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Abstract. The square conservation law is implemented in
atmospheric dynamic cores on latitude–longitude grids, but
it is rarely implemented on quasi-uniform grids, given the
difficulty involved in constructing anti-symmetrical spatial
discrete operators on these grids. Increasingly more mod-
els are being developed on quasi-uniform grids, such as ar-
bitrarily structured C-grids. Thuburn–Ringler–Skamarock–
Klemp (TRiSK) is a shallow water dynamic core on an ar-
bitrarily structured C-grid. The spatial discrete operator of
TRiSK is able to naturally maintain the conservation prop-
erties of total mass and total absolute vorticity and conserv-
ing total energy with time truncation error; the first two in-
tegral invariants are exactly conserved during integration,
but the total energy dissipates when using the dissipative
temporal integration schemes, i.e., Runge–Kutta (RK). The
method of strictly conserving the total energy simultane-
ously, which means conserving energy in the round-off error
over the entire temporal integration period, uses both an anti-
symmetrical spatial discrete operator and a square conserva-
tive temporal integration scheme. In this study, we demon-
strate that square conservation is equivalent to energy con-
servation in both a continuous shallow water system and a
discrete shallow water system of TRiSK. After that, we at-
tempt to extend the square conservation law to the TRiSK
framework. To overcome the challenge of constructing an
anti-symmetrical spatial discrete operator, we unify the unit
of evolution variables of shallow water equations using the
Institute of Atmospheric Physics (IAP) transformation, and
the temporal derivatives of new evolution variables can be

expressed by a combination of temporal derivatives of origi-
nal evolution variables, which means the square conservative
spatial discrete operator can be obtain by using original spa-
tial discrete operators in TRiSK. Using the square conser-
vative Runge–Kutta scheme, the total energy is completely
conserved, and there is no influence on the properties of con-
serving total mass and total absolute vorticity. In the standard
shallow water numerical test, the square conservative scheme
not only helps maintain total conservation of the three inte-
gral invariants but also creates less simulation error norms.

1 Introduction

In a statistical sense, the integral constraints make the physics
of the discrete model more analogous to the physics of the
continuous atmosphere, and also make the errors less sys-
tematic (Arakawa and Lam, 1977). Shallow water equation
sets, without any outer sources and frictions, have five basic
physical conservation properties, including total mass, total
energy, total absolute vorticity (total potential vorticity), total
potential enstrophy and total angular momentum. These con-
servation properties are important in an atmosphere model,
especially with regard to long-term simulation; however, in
a discrete system, some conservation properties cannot be
maintained (Wang, 2008). If the square of a quantity is con-
served with time when summed up over all the grid points
in a domain, the quantity itself will be bounded, at every in-
dividual grid point, throughout the entire period of integra-
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tion; this might be helpful for preventing nonlinear computa-
tional instability (Arakawa, 1966), and energy is one kind of
quadratic quantity. Toy and Nair (2017) developed an energy
and potential enstrophy conserving scheme for shallow water
equations on generalized curvilinear coordinates; they men-
tioned conserving analogues of total energy, and total poten-
tial enstrophy in numerical models is known to prevent a spu-
rious cascade of energy toward small scales. For a short-term
simulation, the influences of slight energy dissipation are not
obvious, but this dissipation accumulates in every time step,
and finally, in a long-term simulation, leads to a quiet differ-
ent result; i.e., an ellipse orbit tends to a single point after
108 steps (Wang et al., 1996).

A numerical scheme, with an energy conservation or en-
ergy dissipative property, is prerequisite to prevent nonlin-
ear computational instability; however, an energy dissipa-
tive scheme will limit short waves, which are meaningful
for the atmosphere (Shen et al., 2015; Zeng and Ji, 1981).
On a latitude–longitude grid, energy can be entirely con-
served by constructing a square conservative finite-difference
scheme (Ji and Wang, 1991) or a multi-conservation finite-
difference scheme (Wang and Ji, 2003), the former being
better developed. Wang and Ji (1994a) discussed the square
conservative scheme (SCS), the complete square conserva-
tive scheme (CSCS), the instantaneous square conservative
scheme (ISCS) and the explicit complete square conserva-
tive scheme with adjustable time intervals (ECSCSA). The
ISCS maintains square conservation only in the spatial dis-
crete scheme and not in the temporal integration scheme,
which implies that the spatial discrete operator of the model
is a square conservative (i.e., an anti-symmetrical operator).
However, the temporal integration scheme does not pos-
sess the square conservation property; therefore, the model
is energy dissipative during integration. The CSCS main-
tains square conservation in both the spatial and temporal
schemes. The model, which adopts CSCS, is able to maintain
complete energy conservation during integration. The first
step of applying the square conservation theory is to con-
struct an anti-symmetrical spatial discrete operator, and the
second step is to integrate the model with a square conserva-
tive temporal integration scheme, e.g., a modified predictor–
corrector, modified leap-frog (Wang and Ji, 2006), harmo-
nious dissipative operators (Wang and Ji, 1994b), etc.

