower than observations in BONA
and BOAS as the model fails to capture some extreme fire
events (Fig. S1 in the Supplement). The lower variability
comes from the climatology lightning data (Pfeiffer et al.,
2013). As lightning flash is the predominant ignition source
in the Northern Hemisphere high latitudes, the application of
climatology lightning has a greater impact in boreal regions
than in other parts of the globe.

Figure 5 shows the pointwise temporal correlation of the
multi-year monthly burned area between SSiB4/TRIFFID-
Fire and GFED4s averaged in 2000–2014. SSiB4/TRIFFID-
Fire captures the fire seasonality in most regions, including
the Southern African savanna, South American savanna, the
northeastern part of Boreal Asia, the eastern part of Boreal
America, Southeast Asia, and Equatorial Asia. Specifically,
we examine the simulation of peak fire month and fire sea-
son length in SSiB4/TRIFFID-Fire following the definition
that fire seasons include months with more than 1/12 of the
mean annual burned fraction (Venevsky et al., 2019). Over
the globe, August and December are the two peak fire months
that have the largest contribution to the annual burned area
(Fig. 6a). SSiB4/TRIFFID-Fire generates two fire seasons
in June–July–August and December–January–February, cap-
turing the peak month in August but underestimating the
burned area in December. In the tropical savannas (SHAF,
SHSA, and NHAF), fire activities concentrate in the local dry
season, and the burned area during the fire season accounts
for more than 80 % of the annual burned area (Fig. 6b–d).
The burned area in Southern Hemisphere major fire regions,
SHAF and SHSA, peaks in August and September in both
the observations and model. The simulated fire seasons in
SHAF (June–October) and SHSA (July–October) match pre-
cisely with the observations. In other fire regions, such as
SEAS and EQAS, SSiB4/TRIFFID-Fire also reproduces the
fire seasonality and peak fire months (Fig. 6e–f). Compared
with the latest results from other fire models (Hantson et al.,
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Figure 3. Spatial distribution of annual burned fraction (%) averaged over 2000–2014 for (a) GFED4s and (c) SSiB4/TRIFFID-Fire. Panels
(b) and (d) show the zonal mean burned area (Mha) for GFED4s and SSiB4/TRIFFID-Fire, respectively.

2020), our model produces more realistic burned area peak
and fire season duration.

Figure 5 shows, however, that the fire seasonality in North-
ern Hemisphere Africa, the western part of Boreal Asia, east-
ern China, western Australia, and the central eastern US
needs to be improved. The simulated fire season in West
Africa is December–March (Fig. 6d), slightly shifted from
the fire season in GFED4s (November–February), which
contributes to the lower fire peak in December in the global
burned area. The recent FireMIP models also show a 2-
month delay in peak fire month in the Northern Hemi-
sphere tropics (Hantson et al., 2020), which might be re-
lated to the representation of seasonality in vegetation pro-
duction and fuel build up. In BOAS, the first fire season oc-
curs in April and May. The observed fire season is not cap-
tured in SSiB4/TRIFFID-Fire as the model underestimates
the burned area in western Siberia due to too wet moisture
conditions that come from the high precipitation and specific
humidity in the forcing data. A similar scenario is found in
western Australia (Fig. 6h). Meanwhile, the absence of crop
fire in SSiB4/TRIFFID-Fire also contributes to the low tem-
poral correlation with the observations in agricultural areas,
such as the central eastern US and eastern China, where fires

are used to clear the crop residues (Xia et al., 2013; van der
Werf et al., 2017).

Overall, SSiB4/TRIFFID shows good consistency in the
simulation of peak fire month and fire season duration in
most regions, probably related to the better representation of
vegetation–fire interactions in SSiB4/TRIFFID-Fire, which
updates fire effects on vegetation dynamics every 10 d. The
inaccurate simulation of fire season in several fire regions
could come from deficiency of the forcing data, the inaccu-
racy in dynamic vegetation processes, or some processes that
control the fire but are not represented in the model. More
comprehensive observational data are needed to improve the
simulation in these areas.

