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Abstract. Ice-sheet age computations are formulated using
an Eulerian advection equation, and there are many schemes
that can be used to solve them numerically. Typically, these
differ in numerical characteristics such as stability, accu-
racy, and diffusivity. Furthermore, although various methods
have been presented for ice-sheet age computations, the con-
strained interpolation profile method and its variants have not
been examined in this context. The present study introduces
one of its variants, a rational function-based constrained in-
terpolation profile (RCIP) scheme, to one-dimensional ice
age computation and demonstrates its performance levels
via comparisons with those obtained from first- and second-
order upwind schemes. Our results show that the RCIP
scheme preserves the pattern of input surface mass balance
histories in terms of the vertical profile of internal annual
layer thickness better than the other schemes.

1 Introduction

Core samples extracted from ice sheets can provide an
archive of past climate history data, and a major issue for re-
searchers attempting to utilize ice-core properties is defining
the age of ice along the depth of the ice sheet. This process
is often called dating. Dating with numerical ice-flow mod-
els is an important approach because it allows researchers to
estimate age profiles before actual drilling of ice cores. For
example, in Fischer et al. (2013), the authors present an ap-
plication of ice-flow models to evaluate potential “oldest-ice”
study areas.

Various methods for use in ice-sheet model dating have
been adopted and compared. Mügge et al. (1999) com-

pared particle tracking (Lagrangian) and Eulerian schemes
under simulated steady-state three-dimensional (3-D) veloc-
ity fields of the Antarctic ice sheet. That study concluded
that the Eulerian scheme works well, except for the bot-
tom part, which encounters problems due to numerical dif-
fusion. In Rybak and Huybrechts (2003), the authors also
compared the Lagrangian and Eulerian schemes for simu-
lated Antarctic ice sheets under various schematic steady-
state conditions and analytical solutions, as well as under
different 3-D velocity fields. Similarly, they concluded that
the Lagrangian method produced less error than an Euler ap-
proach, although the difference was small over a large part
of the domain. Greve et al. (2002) compared several Eule-
rian schemes such as central difference schemes, first- and
second-order upwind schemes, Quadratic Upstream Interpo-
lation for Convective Kinematics (QUICK), and total varia-
tion diminished (TVD) Lax–Wendroff (LW) schemes. From
comparisons of the one-dimensional (1-D) steady-state age
profiles produced by these schemes, they concluded that the
second-order upwind and TVD-LW schemes performed well
for typical ice-sheet age profiles. Comparisons among semi-
Lagrangian schemes have also been performed. Introduction
of a semi-Lagrangian trace scheme to ice-sheet modeling
was initiated by Clarke and Marshall (2002). They simulate
the temporal and spatial variations of water isotopes in the
Greenland ice sheet over the past 30 000 years. In Tarasov
and Peltier (2003), the authors compared various interpola-
tion schemes in order to compute upwind departure points
in a semi-Lagrangian tracer model in terms of preservation
of input signal phases and amplitudes, while Lhomme et al.
(2005); Clarke et al. (2005) developed a new interpolation
method that can be used in a semi-Lagrangian scheme and
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discussed computed ice-core age–depth relationships for the
Greenland Ice Core Project (GRIP) ice core.

To date, various methods have been presented and demon-
strated for use in ice-sheet age computations. However, there
is still a variety of numerical schemes that have not been ex-
amined within this context. These include the constrained
interpolation profile (CIP) method (e.g., Yabe et al., 2001)
and its variants. Accordingly, the present study introduces a
CIP method variant named the rational function-based con-
strained interpolation profile (RCIP) method (Xiao et al.,
1996) for use in 1-D ice age computations and demonstrates
the performance of the scheme.

1.1 Brief introduction of the RCIP scheme

This section describes a standard algorithm of the CIP
scheme family that is used to solve a 1-D advection equa-
tion with a non-advection term as follows:
∂f

∂t
+ u(x, t)

∂f

∂x
= h(x, t) , (1)

where f = f (x, t) is a free variable to solve, u= u(x, t) is
a velocity field, h= h(x, t) is an arbitrarily (non-advection)
field, and t and x are temporal and spatial coordinates, re-
spectively.

As introduced in the previous section, there are three ma-
jor approaches to solving an advection equation: Eulerian,
Lagrangian, and semi-Lagrangian. The CIP scheme family
corresponds to a semi-Lagrangian method variation. The ba-
sics of the semi-Lagrangian approach, within the context of
its comparison with the Lagrangian and Eulerian approaches,
have already been presented in a number of past studies. For
example, Staniforth and Côté (1990) presented a review of
these methods and described the implementation and appli-
cation of a semi-Lagrangian method in detail. Although a full
description of the semi-Lagrangian is not repeated in this pa-
per, its basic principles will be described later in this section.

In CIP schemes, Eq. (1) is solved by performing a time-
splitting algorithm (e.g., Yabe and Takei, 1988) in two phases
as follows:

∂f

∂t
+ u(x, t)

∂f

∂x
= 0 , the advection phase (2)

∂f

∂t
= h(x, t) the non-advection phase. (3)

Appendix A presents a note on the time-splitting tech-
nique.

The primary characteristic of this CIP scheme is the intro-
duction of an additional equation to solve the spatial deriva-
tives of f at the same time. Differentiation of Eq. (1) pro-
vides the equation for g(x, t)= ∂f

∂x
:

∂g

∂t
+ u(x, t)

∂g

∂x
= ĥ(x, t)=

∂h

∂x
− g

∂u

∂x
. (4)

Equation (4) is an advection formula that is similar to Eq. (1)
with the non-advection function ĥ(x, t) on the right-hand

Figure 1. Schematic illustration of advection and semi-Lagrangian
scheme. The new state computation for a target point xj from time
tm in the case of uj < 0 is presented. The colors symbolically ex-
press the value of field variables. The boxes correspond to model
grid points. The solid arrow is the trajectory of one particle and the
solid circle is the departure point. In a semi-Lagrangian scheme, the
distance to the departure point, 〈ξ〉, is computed using an assumed
trajectory. Interpolating the state at departure point xdep, the value
is advected to the arrival point (xj , tm+1t). The dotted arrow and
circle correspond to the trajectory and departure point in a differ-
ent case while assuming a constant velocity, which may lead to a
different state.

side, which is solved using a time-splitting procedure sim-
ilar to those used in Eqs. (2) and (3):

∂g

∂t
+ u(x, t)

∂g

∂x
= 0 , advection phase (5)

∂g

∂t
= ĥ(x, t) non-advection phase. (6)

The algorithm used to solve the advection phases (Eqs. 2
and 5), which is a core characteristic of the CIP scheme fam-
ily, is described here, after which the algorithm used to solve
the non-advection phases (Eqs. 3 and 6) will be discussed.

In semi-Lagrangian approaches, a particle at (x, t +1t)
originates from the position of the upstream departure point
xdep such that

f (x, t +1t)= f (xdep, t) , (7)

where

xdep = x+

t∫
t+1t

dt u(x, t) . (8)

Figure 1 shows a schematic illustration of semi-Lagrangian
scheme. The particle at xj at time tm+1t originates from a
particle at xdep, which is not necessarily on a discretized grid
point xj . Therefore, the free variable f (x) must be interpo-
lated using the value on the grid points (represented by color
shading in the figure).
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The CIP method constructs an interpolation function
Fj (x) for the f (x) between two adjacent grid points xj and
its upwind point xj+1 when uj < 0 in order to assess the
value at the departure point. Introducing 〈ξ〉 = xdep− xj as
the distance to the original point allows the time evolution of
f (xj ) (which is the original free variable to solve) and g(xj )
(which is the spatial derivative of f at the grid points xj ) to
be solved as simple advection equations:

{
f (xj , t +1t)= f (xj +〈ξ〉, t)= Fj (xj +〈ξ〉) ,

g(xj , t +1t)= g(xj +〈ξ〉, t)=Gj (xj +〈ξ〉) ,
(9)

whereGj (x)=
∂Fj
∂x

. Note that computation of distance to the
departure point will be described in Sect. 1.2. The piecewise
interpolation function Fj (x) for xj ≤ x ≤ xj+1 is defined to
be constrained by the continuity condition at xj and xj+1 as

{
Fj (xj )= f (xj ), Fj (xj+1)= f (xj+1),

Gj (xj )= g(xj ), Gj (xj+1)= g(xj+1).
(10)

A cubic polynomial is chosen in the original CIP scheme, as

Fj (X)= C0+C1X+C2X
2
+C3X

3 , (11)

whereX = x−xj . The four coefficients (C0, C1, C2, and C3)
in Eq. (11) are determined to satisfy the constraints (Eq. 10).
The RCIP scheme framework is occasionally extended to in-
troduce a rational function (Xiao et al., 1996) such as

Fj (X)=
C0+C1X+C2X

2

1+D1X
. (12)

The interpolation function is switched from the cubic
(Eq. 11) to the rational (Eq. 12) if gj ≤ Sj ≤ gj+1 or if
gj ≥ Sj ≥ gj+1, where

Sj =
fj+1− fj

1x
j+ 1

2

, 1x
j+ 1

2
= xj+1− xj . (13)

Additionally, the four coefficients (C0, C1, C2, and D1) are
determined in order to satisfy the same constraints. The two
interpolation functions (Eqs. 11 and 12) are integrated by in-
troducing a switching parameter α:

Fj (X)=
C0+C1X+C2X

2
+C3X

3

1+αD1X
. (14)

The five coefficients used to satisfy the constraints are com-
puted as

D1 =
1

1x
j+ 1

2

[∣∣∣∣ Sj − gjgj+1− Sj

∣∣∣∣− 1
]
, (15)

C3 =
gj − Sj + (gj+1− Sj )(1+αD11xj+ 1

2
)

1x
j+ 1

2

2 , (16)

C2 = SjαD1+
Sj − gj

1x
j+ 1

2

−C31xj+ 1
2
, (17)

C1 = gj + fjαD1 , (18)
C0 = fj . (19)

The switching parameter α ∈ [0,1] is chosen as 1 when it is
necessary to use rational interpolation. In other cases, 0 is
selected. If {fj } and {gj } at time t are known, the new states
{f ∗j } and {g∗j } are predicted by shifting by distance along the
characteristics (Eq. 9) to the departure point 〈ξ〉, as follows:

f ∗j = Fj (〈ξ〉)=
C0+C1〈ξ〉+C2〈ξ〉

2
+C3〈ξ〉

3

1+αD1〈ξ〉
,

g∗j =Gj (〈ξ〉)=
C1+ 2C2〈ξ〉+ 3C3〈ξ〉

2

1+αD1〈ξ〉

−
αD1

1+αD1〈ξ〉
f ∗j .