To improve integration precision on the temporal direc-
tion of the square conservative scheme, a new class of new
Runge–Kutta (NRK) schemes were developed by Wang et
al. (1996). The NRK scheme maintains the complete square
conservation property by adjusting the length of temporal in-
tegration steps and maintaining the same integral precision
order as the original Runge–Kutta (RK) scheme.

The SCS was implemented in the grid-point atmospheric
model of IAP LASG (GAMIL, Wang et al., 2004; Wang and
Ji, 2006). GAMIL is widely used in climate simulation (Li et
al., 2007, 2013; Wu and Li, 2008). The square conservation
theory is rarely used on quasi-uniform grids or nonuniform

grids because it is hard to construct a spatial discrete operator
with an anti-symmetrical property on those grids.

In the past 2 decades, to avoid the polar singularity of the
latitude–longitude grid, increasingly more atmosphere mod-
els have been built on the quasi-uniform grid, e.g., spectral
transform methods (Swarztrauber, 1996), the finite-volume
method (Lin, 2004; Putman and Lin, 2007; Chen and Xiao,
2008) and an extension of the finite-difference method to the
generalized curvilinear coordinates (Toy and Nair, 2017).

Thuburn et al. (2009) and Ringler et al. (2010) pro-
vided a spatial discrete scheme based on arbitrarily struc-
tured C-grids, known as Thuburn–Ringler–Skamarock–
Klemp (TRiSK). TRiSK is able to conserve total mass and
total absolute vorticity, and total energy is conserved within
time truncation error. These important properties allow for
models using quasi-uniform Voronoi grids, the accuracies
of which are similar to latitude–longitude grids (Weller et
al., 2012). Based on Thuburn et al. (2009) and Ringler et
al. (2010), a global/regional model, the Model for Predic-
tion Across Scales (MPAS), was developed by the National
Center for Atmospheric Research (NCAR) and Los Alamos
National Laboratory (LANL; Skamarock et al., 2012, 2018).

Although the spatial discrete operator designed by Ringler
et al. (2010) results in energy conservation, the total energy is
still dissipative while using dissipative temporal integration
schemes, i.e., Runge–Kutta; in other words, the conservation
property of spatial discrete operator is not able to be maintain
during temporal integration, which is referred to as conserv-
ing total energy in time truncation error. In this paper we at-
tempt to construct a square conservative scheme for TRiSK,
which is able to conserve total energy in the round-off error,
but not just in time truncation error; this means that the vari-
ation of total energy should be in the round-off error during
the entire temporal integration period. We call this complete
energy conservation.

Total energy will be completely conserved only if the spa-
tial discrete operator is anti-symmetrical and the temporal in-
tegration scheme is square conservative (Wang and Ji, 2006).
The main obstacle of extending square conservation to the
quasi-uniform grids is constructing the anti-symmetrical spa-
tial discrete operator. Because many quasi-uniform grids are
unstructured and the shapes of cells are not uniform, it is dif-
ficult to find the next or previous cell. In this study, we use
the instantaneous energy conservation property of TRiSK to
overcome the challenge of constructing an anti-symmetrical
spatial operator on a quasi-uniform grid. After using NRK as
a temporal integration scheme, the square conservative con-
straints are satisfied for both spatial and temporal directions,
and the total energy, total mass and total absolute vorticity
are completely conserved during the integration.

This paper is presented as follows: in Sect. 2, we review
the TRiSK framework described by Ringler et al. (2010).
Section 3 describes the method of extending square con-
servation to TRiSK in three parts. The first part presents a
review of square conservation and a demonstration of the
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equivalent relationship between square conservation and en-
ergy conservation in a continuous shallow water system. In
the second part of Sect. 3, we obtain the anti-symmetrical
spatial discrete operator by using the derivative rule and
the energy conservation property of TRiSK, a method that
is key to extending square conservation to TRiSK. In the
last part of Sect. 3, we review a new type of Runge–Kutta
with fourth-order precision, which was developed by Wang
et al. (1996), as the square conservative temporal integration
scheme. In Sect. 4, by using the square conservation scheme,
we demonstrate that the total mass and total absolute vor-
ticity remain perfectly conservative. Section 5 exhibits the
results of three different numerical tests, including the sec-
ond, fifth and sixth test cases mentioned by Williamson et
al. (1992).

