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Abstract. This study assesses the potential of satellite im-
agery of vertically integrated columns of dry-air mole frac-
tions of CO2 (XCO2) to constrain the emissions from cities
and power plants (called emission clumps) over the whole
globe during 1 year. The imagery is simulated for one im-
ager of the Copernicus mission on Anthropogenic Carbon
Dioxide Monitoring (CO2M) planned by the European Space
Agency and the European Commission. The width of the
swath of the CO2M instruments is about 300 km and the
ground horizontal resolution is about 2 km resolution. A
Plume Monitoring Inversion Framework (PMIF) is devel-
oped, relying on a Gaussian plume model to simulate the
XCO2 plumes of each emission clump and on a combination
of overlapping assimilation windows to solve for the inver-
sion problem. The inversion solves for the 3 h mean emis-
sions (during 08:30–11:30 local time) before satellite over-
passes and for the mean emissions during other hours of the
day (over the aggregation between 00:00–08:30 and 11:30–
00:00) for each clump and for the 366 d of the year. Our anal-
ysis focuses on the derivation of the uncertainty in the in-
version estimates (the “posterior uncertainty”) of the clump

emissions. A comparison of the results obtained with PMIF
and those from a previous study using a complex 3-D Eule-
rian transport model for a single city (Paris) shows that the
PMIF system provides the correct order of magnitude for the
uncertainty reduction of emission estimates (i.e., the relative
difference between the prior and posterior uncertainties). Be-
yond the one city or few large cities studied by previous stud-
ies, our results provide, for the first time, the global statistics
of the uncertainty reduction of emissions for the full range
of global clumps (differing in emission rate and spread, and
distance from other major clumps) and meteorological con-
ditions. We show that only the clumps with an annual emis-
sion budget higher than 2 MtC yr−1 can potentially have their
emissions between 08:30 and 11:30 constrained with a pos-
terior uncertainty smaller than 20 % for more than 10 times
within 1 year (ignoring the potential to cross or extrapolate
information between 08:30–11:30 time windows on differ-
ent days). The PMIF inversion results are also aggregated
in time to investigate the potential of CO2M observations to
constrain daily and annual emissions, relying on the extrap-
olation of information obtained for 08:30–11:30 time win-

Published by Copernicus Publications on behalf of the European Geosciences Union.



5814 Y. Wang et al.: Potential of satellite observations to constrain CO2 emissions

dows during days when clouds and aerosols do not mask the
plumes, based on various assumptions regarding the tempo-
ral auto-correlations of the uncertainties in the emission es-
timates that are used as a prior knowledge in the Bayesian
framework of PMIF. We show that the posterior uncertainties
of daily and annual emissions are highly dependent on these
temporal auto-correlations, stressing the need for systematic
assessment of the sources of uncertainty in the spatiotempo-
rally resolved emission inventories used as prior estimates in
the inversions. We highlight the difficulty in constraining the
total budget of CO2 emissions from all the cities and power
plants within a country or over the globe with satellite XCO2
measurements only, and calls for integrated inversion sys-
tems that exploit multiple types of measurements.

1 Introduction

Cities, thermal power plants and industrial factories cover
a very small fraction of the land surface but are emitting
a large amount of CO2. Many cities and regions are tak-
ing actions to reduce their greenhouse gas emissions. How-
ever, there are large uncertainties in the estimate of emissions
from these CO2 hotspots (Gately and Hutyra, 2017; Gurney
et al., 2016). In addition, emissions at high temporal resolu-
tion (e.g., daily and hourly) depend on socio-economic ac-
tivity and climate fluctuations and thus have large variability.
The large uncertainties and fluctuations of emissions at lo-
cal scale have raised a growing political and scientific inter-
est for an accurate and continuous monitoring of these local
CO2 emissions based on atmospheric measurements (Duren
and Miller, 2012).

Measurements of CO2 mole fractions from in situ surface
networks, aircraft campaigns and mobile platforms around
cities (Bréon et al., 2015; Lauvaux et al., 2016; Staufer et
al., 2016) have been used to characterize the CO2 signals
downwind of large cities and to quantify the underlying emis-
sions based on an atmospheric inversion approach. How-
ever, such urban networks are deployed for a few cities only.
Alternatively, vertically integrated columns of dry-air mole
fractions of CO2 (XCO2) from satellites offer the opportu-
nity to sample the atmosphere with global coverage. Kort
et al. (2012) and Janardanan (2016) found that significant
XCO2 enhancements could be detected over some megaci-
ties using Greenhouse Gases Observing Satellite (GOSAT)
XCO2 observations. Schwandner et al. (2017) also found
XCO2 enhancements of 4.4 to 6.1 ppm in the Los Angeles
urban CO2 dome using observations from the Orbiting Car-
bon Observatory-2 (OCO-2). Nassar et al. (2017) used the
XCO2 observations from OCO-2 to quantify CO2 emissions
from several medium- to large-sized coal power plants. How-
ever, the design of GOSAT and OCO-2 observations with
sparse sampling was mainly focused on the monitoring of
CO2 natural fluxes. Recent studies show a limited amount

of clear detections of transects of XCO2 plumes from cities
or plants in OCO-2 observations (Zheng et al., 2020) so that
GOSAT and OCO-2 data keep on being hardly used to es-
timate CO2 city emissions. The potential for reducing un-
certainties in CO2 emissions at the scale of point sources
(Bovensmann et al., 2010), cities (Broquet et al., 2018; Pillai
et al., 2016) and agglomerations of several cities (O’Brien et
al., 2016) should dramatically change with the planned satel-
lite missions with imaging capabilities. These studies con-
sistently showed that imaging capability with a wide swath
(typically on the order of 200–300 km), a high resolution
(< 2–3 km horizontal resolution) and a high single sounding
precision (< 2 ppm) are required for satellite XCO2 measure-
ments for the monitoring of CO2 emissions from large point
sources and cities. Several satellite XCO2 imagery concepts
have been proposed: (i) the OCO-3 NASA (National Aero-
nautics and Space Administration) mission which has been
installed on the International Space Station (ISS) in May
2019; (ii) the CarbonSat mission which was a candidate for
the European Space Agency’s (ESA’s) Earth Explorer 8 op-
portunity (Bovensmann et al., 2015) but was not selected;
(iii) the “city-mode” of the MicroCarb mission of the Cen-
tre National d’Etudes Spatiales (CNES), which should be
launched in 2021 (Bertaux et al., 2019); (iv) the GeoCARB
geostationary mission which was selected as the Earth Ven-
ture Mission-2 by NASA; and (v) the Copernicus Anthro-
pogenic Carbon Dioxide Monitoring (CO2M) mission con-
sisting of a constellation of CO2 imagers that is currently
studied by the ESA on behalf of the European Commission in
the context of the European Union Copernicus programme.
This CO2M satellite constellation is a crucial element that
will contribute to the operational anthropogenic CO2 moni-
toring and verification support capacity currently under de-
velopment by the European Commission with support from
the ESA, European Organisation for the Exploitation of Me-
teorological Satellites (EUMETSAT) and the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) (Ciais
et al., 2015; Pinty et al., 2017, 2019).

The main approach currently investigated for the estimate
of CO2 emissions from satellite XCO2 images consists of
identifying the XCO2 plumes downwind of the main CO2
emission sources. The size of the plumes and the magnitude
of XCO2 enhancements in these plumes are tightly linked
to the emissions. Wang et al. (2019) developed an algorithm
to extract, from gridded emission maps, a conservative set
of area (cities) and point sources (power plants) with in-
tense emissions around the globe which can generate coher-
ent XCO2 plumes that may be observed from space, given the
precision of current satellite observations. This set was con-
servative because it is inferred for idealized meteorological
condition without wind. These emitting sources were called
“emission clumps”. Wang et al. (2019) identified 11 314 indi-
vidual clumps which contribute 72 % of the global fossil fuel
CO2 emissions from the ODIAC (Open-source Data Inven-
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tory for Anthropogenic CO2 version 2017; Oda et al., 2018)
1 km resolution inventory.