4.2 Fire emissions

Biomass burning emissions are determined by burned area,
fuel combustion rate per unit area, and emission factors per
unit mass of fuel burned (van der Werf et al., 2017). The car-
bon emission in SSiB4/TRIFFID-Fire is 2.19 Pg yr−1, higher
than the estimate from GFED4s (2.07 Pg yr−1) (Fig. 7).
SSiB4/TRIFFID-Fire captures the high carbon emissions in
tropical savannas, the intermediate emissions in Northern
Hemisphere boreal forests, and the low emissions in hu-
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Figure 4. (a) Map of 14 regions used in this study, following Giglio et al. (2010) and van der Werf et al. (2006, 2010) (b) Annual burned
area (Mha) averaged over 2000–2014 for GFED4s and SSiB4/TRIFFID-Fire in 14 regions. (c) Annual burned area (Mha) for 2000–2014 for
GFED4s and SSiB4/TRIFFID-Fire in 14 GFED regions. The “*” and the red color indicate the positive correlation is significant at p < 0.05.
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Figure 5. Temporal correlation of monthly burned area averaged
over 2000–2014 between SSiB4/TRIFFID-Fire and GFED4s (grids
with annual burned fraction < 0.001 % are masked).

mid forests and deserts with a spatial correlation of 0.72,
higher than the simulation in Li et al. (2013) (0.61 com-
pared with the GFED3). In general, the spatial distribution
of carbon emissions coincides with that of the burned area:
SHAF, NHAF, and SHSA are the major fire emission regions
and they contribute to 65.4 % of the total emission in both
GFED4s and SSiB4/TRIFFID-Fire (Fig. 8a). The exception
occurs in EQAS, BOAS, and BONA, where the fire emis-
sions contribute to 11.6 % of the global emissions with only
2.5 % of the global burned area there. The regions have large
areas of peatland, which contains a thick layer of soil carbon
and emits several times more trace gases per unit of biomass
combusted than fires in savannas (van der Werf et al., 2010).
As our model does not include the peat soil type, fire emis-
sions are underestimated in these regions.

The interannual variability (IAV) of fire emissions is cap-
tured in SSiB4/TRIFFID-Fire in 7 out of 14 fire regions with
a significance level p < 0.05 (Fig. S2). Both model and ob-
servations have shown a decrease in carbon emissions in
NHAF (Fig. 8b), which contributes to the decrease in global
fire emission in 2000–2014 (Fig. 7e). SSiB4/TRFFID-Fire
suggests that the decline of global fire emissions starts in the
1950s, which is also found in some of the FireMIP models
(Li et al., 2019). Similar to our conclusions in the IAV of
burned areas, the IAV of carbon emissions in SHSA is small
and is not well represented in the model (Fig. 8c).

The CO emission from fire is one of the key variables in
fire modeling, as CO plays a vital role in atmospheric chem-
istry. The simulated global CO emission is 433.7 Tg yr−1

in 2000–2014, very close to the observational estimates
(434.0 Tg yr−1) from Zheng et al. (2019) with a spatial cor-
relation of 0.74. The inversion-based and simulated monthly
CO emissions in Africa are compared in Fig. 9. We find the
annual cycle of CO emission in SHAF is well captured in
SSiB4/TRIFFID-Fire, which shows the largest CO emission
occur in JJAS and the regions with high emissions (Fig. 9b)
are coincident with those in observations (Fig. 9a). In NHAF,
SSiB4/TRIFFID-Fire reproduces the large CO emission in
DJF, although the model slightly underestimates CO emis-

sion in December and overestimates it in February. The
seasonality of CO emission broadly follows that of burned
area, which further demonstrates that our model has shown
promising results in seasonal fire simulations.