2 Introduction of TRiSK

The shallow water equation set may be written in a vector-
invariant form as follows:

∂u

∂t
− ξak×u+∇E = 0, (1)

∂φ

∂t
+∇ · (φu)= 0, (2)

where ξa = ξ + f denotes the absolute vorticity; ξ =∇ ×u

represents the relative vorticity; f = 2�sinθ is the Corio-
lis parameter; E =K + g(h+hs)=K +φ+φs, φ = gh is
the geopotential depth of the fluid; φs = ghs is the geopo-
tential height of the underlying surface; φt = φ+φs is the
free surface (top) of the fluid; K = |u|

2

2 is the kinetic energy;
u is the velocity vector; h and hs are the fluid thickness and
surface height, respectively; θ represents the latitude; and
g and � are acceleration of gravity and angular velocity of
the earth.

In Ringler et al. (2010), the total energy is defined as

εR10 = hK + gh

(
1
2
h+hs

)
. (3)

To simplify the derivation in the following context, we define
the total energy as
‹

�

εds =
‹

�

gεR10ds =
‹

�

φK +
1
2
φ2
+φφsds

= ‖φK‖+

∥∥∥∥1
2
φ2
∥∥∥∥+‖φφs‖ , (4)

where ‖ · ‖ =
√
(·, ·) denotes the 2-norm. The inner product

(·, ·) is defined as

(X,Y )=

‹

�

X ·Yds, (5)

where � is the entire spherical surface.

Per the description provided in Ringler et al. (2010), ve-
locity points are on the edges of each cell, the mass and ki-
netic energy points are in the center of each cell and vorticity
points are on the vertices of each cell. The shallow water
equation set may be expressed as a discrete form:

∂ue

∂t
−Q⊥e + [∇E]e = 0, (6)

∂φi

∂t
+ [∇ · (φu)]i = 0, (7)

where ue, φi are the normal velocity and geopotential height.
The subscript “e” signifies that the variable is defined on
edge e; the subscript i signifies that the variable is defined
at the center of ith cell. Q⊥e is the absolute vorticity flux on
the tangent direction ⊥ of the edge e, which is computed
according to Eq. (49) in Ringler et al. (2010). Another two
functions in Eqs. (6) and (7) are given by the introduction of
Fig. 3 in Ringler et al. (2010):

[∇E]e =
1
de

∑
i∈CE(e)

− ne,iEi, (8)

[∇ · (φu)]i =
1
Ai

∑
e∈EC(i)

ne,i leφeue, (9)

where ne,i is an indicator function, defined as ne,i = 1 when
ne is an outward normal vector of cell i, and ne,i =−1 when
ne is an inward normal vector of cell i; le is the length of
edge e; i ∈ CE(e) denotes the two cells that share edge e;
and e ∈ EC(i) is the set of edges that define the boundary of
cell i. The potential vorticity on edge qe may be computed
by the midpoint method (Ringler et al., 2010, Eq. 50) or the
linear interpolation method (Weller, 2012, Eq. 5). The details
are presented in Fig. 1.

3 Extending the square conservation to TRiSK

As mentioned in Sect. 1, to obtain the complete square con-
servation property, the spatial discrete operator must be anti-
symmetrical, and the temporal integration scheme is square
conservative. Therefore, in this section, the method of ex-
tending the square conservation to TRiSK is introduced
in three parts. Section 3.1 reviews the concept of square
conservation, demonstrating the equivalent relationship be-
tween the square conservation and energy conservation. Sec-
tion 3.2 constructs the anti-symmetrical spatial discrete oper-
ator. Section 3.3 introduces the square conservative temporal
integration scheme by reviewing a class of NRK, developed
by Wang et al. (1996).