(20)

The solutions above are those of the advection phases (Eqs. 2
and 5). The time evolutions of f and g in the non-advection
phases are again calculated according to Eqs. (3) and (6), typ-
ically by using a forwarding scheme, starting from the solu-
tion of the advection phase {f ∗j } and {g∗j }, as an intermediate
solution:
fj (t +1t)− f

∗

j

1t
= hj

gj (t +1t)− g
∗

j

1t
= ĥj .

(21)

As discussed in Xiao et al. (1996), the formulation of the
RCIP scheme possesses attractive properties, such as con-
vexity and monotone preservation, as well as phase speed.

1.2 Upstream departure point

The interpolation method used for the field variables, which
characterize each scheme, is one of the most important topics
in semi-Lagrangian schemes. Another major topic common
to the semi-Lagrangian schemes is the method used to com-
pute the departure point.

Equation (8) gives the distance to the departure point:

〈ξ〉 = −

t+1t∫
t

dt u(x, t) . (22)
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A simple and primitive way to integrate Eq. (22) is to use the
local velocity even if the velocity is a function of time and
space (e.g., Toda et al., 2009), such that

〈ξ〉 = −uj1t . (23)

Figure 1 shows a trajectory and departure point under a con-
stant velocity (dotted line and circle) assumption. As can be
seen, the computed departure point can be different from a
general non-uniform velocity situation. Another way is to
apply the “midpoint rule”, where both spatial and temporal
mean velocities between the target and departure points re-
place uj in Eq. (23), which is generally computed in an itera-
tive fashion (Tarasov and Peltier, 2003). In the present paper,
a third approach is adopted. First, a steady and linear velocity
field between the target and the upstream adjacent points, xj
and xj+1, is assumed such that

u(x)= u(xj )+ (x− xj )u
′ for xj ≤ x ≤ xj+1, (24)

where u′ is a constant spatial gradient of the velocity. In order
to solve the time evolution of the velocity of a particle at
(tm,xj ), Eq. (24) is differentiated by time t :

du
dt
=

dx
dt
u′ = u′u , (25)

which is solved as

u(t)= u(tm)exp
[
u′(t − tm)

]
. (26)

Introducing Eq. (26), Eq. (22) is integrated as

〈ξ〉 = −

tm+1t∫
tm

dt u(t)=−u(tm)1t
[

exp(u′1t)− 1
u′1t

]
, (27)

(when u′ 6= 0)

〈ξ〉 = −u(tm)1t ,(when u′ = 0). (28)

Based on the above, it can be interpreted that the distance to
the departure point is that of constant velocity case (Eq. 23
or 28), multiplied by the bracket term in Eq. (27) as a correc-
tion factor. Here, it should be noted that the correction factor
reaches 1 toward the limit of u′→ 0, which definitely cor-
responds to the constant velocity case. The velocity gradient
u′ already appears in the advection equation of the g term
(Eq. 4), which is reused in the departure point computation.

2 Model description

2.1 Governing equation

The computation used to determine the age of the ice, i.e.,
the elapsed time since the ice deposit, is performed with the

pure advection equation1:

dA
dt
= 1 , (29)

where A is the age and t is time, which is the Lagrangian ap-
proach. Eq. (29) is then reformulated into the Eulerian equa-
tion for a 1-D problem,

∂A
∂t
+w(z, t)

∂A
∂z
= 1 , (30)

where A=A(z, t) and w = w(z, t) are the age and vertical
velocity fields, respectively, and z is the vertical coordinate.
Some models introduce an artificial diffusion term in order
to achieve stable integration (e.g., Mügge et al., 1999). How-
ever, the pure advection form is kept throughout the present
paper. Following most large-scale numerical ice-sheet mod-
els (Greve and Hutter, 1995), the vertical coordinate z is
scaled with the local thickness. Introducing the scaled co-
ordinate ζ as

ζ =
z− b

H
, (31)

Eq. (30) is reformulated as follows:

∂A
∂τ
+ω

∂A
∂ζ
= 1 , (32)

where τ ≡ t is the corresponding time coordinate in this sys-
tem, b = b(t) is the bedrock topography, and H =H(t) is
the ice thickness. The new velocity term ω = ω(ζ,τ ) in τ,ζ
system is computed as

ω = w
∂ζ

∂z
+
∂ζ

∂t
, (33)

where derivatives of ζ are computed as

∂ζ

∂z
=

1
H
, (34)

∂ζ

∂t
=−

1
H

[
∂b

∂t
+ ζ

∂H

∂t

]
. (35)

Since the ice thicknessH , which actually reflects the changes
in the boundary conditions, may not be constant throughout
the time period,H =H(t) is prescribed independently of the
boundary conditions in this paper. The surface mass balance
termMs (mass input into the domain), surface evolution, and
the vertical velocity at the surface z= h(t) are related as

w(z= h(t))=
∂h

∂t
+Ms(t) , (36)

1Some models adopt 0 for the right-hand side (e.g., Rybak and
Huybrechts, 2003) simply because they use a different age defini-
tion. For such cases, redefining A as A− t results in an equation
that is identical to Eq. (29).
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which is derived from the kinematic boundary conditions
based on the assumption of a flat surface. The spatial deriva-
tive of A used in the RCIP scheme is derived as follows:

∂A′

∂τ
+ω

∂A′

∂ζ
=−

∂ω

∂ζ
A′ , (37)

where A′ = ∂A
∂ζ

.
In order to solve the time evolution of age and its gradi-

ent (Eqs. 32 and 37), the initial and boundary conditions are
required. At the free surface z= h(t) (or ζ = 1), a Dirichlet-
type boundary condition,

A(ζ = 1)= 0 , (38)

holds when the surface mass balance is positive (i.e., Ms >

0). In contrast, when the surface balance is negative, the
boundary condition is not necessary, because the departure
point of the free surface is inside the ice. A special treatment
is required for the zero mass balance at the surface, Ms = 0.
In this case, the velocity term in τ,ζ system, ω becomes 0,
so Eq. (32) is simplified as

∂A
∂τ
= 1 , (39)

which, again, requires no boundary condition for age. The
boundary conditions at the bottom ζ = 0 simply mirror those
at the surface.

The age derivative, A′, also satisfies the boundary condi-
tion at the free surface as

A′(ζ = 1)=−
1
Ms

, (40)

when Ms > 0. Conditions similar to age hold for the age
derivative when Ms < 0 and Ms = 0.

In the present study, equivalent but different coefficient
representations (Eqs. 15–19) are adopted for the RCIP
method implementation, which is described in Appendix B.

2.2 Discretization

The spatial discretization of Eqs. (32) and (37) can be either
uniform or non-uniform. In the present paper, both types of
discretization are examined. Since uniform discretization is
a special case of non-uniform discretization, the latter can be
described effectively without a loss of generality.

One way to introduce a non-uniform discretization is to
apply a non-smooth grid (Shashkov, 1995), which prescribes
irregular discretization of the coordinates:

0≡ ζ0 < ζ1 < .. . < ζNk−1 ≡ 1 , (41)

and

1ζk+1/2 = ζk+1− ζk for k = 0, . . .,Nk − 2. (42)

Another way to introduce a non-uniform discretization
is to apply a smooth grid (Shashkov, 1995), which uses a

smooth function to transform the coordinate system. One
more coordinate transformation is then performed for a non-
uniform smooth-grid system as follows:

∂A
∂T
+W

∂A
∂Z
= 1 , (43)

∂A′

∂T
+W

∂A′

∂Z
=−

∂W

∂Z
A′ , (44)

where T and Z are the time and vertical coordinates in the
new system. A smooth transformation of Z = Z(ζ ) or its in-
verse ζ = ζ(Z) is prescribed where necessary. Similarly, a
new velocity termW =W(Z,T ) in T ,Z system is computed
as

W = ω
∂Z

∂ζ
. (45)

Equations (43) and (44), which are the target equations to
solve, are simply replacements for Eqs. (32) and (37), re-
spectively. The velocity termW =W(T,Z) is prescribed (as
will be explained later). The terms A, W , and 1 on the right-
hand side correspond to f , u, and h, respectively, in the RCIP
scheme framework (Eq. 1). Although it is possible to intro-
duce further non-uniform discretization on the Z coordinate,
in the present paper, only a uniform discretization is exam-
ined on the smooth-grid discretization:

Zk =
k

Nk − 1
, for k = 0, . . .,Nk − 1. (46)

Actually, the discretization of the ζ coordinate corresponds
to the special case of non-uniform smooth discretization with
Z ≡ ζ . Therefore, for both uniform and non-uniform dis-
cretization, the scheme will be described hereafter using the
Z coordinate instead of the ζ coordinate.