4.3 PFT distribution and GPP

The simulation of vegetation coverage, which represents
model description of biomass allocation and influences the
fuel availability and flammability in fire modeling, is evalu-
ated against GLC2000 (Bartholome and Belward, 2005). As
the dynamic vegetation model only includes natural PFTs,
the simulated PFT fraction in one grid box is scaled using the
non-agriculture fraction from GLC2000. Overall, the vege-
tated areas cover 80.6 % of global land areas, very close to
the estimates from GLC2000 (80.8 %). The simulated tree
cover is 34.1 %, higher than 29.8 % in GLC2000. Compared
with the observations (Fig. 10a), SSiB4/TRIFFID-Fire cap-
tures the fractional coverage of trees in the Amazon rainfor-
est, tropical Africa, equatorial Asia, Southeast Asia, south-
eastern North America, and the Northern Hemisphere Boreal
regions (Fig. 10c). The BET is concentrated in the tropics,
and the NET is mostly found in the North America and Eura-
sia Boreal zones (Fig. S3a–c). The C3 and C4 grasses are
found in the Northern Hemisphere Africa, Southern Africa,
South America, the central US, Eurasian steppes, and eastern
Australia (Fig. 10b and d). The simulated C3 and C4 fractions
are 11.1 % and 7.5 %, respectively, similar to the estimates in
GLC2000 (11.9 % for C3 and 7.9 % for C4; Liu et al. 2019).
Shrubs are primarily located in the semiarid regions and the
pan-Arctic area and tundra is limited to the pan-Arctic area
and Tibetan Plateau (Fig. S3f–g). SSiB4/TRIFFID-Fire is
shown to capture some key processes of fire–vegetation in-
teractions under the current climate, which is important to
study fire effects on the ecosystem.

We also compare the simulated GPP averaged over 1982–
2011 to FLUXNET-MTE GPP (Jung et al., 2011) to examine
the modeled impact of fire on carbon. SSiB4/TRIFFID-Fire
captures the distribution of global GPP with a spatial cor-
relation of 0.93 (p < 0.05) (Fig. S4). The highest GPP oc-
curs in the tropical evergreen forest and decreases with lat-
itude in both observations and model. However, the simu-
lated GPP has a negative bias in the Amazon tropical for-
est and a positive bias in tropical Africa and boreal regions.
The simulated global GPP is 141 Pg C yr−1, higher than the
FLUXNET-MTE estimate (119 Pg C yr−1; Jung et al., 2011),
but is within the range of simulated GPP in current DGVMs
(111–151 Pg C yr−1; Piao et al., 2013). In addition, the cor-
relation of IAV of global GPP is 0.68 (p < 0.05) between
SSiB4/TRIFFID-Fire and FLUXNET-MTE, indicating that
the model has reasonably captured the terrestrial ecosystem
variability during the historical period.
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Figure 6. The contribution of monthly burned area to annual burned area (%) over the (a) GLOB, (b) SHAF, (c) SHSA, (d) NHAF, (e) SEAS,
(f) EQAS, (g) BOAS, and (h) AUST averaged over 2000–2014 for SSiB4/TRIFFID-Fire and GFED4s

4.4 Fire effects on ecosystem characteristics and
surface properties

In this section, we investigate long-term fire effects
on ecosystem characteristics, surface properties, and sur-
face energy budget using the differences between FIRE-
ON and FIRE-OFF (FIRE-ON minus FIRE-OFF). In
SSiB4/TRIFFID-Fire, fire is found to cause a strong decrease
in tree fraction by 12.6 % (about 4.5 % of the land surface).
Meanwhile, the fractional coverage of grass and bare land is
increased on 3.4 % and 0.5 % of the land surface, respectively
(Fig. 11a–b). The tree cover reduction is concentrated in
southern Africa, northern Africa, and South America, which
are dominated by C4 savanna in FIRE-ON (Fig. S3), sug-
gesting that fire is an important determinant of structure and
functions of the savanna; otherwise it would be encroached
by trees. The magnitude of change simulated is generally
consistent with the results from long-term fire experiments
in Kruger National Park, South Africa, which showed that

fire reduced woody cover by 30 %–50 % (Smit et al., 2010).
The changes in the fractional coverage of trees and grass are
associated with tree mortality after fire and the fast regrowth
of grass PFTs with space and nutrient availability during the
post-fire recovery season. Across the globe, fire is simulated
to reduce LAI by 3.6 % (0.10 m2 m−2) and shorten vegeta-
tion height by 12.7 % (1.24 m).