Broquet et al. (2018) showed that the part of the XCO2
plumes exploited by the atmospheric inversion in satellite
images corresponds to a few hours of the clump emissions
before the satellite overpass. The XCO2 signature of the ear-
lier clump emissions is too diluted to be filtered from the
measurement errors and the signature of other CO2 sources
and sinks. Further, emissions from a given clump vary in time
during the day, for instance due to the variations of traffic in
cities (Yang et al., 2019), from day to day and between sea-
sons, with more emissions associated with heating in winter
over cold regions (Bréon et al., 2017). Therefore, the estimate
of annual budgets of the clump emissions based on satel-
lite observation during daytime (generally for a fixed local
time since most of the missions use heliosynchronous orbits)
and for low cloud coverage is a challenge and cannot rely
on the direct information from the satellite imagery. It relies
on the extrapolation of information from the time windows
for which the emissions are well constrained. Such an ex-
trapolation is based on the correlation of the uncertainty in
emissions in time, and more precisely, in the atmospheric in-
version framework, on the temporal auto-correlations of the
uncertainty in the inventories used as a prior knowledge by
the Bayesian framework of the inversion (see Sect. 2.6).

Previous studies on the potential of the satellite XCO2 im-
agery to constrain the emissions from clumps were limited to
a single target or a few large targets, such as power plants in
Bovensmann et al. (2010), Berlin in Pillai et al. (2016) and
in Kuhlmann et al. (2019), and Paris in Broquet et al. (2018).
However, much of the global CO2 emissions occur in smaller
cities and plants. The potential and design of satellite mis-
sions dedicated to the monitoring of the CO2 emissions like
CO2M needs to be assessed for a much more representative
range of sources over the whole globe. The inversion frame-
work used by Pillai et al. (2016) and Broquet et al. (2018)
were based on full 3-D Eulerian atmospheric transport mod-
els at high spatial resolution (on the order of 2 km). Such
inversions are much too expensive in terms of computation
cost to be applied in a systematic way to the full set of clumps
across the globe.

Therefore, in this study, we develop a Plume Monitor-
ing Inversion Framework (PMIF) and conduct a set of ob-
serving system simulation experiments (OSSEs) to assess,
for the first time, the performance of a satellite instrument
to monitor the emissions of all the clumps across the globe
and over a whole year. The imager studied has the foreseen
characteristics of the individual satellites of the forthcoming
CO2M mission. It would be a high-resolution spectrometer,
with 2km× 2km resolution pixels and a swath of 300 km,
and it would be placed on a Sun-synchronous orbit ensur-
ing global coverage in 4 d. The PMIF inversion system re-
lies on the list of clumps extracted by Wang et al. (2019)
from the ODIAC inventory, on the Gaussian plume model to
simulate the XCO2 plumes generated by the emissions from

these clumps, on an analytical inverse modeling framework,
and on a combination of overlapping assimilation windows
to solve for the inversion problem over the globe and a full
year. It also addresses the question of temporal extrapolation
that is needed to generate estimates of annual emissions from
the information of a limited number of time windows for
which emissions are well constrained by the direct satellite
images, by accounting for the temporal auto-correlation of
the prior uncertainties. The performance is assessed in terms
of the uncertainties in the emissions (Sect. 2.1) at different
scales. The PMIF uses a Gaussian plume model at the lo-
cal scale to ensure that the computation cost is affordable.
Such a model can often hardly fit with actual plumes over
the distances considered in this study (due to variations in
the wind field, topography, vertical mixing etc. over such
distances) but is shown, when driven with suitable param-
eters, to provide a satisfactory simulation of the plume ex-
tent and amplitudes, which appear to be the main drivers of
the targeted computations of uncertainties in the emissions
in our OSSE framework (as shown in Sect. 3.1). In PMIF,
we also ignore the impact of some sources of uncertainties
on the inversion of emissions, including systematic errors in
the XCO2 retrievals, the impact of uncertainties in diffuse
anthropogenic emissions outside clumps and in non-fossil
CO2 fluxes (within and outside clumps), and in the spatial
and temporal variations of emissions within the clump and
in the short time windows that the inversion aims to solve.
These impacts are discussed in detail afterwards.

This PMIF system provides an indication of the satellite
system capabilities for the full range of cities and power
plants varying in topography, emission budget and spread,
proximity to other major sources, and for a large range
of meteorological conditions. It complements other systems
that focus on specific regions with more complex (but area-
limited) models and consideration of diffuse sources and nat-
ural fluxes, allowing for extrapolating and up-scaling results
of those more complex systems to get a more systematic un-
derstanding of their implications for the monitoring of CO2
emissions from all detectible clumps over the globe.

The PMIF system and the OSSEs analyzed in this first
study are described in Sect. 2. The results obtained with the
PMIF for the city of Paris are compared with those of Bro-
quet et al. (2018) in Sect. 3.1. The uncertainty in the retrieved
emissions of individual clumps with one imaging satellite for
3 h time windows, for daily emissions and for annual emis-
sions is assessed in Sect. 3.2–3.4. Section 4 discusses the
drivers of the spatial variations of the uncertainty in the re-
trieved emissions, the limitations of PMIF and the implica-
tions for a future operational observing system.
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2 Methodology

2.1 Plume Monitoring Inversion Framework

The theoretical framework of the inversion system developed
in this study is the same as the traditional atmospheric inver-
sions. The inversion derives a statistical estimate for a set of
control variables x in a model x→ y =Mx that simulates
the satellite XCO2 measurements yo. The model M linking
x and y is a combination of flux and atmospheric transport
models (detailed in Sect. 2.4) and is called observation op-
erator hereafter. As explained below, we do not have a con-
stant term added to Mx in the observation operator of the
PMIF that would gather the atmospheric CO2 signature of the
fluxes not controlled by the inversion (like non-fossil fluxes
and the background XCO2 field) since the uncertainty in such
fluxes is ignored. The inversion follows a Bayesian statistical
framework, updating the statistical prior estimate of x based
on the statistical information from the assimilation of XCO2
measurements y into the observation operator. The distribu-
tions of the prior estimate and of the misfits between the ac-
tual observations yo and simulated ones due to errors in the
observations and in the observation operator (called the “ob-
servation errors”) are assumed to be unbiased and to have
the Gaussian forms N(xb,B) and N(0,R), where B and R
are the prior and observation error covariance matrices. The
statistical distribution of the posterior estimate of x, given
the observation operator, xb and yo, also follows a Gaussian
distribution N(xa,A), with xa being the mean and A being
the error covariance matrix characterizing the posterior un-
certainty. The problem is solved by deriving the following:

A=
(

B−1
+MTR−1M

)−1
, (1)

xa
= xb

+AMTR−1
(
yo
−Mxb

− yfixed
)
, (2)

where T and −1 denote the transpose and inverse of a given
matrix.

Equation (1) shows that A only depends on prior and ob-
servation error covariance matrices, on the observation oper-
ator, and implicitly on the structure of the observation vector
(i.e., on the time, location and representation of the observa-
tions in M), while Eq. (2) shows that xa also depends on the
actual value of xb and yo. PMIF is an analytical inversion
system that solves for Eq. (1) or for an approximation of this
equation (when accounting for temporal correlations in B) by
building the different matrices involved in this equation.

We characterize B, R and A by the corresponding stan-
dard deviations (σ ) of uncertainty in individual control pa-
rameters or aggregations of control parameters and by the
temporal auto-correlations of the uncertainties (Sect. 2.6). In
the following, the “uncertainty reduction” for a given control
variable or for an aggregation of control variables (like emis-
sion budgets over larger timescales than that of the control

vector) refers to the relative difference between its prior and
posterior uncertainty: 1− σa/σb.