3.1 Relationship between square conservation and
energy conservation

First, we review the concept of anti-symmetrical operators
and square conservation according to the study of Wang et
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Figure 1. Definition of elements in a discrete system. Blue arrows represent the indicator function ne,i and red arrows are the indicator
function te,v . The uniform grid is here for clearly introducing SCVT meshes, the situation on non-uniform grid is similar.

al. (1996), considering the nonlinear evolution equation in
operator form:

∂F

∂t
+L(F )= 0. (10)

Definition. Suppose H is a complete inner product space
on R and L is an H →H operator; if L satisfies the fol-
lowing inner product equation

(L(F ),F )= 0, (11)

then L is termed an anti-symmetrical operator.
The result of multiplying F on both sides of Eq. (10) and

integrating globally is the square conservation property:

d
dt
‖F‖2 = 0. (12)

Next, we begin determining the relationship between energy
conservation and square conservation. In the TRiSK frame-
work, the evolution variables are u and φ.

The unified unit of evolution variables is the prerequisite
of constructing the square conservation system. The evolu-
tion variables are unified by IAP transformation (Zeng and
Zhang, 1987; Wang et al., 2004), and the original evolu-
tion variable u is replaced by the new evolution variable
U =
√
φu, after completing IAP transformation.

F =

(
U

φ

)
=

( √
φu

φ

)
. (13)

The physical significance of
√
φ is the phase speed of the ex-

ternal gravity wave, and the shallow water equation set may
be rewritten as a vector format:

∂F

∂t
+L(F )=

∂

∂t

(
U

φ

)
+L

(
U

φ

)
= 0. (14)

As defined in Sect. 2, φt = φ+φs, and

∂φt

∂t
=
∂φ

∂t
+
∂φs

∂t
. (15)

The surface height is determined to be independent of time,

∂φs

∂t
= 0. (16)

Therefore,

∂φt

∂t
=
∂φ

∂t
. (17)

Defining F t =

(
U

φt

)
, according to Eqs. (13) and (17), we

have

∂F t

∂t
=
∂F

∂t
. (18)
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Multiplying Eq. (18) by F t on both sides, and integrating
globally, we have

d
dt

∥∥∥∥1
2
F 2

t

∥∥∥∥= (Ft,
∂F

∂t

)
=

‹

�

U
∂U

∂t
+ (φ+φs)

∂φ

∂t
ds

=

‹

�

∂

∂t

(
1
2
|U |2

)
+
∂

∂t

(
1
2
φ2
+φφs

)
ds

=
d
dt

(
‖φK‖+

∥∥∥∥1
2
φ2
∥∥∥∥+‖φφs‖

)
=

dε
dt
= 0. (19)

Accordingly, square conservation is equivalent to energy
conservation in a continuous system.

3.2 Constructing the anti-symmetrical spatial discrete
operator

In this subsection, we construct the anti-symmetrical spatial
discrete operator using a specific combination of original op-
erators in TRiSK. Firstly, we need to demonstrate the equiva-
lent relationship between the square conservative spatial dis-
crete operator and energy conservative spatial discrete oper-
ator in a continuous system; then we prove that this relation-
ship is also applicable to discrete system.

Assuming a continuous-in-time system, the evolution
equation of U is able to be expressed as

∂U

∂t
=
√
φ
∂u

∂t
+

u

2
√
φ

∂φ

∂t
. (20)

This formula is key to connecting square conservation and
energy conservation; in the following theorem, we obtain an
anti-symmetrical operator by using Eq. (20).

Theorem. The functions M=M(φ,u) and N =N (φ,u)
satisfy{

∂u
∂t
+M= 0

∂φ
∂t
+N = 0

, (21)

and

(M,φu)+ (N ,E)= 0. (22)

After IAP transformation Eq. (13), the evolution equation
of U may be expressed as Eq. (20). Meanwhile, Eq. (21) may
be rewritten as Eq. (14).

If the operator L satisfies Eq. (14), then L is an anti-
symmetrical operator.

Proof.

∂U

∂t
=
√
φ
∂u

∂t
+

u

2
√
φ

∂φ

∂t
=−

√
φM−

u

2
√
φ
N , (23)

(L(F ),F )=−
(
∂U

∂t
,U

)
−

(
∂φ

∂t
,φ

)
=

‹

�

−U
∂U

∂t
−φ

∂φ

∂t
ds

=

‹

�

−U

(
−
√
φM−

u

2
√
φ
N
)
+φNds

=

‹

�

φu ·M+
|u|2

2
N +φNds

= (M,φu)+ (N ,E)= 0. (24)

This theorem is proved in a continuous system, but the model
is built as a discrete system; therefore, it is necessary to dis-
cuss the situation in a discrete space.