2.3 Comparing other schemes with RCIP schemes

In the present paper, two numerical schemes, the first- and
second-order upwind schemes, are examined in compari-
son with the RCIP schemes. While there are other numer-
ical schemes suitable for such comparisons, including La-
grangian, other semi-Lagrangian, or even higher-order up-
wind schemes, these have already been reported in past stud-
ies (Mügge et al., 1999; Greve et al., 2002; Rybak and
Huybrechts, 2003; Clarke and Marshall, 2002; Tarasov and
Peltier, 2003; Clarke et al., 2005). Furthermore, since our
study focuses on a demonstration of RCIP schemes in re-
lation to the topic of ice dating, a wide range of comparisons
is beyond the scope of this paper.

The “first-order” upwind scheme in the present paper eval-
uates the advection term using the velocity at staggered grid
points as follows:

W
∂A
∂Z

∣∣∣∣
Z=Zk

'Wk+1/2
Ak+1−Ak

1Z
k+ 1

2

=Wk+1/2A
′
I

(
Z
k+ 1

2

)
,

https://doi.org/10.5194/gmd-13-5875-2020 Geosci. Model Dev., 13, 5875–5896, 2020
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(47)

whenWk+1/2 < 0 andWk−1/2 < 0. The velocity at staggered
grid points is computed by linear interpolation of the two
adjacent velocities at normal grid points. Equation (47) cor-
responds to numerical integration with the midpoint rule if
a Dirichlet-type boundary condition is applied on the upper
surface (Eq. 38) and the velocity is kept negative throughout.
It is especially notable that, for ice dating at summits, pos-
itive (upward) vertical velocity is rarely considered. There-
fore, the midpoint rule formulation mentioned above is suffi-
cient for application. On the other hand, a different approach
is generally required for a grid point where two velocities at
staggered adjacent grid points have opposite signs. In this pa-
per, the velocity term is simply replaced by that at the normal
grid point:

W
∂A
∂Z

∣∣∣∣
Z=Zk

'WkA
′
I

(
Z
k+ 1

2

)
, (48)

where Wk < 0, and Wk+1/2 and Wk−1/2 have opposite signs.
For the “second-order” upwind scheme, the derivative of

the age term is replaced by the second-order upwind differ-
ence formulation as

W
∂A
∂Z

∣∣∣∣
Z=Zk

'WkA
′
II(Zk) , (49)

where

A′II(Zk) (50)

=

(
21Z

k+ 1
2
+1Z

k+ 3
2

)
A′I

(
Z
k+ 1

2

)
−1Z

k+ 1
2
A′I

(
Z
k+ 3

2

)
1Z

k+ 1
2
+1Z

k+ 3
2

for k < Nk − 2,

A′II(Zk)= 2A′I(Zk)−A′k+1 , (51)
for k =Nk − 2 ,

for the Wk < 0 case. The age derivative at the surface is
required (A′k+1 in Eq. 51), which is provided as a bound-
ary condition (Eq. 40). For higher-order numerical schemes,
the introduction of a slope limiter is a standard method for
suppressing the development of oscillations near a disconti-
nuity and/or steep gradients (details are described in Greve
et al., 2002). Although it is possible to apply such slope lim-
iters in irregular grids (Murman et al., 2005), an easier ap-
proach was adopted instead. Specifically, the formulation is
switched back to the first-order scheme when A′I > 0>A′II
or A′I < 0<A′II. Although this method may be insufficient
to stabilize the solution near a strong discontinuity, the im-
plementation of more sophisticated slope limiters is beyond
the scope of the present paper.

3 Experiment and results

3.1 Experimental design

Following some modeling studies on the dating of deep
drilling sites that used simplified 1-D vertical ice flow mod-
els (e.g., Parrenin et al., 2007), the present study adopts an
analytical vertical velocity profile under the assumption that
there are no horizontal variations in the bedrock elevation,
surface, and basal mass balances:

w(ζ )=−

[(
Ms+Mb−

∂H

∂t

)
w̃(ζ )−Mb

]
, (52)

where Ms and Mb are the surface and basal mass balance
(positive is input), respectively, H is the ice thickness, and
w̃(ζ ) is the normalized velocity profile. Assuming no basal
sliding, w̃(ζ ) can be approximated by

w̃(ζ )= 1−
p+ 2
p+ 1

(1− ζ )+
1

p+ 1
(1− ζ )p+2 , (53)

where p is a parameter for the profile (Parrenin et al., 2007).
Under Glen’s flow law with a steady-state isotropic ice condi-
tion, p is equal to the flow law exponent n (typically n= 3).
In addition, the RCIP scheme requires the derivative of the
velocity, which is computed using the derivative of w̃, as

∂w̃

∂ζ
=
p+ 2
p+ 1

[
1− (1− ζ )p+1

]
. (54)

In addition to the vertical velocity, the time evolutions of
the surface and basal mass balances and the ice thickness are
required for the age computations. These will be presented in
each of the following sections.

The initial conditions for the A and A′ fields are set to 0 for
all our experiments. In these cases, the age derivative A′ is
kept 0 under the level at which the age reaches the integration
time. Starting from the 0 field, time integration is computed
for 2000kyr for most of our experiments.

It is worth mentioning that formulations like Eq. (52),
which is a function of normalized depth, make it possible
to interpret example results for different configurations when
appropriate spatial/temporal dimension scaling is used. In
this case, the spatial and temporal characteristic scales can
be defined, for example, by the ice thickness and the surface
mass balance. This means that the age solution under the con-
figuration of 3 and 0 cmyr−1 for the surface and basal mass
balance, respectively, has the same normalized shape as that
under 30 and 0 cmyr−1, by scaling all the time-related terms
as 1/10.

All the computations in our present study were performed
on a personal computer (PC) equipped with an Intel Xeon
E5-2609 central processing unit (CPU) and compiled with
GNU Fortran. Each surface/basal mass balance, ice thick-
ness, and vertical resolution configuration is repeated us-
ing four numerical schemes: the RCIP with departure cor-
rection (RCIP+corr), the RCIP without correction (RCIP),
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Figure 2. Experimental results obtained using a uniform velocity
of w = 15 cmyr−1. Snapshots of the computed vertical age profiles
obtained by RCIP with correction, RCIP, second-, and first-order
upwind schemes at t = 5, 10, 15, 20 kyr are shown. Since the “cor-
rection factor” of the departure points is 1 (Eq. 28), the results of
RCIP with correction are identical to those of RCIP. The results of
the second-order upwind scheme are close to those of the RCIP,
which are barely visible at this scale. The solution is also shown as
a benchmark (thick gray line). Symbols are plotted for every eight
vertical levels.

the second-order upwind scheme (UP-2), and the first-order
upwind scheme with midpoint rule (UP-1). Additionally, a
first-order scheme without a midpoint rule (UP-1n) is some-
times used. Multiple 1-D-column experiments with different
boundary configurations using one numerical scheme are ex-
amined simultaneously in one run. For example, the mean
computational costs for one run (with 28 different configura-
tions) in the case of 129 levels over 200 kyr are 30, 28, 32,
and 34 s, using UP-1, UP-2, RCIP, and RCIP+corr, respec-
tively. Those in the case of 513 levels are 338, 296, 364, and
392 s, respectively. Details differ among the configurations,
and it takes 30 % to 40 % more time to perform a RCIP+corr
run than to perform a UP-2 or UP-1 run.

3.2 A verification experiment using uniform velocity

Before performing an experiment under a typical ice-sheet
configuration, verification of the numerical model used in
the present study is presented under further simplified con-
ditions, namely the constant velocity case. This is easily
performed using Eq. (52), in which the parenthesis term
equals 0, in other words, by keeping H constant and setting
Ms ≡−Mb for arbitrarily p.

Figure 2 shows the computed age profile under the uni-
form velocity of −15 cmyr−1 and H = 3000 m. Uniform
grid spacing of 129 levels is adopted, which corresponds to
Z ≡ ζ and 1Z =1ζ = 1/27 (i.e., 1z= 23.4375 m) using
the smooth grid. The time step is set as 100 years, which cor-
responds to the Courant–Friedrichs–Lewy (CFL) condition

∼ 0.64. The vertical age profile is formulated as

A(z, t)=min

t, z∫
h

dz′
1
w

 ; (55)

thus, the exact solution for an uniform velocity is

A(z, t)=min(t,−z/wc) , (56)

where wc =−15 cmyr−1. For completion purposes, the re-
sults of the RCIP scheme are plotted in the figure, which is
(by definition) identical to those of RCIP+corr scheme. For
the steady state, a linear age profile from 0 years at the sur-
face and 20 kyr at the bottom is expected (corresponding to
the thick gray line in Fig. 2), which is obtained by all the
methods after integration of around 27 kyr (not shown). In
contrast, the transient states are different among the results
of the four schemes examined. Figure 3 shows the computed
age profile relative to the exact solution, with three differ-
ent time steps (100, 50, and 25 years) for each scheme. The
results of RCIP+corr (and thus RCIP) are shown to be less
sensitive to the time step than the upwind schemes, which
reflects the fact that both the interpolation and the departure
point calculation are successful. At 20 kyr, a linear age pro-
file should be obtained, but all four results show ages that are
younger than the exact solution, due to numerical diffusion.
Additionally, while all of the schemes show relatively good
performance for the upper part, the result obtained by the UP-
1 scheme deviates the most from the solution. Specifically, it
deviates 1 year from around two-thirds of the total depth and
reaches almost 1 kyr at the bottom, which is already visible
in Fig. 2. In contrast, the other results deviate from the solu-
tion only near the bottom∼ 9/10 of the total depth and reach
∼ 100 years, or even less, at the bottom. The error at the bot-
tom of UP-1 is 759 to 902 years (3.8 % to 4.5 %), while that
of RCIP is 76 to 98 years (0.38 % to 0.49 %), and the best of
UP-2 is even better at 7.5 to 154 years (0.04 % to 0.77 %).