We use a Gaussian plume model (Sect. 2.4) to simulate the
atmospheric transport at a spatial resolution consistent with
that of the XCO2 measurements from the planned CO2 im-
ager and with the highly heterogeneous distribution of emis-
sions. Compared with complex 3-D atmospheric transport
models, Gaussian plume models have a very low computa-
tional cost, making the global assessment of posterior un-
certainty and uncertainty reduction at the scale of emission
clumps from the assimilation of high-resolution data fea-
sible. However, since a Gaussian plume model provides a
highly simplified approximation of the atmospheric trans-
port from emission clumps, we need to verify that its use
in the PMIF yields estimates of the uncertainties in the in-
verted emissions that are consistent with those that would
be based on more complex models. Therefore, we first com-
pare the results for Paris from PMIF against those acquired
based on a 3-D Eulerian atmospheric transport model by
Broquet et al. (2018), the latter also accounting for uncer-
tainties in diffuse CO2 fluxes. On the one hand, the signals
from these diffuse and natural CO2 fluxes cannot be mod-
eled effectively by a Gaussian plume model. On the other
hand, the diffuse and natural CO2 fluxes in Paris were shown
to have only a weak impact on the inversion of whole-city
CO2 emissions (Staufer et al., 2016). For this comparison,
we use the same simulation of the XCO2 sampling by Car-
bonSat (Sect. 2.2) and a similar control vector to Broquet
et al. (2018). The corresponding inversion with the PMIF is
called PMIF-Paris hereafter. Then we apply the system to
all the emission clumps over the globe and over 1 year us-
ing a different control vector and a simulation of the XCO2
sampling by a single CO2M satellite (Sect. 2.2). The in-
versions for all emission clumps over the globe are called
PMIF-Globe. In PMIF-Globe, we first investigate the poten-
tial of satellite observations in constraining emissions from
individual time windows (ExpNoCor in Sect. 2.6). Then we
assess the ability of satellite observations to constrain emis-
sions at annual scale by accounting for the temporal auto-
correlation of the prior uncertainties (other experiments in
Sect. 2.6). Tables 1 and 2 summarize the different options for
the configuration of the system and of the OSSEs. One dis-
tinction between PMIF-Paris and PMIF-Globe is that PMIF-
Paris relates XCO2 signals with the mean emissions 6 h be-
fore overpasses, while it is assumed that in PMIF-Globe that
the XCO2 signals only provide effective constraints on 3 h
mean emissions before individual overpasses. The 6 h period
corresponds to the period of emissions from Paris whose sig-
nature in the XCO2 field can still be detected by the satel-
lite despite the atmospheric diffusion (Broquet et al., 2018).
While Broquet et al. (2018) indicated that the period of “de-
tectable” emissions from a large megacity like Paris could
last up to 6 h, most of the clumps across the globe have
smaller emission rates than Paris or are located in more com-
plex environment close to other major emission areas where
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XCO2 signals can be attributed to multiple sources, mak-
ing the detection of the XCO2 signature of emissions a few
hours before the satellite overpass even more difficult. For
the PMIF-Globe experiments, we thus conservatively assume
that the XCO2 signals can only provide effective constraints
on 3 h mean emissions before individual overpasses in gen-
eral.

2.2 Observation space

In this study, we consider the samplings from two different
virtual CO2 imagers.

The first sampling used in PMIF-Paris (Table 1 and
Sect. 2.7.1) is the simulation of the sampling for CarbonSat
by Buchwitz et al. (2013) exactly as in Broquet et al. (2018).
XCO2 is sampled by a 240 km swath instrument with 2 km
spatial resolution. Given the presence of cloud and aerosol
and their impacts on the precision of XCO2 retrievals, only
“good” XCO2 observations, for which the sum of the re-
trieved aerosol optical depth (AOD) at near-infrared (NIR)
wavelength and atmosphere cirrus optical depth (COD) is
less than 0.3, are used in the inversions. The preferable condi-
tion, AOD(NIR)+COD< 0.3, for a good XCO2 observation
is referred to as “clear sky” hereafter. The CarbonSat sam-
pling was simulated over the whole globe and for a full year
by Buchwitz et al. (2013), but it is used here for the inver-
sion of the emission of Paris only. Thus, only the passes with
at least one good XCO2 measurement in the 100 km radius
circle centered on Paris are used, as in Broquet et al. (2018).

The second sampling is global and is used for all the other
experiments of PMIF-Globe (Table 2 and Sect. 2.7.2). It cor-
responds to that of a single CO2M satellite with a 300 km
swath and 2 km spatial resolution. CO2M is similar to Car-
bonSat for sampling but has a larger swath and better preci-
sion (Sect. 2.5). The simulation is based on the method and
model described by Buchwitz et al. (2013) but uses different
values for the parameters in the model.

2.3 Control vector

In the PMIF-Paris inversion, the satellite observations are
sampled at 11:00 local time, in line with the experiments
from Broquet et al. (2018). The inversion solves for the mean
emissions for the 6 h before 11:00 local time. Broquet et
al. (2018) solved for the hourly emissions during this 6 h pe-
riod but PMIF can only solve for the mean emissions during
the 6 h period due to the fact that the Gaussian plume model
cannot be used to compute the signatures in the XCO2 field
of individual hourly emissions during that period. The con-
trol vector in PMIF-Paris thus consists of a set of scaling
factors for the mean emission between 05:00 and 11:00 for
all individual overpasses near Paris (Sect. 2.7.1). The prior
and posterior scaling factors are used to rescale the 1 h and
∼ 1 km resolution emission fields from an emission map and

its temporal profile which are parts of the observation opera-
tor (Sect. 2.4).

In the PMIF-Globe inversion, the satellite observations are
sampled at a local time of approximately 11:30 over all the
clumps. The inversion solves for a scaling factor for 3 h mean
emissions between 08:30 and 11:30 and a scaling factor for
the emissions during of the rest of the day (00:00–08:30 plus
11:30–24:00) for each day over 1 year and for all the clumps
over the globe:

x =
[
λ

day1,morning
clump1 ,λ

day1, rest
clump1 ,λ

day2,morning
clump1 ,λ

day2, rest
clump1 ,

. . .,λ
day366,morning
clump1 ,λ

day366, rest
clump1 ,λ

day1,morning
clump2 ,

λ
day1, rest
clump2 , . . .,λ

day366,morning
clumpN ,λ

day366, rest
clumpN

]
. (3)

In both types of experiments, we do not include the diffuse
emissions outside the selected clumps and the natural fluxes
(more generally, any parameter of the “background concen-
trations”, Kuhlmann et al., 2019) in the control vector. The
setup of the R matrix also ignores uncertainties in the back-
ground concentrations (Sect. 2.5). This is another divergence
from the inversion configuration of Broquet et al. (2018),
who accounted for such uncertainties.

2.4 Observation operator

The observation operator in PMIF (which is used in
Eq. 1) is composed of two sub-operators. The first opera-
tor (Minventory) describes the spatial distribution (within the
clumps) and temporal variations of the emissions whose
budgets are controlled by the inversion during 08:30–11:30
and during the remaining 21 h for each clump: x→E =

Minventory x. The spatial distribution of the emissions are
based on estimates from ODIAC (Oda et al., 2018) for the
year 2016. ODIAC provides the monthly mean emissions for
12 months through a year at a 0.0083◦× 0.0083◦ (approxi-
mately 1km× 1km) spatial resolution. The weekly and di-
urnal (at hourly resolution) profiles from the Temporal Im-
provements for Modeling Emissions by Scaling (TIMES)
product (Nassar et al., 2013) are applied to the monthly emis-
sion maps of ODIAC to generate the hourly emission fields.
The second operator (Mplume) simulates the plumes of XCO2
enhancement above the background at and downwind of the
emission clumps at 11:30: E→ y =MplumeE. We assume
that the plume of XCO2 enhancement related to a given emit-
ting pixel within a clump of the ODIAC map has a Gaussian
shape and the plume from a clump is a sum of multiple Gaus-
sian plumes from all the ODIAC pixels within that clump.
For a given emitting pixel, the Gaussian plume model writes
the following:

y (i,j)= α
E

√
2πσju

e
−

j2

2σ2
j , (4)

where y is the XCO2 enhancement (in ppm) downwind of
the emitting pixel. The i direction is parallel to the wind di-
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Table 1. The configuration of the PMIF-Paris inversion.

Type of setting Option

Control vector 6 h mean CO2 emissions from Paris over 05:00–11:00 (local time is used)

Plume length in the computation of M 6 h×wind speed averaged over 05:00–11:00

Observation sampling and measurement error Simulation of the sampling and random measurement noise for CarbonSat near Paris

Prior uncertainty 22.4 % for the 6 h mean emissions. The potential correlations between the 6 h mean
emissions of different days are ignored for the diagnostics

Table 2. The different options for the configuration of PMIF-Globe inversions.