In Africa, the simulated fire effects on vegetation struc-
ture (tree and grass cover, LAI, and vegetation height) peak
in the tropical savanna surrounding the forests and gradu-
ally decrease towards the deserts (Fig. 11). When the fire
model is turned off, the tree cover expands in the wetter sa-
vanna around the tropical African forest where the climate
(mainly rainfall in the model) allows for more trees to ap-
proach canopy closure such that grasses can be effectively
excluded (Fig. 10e). The grass cover shrinks to the south-
ern and northern part of the southern and northern African
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Figure 7. (a) Spatial distribution of annual carbon emission (g C yr−1) averaged over 2000–2014 for GFED4s and (b) the latitudinal dis-
tribution of carbon emission (Tg C yr−1). Panels (c, d) are the same as (a, b) but for SSiB4/TRIFFID-Fire (g C yr−1). (e) Annual carbon
emission (Pg C yr−1) for GFED4s for 2000–2014 and for SSiB4/TRIFFID-Fire for 1948–2014.

savanna, respectively (Fig. 10f), where tree populations are
constrained by environmental conditions.

Our results are consistent with the long-term fire exper-
iments that reported that fire strongly affected vegetation
structure, lowering the proportions of trees to fire-resistant
grasses and reducing the vegetation height and aboveground
biomass (Shackleton and Scholes, 2000; Higgins et al., 2007;
van Wilgen et al., 2007; Furley et al., 2008; Smit et al.,
2010; Devine et al., 2015), and that fire impact is more sig-
nificant in wetter savanna than in drier savanna (Moreira,
2000; Sankaran et al., 2005). However, the long-term fire ex-

periments were only conducted in very limited regions and
mostly focused on site-level fire impact (Furley et al., 2008).
The assessment of continental and global fire impact on veg-
etation and carbon can only be achieved by fire-coupled
DGVMs. After appropriate validation of fire effects on the
local scale, SSiB4/TRIFFID-Fire can be used as an effective
tool to describe the climate potential of the ecosystem with-
out fire disturbance and to quantify fire impact on the global
scale.

The changes in vegetation structure modify the albedo,
aerodynamic resistance, and evapotranspiration processes,
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Figure 8. (a) Annual carbon emission averaged over 2000–2014 for GFED4s and SSiB4/TRIFFID-Fire in 14 GFED regions. (b–d) Annual
carbon emission in (b) SHAF, (c) NHAF, and (d) SHSA for 2000–2014 for GFED4s and SSiB4/TRIFFID-Fire. The “*” and red color indicate
the correlation is significant at p < 0.05.

Figure 9. Monthly CO emission in Africa averaged in 2000–2014 from (a) Zheng et al. (2019) and (b) SSiB4/TRIFFID-Fire.
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Figure 10. The fractional coverage of trees in (a) GLC2000, (c) FIRE-ON, and (e) FIRE-OFF and the fractional coverage of grasses in
(b) GLC2000, (d) FIRE-ON, and (f) FIRE-OFF in 2000.