3.3 Experiment with steady non-uniform vertical
velocity

Hereafter, non-uniform velocity experiments are performed
using p = n= 3 in Eq. (53). First, simple cases with constant
surface/basal mass balances, as well as thicknesses that cor-
respond to steady vertical velocity profiles, are shown. Since
Eq. (55) cannot be solved using Eq. (52), profiles created by
numerical integration (the Runge–Kutta scheme) are used as
“benchmark” solutions in this and the following section.

The ice thickness and the accumulation rate chosen in this
and the following sections are∼ 3000 m and∼ 3 cmyr−1, re-
spectively, which correspond to typical quantities for the East
Antarctic Plateau during the glacial period (e.g., Parrenin
et al., 2007; Fischer et al., 2013). On the other hand, there
are other cases with similar thicknesses and 10 times higher
accumulation (∼ 30 cmyr−1), typically in Greenland or West
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Figure 3. Experimental results obtained using a uniform velocity
of w = 15 cmyr−1. Snapshots of computed vertical age profiles ob-
tained by RCIP with correction, RCIP, second-, and first-order up-
wind schemes at t = 20 kyr relative to the exact solution are shown.
The results of different time steps of 100, 50, and 25 years are shown
for each scheme. The results of RCIP with correction are identical
to those of RCIP. Age differences are shown on a logarithmic scale,
except for those near 0, which are shown on a linear scale. Symbols
are plotted for every eight vertical levels.

Antarctica (e.g., Clarke and Marshall, 2002). As mentioned
in Sect. 3.1, with proper scaling, the results in these sections
can be interpreted as results with much higher accumulation
rates. This will be examined in the discussion (Sect. 4).

Two sets of basal melting are presented: no basal melting
and 3 mmyr−1. The other two parameters are fixed. Surface
mass balance is set as 3 cmyr−1 and thickness is set as H =
3000 m. We use a uniform grid spacing of 129 levels (1z=
23.4375 m), and the time step is set as 100 years, which is
the same configuration used in the previous section.

Figures 4a and 5a show computed age profiles at t =
2000 kyr for all the schemes along with the benchmark age
profiles. Very few differences can be seen among the profiles
over most parts of the figures under this scale. Deviations
from the benchmark are shown in Figs. 4b and 5b. The re-
sults of each scheme show larger errors near the bottom than
near the upper part. Some results show sudden increases in
the error at certain depths, which correspond to the depths
around where the age should reach the time of integration.

The RCIP+corr scheme shows the best result for all
depths. The UP-1 scheme shows the second-best result,
which is even better than the RCIP scheme around the depth
of 2600 m. However, it also shows the largest errors among
all the schemes examined at deeper depths. The good per-
formance of UP-1, in spite of its smallest spatial accuracy,
which is attributed to the cancellation of errors due to dis-
cretization and numerical diffusion, has already been pre-
sented in Greve et al. (2002). The midpoint rule formulation
(Eq. 47) also plays a role in the increased accuracy. Due to
simple situations, such as the one-direction advection and the

constant upper boundary conditions, the age profile compu-
tation can be formulated as a vertical integration from top to
bottom. This means that the midpoint rule integration actu-
ally has second-order accuracy. A “true” first-order upwind
scheme can be applied by using Eq. (48) over the whole do-
main. In this case, vertical integration from top to bottom
corresponds to an Euler integration, which has first-order ac-
curacy. Figures 4b and 5b also contain results obtained us-
ing such a scheme, marked as UP-1n. However, as expected,
when such a normal-grid velocity is introduced for the ad-
vection equation, the results have less accuracy than those
of the second order upwind (UP-2). Furthermore, as shown
in Greve et al. (2002), the improved performance of the UP-
1 scheme is limited to the upper part, and the errors become
larger as the depth increases. The results of the RCIP scheme
show relatively larger errors than the other methods, except
for the top and the bottom parts, which highlights the impor-
tance of accurate departure point calculations. The result of
the UP-2 scheme shows intermediate errors between RCIP
and UP-1 at the bottom.

3.4 Non-steady surface mass balance experiments

This section presents the results of experiments conducted
with non-steady velocity profiles, which were performed
with the prescribed surface mass balance time series. First, a
very simple square-wave formulation is adopted for the time
evolution of the surface mass balance.{
Ms(t)= aH , (0≤mod(t,PT) < PH)

Ms(t)= aL , (PH ≤mod(t,PT) < PT = PH+PL) ,

(57)

where aH and aL are the prescribed high and low surface
mass balance terms, PH and PL are the durations with high-
and low-value phases, and PT is the duration of one cycle.
Figure 6 shows the time evolution of a normalized surface
mass balance with PT = 100 kyr cycles and a phase pattern of
PH,PL = 1 : 1 as an example. Several experimental configu-
ration combinations are examined, including PH,PL = 1 : 1,
7 : 1, or 1 : 7; and Mb = 0, 0.3, or 3 mmyr−1. The other pat-
terns examined in this paper are provided as the Supplement
to this paper.

Figures 7 and 8 show computed age profiles at t =
1000 kyr under the square-wave surface mass balance, where
the lower surface mass balances are set as aL = 1.5 cmyr−1

and 0.75 cmyr−1. The higher surface mass balances and the
basal are set as aH = 3 cmyr−1 andMb = 0, respectively. For
reference purposes, the benchmark solutions with constant
surface mass balances of aH and aL are shown with gray
lines. The black line is the benchmark solution with the con-
stant surface mass balances of the mean, aM = (aH+ aL)/2.
As shown in these figures, the computed age profiles are
close to the benchmark solution with aM, particularly at the
bottom. For the upper part, the computed age profiles are
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Figure 4. Experimental results obtained under steady vertical velocity profiles with H = 3000 m, Ms = 3 cmyr−1, and Mb = 0 mmyr−1.
(a) Computed vertical age profiles by RCIP with departure point correction (RCIP+corr), the RCIP scheme, the second-order upwind scheme
(UP-2), the first-order upwind scheme (UP-1), and the first-order upwind scheme without the midpoint rule (UP-1n) at t = 2000 kyr, (b) those
relative to the benchmark profile obtained by numerical integration, and (c) a zoomed-in portion of the bottom part of panel (a) showing that
the differences among the experiments are on the order of 10 kyr. Age differences are shown on a logarithmic scale, except for those near 0,
which are shown on a linear scale. Uniform grid spacing of 129 levels is adopted in this simulation.

Figure 5. Same as Fig. 4a and b except for the experiment with Mb = 3 mmyr−1.

along the benchmark solutions for the constant surface mass
balance cases of aL.

Since there are few visible differences among the com-
puted ages, the computed age profiles relative to the one pro-
duced by the RCIP+corr scheme (Fig. 7b) are shown. The
figures show comparable relative performance levels in spite
of the different input surface mass balance histories. The age
profiles produced by the RCIP scheme deviate systemati-
cally from RCIP+corr by less than 1 kyr throughout the depth
range, which reflects the differences in computing the depar-

ture points. The other two schemes deviate around 10 kyr at
most. The age difference oscillations seen in the UP-2 and
UP-1 schemes are visible near the age corresponding to the
time when switching was conducted between the high and
low surface mass balances. (1A vs. A plots are presented in
the Supplement). These oscillations reflect the characteristics
of the UP-2 and UP-1 schemes at the discontinuities.

Figures 7c and 8c show the computed annual layer thick-
ness, λ, against the depth. In the present paper, the annual
layer thickness is defined as the inverse of the age gradient.
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Figure 6. Schematic figure showing the time evolution of the sur-
face mass balance adopted in these experiments. Only the first two
cycles are plotted.

For the RCIP+corr and RCIP methods, the computed field
of the age derivative itself (A′ in Eq. 44) is used with the
coordinate transformation. On the other hand, for the UP-2
and UP-1 methods, the diagnosed field is used (A′I or A′II
in Eqs. 47, 50, and 51, respectively). An infinite or a very
large annual layer thickness may be present near the bottom,
due to the zero gradient of age as a consequence of the initial
experiment conditions. In this study, the last 500 years are
clipped from the figures.

The annual layer thickness has the following relationship
in terms of the thinning rate:

∂λ

∂t
=
∂w

∂z
λ , (58)

while assuming that layers remain horizontal (Cuffey and
Paterson, 2010). When the basal mass balance is 0 and the
thickness is constant, the vertical velocity gradient can be
formulated from Eq. (52) as

∂w

∂z
=−Ms

∂w̃

∂ζ
. (59)

Finally, after some derivation, the vertical gradient of annual
layer thickness can be formulated as

∂λ

∂z
=
λ

w̃

∂w̃

∂ζ
, (60)

which is a function of λ and the normalized vertical velocity
shape. This experiment was conducted with zero basal mass
balance, constant thickness, and the same normalized veloc-
ity. Therefore, the vertical profile of the annual layer thick-
ness should go back and forth on the two lines produced by
those computed using the constant surface mass balances.