Type of setting Option

Control vector For each clump of the globe, 3 h mean emissions over 08:30–11:30 and the mean emissions
for the remaining 21 h (00:00–08:30 plus 11:30–24:00) within each day of 1 year

Plume length in the computation 3 h×wind speed averaged over 08:30–11:30; no computation of plume
computation of M for the emissions over 00:00–08:30 plus 11:30–24:00

Observation sampling and Simulation of the sampling and random measurement noise for a single CO2M CO2 imager
measurement error all over the globe

Constraint on the prior For each clump, the budget of the prior uncertainty in annual emission is 30 %. The uncertainty
uncertainty in the 3 h mean emissions and in the budget of the emissions for the rest of the day are

downscaled depending on the assumptions on the components of the prior uncertainty
and on their temporal auto-correlations (see Sect. 2.6)

rection, and the j direction is perpendicular to the wind di-
rection. y depends on the mean emission rate during 08:30–
11:30 at local time (E, in g s−1), the wind speed (u, in
m s−1), the cross-wind distance (j ) and the parameter σj
(see below). The wind direction and speed is taken from
the Cross-Calibrated Multi-Platform (CCMP) gridded sur-
face wind fields for the year 2008 (Atlas et al., 2011). The
CCMP product uses a variational analysis method (VAM)
to combine the data from Version-7 RSS radiometer wind
speeds, QuikSCAT and ASCAT scatterometer wind vectors,
moored buoy wind data, and ERA-Interim model wind fields.
The σj is a function of downwind distance i and atmospheric
stability parameter σj = βj/(1+ γj)−1/2, where α is a co-
efficient that converts the computed XCO2 enhancement in
the unit of parts per million, and β and γ are coefficients de-
pending on the atmospheric Pasquill stability category, which
is a function of the wind speed and solar radiation (Turner,
1970). The values for β and γ can be found in Bowers et
al. (1980). The original Gaussian plume model generates a
stationary plume of an infinite length and width downwind
of the emissions. Because we assume that the XCO2 plumes
sampled from a satellite overpass is only related to the emis-
sions 3 h before, the Gaussian plume corresponding to each
emitting pixel is cut off at the downwind distance equaling
the wind speed multiplied by 3 h. The width of the plume is
also cut off beyond 3 times the value of σj in the cross-wind

direction. The observation operator is null for emission of the
remaining 21 h (00:00–08:30 plus 11:30–24:00).

The size of the full theoretical control vector corresponds
to 11 314 emission clumps times 2 time windows for each
day times 366 d. The size of this full theoretical observation
vector over the year is thus more than 30 000 000. Building
matrices and applying Eq. (1) with such spaces is, in prac-
tice, not computationally affordable. Therefore, we divide
the globe into 5400 spatial inversion windows (from 180◦W
to 180◦ E and from 90◦ N to 60◦ S), each inversion window
covering an area of 10◦×10◦ and being extended on the four
boundaries with margins of 500 km to ensure that the plumes
from the clumps near the boundary of inversion windows are
fully simulated and accounted for in the corresponding in-
versions. Mplume is constructed with a set of block matrices,
each block representing a single spatial inversion window
and a single day. When an emission clump and its plume are
comprised within more than one inversion window on a sin-
gle day, only the results obtained in the window that covers
the full plume is used in Mplume.

2.5 Observation error

We evaluate the projection of the measurement noise of the
satellite observation and ignore uncertainties in the observa-
tion operator. The measurement noise is derived from the
simulations of random measurement errors from Buchwitz
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et al. (2013), and the impact of the systematic measurement
errors is ignored. The random measurement errors are simu-
lated as a function of geographic location (e.g., solar zenith
angle, SZA), surface (e.g., albedo) and atmosphere character-
istics (e.g., AOD). The random measurement error is 1.4 ppm
for vegetation albedo and SZA 50◦ in the CS sampling, and it
is 0.7 ppm in the CO2M sampling, thus being 2 times smaller
for the latter. The random measurement errors are uncorre-
lated from one XCO2 data to the other, and the R matrix is
thus a diagonal matrix as generally done in atmospheric in-
version.

2.6 Specification of the prior uncertainties and of their
temporal auto-correlations

Two configurations for the prior uncertainty are used in the
OSSEs (Sect. 2.7). In the PMIF-Paris inversion, the prior un-
certainty is 22.4 % for the each of the scaling factors for 6 h
mean emission, the choice of this value being consistent with
the configuration used by Broquet et al. (2018).

In the PMIF-Globe inversions, the prior uncertainty is
downscaled from its estimate for the annual budget of emis-
sions of each clump. A prior uncertainty in annual emission
of 30 % is assumed for all clumps. This value is chosen to
be of the same order of magnitude as the typical difference
between emission inventories for a single point source and
city. For example, Gurney et al. (2016) found that one-fifth
of the power plants had monthly emission differences larger
than 13 % between the estimates by two different US agen-
cies. Gurney et al. (2019) compared the emission maps from
ODIAC and Hestia for four US cities and found the whole-
city differences are between −1.5 % and +20.8 %. Gately
and Hutyra (2017) compared the inventories reported by lo-
cal authorities and bottom-up fossil fuel CO2 emission maps
for 11 US cities and found the differences range from 33 %
to 78 %. Then, the downscaling of the uncertainty in annual
emissions into uncertainties at the sub-daily scale of the con-
trol variables (i.e., 3 h mean emission over 08:30–11:30 and
21 h mean emission during the rest of the day; Sect. 2.3) fol-
lows a decomposition of the total uncertainty into compo-
nents with different temporal auto-correlations.

The hourly emissions in inventories are usually derived
from the periodic typical temporal profiles to annual emis-
sions (Andres et al., 2011; Nassar et al., 2013). There are
large variations in actual emissions from hour to hour and
from day to day, resulting in large differences between the
emission estimates derived based on typical temporal profiles
and actual emissions. These differences are sources of uncer-
tainties in the emission inventories which are used in the in-
version as prior information. However, there is no consensus
regarding the uncertainty in emission inventories and their er-
ror structures (Gurney et al., 2019). We compare the typical
temporal profiles of transport emissions and energy sector
from the TIMES product with the TOMTOM traffic index
(https://www.tomtom.com/en_gb/, last access: 20 Septem-

ber 2020, which provides indications of the level of vari-
ability in the traffic, though not of that of the CO2 emis-
sions themselves), respectively, and with the actual hourly
CO2 emissions from electricity production in France (https:
//www.services-rte.com/en/home.html, last access: 17 July
2017). Although these comparisons are only made for two
sectors, the results already show that it is challenging to
describe the temporal auto-correlations of the uncertainty
in emissions with simple exponentially decaying functions
(Figs. S1 and S2 in the Supplement) like what is usually done
in traditional atmospheric inversions (Chevallier et al., 2010;
Kountouris et al., 2015). We thus make several assumptions
regarding the decomposition of the prior uncertainty into
components with different modes of auto-correlation.

In some scenarios, we consider an “annual component”
that is fully correlated in time over 1 year. We also
consider “uncorrelated” components whose temporal auto-
correlations are null and “sub-annual” components whose
temporal auto-correlations follow the exponential decaying
model with a correlation length smaller than 1 year. Specifi-
cally, we assume that the correlation between two instants of
the sub-annual component at hourly scale is described by the
following:

r = exp(−1h/τ1)× exp(−1d/τ2) , (5)

where 1h is the time lag (in hours) between the two times
of the day that are considered, and 1d is the time lag (in
days) between the two dates that are considered. The pa-
rameters τ1 and τ2 follow the fit of the misfits between the
TIMES profiles and the TOMTOM and electricity produc-
tion indices to the exponential functions at the hourly scale
and at the daily scale, respectively (Figs. S1 and S2). The
temporal auto-correlations between the emissions during the
aggregated time windows (08:30–11:30 and the remaining
21 h) are computed by re-aggregating the uncertainties at the
hourly scale, accounting for temporal auto-correlation.

The detailed configuration of the different scenarios for the
decomposition of the prior uncertainty are listed below:

1. Annual component and moderately correlated sub-
annual component (AMS). This is composed of an an-
nual component and a sub-annual component. The tem-
poral auto-correlation of the sub-annual component fol-
lows Eq. (5) with τ1 = 12 h and τ2 = 7 d. The ratio of
the uncertainty in the annual component to that in the
sub-annual component for 3 h emissions is assumed to
be 3 : 5. This leads to an annual uncertainty compo-
nent∼N (0, 29 %) and a sub-annual component∼N (0,
49 %) for 3 h emissions and∼N (0, 38 %) for 21 h emis-
sions.

2. Annual component and strongly correlated sub-annual
component (ASS). This is composed of an annual com-
ponent and a sub-annual component. The temporal
auto-correlation of the sub-annual component follows
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Eq. (5) with τ1 = 2400 h, which approximately corre-
sponds to having full correlations between hourly un-
certainties within a single day, and τ2 = 20 d. The ratio
of the uncertainty in the annual component to that in
the sub-annual component for 3 h emissions is assumed
to be 3 : 5. This leads to an annual uncertainty compo-
nent∼N (0, 26 %) and a sub-annual component∼N (0,
44 %) for 3 h emissions and∼N (0, 44 %) for 21 h emis-
sions.