Figure 11. Differences in (a) tree cover (BET, NET, and BDT; %) (b) grass cover (C3 and C4; %), (c) LAI (m2 m−2), and (d) vegetation
height (m) in SSiB4/TRIFFID-Fire averaged over 2000–2014 between FIRE-ON and FIRE-OFF.
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which further influences surface radiation and energy parti-
tioning between latent heat and sensible heat fluxes. In this
study, we investigate seasonal fire impact by distinguishing
between fire season (DJF for NHAF and JJA for SHAF and
SHSA) and post-fire rainy season (JJA for NHAF and DJF
for SHAF and SHSA) for major fire regions. Because grass
PFTs have a higher albedo than tree PFTs, the replacement
of trees by grasses and savannas (Fig. 11a–b) has caused an
increase in grid-average albedo, which decreases the net radi-
ation absorbed by the surface (Fig. 12a–b). The reduction in
surface radiation is larger in fire season (DJF for NHAF and
JJA for SHAF and SHSA) as the exposure of bare land af-
ter fire further enhances the albedo. The reduction in vegeta-
tion height between FIRE-ON and FIRE-OFF (Fig. 11d) has
significantly decreased the roughness length and increased
the aerodynamic resistance (Liu et al., 2016), which causes
a reduction of sensible heat flux by 4–8 W m−2 (Fig. 12c–d).
Our results are in agreement with the observational studies on
different fire types (e.g., forest fire and savanna fire) showing
that surface properties changes after fire results in an increase
in albedo (Gholz and Clark, 2002; Amiro et al., 2006b; Sun
et al., 2010) and a decrease in sensible heat (Chambers and
Chapin, 2002; Liu et al., 2005; Amiro et al., 2006a, b; Rogers
et al., 2013).

The change of latent heat flux varies with seasons in trop-
ical savanna. It is reduced in the fire season and enhanced
in the rainy season for each fire region (Fig. 12e–f). In
SSiB4, the grid-average latent heat flux consists of canopy
evapotranspiration, canopy interception, and soil evapora-
tion, among which canopy interception normally plays a mi-
nor role. During the local fire season, the canopy transpira-
tion is decreased (Fig. S5a–b) due to fire-induced vegetation
canopy loss. The soil evaporation does not change too much
as there is not much surface water to evaporate (Fig. S5c–
d). Therefore, the grid-average latent heat is decreased. Dur-
ing the post-fire rainy season, the canopy transpiration is still
reduced as the vegetation has not recovered from the fire.
However, the exposure of bare soil has produced more soil
evaporation. Therefore, the latent heat can be increased due
to enhanced soil evaporation. The significant increase in soil
evaporation and latent heat during the wet season has been
widely observed after vegetation removal, especially when
the soil is saturated (Langford, 1976; Dunin, 1987; Gholz
and Clark, 2002; Santos et al., 2003; Amiro et al., 2006b).
The increase is proposed to be caused by the exposure of
moist soil surface, the increase in surface energy that can be
used for evaporation, and the smaller surface resistance when
dense plant canopy is removed by fire (Schulze et al., 1994).
Despite the reduction in surface radiation, the decreased sur-
face fluxes associated with aerodynamic and surface resis-
tance changes have resulted in an increase in surface temper-
ature throughout the year (Fig. 12g–h).

Our estimate of fire effects on radiation, surface fluxes, and
temperature are qualitatively consistent with Li et al. (2017)
but different in the partitioning between sensible heat and

latent heat changes. The discrepancies might be attributed
to the changes in vegetation distribution. As the vegetation
distribution is prescribed in Li et al. (2017), trees and grass
grow taller and denser when the fire model is turned off.
In contrast, fire has caused changes in vegetation distribu-
tion and conversions of dominant PFTs in SSiB4/TRIFFID-
Fire. Tree PFTs are spreading in FIRE-OFF and encroach-
ing the tropical savanna and grassland in southern Africa,
northern Africa, and South America shown in FIRE-ON.
Over the African and South American savanna, we find fire
has reduced the area-averaged LAI and vegetation height by
0.52 m2 m−2 (12.5 %) and 5.76 m (49.1 %), respectively. The
larger relative change in vegetation height is simulated as
tree PFTs have a greater contrast with grass PFTs in vege-
tation height than in LAI. Compared with Li et al. (2017),
SSiB4/TRIFFID-Fire simulates a greater change in vegeta-
tion height but a smaller change in LAI, which probably
causes the larger sensible heat changes in our results. Other
sources of uncertainties include the differences in the parti-
tioning between latent heat and sensible heat fluxes in land
surface models, the differences in the parameterization of the
evaporation processes, and the changes due to atmospheric
feedbacks, such as cloud cover and precipitation changes.