In terms of computed annual layer thickness profiles, the
RCIP+corr and RCIP (which overlap with RCIP+corr in the
figure) methods show particularly good performance over the
upper part, as shown in Figs. 7c and 8c. Dissipation at the
discontinuity becomes larger towards the bottom, but the so-
lution of RCIP+corr (RCIP) is somewhat more stable on the
two benchmark lines than the other schemes. Overshooting
at the discontinuity is shown for the solution by the UP-2
scheme, which becomes larger as the difference between the
high and low surface mass balances increases. In the present

study, this is considered to be a consequence of an inadequate
slope filter. In addition, the annual layer thickness is diag-
nosed with Eq. (50) for the UP-2 scheme, which may exag-
gerate the oscillation of age gradients more than the simple
first-order Taylor expansion. For the UP-1 scheme results,
the annual layer thickness diffuses with the depth level and
approaches the constant accumulation case of its mean. In
deeper areas, the annual layer thickness is found in the vicin-
ity (above or below) of the mean aM benchmark profile in all
of the numerical schemes.

The same exercises were performed using a different shape
for the time evolution of the surface mass balance. Figure 9
shows the results for an experiment conducted using the
cosine-wave formulation of the surface mass balance (Fig. 6),
which is relatively more continuous than the square-wave
version. Similar performance levels were obtained by the
UP-2 and RCIP+corr (RCIP) methods for the small ampli-
tude case (Fig. 9c). Instability also arises at low-to-high tran-
sitions when the ratio of high-to-low accumulation is larger
(archived in the Supplement).

Figure 10 shows the results obtained by square-wave forc-
ing in terms of computed annual layer thickness, λ, against
the computed age for all the schemes, obtained by the rela-
tive duration of the PH : PL = 1 : 1 case (similar figures ob-
tained by other experimental configurations are archived in
the Supplement). Since the periodicity of the input cycle is
100 kyr in this experiment, the annual layer thickness pro-
files should show the same periodicity. The obtained results
show relatively good performance for the RCIP+corr (RCIP)
scheme in terms of the phases when compared with the UP-2
and UP-1 schemes. Dissipation at the discontinuity blur the
square-wave shapes, particularly at the deeper part, but the
phases are still maintained better by the RCIP+corr (RCIP)
scheme than by the UP-2 scheme.

3.5 Non-steady thickness experiments

The time evolution of the surface mass balance often involves
the evolution of ice thickness as a response. In this section,
age computation performance levels under non-steady mass
balance and ice thickness conditions are presented. In the
present paper, the time evolution of thickness is computed
as follows:

∂H

∂t
=−

1
τH
{H −Href(Ms)} , (61)

where Href(Ms) is the reference thickness as a function that
depends solely on the surface mass balance and τH is the
response thickness timescale. Under ideal conditions, the
steady-state ice thickness at the summit is proportional to
the 1/(2n+ 2) power of the surface mass balance, where
n is Glen’s flow law exponent (Cuffey and Paterson, 2010).
Following this relationship, the reference thickness is formu-
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Figure 7. Results of transient experiments with square-wave surface mass balances of aH, aL = 3,1.5 cmyr−1, PT = 100 kyr, PH : PL = 1 :
1= 50 : 50 kyr, square-wave, Mb = 0, and constant H = 3000 m. (a) Vertical profiles of the computed age and (c) annual layer thickness at
1000 kyr using RCIP+corr, RCIP (overlapped on RCIP+corr), UP-2, and UP-1 are shown. The last 500 years are clipped from panel (c),
where the age gradient (inverse of λ) is close to 0, reflecting the initial condition. (b) The computed age differences at the same depth relative
to the result of the RCIP+corr case are shown on a logarithmic scale, except for those near 0, which are shown on a linear scale. For reference
purposes, the gray lines indicate benchmark solutions for the constant surface mass balance cases of aH, aL, and aM. Uniform grid spacing
of 129 levels is adopted in this simulation.

Figure 8. Same as Fig. 7 but for the results of transient experiments using a square-wave surface mass balance of aL = 3 and 0.75 cmyr−1.

lated as

Href(Ms)=H(t = 0)
[

Ms(t)

Ms(t = 0)

]1/(2n+2)

. (62)

For cases where H(t = 0)= 3000 m, aH,aL =

3,1.5 cmyr−1 and PT = 100 kyr, the evolution of H

over the first two cycles can be computed as shown in
Fig. 11 using Eqs. (61) and (62). The lower thickness limit
in this case is 3000× (1.5/3.0)1/8 ∼ 2751.01 m.

Several experimental configuration combinations are ex-
amined. These include square-wave or cosine-wave forc-
ing; aH,aL = 3,1.5 cmyr−1 or 3,0.75 cmyr−1; τH = 3 kyr
or 10 kyr; PH,PL = 1 : 1, 7 : 1, or 1 : 7; Mb = 0, 0.3, or
3 mmyr−1. Figure 12 shows the result of experiments con-
ducted with response timescales of 10kyr for the 100 kyr cy-
cle square-wave case provided as an example. The gray lines

in the figures are the benchmark solution with constant sur-
face mass balances of aH and aL and their corresponding ref-
erence thickness of Href. The black line is computed using
the mean surface mass balance aM = (aH+ aL)/2, and the
mean thickness over the last cycle of its evolution.

A comparison with the fixed thickness experiments (Fig. 7
vs. Fig. 12, or other combinations archived in the Supple-
ment) shows no significant differences. The preservation of
discontinuity in the annual layer thickness is similar to that
seen in the non-steady thickness case. The differences in
computed age, as well as the performance levels of the phases
in the annual layer thickness, are qualitatively the same. In
addition, all of the combinations examined in this paper show
corresponding results that are qualitatively similar to those
obtained in the fixed thickness experiments.
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Figure 9. Same as Fig. 7 but for the results of transient experiments conducted with a cosine-wave surface mass balance of aH,aL = 3 and
1.5 cmyr−1.

Figure 10. Results of transient experiments with square-wave surface mass balances of (a) aH,aL = 3 and 1.5 cmyr−1 and (b) 3 and
0.75 cmyr−1 with high- and low-value phase durations (Eq. 57) set as PH : PL = 1 : 1= 50 : 50 kyr. The basal mass balances are set as 0.
The computed annual layer thickness of λ against the computing age is shown (RCIP overlaps with RCIP+corr). The gray lines indicate
benchmark solutions of the constant surface mass balance cases of aH and aL, while the black lines aM = (aH+ aL)/2 are provided as
references. Uniform grid spacing of 129 levels is adopted in this simulation.

Figure 11. Prescribed time evolution patterns of ice thickness
adopted in the non-steady thickness experiment. The thickness evo-
lution is computed using an e-folding time of 10 kyr against square-
wave and cosine-wave formulation of the surface mass balance with
aH,aL = 3 and 1.5 cmyr−1 (Fig. 6) provided as an example.

3.6 Occasional non-positive surface mass balance
experiments

So far, the surface mass balance values adopted in our experi-
ments have been positive (corresponding to the accumulation
zone). This limitation is sufficient for the usual topics relat-
ing to deep ice-core experiments, where the interpretation of
ice-core data may become too complex. However, in order to
provide a complete demonstration of the performance levels
of numerical age computations for more general cases, it is
worthwhile to examine other cases. Although it may be con-
sidered pointless to examine steady negative mass balance
cases because they simply mirror the steady positive cases
presented above, the surface mass balance level adopted in
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Figure 12. Same as Fig. 7 but for the results of non-steady thickness experiments conducted with the response timescale set as τH = 10 kyr.
The reference thickness values H for the benchmark profiles are explained in the text.

Figure 13. Same as Fig. 7 but for the results of transient experiments conducted using a square-wave surface mass balance with aL =
0 cmyr−1.

this section is examined with zero or negative aL in Eq. (57)
and Fig. 6. One encountered difficulty is computing vertical
velocity when the surface mass balance is negative. Strictly
speaking, it is possible to apply negative Ms to Eqs. (52)
and (53), but the validity of such a formulation may be ques-
tionable because it is based on an idealized steady-state ice-
sheet solution under positive surface mass balance conditions
(e.g., Rybak and Huybrechts, 2003). However, for the sake of
simplicity, the vertical velocity profiles in the current study
are prescribed using the same set of equations for both pos-
itive and negative surface mass balances. This is considered
to be sufficient, particularly for evaluations of the numerical
performance levels of different schemes.

The results of the transient experiments that were con-
ducted under a square-wave surface mass balance of aL =

0 cmyr−1 are presented in Fig. 13, while the other configura-
tion is the same as in Figs. 7 and 8. The results obtained un-
der a configuration with aL =−1.5 cmyr−1 are archived in
the Supplement. For both experiments, the thickness is fixed

as 3000 m, the mass balances are aH = 3.0 cmyr−1, Mb = 0,
and the phases are PH,PL = 50 and 50 kyr.