3. Moderately correlated sub-annual component (MCS).
This is composed of a sub-annual component. The tem-
poral auto-correlation of the sub-annual component fol-
lows Eq. (5) with τ1 = 12 h and τ2 = 7 d. This leads to a
sub-annual component∼N (0, 198 %) for 3 h emissions
and ∼N (0, 119 %) for 21 h emissions.

4. Strongly correlated sub-annual component (SCS). This
is composed of a sub-annual component. The temporal
auto-correlation of the sub-annual component follows
Eq. (5) with τ1 = 2400 h and τ2 = 20 d. This leads to a
sub-annual component ∼N (0, 93 %) for 3 h emissions
and ∼N (0, 93 %) for 21 h emissions.

5. Sector-dependent correlated sub-annual component
(SectCS). This is composed of a sub-annual compo-
nent for each emission sector. It is assumed that the
relative uncertainty for different sectors are the same.
The temporal auto-correlation of the sub-annual com-
ponents for all sectors follow the same formulation as in
Eq. (5), but with different τ1 and τ2. For the emissions
in the industry sector, τ1 = 2400 h and τ2 = 180 d; for
the emissions in the transport sector, τ1 = 12 h and τ2 =

7 d; for the emissions from energy sector, τ1 = 24 h
and τ2 = 7 d; and for the emissions from other sectors,
τ1 = 24 h and τ2 = 14 d. For each clump, the share of
emissions from each sector are estimated according to
EDGARv4.3.2 (https://edgar.jrc.ec.europa.eu/, last ac-
cess: 25 July 2019). This leads to an uncertainty in 3 h
emissions ranges between 40 % and 198 %, and in 21 h
emissions ranges between 40 % and 154 %.

6. No temporal auto-correlation (NoCor). We assume that
the uncertainties in 3 h emissions and 21 h emissions on
all days are all random and uncorrelated from one time
window to the other, or from one day to the other. The
resulting sub-annual component follows the distribution
∼N (0, 1623 %) for 3 h emissions and ∼N (0, 614 %)
for 21 h emissions.

The prior uncertainty in the 3 h mean emissions between
08:30 and 11:30 is close to or larger than 100 % in scenar-
ios SCS and MCS, and it even reaches an abnormally huge
value of 1623 % in NoCor. Andres et al. (2016) estimated
the uncertainty in the widely used emission map CDIAC
(Carbon Dioxide Information Analysis Center). They found
that the average uncertainty in monthly emissions for one

1◦× 1◦ grid cell is 120 % and further suspected that the un-
certainties in hourly and daily emissions at urban scale could
be even larger (from a few percent to 1000 %). But these
large values challenge the assumption that the uncertainty in
anthropogenic emissions is normally distributed (Gurney et
al., 2019). In this study, we follow the traditional assumption
used in atmospheric inversions that the prior uncertainty fol-
lows a Gaussian distribution, allowing the prior uncertainty
to exceed 100 % in some scenarios. This assumption ensures
that the system is analytically solvable using Eqs. (1) and (2).
In addition, we focus our analysis on 08:30–11:30 time win-
dows or days for which the posterior uncertainties of under-
lying emissions are smaller than 20 % (Sect. 2.7.2), a value
that is significantly smaller than the prior uncertainty in any
scenario. In these cases, Eq. (1) ensures that the posterior un-
certainty is almost driven by the projection of the observation
error on the control space and is not sensitive to the level of
prior uncertainty.

2.7 Practical implementation of the OSSEs

Two sets of OSSEs are conducted under different configura-
tions adapted to different purposes, as described below. Ta-
bles 1 and 2 summarize the different configurations of the
OSSEs.

2.7.1 Comparison of results between PMIF and a
previous study on a single city: Paris

In the first OSSE PMIF-Paris, the configuration of the con-
trol vector, observation sampling and errors, and prior uncer-
tainties are made such that they resemble those in the MC-
2 experiments from Broquet et al. (2018): (1) the inversion
controls the 6 h mean emissions from Paris before the satel-
lite overpasses on single days; (2) the observation sampling
and errors are obtained from CarbonSat mission simulation
(Buchwitz et al., 2013). We ignore temporal auto-correlation
of the uncertainty in scaling factors for 6 h mean emissions
between different days. We select the same 69 satellite Car-
bonSat overpasses over Paris during 1 year as Broquet et
al. (2018). The 31 d of October 2010 are used to provide
a wide sample of atmospheric transport conditions, i.e., 31
wind fields. These atmospheric transport conditions are com-
bined with the 69 sets of CarbonSat overpasses (with various
cloud and aerosol coverage) to form 2139 inversion samples.
The results for different overpasses using the same wind field
of a single day are ranked according to the uncertainty re-
ductions and are compared to those obtained in Broquet et
al. (2018).

2.7.2 Applying the PMIF over all emission clumps
across the globe

In this second set of OSSEs, PMIF-Globe, we conduct in-
versions for all the clumps over 1 year. However, the large
sizes of the control vector, of the observation vector and of
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the associated covariance matrices prevent the derivation of
a full A for all the clumps and all the time windows us-
ing Eq. (1). In PMIF, we thus propose and apply a two-step
computation that approximates Eq. (1). This computation as-
sumes that the system has a limited capability to improve
the separation between plumes from distinct clumps on a
given day by crossing the information obtained from differ-
ent days. In that sense, the inversion considers the uncertainty
reduction obtained for individual days when considering all
the clumps together (first step, see below) before focusing
on individual clumps to account for temporal correlations in
the prior uncertainty (the second step, see below). In other
words, we assume that when crossing information between
different time windows for a given clump, the impact of fil-
tering information from different spatial overlaps of plumes
on different days is relatively smaller than that of temporal
auto-correlation in the prior uncertainty. It is shown that this
method provides a good approximation of A at daily to an-
nual scales for individual clumps (Sect. S1 in the Supple-
ment).

In a first step, Eq. (1) is applied to each 10◦× 10◦ spatial
inversion window on each day separately (corresponding to
an 08:30–11:30 time window for clumps within the spatial
inversion windows), by using the corresponding blocks in B:

Aspt, p, q =
(

B−1
spt, p, q +MT

spt, p, qR−1
spt, p, qMspt, p, q

)−1
, (6)

where p is the pth spatial inversion window and q is the qth
day during 1 year. Here, Bspt, p, q is a diagonal matrix that
only contains the variances of prior uncertainties in emis-
sions during 08:30–11:30 for the clumps within the spatial
inversion window. Mspt, p, q accounts for the spatial overlap
of plumes generated from nearby clumps. Then we derive an
“instant” scalar to represent the observational constraint for
a given clump s in the 08:30–11:30 time window on day q
(denoted as rq, s hereafter):

rq, s = 1/aspt, q, s − 1/bspt, q, s, (7)

where aspt, q, s is a scalar on the diagonal of Aspt, p, q rep-
resenting the variance of posterior uncertainty of emission
from clump s in the pth spatial inversion window and in the
08:30–11:30 time window on day q obtained by Eq. (2), and
bspt,q,s is a scalar on the diagonal of Bspt, p, q representing the
variance of prior uncertainty for the same control variable.

In the second step, the inversion is conducted for each
clump s separately, considering the correlation in time in the
prior uncertainties, using rq, s derived from the first step:

Atmp, s

=


B−1

tmp, s +



r1, s 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0
0 0 r2, s 0 · · · 0 0
0 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · r366, s 0
0 0ll 0 0 · · · 0 0





−1

, (8)

where Btmp, s is the covariance matrix of the prior uncertainty
for a given clump s including the temporal auto-correlation:

Btmp, s

=


σ 2

t1 cov(εt1,εt2) · · · cov(εt1,εtn)

cov(εt1,εt2) σ 2
t2 · · · cov(εt2,εtn)

...
...

. . .
...

cov(εt1,εtn) cov(εt2,εtn) · · · σ 2
tn

 , (9)

where n= 366× 2, corresponds to the number of 08:30–
11:30 time windows and the rest of the 21 h over the 366 d
of 1 year (2008). t1, t3, etc. represent the 08:30–11:30 time
windows and t2, t4, etc. represent the rest of the 21 h.