5 Conclusions and discussions

We have implemented a process-based fire model of inter-
mediate complexity into a DGVM, SSiB4/TRIFFID, which
is based on the surface water, carbon, and energy balances, as
well as the PFT competition. The high-frequency exchanges
between the fire model and SSiB4/TRIFFID allow vegetation
dynamics and surface parameters, such as albedo and surface
roughness length, to be updated every 10 d based on surface
carbon balance, which are rarely applied in other fire mod-
els. Moreover, the plant production and biomass allocation
are reasonably reproduced in SSiB4/TRIFFID-Fire, which
have been considered to contribute to the proper burned area
simulation (Forkel et al., 2019; Hantson et al., 2020). The
SSiB4/TRIFFID-Fire produces similar global burned area,
major regional burned areas, and fire carbon emissions com-
pared to GFED4s. The model captures the decreasing trend
in burned area related to human suppression and land man-
agement and the interannual variability associated with mois-
ture conditions. It reasonably reproduces the global GPP and
PFT distribution, which is important to study fire effects on
the ecosystem.

Future development of SSiB4/TRIFFID-Fire is in three as-
pects. First, SSiB4/TRIFFID-Fire does not explicitly repre-
sent the occurrence of peat fire, deforestation fire, and agri-
culture fire. The inclusion of peat fire and deforestation fire
may reduce the negative bias in the burned area and carbon
emission in EQAS, BOAS, and BONA, and the parameter-
ization of agriculture fire may improve the fire seasonality
simulation in the central eastern US and eastern China. Sec-
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Figure 12. Differences in net shortwave (a, b; W m−2), sensible heat (c, d; W m−2), latent heat (e, f; W m−2), and surface temperature (g,
h; K) in DJF (a, c, e, g) and JJA (b, d, f, h) averaged over 2000–2014 between FIRE-ON and FIRE-OFF.

ond, the effect of agriculture expansion on fire suppression
is not considered in current SSiB4/TRIFFID-Fire as we ap-
ply a constant agricultural fraction, which is expected to in-
fluence the spatial and temporal variations of burned area
beyond GDP and population effects (Andela et al., 2017).
Third, the carbon cycle in the current SSiB4/TRIFFID ver-
sion does not explicitly represent the litter carbon storage and
decomposition. Therefore, we assume aboveground litter to
be 25 % and 30 % of aboveground biomass for global forest
and savanna, respectively, based on observations from Pan et
al. (2011) and de Oliveira et al. (2019). The next generation
of SSiB couples SSiB/TRIFFID with DayCent-SOM, which
describes the full processes of litter accumulation and de-
composition constrained by nitrogen availability (Parton et
al., 1994). An explicit scheme for litter combustion will be
updated in the fire model in the new SSiB/TRIFFID.

The SSiB4/TRIFFID-Fire is then applied to study the
long-term fire effects on ecosystem characteristics and sur-
face energy. By comparing the simulations with and with-
out fire, we show that fire has reduced global tree cover

by 12.6 % (4.5 % of land surface). Meanwhile, the global
LAI and vegetation height are decreased by 0.10 m2 m−2 and
1.24 m, respectively. The surface radiation, sensible heat, and
canopy evapotranspiration are decreased, while the soil evap-
oration is increased, especially during the post-fire rainy sea-
son. The change in surface fluxes has caused an increase in
surface temperature over most fire regions. As Li et al. (2017)
is the only modeling study investigating the long-term fire
effects on the land energy budget, our simulation provides
another approach that quantifies fire effects using a different
land surface model with different approaches in parameter-
izing some land surface processes and vegetation dynamics.
More studies with more land surface models, fire models,
and vegetation dynamics are necessary to explore this issue
further. A systematic comparison of long-term fire effects in
different fire models, such as the current FireMIP project,
would allow evaluation of the robustness of model simula-
tions and identification of key uncertainties of fire impacts.
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