Several experimental configuration combinations are ex-
amined. In a comparison involving the experimental results
of the positive mass balance cases examined in this paper,
qualitatively similar results are presented. As the prescribed
surface mass balance at the lower aL becomes smaller, er-
rors in the annual layer thickness become clearer around the
middle depth. The λ for the RCIP+corr (RCIP) scheme at
the 1600 m depth and below does not extend to the refer-
ence gray line (Fig. 13c). This is due to the lack of suffi-
cient vertical resolution when capturing the variation. How-
ever, the results are still better than those obtained from the
other schemes.

3.7 Resolution

Annual layer thickness becomes smaller with depth, which
reflects the vertical velocity profile. Therefore, differences
in age between two neighboring levels become larger with
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Figure 14. Vertical discretization adopted in the present study: (a) Z vs. ζ (b) 1ζ vs. ζ . Five patterns are shown: uniform grid spacing of
129 levels (129e), that of 513 levels (513e), a smooth non-uniform discretization (513p; see text), a non-smooth, non-uniform discretization
(477o; see text), and uniform grid spacing of 33 levels (33e). Symbols are plotted for every 16 vertical levels. The four gray lines in panel (b)
correspond to the layer thickness necessary to resolve 10, 5, 2, and 1 kyr differences under the condition of Ms = 1.5 cmyr−1, Mb = 0, and
H = 3000 m. The two horizontal magenta lines correspond to the depth needed to reach 1000 and 2000kyr under the same conditions.

Figure 15. Results of transient experiments conducted with the square-wave surface mass balances of aH,aL = 3 and 1.5 cmyr−1 and
PH : PL = 1 : 1 (Eq. 57), and the total duration as (a) PT = 50kyr, (b) PT = 20 kyr, and (c) PT = 10 kyr. The basal mass balance is set as 0
for all the experiments in the figure. The vertical profiles of the annual layer thickness λ at 1000 kyr using RCIP+corr, RCIP (which overlaps
with RCIP+corr), UP-2, and UP-1 are shown. The gray and black lines indicate benchmark solutions of constant surface mass balance cases
with aH, aL, and aM = (aH+aL)/2 given as references. Uniform grid spacing of 129 levels is adopted in this simulation. The results covering
the depth from 1000 to 2600 m are shown.

increasing depth. At a certain depth, the grid spacing be-
comes insufficient to hold the variation of the input age cy-
cles, which means that the preservation of the input variation
is lost below that depth. Typically, in the experiments shown
above, 100 kyr cycle properties of input surface mass balance
are maintained at around 300 to 500 kyr with the RCIP+corr
(RCIP) scheme, and the computed age becomes smoother
before that age (e.g., the square-wave shape in Fig. 10). The
results obtained by UP-2 show loss of variation at similar
or shallower depths, and those by UP-1 do so at even shal-
lower depths, which results from the numerical diffusion of
the schemes.

In the same manner as computing an approximate depth–
age solution under constant surface/basal mass balance and

constant thickness (e.g., the gray benchmark lines in Fig. 7a),
the inverse age–depth solution can be also computed. Using
this solution, the vertical profiles of layers that are sufficient
to hold a constant age difference (Tres) can be obtained. Fig-
ure 14b shows four gray lines, which correspond to 1ζ suf-
ficient to hold the 10, 5, 2, and 1 kyr differences when the
experiment configuration is constant at Ms = 1.5 cmyr−1,
Mb = 0, and H = 3000 m. It is worth mentioning that for
other Ms cases with the same Mb and H constant, the four
reference ζ–1ζ relationships correspond to those with Tres
divided by the factor ofMs forMs = 3 cmyr−1, and that they
are interpreted as Tres = 5, 2.5, 1, and 0.5 kyr, respectively,
while Ms = 0.75 cmyr−1 are interpreted as Tres = 20, 10 4,
and 2kyr, respectively. Therefore, the 1ζ limit estimated
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by using the lower surface mass balance of the experiment
should be considered. For example, if the grid size at a cer-
tain ζ is larger than the Tres = 2 kyr line, characteristics with
higher frequencies than Tres cannot be sampled. The vertical
line marked as Z: 129e in Fig. 14b corresponds to uniform
grid spacing of 129 levels adopted in the experiments con-
ducted thus far. As the figure shows, this discretization can
hold 2, 5, and 10 kyr differences by ζ ∼ 0.82, 0.44, and 0.29,
respectively, and the 1 kyr is not resolved.

Figure 15 is the same as Fig. 7c, except for the results us-
ing the different PT of 50, 20, and 10 kyr. As shown in the
figure, higher-frequency properties disappear at shallower
depths. The results of RCIP (RCIP+corr) keep the oscilla-
tion relatively stable, but the computed annual layer thick-
nesses are not on the lines of the constant mass balance cases
(gray lines), even at shallow depths, for high-frequency in-
put (Fig. 15c). The square-wave shape pattern seems to be
well preserved, at least around the 1700 m depth (ζ ∼ 0.44)
in Fig. 15a, and around the 600 m depth (ζ ∼ 0.8) in the
case of Fig. 15b (which is beyond the range of the figure
but presented in the Supplement). Therefore, by compari-
son with Fig. 14, it can be roughly estimated that Tres =

5 kyr and Tres = 2 kyr or longer are necessary to resolve the
PT = 50 kyr and PT = 20 kyr square-wave shapes, respec-
tively, which correspond to 1/10PT.

Here, the same series of experiments is repeated using a
higher resolution and a uniform grid spacing of 513 levels,
which is 4 times the resolution of the previous experiments.
The vertical line marked as Z: 519e in Fig. 14b corresponds
to this grid spacing. As the figure shows, this discretization
can hold 5, 2, and 1 kyr differences by ζ ∼ 0.19, 0.33, and
0.51, respectively, corresponding to 2430, 2010, and 1470 m
in depth, respectively. The time step for higher-resolution ex-
periments conducted hereafter is set as 25 years.

Figure 16 is the same as Fig. 15, except for the vertical grid
spacing adopted and with zooming shown near the bottom
part. The patterns seem to be well preserved by around the
depths corresponding to the ζ above, but the computed ages
produced by the RCIP+corr (RCIP) schemes are not on the
line Ms = aL below the corresponding depths.

The number of vertical layers presented above exceeds
100, which is substantially more than those used in many op-
erational large-scale 3-D ice-sheet models. The typical num-
ber of layers is 30 or even less (e.g., Goelzer et al., 2020;
Seroussi et al., 2020). Therefore, since it would be helpful
to evaluate performance levels at such a lower resolution for
a broader range of applications, a series of experiments was
performed using a lower resolution. Figure 17 is the same
as Fig. 7, except that the results are provided using a uni-
form grid spacing of 33 levels (i.e., 1z= 93.75 m), which is
one-fourth the resolution of the reference experiment. The
time step for the lower-resolution experiments was set to
200 years.

When compared to the higher-resolution cases, the an-
nual layer thickness patterns seem to be less preserved. The

square-wave pattern in the results of UP-1 has already dis-
appeared at around 1400 m depth, while those in the other
schemes are almost the same, although less than the 129-
level cases.

Figure 14b also contains a line corresponding to a uni-
form grid spacing of 33 levels marked as Z: 33e. As the fig-
ure shows, this discretization can hold 10 kyr differences by
ζ ∼ 0.67, corresponding to 990 m in depth. Similarly, it holds
20 kyr differences for ζ ∼ 0.43 (1710 m, not shown in the
figure). Figure 17c shows that the result patterns obtained for
the RCIP+corr (RCIP) schemes are well preserved by around
the 1400 m depth, which is between the two vertical levels of
these estimations. Thus, like the 129-level cases, it can be
roughly estimated that 1/10 (or slightly more) duration of
the input cycle is necessary to resolve by one grid.

A comparison between Figs. 17b and 7b shows that differ-
ences in computed age among the schemes are within a com-
parable range (. 10 kyr) and thus are neither exaggerated nor
converged by reducing this resolution. The high-frequency
oscillation seen near the bottom in Fig. 17b is not in Fig. 17b,
which reflects the fact that even the RCIP+corr scheme can-
not preserve the input shape near the bottom with the lower
resolution. Nevertheless, it should be emphasized that there
are still systematic 1 to 10 kyr biases are left by the upwind
schemes.

3.8 Non-uniform discretization

So far, all of the experiments were performed with uniform
discretization of either 129 or 513 levels. For most cases in
the present study, it is reasonable to adopt non-uniform dis-
cretization, which means large spacing toward the top and
small spacing toward the bottom. Since it was previously es-
timated that at least 1/10 duration of the input cycle is neces-
sary to resolve one grid, the discretization can be optimized
according to the1ζ profile computed with the minimum sur-
face mass balance of the experiment. Here, for example, the
target experiments are set as the square-wave surface mass
balance with PT = 100 kyr, PH : PL = 1 : 1, Mb = 0, H =
3000 m constant, and aH,aL = 3,1.5 cmyr−1. This is the
same configuration seen in Fig. 7. For this configuration, the
combination of Tres = PT/20= 5 kyr and Ms = 1.5 cmyr−1

is adopted in order to compute the reference profile in the
same way as Fig. 14. This number, which is half the num-
ber of the estimates used in the discussion above, was chosen
for safety and to facilitate additional experiments with other
configurations (e.g., aL = 0.75 cmyr−1 and/or PT = 50 kyr,
which are archived in the Supplement).

Two non-uniform discretization types are adopted in this
section. One is a non-smooth grid and the other is a smooth
grid (introduced in Sect. 2.2). Various methods can be ap-
plied for non-smooth discretization. A very simple method,
which is adopted in this study, calls for starting an initial
spacing from the top and then keeping the same grid spacing
as long as it is smaller than the reference profile. When the
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Figure 16. Same as Fig. 15, except for the vertical resolution, which is shown as a uniform grid spacing of 513 levels. The results at 2000 kyr
covering the depth from 1000 to 2600 m are shown.