In PMIF-Globe, we first conduct the inversion in which
the prior uncertainty has no temporal auto-correlation (Exp-
NoCor). This is made by applying step 1 to all the 10◦× 10◦

spatial inversion windows and all the days separately. This
case is used to label the “well constrained” 08:30–11:30 time
windows for a given clump when the associated plume is suf-
ficiently well sampled by the XCO2 observation to yield a
posterior uncertainty in the 3 h mean emission that is smaller
than 20 %. We then conduct inversions with different as-
sumptions about the decomposition of the prior uncertainty,
accounting for the impact of temporal auto-correlations of
the prior uncertainty by applying step 2 of the inversions.
The posterior uncertainties in the 3 h mean emissions labeled
in Exp-NoCor are compared among different inversions to
show the benefit of crossing information from different time
windows. Apart from the assessment of the posterior uncer-
tainties for the 3 h mean emissions, we also evaluate, for all
the experiments except Exp-NoCor, the posterior uncertainty
in daily emissions and in annual emissions by aggregating
the posterior uncertainty covariance matrix A at the corre-
sponding scales obtained in step 2 of the inversions.

3 Results

3.1 Comparison between results from PMIF and a
more complex but local system over an isolated
megacity: Paris

The comparison of the results from the PMIF-Paris exper-
iment to that of Broquet et al. (2018) is used to demon-
strate that the PMIF produces meaningful statistics for other
clumps despite its relative simplicity at the local scale (its
complexity being linked to its global and annual coverage).
Figure 1 shows the theoretical uncertainty reduction for the
6 h mean emissions obtained in PMIF-Paris inversions with
the 1st, 5th, 10th, 15th, 19th and 25th best observation sam-
pling from CarbonSat over 31 inversion days (Sect. 2.7.1),
each day being characterized by the average wind speed over
Paris. We compare these results with the Fig. 6 from Broquet
et al. (2018). Like Broquet et al. (2018), Fig. 1 illustrates
the strong correlation between the uncertainty reduction and
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the average wind speed, indicating that lower wind speed re-
sults in a larger signal close to the city that is easier to as-
similate than elongated plumes under large wind speeds. For
the best observation sampling, the uncertainty reduction re-
mains smaller than 40 % when the wind speed is larger than
13 m s−1, and this value is generally twice as low as the val-
ues obtained when the wind speed is smaller than 5 m s−1.

Some differences are seen in Fig. S3, between the results
obtained by PMIF and by Broquet et al. (2018). For exam-
ple, the PMIF-Paris inversion slightly overestimates the un-
certainty reduction under high wind speed (> 15 m s−1) us-
ing the best observation sampling compared to Broquet et
al. (2018). These differences reflect the impact of using the
Gaussian plume model instead of a 3-D atmospheric trans-
port model, and more importantly, the impact of accounting
for more sources of uncertainties (in diffuse emissions and
natural fluxes) in Broquet et al. (2018). Despite these dif-
ferences, the general coherence in the ranges of uncertainty
reductions (Fig. S3) under different wind speeds between the
PMIF-Paris experiment and Broquet et al. (2018) is a strong
indication that the PMIF generates the correct order of mag-
nitude for the uncertainty reduction for a single clump. In ad-
dition, Nassar et al. (2017) used the Gaussian plume model to
process actual XCO2 plumes generated from several power
plants, which were sampled by OCO-2, adding the indication
that Gaussian plume model can simulate the typical spread
and amplitude of actual XCO2 plumes and thus support the
application of PMIF to a large range of clumps.

Figure 1 shows that the uncertainty reduction on 6-hourly
emissions from Paris before the satellite overpass can be up
to 74 % under calm wind conditions (wind speed< 1 m s−1)
with the best observation sampling (in clear sky and with the
satellite swath nearly centered on Paris), while it is system-
atically smaller than 45 % for the 25th best observation sam-
pling, over a full year of CS simulation. In addition, the un-
certainty reductions have a large variation for a narrow range
of wind speeds, illustrating the strong impacts of the satellite
track position with respect to the target and plume, together
with the fraction of “clear sky” that modulates the sampling.
In particular, the number of observations sampling the plume
on the days when the wind direction is perpendicular to the
satellite overpass tends to be lower than the number of days
when the wind direction is parallel to the satellite overpass.
This is illustrated in Fig. 1 by the uncertainty reductions on
the days when the wind speeds are 1.73, 7.6 and 8.1 m s−1,
which are lower than on the days with similar wind speeds.

3.2 Potential of space observations for monitoring CO2
emissions from individual clumps over 3 h time
windows

Figure 2a shows the distribution of the number of 08:30–
11:30 time windows per clump for which the posterior un-
certainty of 3 h mean emissions is smaller than 20 % (this
number is called N20) in Exp-NoCor. Clumps with small

Figure 1. Theoretical uncertainty reduction for the 6 h mean emis-
sions in the PMIF-Paris experiments using the 1st (red), 5th (or-
ange), 10th (light green), 15th (purple), 19th (blue) and 25th (green)
best observation sampling from the CarbonSat simulation. The re-
sults from the 31 inversion days are given as a function of the aver-
age wind speed over the Paris clump. A comparison with the results
from Broquet et al. (2018) is given in Fig. S3.

emission budgets tend to have lower N20 values than those
with large budgets, due to the fact that the atmospheric plume
generated by small emission clumps is difficult to distin-
guish from the measurement noise. Typically, N20 is smaller
than 5 d for clumps emitting less than 2 MtC yr−1 (like the
city of Aswan, Egypt). Conversely, N20 is larger than 10 d
for clumps emitting more than 2 MtC yr−1 (like the cities
of Manchester, UK; Boston, USA; and Chongqing, China).
Note that clumps with emissions larger than 2 MtC, although
representing less than 25 % of the total number of clumps,
contribute more than 83 % of the total clump emissions. At
regional scale (Figs. S4, S5), South America, North Amer-
ica, and Africa tend to have larger N20 values for same bin
of clump annual emission than the other regions, while the
Middle East and Asia have the lowest ones. In addition, there
are large variations and spatial heterogeneity in the N20 val-
ues within each emission bins (Fig. S5), which will be further
discussed in Sect. 4.

We also show the numbers of 08:30–11:30 time windows
per clump being labeled as “well-constrained” when the pos-
terior uncertainty of 3 h mean emission is smaller than other
thresholds, e.g., 10 % and 30 % (Fig. 2b). In general, using
a posterior uncertainty larger than 20 % as a threshold, we
could expect more “well-constrained” cases. But for a given
threshold, we still find the number of well-constrained cases
increases with the emission budgets.
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Figure 3 shows the posterior uncertainty in the clump
emissions for the “well constrained” 08:30–11:30 time win-
dows (identified in Exp-NoCor) from different OSSEs. It
confirms that in all OSSEs, the posterior uncertainties for
clumps with larger emissions are smaller than those with
lower emissions. Within a given bin of clump annual emis-
sion, the posterior uncertainties from the various OSSEs are
very similar, even though they are obtained with different hy-
potheses regarding the temporal auto-correlation in the prior
uncertainty. The interpretation is that, for the inversion of
the 3 h emissions before a given satellite overpass, most of
the constraint is imposed by the direct satellite observations
during this overpass. These observations are independent on
different days, and the constraints on different days are not
strongly crossed even when errors in the prior estimate are
highly correlated in time. However, although small, the im-
pact of temporal auto-correlations in the prior uncertainties
can be seen. For example, the posterior uncertainties in ASS
(SCS) are systematically smaller than those in AMS (MCS),
which confirms that the capability of the inversion system to
use the information from observations from previous or sub-
sequent days to reduce the posterior uncertainties increases
with the temporal auto-correlations. In SectCS, the poste-
rior uncertainties are smaller than those in MCS and SCS
in most regions (Fig. S5), due to the fact that the uncertainty
in industrial emissions has a long temporal auto-correlation
(τ2 = 180 d).

3.3 Potential of space observations for monitoring daily
CO2 emissions

In previous sections, we analyzed the uncertainty reduction
and the posterior uncertainty for the 3 h emissions that gen-
erate the atmospheric plume observed from space at 11:30.
We now analyze the potential to monitor the daily emission,
relying on the extrapolation of constraints on emissions be-
tween 08:30 and 11:30 using temporal auto-correlation of
the prior uncertainties in step 2 of the inversion (Sect. 2.7.2).
Figure 4 shows the distribution of the number of days when
the posterior uncertainties in daily emissions are smaller than
20 % (D20) for the same bins of emission clumps as in the
previous section. Similar to the distribution of N20, clumps
with small emission budgets tend to have lower D20 values
than those with large budgets, due to having smaller signal-
to-noise ratios for clumps with smaller emissions. The D20
values also strongly depend on the temporal auto-correlation
in the prior uncertainty. When no correlation (Exp-NoCor) or
short correlation (MCS) are assumed, D20 remains zero even
for the largest clumps, since most of the daily emissions are
disconnected from the 3 h emissions that are constrained by
the satellite observation and keep on bearing the large prior
uncertainties associated with the Exp-NoCor and MCS sce-
narios. When significant temporal auto-correlations (e.g., in
the case of AMS, ASS and SCS) are assumed, the results get
better and the posterior uncertainties for the daily emissions

become less than 20 % for more than 100 d for clumps emit-
ting more than 5 MtC yr−1. At regional scale (Fig. S6), the
distribution of D20 values shows a similar pattern to N20:
North America, South America and Africa have larger D20
values than the Middle East and Asia for same bin of clump
annual emission. But the distribution D20 values in SectCS
have large regional variations, reflecting the regional differ-
ences in the share of emissions from different sectors.

3.4 Potential of space observations for monitoring
annual CO2 emissions

We now analyze the results for the annual emissions, allowed
again by the derivation of the posterior uncertainty covari-
ance matrix A for individual clumps in step 2 of the inver-
sion, and thus the aggregation of the posterior uncertainties
in time. Figure 5 shows the posterior uncertainties in annual
emissions from the OSSEs. When we assume that there is
no temporal auto-correlations in the prior uncertainties, the
uncertainties obtained from the inversions remain very close
to the prior uncertainties (30 %) for all emission bins since
the information from the few well-constrained 08:30–11:30
time windows within the year is not extrapolated to the huge
unobserved fraction of the total annual emission over the
year. The benefit of satellite observations becomes appar-
ent when assuming that the prior uncertainties have temporal
auto-correlations. Similar to the posterior uncertainties for
3 h emissions during 08:30–11:30, the posterior uncertain-
ties in annual emissions are smaller in the OSSEs where the
prior uncertainties have stronger temporal auto-correlation.
This indicates that temporal auto-correlations help to ex-
trapolate the information on the emissions from the satel-
lite passes over a given clump to emissions during other
hours and days when there are no direct observations. Small
clumps tend to have a larger relative posterior uncertainty
in annual emissions than large clumps even when tempo-
ral error correlations are accounted for. The posterior un-
certainties in the annual emissions of large cities with an-
nual emission> 5 MtC yr−1 can be constrained to better than
20 % in AMS, SCS and SectCS, and to better than 10 % in
ASS. On the other hand, the posterior uncertainties for small
emission clumps with annual emissions< 0.5 MtC yr−1 are
always larger than 15 %, regardless of the temporal auto-
correlations in prior uncertainties.

4 Discussion and conclusions

PMIF provides information on the potential of space-borne
imagery to constrain CO2 emissions from emission clumps
over the globe from scales of a few hours to the annual scale.
It uses a simple Gaussian plume model to relate the emis-
sions and the XCO2 plumes. This is a strong simplification of
the physics which impacts the range of uncertainties that can
be accounted for in the inversion problem, but a preliminary
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Figure 2. (a) Number of 08:30–11:30 time windows within a year for which the 3 h emissions are constrained with a posterior uncertainty
less than 20 % (N20) in the Exp-NoCor experiment. The results are binned according to clump annual emission with bin limits given on
the x axis of the figure. Dots and error bars are the median and interquartile range of N20 for all clumps within the emission bin. Numbers
at the figure top indicate the number of clumps and the percentage of clump emission within each bin. (b) Number of 08:30–11:30 time
windows (color) within a year for which the 3 h emissions are constrained with a posterior uncertainty less than a given threshold (y axis) in
the Exp-NoCor experiment.

Figure 3. Distribution of the posterior uncertainty in the 3 h mean emissions during the 08:30–11:30 time windows (for which the posterior
uncertainty in 3 h mean emissions are smaller than 20 % in Exp-NoCor) obtained with different OSSEs. Dots and error bars are the median
and interquartile range. The results are binned according to the clump annual emission with bin limits given on the x axis of the figure.
Numbers at the figure top indicate the number of clumps and the percentage of clump emission within each bin.

evaluation against a more complex setup (that of Broquet et
al., 2018) indicates that it provides the correct order of mag-
nitude for the uncertainties in the inverted emissions for an
individual city: Paris.

In this study, we focused on the projection of uncertainties
in satellite observations on the uncertainty of inverted emis-
sions. Some sources of uncertainties that could have some
impacts on the inversions when dealing with real data are ig-
nored. Firstly, the plumes generated by the Gaussian plume
model are straight along the wind direction at the source

pixel. As a result, we allow the plumes from nearby clumps to
potentially cross each other, but these plumes will systemati-
cally diverge over long distances. The Gaussian plume model
cannot reproduce plumes overlapping along the atmospheric
circulation like Eulerian transport models. In this sense, the
overlapping effect of plumes can be underestimated in PMIF.
In a realistic situation of atmospheric transport, if plumes
from multiple clumps overlap very often, the inversion per-
formance for individual clumps will be degraded since it will
have difficulties accurately attributing the XCO2 signals to
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Figure 4. Number of days within the year when the posterior uncertainty of daily emissions is smaller than 20 % (D20). The results are
binned according to the clump annual emission with bin limits given on the x axis of the figure. Note that the median values of D20 for all
clumps in Exp-NoCor and in MCS, for clumps whose annual emissions are between 0.5 and 1 MtC in AMS, ASS and SCS, and for clumps
whose emissions are below 10 MtC in SectCS, are all zero, so that the dots in these cases are not visible on the y axis with log scale. The
dots and error bars are the median and interquartile range of D10 for all clumps within the emission bin. Numbers at the figure top indicate
the number of clumps and the percentage of clump emission within each bin.

Figure 5. Distribution of the posterior uncertainties in annual CO2 emissions for different OSSEs. The results are binned according to the
clump annual emission with bin limits given on the x axis of the figure. Dots and error bars are the median and interquartile range of posterior
uncertainty. Numbers at the figure top indicate the number of clumps and the percentage of clump emission within that bin.

individual clumps. Furthermore, we assume that the Gaus-
sian plume model can perfectly link the emissions and XCO2
and ignore the transport model error. If forced with erro-
neous wind fields, the simulation of XCO2 plumes can have
the wrong shape and location and thus generate large uncer-
tainties in the inversions. In the inversion with actual XCO2
observations from OCO-2, Nassar et al. (2017) allowed the
wind direction to change from the wind re-analysis used to
force the Gaussian plume model, if it improved the fit be-
tween simulated plumes and the observed signals. Reuter
et al. (2019) and Kuhlmann et al. (2019) showed that the
co-located NO2 satellite observations could help to detect
and constrain the location and shape of XCO2 plumes. The
transport model error may be partly reduced by incorporat-

ing additional information from other tracers when fitting the
model to real data, but it is unknown to what extent these
additional constraints are useful to improve the inversion of
CO2 emissions from cities and point sources. With the cur-
rent design of PMIF, the impact of transport error is hard
to evaluate. Secondly, we ignore systematic measurement er-
rors from the XCO2 imagery. Broquet et al. (2018) showed
that systematic error could hamper the ability of the inver-
sion system to reduce the errors in the emissions estimates.
Thirdly, we neglect the impact of uncertainties in diffuse fos-
sil fuel CO2 emissions (outside clumps) and non-fossil CO2
fluxes (within and outside clumps), the latter including net
ecosystem exchange (NEE) from the terrestrial biosphere,
the CO2 emitted by the burning of biofuel, the respiration
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from humans and animals (Ciais et al., 2020), and the net
CO2 fluxes between the atmosphere and ocean. For exam-
ple, the signals from terrestrial NEE can be strong during
the growing season, and the signals from ocean CO2 fluxes
may have a critical impact on the overall XCO2 patterns in
proximity to coastlines. In principle, the signals of diffuse
fossil fuel CO2 emissions and non-fossil CO2 fluxes outside
the clumps can be potentially filtered by removing the lo-
cal background XCO2 field to extract plumes generated only
by emissions from clumps (Kuhlmann et al., 2019; Reuter
et al., 2019; Ye et al., 2020; Zheng et al., 2020). The non-
fossil CO2 fluxes within clumps vary from clump to clump
and could contribute a non-negligible fraction of the total
CO2 fluxes in many clumps (Bréon et al., 2015; Ciais et
al., 2020; Wu et al., 2018). The satellite observations alone
cannot effectively differentiate the fossil fuel CO2 emissions
and the non-fossil CO2 fluxes within clumps. Fourthly, the
PMIF system controls the scaling factors for the mean emis-
sions of daily 3 and 21 h windows and for each clump, ig-
noring uncertainties in the spatial distribution and temporal
profile of the emissions (described by the operator Minventory)
within the clumps and over the time windows. Such uncer-
tainties are called aggregation errors (Wang et al., 2017; Wu
et al., 2011). However, Broquet et al. (2018) compared the
results of inversions using the realistic spatial distribution of
emissions and using a homogenous one over two discs with
a different radius for Minventory and found that having im-
perfect spatial distribution of emissions to model Minventory
(thus the aggregation error) only has a small impact on the
uncertainties and errors in the inverted emissions. Future de-
velopments in PMIF should attempt to quantify the impacts
of such sources of uncertainties, while keeping its power of
constraining the emissions from a large range of sources with
global coverage.