Figure 17. Same as Fig. 7, except for the experiment with the lower vertical resolution of 33 uniform grid spacing. Symbols are plotted for
every two vertical levels.

spacing exceeds the reference, it is halved from the coordi-
nates and maintained at that size until it exceeds the reference
again. It is necessary to limit the minimum grid spacing in
order to avoid an infinite number of discretizations. The line
marked as Z: 477o in Fig. 14 is a computed profile following
the method mentioned above, which runs from 1ζ = 2−6 to
2−11. It contains 477 levels from ζ = 0 to ζ = 1. The vertical
coordinate systemZ (model logical coordinate; see Sect. 2.2)
is identical to ζ , and the series of ζk is shown in Fig. 14a.

For non-uniform smooth discretization, a transformation
function that follows the reference profile is necessary be-
tween ζ and Z. Since there is no fixed method for choos-
ing the formulation of Z, the following three constraints are
adopted for this paper: (i) ζ(Z = 0)= 0, (ii) ζ(Z = 1)= 1,
and (iii) dζ

dZ > 0 for 0≤ Z ≤ 1. A simple formulation to sat-
isfy these constraints is

ζ =
Z+ γZψ

1+ γ
, (63)

where the two parameters γ (a weight) and ψ (a power) con-
trol the shape of transformation. The linear termZ in Eq. (63)

is needed to avoid infinite ∂Z
∂ζ

at ζ = Z = 0, which is used for
in Eq. (45). After some trial and error with changing γ and
ψ chosen from integer numbers, we found the following for-
mulation can be used to maintain a grid spacing that is less
than or equal to the reference profile until approaching the
bottom:

ζ ≡

(
Z+ 4Z14)

5
, Zk =

k

Nk − 1
for k = 0, . . .,Nk − 1.

(64)

The line marked as Z: 513p in Fig. 14 is the profile ob-
tained by Eq. (64). Here, the same number of levels (513)
is adopted to discretize under the Z-coordinate system. Fig-
ure 14a shows the uniform grid spacing of Z, which corre-
sponds to the non-uniform ζ grid spacing achieved by this
method. Additionally, Fig. 14 marks the two vertical coor-
dinates as references in order to reach 1000 and 2000 kyr,
respectively, under the constant condition Ms = 1.5 cmyr−1,
Mb = 0, and H = 3000 m.

Geosci. Model Dev., 13, 5875–5896, 2020 https://doi.org/10.5194/gmd-13-5875-2020



F. Saito et al.: RCIP ice-sheet age computation scheme 5891

Figure 18. Same as Fig. 7c, except for the vertical resolution as (a) uniform grid spacing of 513 levels, (b) smooth non-uniform grid spacing
of 513 levels, and (c) non-smooth non-uniform grid spacing of 477 levels. The results at 2000 kyr covering the depths from 2300 to 2900 m
are shown.

Figure 19. Same as Fig. 10 except for the vertical resolution as (a) uniform grid spacing of 513 levels, (b) smooth non-uniform grid spacing
of 513 levels, and (c) non-smooth non-uniform grid spacing of 477 levels. The results at 2000 kyr are shown.

Figures 18 and 19 show the results obtained using the
uniform-spacing (Z: 513e), smooth-grid (Z: 513p), and non-
smooth-grid (Z: 477o) discretization methods, in terms of λ
vs. depth, and λ vs. age. A comparison with Fig. 7 shows
that the latter preserves the input shape deeper than the for-
mer. As shown in Fig. 14, the uniform discretization case
(marked as Z: 513e) is expected to fail to resolve 10 kyr at
age 1000 kyr, which is presented in Fig. 19. The results of
UP-1 preserved the input shape deeper than the lower res-
olution, which are almost only half of those achieved with
the RCIP+corr (RCIP) methods. The results of UP-2 were
preserved at slightly deeper depths than those of UP-1. How-
ever, their phases are shown to be shifted from those of the
RCIP+corr (RCIP) methods, particularly at the deeper part.
For differences in the computed age from the RCIP method
(Fig. 19a and b), quantitatively, the same performance lev-
els as the lower-resolution experiment were obtained by the
other methods. The UP-1 and UP-2 methods deviate from
the RCIP method by around 1 and 10 kyr at most, while
RCIP+corr deviates by around 100 years. Using non-uniform

discretization, preservation of the input shape is further ex-
tended to the deeper part (Fig. 18). As shown in Fig. 14,
the non-smooth non-uniform discretization case (marked as
Z: 477o) crosses the Tres = 10 kyr line at ζ ∼ 0.07 (i.e.,
2790 m depth) for the aL = 1.5 cmyr−1 experiment, which
is observed in Fig. 19. The smooth non-uniform discretiza-
tion case (marked as Z: 513p) crosses the Tres = 10 kyr line
slightly below that depth, ζ ∼ 0.06 (2820 m depth), which is
observed in Fig. 19 again. In addition, similar to the lower-
resolution experiment, Fig. 19 shows that the RCIP+corr
(RCIP) scheme performs relatively better in terms of the
phases than those with the UP-2 and UP-1 schemes.

4 Discussion and conclusion

The present study demonstrates a method for performing 1-D
age computations of ice sheets under constant velocity, vari-
able velocity responding to transient changes in surface mass
balance, and/or changes in ice-sheet thickness. Herein, com-
parisons of the vertical profiles of computed ages, as well
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as annual layer thicknesses, were examined among the RCIP
schemes (semi-Lagrangian) and upwind schemes (Eulerian).
Although the experiments in the present study were limited
to 1-D computations under summits, we believe the char-
acteristics of the RCIP schemes have been presented suffi-
ciently to allow evaluations of their performance levels.

Overall, the RCIP schemes show the best performance lev-
els among the schemes examined in the present study. In
particular, the computed vertical profiles of the annual layer
thicknesses produced by RCIP schemes follow the expected
depth profiles more reasonably than the other methods. This
advantage reflects the design of the RCIP scheme, which ex-
plicitly computes the evolution of the age derivative, i.e., the
inverse of annual layer thickness, using an advection equa-
tion that is similar to the one used to compute the age itself.
Using the other schemes, the computed vertical profiles of
annual layer thickness either show more smoothing at shal-
lower depths than that were found with the RCIP scheme or
the development of oscillation at steep changes in the input
surface mass balance. Such oscillation development is shown
even when the input is a smooth cosine-wave-type pattern
and the amplitude is large. Since the slope filter adopted in
this study is extremely simple, it is possible that the results
obtained by the use of a second-order upwind scheme with a
more suitable filter will change the characteristics. The intro-
duction of slope limiters on general non-uniform discretiza-
tion for higher-order upwind schemes is possible (Murman
et al., 2005), but the conditions used for switching between a
cubic polynomial and a rational form (Eqs. 11 and 12) in the
RCIP scheme may be simpler and easier to implement. Under
some configurations, oscillation development is not shown
by the second-order upwind scheme. However, the phases of
annual layer thickness against the age are shifted from those
expected from the initial inputs, which again demonstrates
the advantages of the RCIP scheme.

We examined two methods of computing the departure
points in our RCIP scheme experiments. Under a constant
velocity case, the results obtained by the simpler method
show even less accurate solutions than the first-order upwind
scheme, while the other “correction” method shows the best
performance. The computed age difference between the two
RCIP methods is 1000 years at most for all the configurations
examined in the present study, including the vertical resolu-
tion. As a result, the simpler method still performs well if the
expected accuracy of the application is less than that period.
Under an evolving surface mass balance, the solution of the
upwind scheme deviation is around 10 kyr, which is slightly
larger.

As has already been discussed in previous studies (Greve
et al., 2002), the first-order upwind scheme shows some-
what better performance than other schemes in some exper-
iments. Greve et al. (2002) attributes this result to the can-
cellation of errors between discretization and numerical dif-
fusion. In addition, from comparisons between results ob-
tained via the first-order upwind scheme, with and without

the midpoint rule (Fig. 4), we find that the midpoint rule
does provide an advantage because the results obtained with-
out the rule are worse by 1 order of magnitude than those
obtained via the second-order upwind scheme. Furthermore,
as discussed above, the upstream correction significantly im-
proves the RCIP solution, which suggests that it is important
to consider the non-constant velocity between the arrival and
departure points. Since the midpoint rule formulation in the
first-order scheme, in principle, corresponds to this upstream
correction, they are consistent. The shape of the normalized
vertical velocity profile also may play a role in the relative
performance levels. For example, the upper part is more lin-
ear than the bottom part, which may increase the accuracy
of the first-order approximation. In any case, it is clear that
some or all of these points contribute to the higher perfor-
mance of the first-order scheme, except for the bottom part.

As long as the annual layer thickness is not a concern,
we feel that the classical upwind schemes are acceptable
choices for use when dating. Note that using a first-order
upwind scheme causes the structural details of the surface
mass balance history to disappear very rapidly, but average
features will compute quite well, except for near the bottom.
The second-order scheme preserves the history better than
the first-order scheme, but without an effective slope lim-
iter, strange oscillations can appear in the results, as we have
demonstrated in the present paper. However, in spite of these
oscillations in the annual layer thickness, the results achieved
by the second-order scheme are still slightly better than those
for the first-order scheme throughout most of this study’s ex-
periments.