Although it ignores the sources of uncertainties listed
above, the current PMIF can still be used to investigate the
impacts of some key parameters of the inversion problem
and to allow, for the first time, a first-order extrapolation of
the results from single-city studies to all significant emission
clumps over the globe and under a full range of meteorolog-
ical conditions during a year.

The key result summarized in Fig. 2 is that using a single
CO2M satellite, only the clumps with annual budget higher
than 2 MtC yr−1 (e.g., Manchester, UK, Boston, USA and
Chongqing, China) can potentially be well constrained with
N20 being larger than 10 within a year. However, there are
large variations in the N20 values for clumps with such lev-
els of emission. Figure 6a and b show the maps of the number
of observations within each 2◦×2◦ grid cell during 1 year in
the USA and China, which is an indicator for the frequency
of clear-sky days: the larger the number of observations, the
higher the frequency of clear-sky days. It is clearly seen in
Fig. 6c and d that the clumps in southern China have low N20
values when they are located in areas with a low frequency
of clear-sky days. For clumps that have emissions between 2

and 5 MtC yr−1, N20 values are below 10 d in a cloudy/hazy
region like southeastern China and are close to 30 d in a clear-
sky region like the western coast of the USA. These results
illustrate the dependence of the potential of satellite obser-
vations to constrain emissions on the frequency of clear-sky
conditions. The relative uncertainty in the inversion of the
emissions from a clump is primarily driven by the budget
of these emissions, and by the wind speed (as illustrated by
Fig. 1). The frequency of clear-sky days modulates the num-
ber of direct observations of the plume from a clump and thus
the number of days for which the inversion can decrease the
uncertainty when ignoring temporal auto-correlations in the
prior uncertainty in Exp-NoCor. The frequency of clear-sky
days, together with the emission rate and wind speed, are the
main drivers of the posterior uncertainty in daily to annual
emissions when accounting for temporal auto-correlations in
the prior uncertainty.

We showed that one CO2M imager can provide a direct
constraint for the estimate of emissions from clumps with
emissions larger than 2 MtC yr−1, but over limited periods
only. N20 is smaller than 25 for most clumps, indicating that
even for emissions during 08:30–11:30, one cannot expect
more than 25 d when the CO2M observations sample the
plumes from clumps with a sufficient number of observations
(Fig. 2) during 1 year. The use of a constellation of CO2M
satellites in the current plan could potentially improve the
frequency of good samplings. Imaging from geostationary
orbit (GEO) imagers like NASA’s GeoCarb mission (O’Brien
et al., 2016; Polonsky et al., 2014) could offer sampling dur-
ing different periods within a day to constrain the diurnal pro-
file of emissions. Highly elliptical orbit (HEO) imagers could
also provide observations at northern high latitudes with a
similar high frequency to GEO (Nassar et al., 2014). How-
ever, even though multiple space-borne platforms can sample
the plumes more frequently, the satellites using passive sen-
sors like that planned for CO2M can never sample the plumes
under cloudy/hazy conditions.

We also investigated the possibility of extrapolating the
information obtained from the time windows for which the
emissions are constrained by satellite observations to esti-
mate emissions on other hours, days and throughout a year.
Such an extrapolation relies on the model of the emission in-
ventories used as a prior of PMIF, that is, in the framework
of PMIF, the temporal auto-correlation of the uncertainty of
prior emissions. The analysis of posterior uncertainties in the
3 h mean emissions, in daily emissions and in annual emis-
sions all show that the configuration of this temporal auto-
correlation has a large impact on the inversion results. For
example, posterior uncertainties in annual emissions range
from less than 10 % with strong auto-correlation (ASS) to
25 % with medium auto-correlation (MCS) for clumps with
emissions higher than 2 MtC yr−1. The orders of magnitude
in the posterior uncertainty will be critical to the objec-
tive assessment of annual emissions. However, since state-
of-the-art emission products rarely report their uncertainties
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Figure 6. Number of observations in 2◦× 2◦ grid cells during 1 year (a, b) and N20 values (c, d).

and temporal auto-correlations (Andres et al., 2016; Gurney
et al., 2019), it is difficult to exclude any configuration of
OSSEs in this study. The strong impact of the prior uncer-
tainty on the inversion results thus highlights the priority of
future research to systematically assess the uncertainty, espe-
cially the temporal error co-variances, in the emission prod-
ucts.

Even if emissions can be effectively constrained by CO2M
for clumps whose emissions are larger than 2 MtC yr−1, the
sum of annual emission budgets from these large clumps ac-
count only for 54 % of the total CO2 clump emissions and for
36 % of the total global fossil fuel CO2 emissions (account-
ing for diffuse emissions outside the clumps), according to
the clump definition of Wang et al. (2019) and the ODIAC
emission map. For a specific country, clumps with emissions
larger than 2 MtC yr−1 typically represent less than 50 % of
the total national emissions (accounting for diffuse emissions
outside the clumps). It thus shows the difficulty of using
a single CO2M imager as the only source of information
to constrain national emissions. This limitation of a single
CO2M imager calls for innovations to integrate other types

of observations in inversion systems to improve the ability to
estimate emissions at both city scale (Lauvaux et al., 2016;
Sargent et al., 2018; Staufer et al., 2016) and larger spatial
scales (Palmer et al., 2018; Wang et al., 2018a).
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Appendix A: Acronyms

AMS: Annual component and moderately correlated sub-annual component
ASS: Annual component and strongly correlated sub-annual component
CDIAC: Carbon Dioxide Information Analysis Center
CNES: Centre National d’Etudes Spatiales
CO2M: Copernicus Anthropogenic Carbon Dioxide Monitoring
D20: Number of days within the year when the posterior uncertainty of daily emissions is smaller than 20 %
ECMWF: European Centre for Medium-Range Weather Forecasts
ESA: European Space Agency
EUMETSAT: European Organisation for the Exploitation of Meteorological Satellites
GOSAT: Greenhouse Gases Observing Satellite
MCS: Moderately correlated sub-annual component
N20: Number of 08:30–11:30 time windows per clump for which the posterior uncertainty of 3 h mean

emissions is smaller than 20 %
NoCor: No temporal auto-correlation
OCO: Orbiting Carbon Observatory
ODIAC: Open-source Data Inventory for Anthropogenic CO2
OSSE: Observing System Simulation Experiment
PMIF: Plume Monitoring Inversion Framework
SCS: Strongly correlated sub-annual component
SectCS: Sector-dependent correlated sub-annual component
SZA: Solar zenith angle
TIMES: Temporal Improvements for Modeling Emissions by Scaling
XCO2: Vertically integrated columns of dry-air mole fractions of CO2
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Code availability. The source code for PMIFv1.0 is included in the
Supplement. To run PMIF, some input files are needed. The ODIAC
inventory is available at https://doi.org/10.17595/20170411.001
(Oda and Maksyutov, 2015). The clump dataset is avail-
able at https://doi.org/10.6084/m9.figshare.7217726.v1 (Wang et
al., 2018b). The list of clump information (e.g., index, lati-
tude and longitude of the center), which is also needed as an
input, is included in the Supplement. The wind fields from
CCMP are available at http://www.remss.com/measurements/ccmp/
(last access: 26 July 2017, Remote Sensing Systems, 2017,
https://doi.org/10.1175/2010BAMS2946.1, Atlas et al., 2011).
EDGAR v4.3.2 emission maps are needed to run the SectCS in-
version and are available at https://edgar.jrc.ec.europa.eu/overview.
php?v=432_GHG (last access: 25 July 2019, JRC, 2019, additional
information can be found at https://doi.org/10.5194/essd-11-959-
2019, Janssens-Maenhout et al., 2019).
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