Greve et al. (2002) presented “practical suggestions” for
numerical dating schemes: the second-order, the total varia-
tion diminishing Lax–Friedrichs (TVDLF) scheme with the
minimum modulus (min-mod) filter, and even the first-order
upwind schemes. In line with those recommendations, we
would like to add the following additional practical sugges-
tions. If good performance is required from the annual layer
thickness computation, we strongly recommend the applica-
tion of RCIP. We also strongly recommend the application
of RCIP if age computations near the bottom are required to
be within the error range of, e.g., 10 kyr. In other cases, the
classical upwind schemes are acceptable choices.

The ice thickness and accumulation rate values used in the
present paper correspond to typical values found on the East
Antarctic Plateau, and the values used for the cycles in sur-
face mass balance are 10 to 100 kyr. Providing appropriate
scaling is used, all of the results can be interpreted in the
same way as those with different configurations. In order
to simplify the situation, the set of calculations will herein
adopt a configuration with a different magnitude and surface
mass balance cycle while keeping the same thickness and
zero mass balance. Figure 7 is taken as an example. In this
experiment, we will use a figure with the same shape while
replacing all the time-related variables to 1/10 – 10 times
higher accumulation rates (aH,aL = 30 and 15 cmyr−1) with
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1/10 cycles, PT = 10 kyr, PH,PL = 5 and 5 kyr. The range
of the horizontal axis needs to be adjusted from (a) A from
0 to 100 kyr, (b) 1A from −1 to 1 kyr, and (c) λ from
100 to 102 mm, respectively (remember that the units of an-
nual layer thickness λ are substantially mmyr−1). Similarly,
Fig. 15 can be interpreted as the results of (a) PT = 5 kyr, (b)
PT = 2 kyr and (c) PT = 1 kyr, respectively, providing that
the horizontal axis is adjusted λ from 100 to 102 mm. In sum-
mary, the results in the present paper can be interpreted as
cases of ∼ 30cmyr−1 surface mass balance with cycles of 1
to 10 kyr, i.e., millennial-scale climate oscillations on a typ-
ical Greenland site. Under the scaled configuration, it can
be interpreted from Fig. 7b that the age profiles produced
by the RCIP scheme deviate from RCIP+corr by less than
100 years throughout the depth range, which reflects the dif-
ferences in computing the departure points. The other two
schemes deviate by around 1 kyr at most. In addition, from
Fig. 15a, it can be seen that the square-wave shape pattern
is well preserved, at least around the 1700 m with PT = 5
(a) even though the higher-frequency properties disappear at
shallower depths with PT = 1 kyr case (c). Moreover, from
examining a series of experiments with 10 times higher accu-
mulation under 1/10 shorter cycles, we confirmed the same
normalized shape of the results (not shown).

Although the focus of the present study is limited to 1-D
age computations, implementation of the RCIP scheme for
3-D computation of the age field is also a suitable subject for
future discussions.

Extension to 3-D would require the consideration of com-
plex 3-D flow fields and typically much lower horizontal ice
age gradients. In addition, the negative mass balance exper-
iment demonstrated in the present study is too simple to be
compatible with the 3-D situation. One important character-
istic of the CIP scheme family is that the spatial gradient
of the field variable (age in this case) is not a diagnostic
(passive) value but is instead a prognostic field. Yabe et al.
(2002) argued that even in an extreme case where values of
the three adjacent grid points are zero, one wave still can ex-
ist, and thus non-zero spatial gradients can be held at these
grid points. Therefore, it is speculated that the accuracy of
the RCIP approach is not worse than that of other semi-
Lagrangian schemes using higher-order interpolation tech-
niques over the field variables, which have been discussed in
past studies (Clarke and Marshall, 2002; Clarke et al., 2005).

As described in the present study, RCIP is an effective
scheme for preserving the flux information at deposition (an-
nual layer thickness in the case of dating). However, detec-
tion of “points of origin” requires another technique, e.g.,
the back-tracing method. Huybrechts et al. (2007) suggested
a very effective back-tracing method, which can be sufficient
by itself for ice-core dating. The small but primary advantage
of the RCIP method over the powerful back-tracing method
is that it is a forward scheme. This means that it is not nec-
essary to record all the past velocity field data during the
simulation. Therefore, we consider the combination of the
high-precision forward scheme and the powerful backward
scheme to be a good choice when the objective is to obtain
rough and detailed pictures of ice age fields.

Furthermore, it is expected that the RCIP scheme will be
applicable to other advection problems in ice-sheet model-
ing. The evolutions of ice-sheet thickness and temperature
are formulated using transport or advection equations, which
are also good candidates for extending the discussion of
this study. For such cases, researchers may be interested in
mass or energy conservation in the field. Actually, a multi-
dimensional conservative formulation of CIP schemes has
already been proposed (Yabe et al., 2002). Accordingly, the
implementation of the scheme to 3-D age and temperature
fields in numerical ice-sheet models has already been set as
the next target of our development.
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Appendix A: Notes on time splitting

A time-splitting technique (Eqs. 2 and 3) is at the core of the
CIP schemes and is somewhat difficult to understand at first
glance. We will attempt to clarify matters with the following
simple explanation. If it is assumed that the non-advection
term h(x, t) satisfies at least locally h(x, t)= h∗(t), i.e., it
is not dependent on x, a new variable f ∗(x, t) can be intro-
duced such that

f ∗(x, t)= f (x, t)−

∫
dt h(x, t)' f (x, t)−

∫
dt h∗(t) .

(A1)

Then, by introducing Eq. (A1) into the original advection
equation (Eq. 1), a pure advection form of f ∗ can be ob-
tained:

∂f ∗

∂t
+ u(x, t)

∂f ∗

∂x
= 0 , (A2)

which is the same form as the advection phase equa-
tion (Eq. 2). Using a semi-Lagrangian algorithm, solving
Eq. (A2) for f ∗ at time t +1t requires f ∗(x, t), which is
identical to f (x, t) by cancellation of the integral term of
Eq. (A1). Therefore, Eq. (A2) is solved by the identical pro-
cedure used for Eq. (2). After solving f ∗(t+1t), f (t+1t)
can be computed using Eq. (A1), such that

f (x, t +1t)= f ∗(x, t +1t)+

t+1t∫
t

dt h∗(t) , (A3)

which is the same as the non-advection equation (Eq. 3) and
the solution (Eq. 21) where f (x) is integrated with the initial
condition f ∗j .

Appendix B: Implementation of the RCIP method in the
present paper

“Machine epsilon” is defined as the smallest ε in a computer
such that 1+ε > 1 under floating-point arithmetic. Similarly,
an arbitrarily number f has the corresponding smallest num-
ber (hereafter εf ) which satisfies f + εf > f . In very rare
cases, the authors observed that the age at the upwind grid
point becomes close to the value at the target grid point,
which differs by εf (i.e., fj+1 = fj+εf ). Since no represen-
tative value exists between fj+1 and fj under floating-point
arithmetic, the upwind value is either fj or fj+1. Sometimes,
fj+1 corresponds to a value at a grid point that is too far away
to be transported. If there is an accumulation of errors of this
type, the computed age may show unexpected oscillations.

Although rounding up very small differences may be a
possible solution for such cases, a different approach was
adopted in the present study. After some trials, the authors
finally adopted the following procedure for avoiding such

oscillations, which (to the degree they used it) worked bet-
ter than the rounding-up procedure. In the numerical model
of the present paper, Eq. (14) is transformed as follows:

Fj (X)= fj +
gjX+C2X

2
+C3X

3

1+αD1X
= fj + δf , (B1)

where C1 and C0 are substituted using Eqs. (18) and (19).
The second term δf can be computed as the difference be-
tween fj and fj+1. When δf is non-zero but sufficiently
small, i.e., less than εf , the value fj + δf is maintained as
fj . After simple reformulation, Fj (X) in the model code is
finally formulated as

Fj (X)= fj +
Ĉ1X+ Ĉ2X

2
+ Ĉ3X

3

D̂0+αD̂1X
, (B2)

where new series of constants are

D̂0 =
∣∣gj+1− Sj

∣∣ , (B3)

D̂1 =D1
∣∣gj+1− Sj

∣∣= ∣∣Sj − gj ∣∣− ∣∣gj+1− Sj
∣∣

1x
j+ 1

2

, (B4)

Ĉ1 = gj
∣∣gj+1− Sj

∣∣ , (B5)

Ĉ2 = C2
∣∣gj+1− Sj

∣∣ (B6)

= SjαD̂1+
(Sj − gj )

∣∣gj+1− Sj
∣∣

1x
j+ 1

2

− Ĉ3 ,

Ĉ3 = C3
∣∣gj+1− Sj

∣∣ (B7)

=

∣∣gj+1− Sj
∣∣

1x
j+ 1

2

[
gj − Sj + (gj+1− Sj )+αD̂11xj+ 1

2

]
,

respectively. When gj+1− Sj = 0 (and α = 1), the coeffi-
cients lead to

Ĉ3 = 0, Ĉ1 = 0, D̂0 = 0 , (B8)

Ĉ2 = Sj

∣∣Sj − gj ∣∣
1x

j+ 1
2

, (B9)

D̂1 =

∣∣Sj − gj ∣∣
1x

j+ 1
2

, (B10)

respectively, and using this combination, Fj (X) is formu-
lated as

Fj (X)= fj +
Ĉ2X

2

D̂1X
= fj + SjX , (B11)

which means a linear profile is adopted, regardless of gj .
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