Following Ringler et al. (2010), we define the functions
M =M(φ, u) and N =N(φ, u) in discrete space as follows:

M = [∇E]e−Q
⊥
e , (25)

N = [∇ · (φu)]i . (26)

And the semi-discrete shallow water equation set becomes

∂u

∂t
+M = 0, (27)

∂φ

∂t
+N = 0. (28)

Because the spatial discrete operator of TRiSK has an in-
stantaneous energy conservation property, it is easy to prove
(M,φu)+ (N,E)= 0 (details in Sect. 3.7.2 of Ringler et al.,
2010).

There are cells, edges and vertices presented as three
types of points on a spherical centroidal Voronoi tessella-
tion (SCVT) grid, which is the mesh used by TRiSK. We
define the inner product for different types of points as fol-
lows:

(X,Y )i =

nCells∑
i=1

Xi ·Yi ·Ai, (29)

(X,Y )e =

nEdges∑
e=1

Xe ·Ye ·Ae, (30)

where XiYi are the variables in the cell; XeYe denote any
variables on the edge; AiAe are the areas for each cell and
edge; Ae = de× le, de is the distance between the two cells’
centers on edge e; le is the length of edge e; “nCells” denotes
the total cell number; and “nEdges” is the total edge number.

(M,φu)e+ (N,E)i = 0. (31)
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Combining Eqs. (14) and (20), and rewriting it into a discrete
system:

∂F

∂t
+L(F )=

∂

∂t

(
Ue
φi

)
+L

(
Ue
φi

)
= 0, (32)

where Ue =
√
φeue,

√
φe is the phase speed of external grav-

ity wave on edge e. Note that we need to interpolate φi from
cell center i to edge e; here we set φe = 1

2
∑

i∈CE(e)
φi .

∂Ue

∂t
=
√
φe
∂ue

∂t
+

ue

2
√
φe

∂φe

∂t
=−

√
φeM −

ue

2
√
φe
N. (33)

As shown in Appendix A, we have the discrete anti-
symmetrical operator L:

(L(F ),F )d =−

(
U,
∂U

∂t

)
e

−

(
φ,
∂φ

∂t

)
i

= 0. (34)

The subscript “d” represents that the inner product is com-
puted in a discrete system.

Thus, the discrete evolution equation set becomes

∂Ue

∂t
+
√
φeM +

ue

2
√
φe
N = 0, (35)

∂φi

∂t
+N = 0. (36)

The model will be instantaneous square conservative by in-
corporating Eqs. (35) and (36) as the evolution equation set.

3.3 Constructing the temporal integration scheme with
the square conservation property

The model is integrated in a discrete-in-time system; for the
sake of guaranteeing complete square conservation, a square
conservative temporal integration scheme is necessary. As
NRK has the advantage of maintaining complete square con-
servation with a high order of integral precision, the fourth-
order NRK scheme in TRiSK is adopted to obtain high inte-
gral precision and a long time step. To completely introduce
the square conservative temporal integration scheme, we re-
view some details of Wang et al. (1996).

The fourth-order NRK may be expressed as

F n+1
= F n

+ τnϕ
(
F n,τ

)
, (37)

where τn is an adjustable time step and τ is the integral time
step of the model.

ϕ
(
F n,τ

)
= τ

R1+ 2R2+ 2R3+R4

6
. (38)

R1 =−LF n

R2 =−L
(
F n
+

1
2τR1

)
R3 =−L

(
F n
+

1
2τR2

)
R4 =−L(F

n
+ τR3) .

(39)

Taking square operators on both sides of Eq. (37), delineating
ϕn = ϕ(F n,τ ),∥∥∥F n+1

∥∥∥2
=
∥∥F n

∥∥2
+ 2τn

(
ϕn,F n

)
+ τ 2

n

∥∥ϕn∥∥2
. (40)

We note that although the spatial discrete operator L is anti-
symmetrical, the total energy at the n+ 1 time point remains
different from that at the n time point. Energy is able to be
completely conserved by satisfying the following equation:∥∥∥F n+1

∥∥∥2
=
∥∥F n

∥∥2
. (41)

Therefore,

2τn
(
ϕn,F n

)
+ τ 2

n

∥∥ϕn∥∥2
= 0, (42)

τn =−
2(ϕn,F n)

‖ϕn‖2
. (43)

Considering the situation when τ → 0, and according to
Eqs. (17) and (18) in Wang et al. (1996),

τn =
τ

3‖ϕn‖2
[(R1,R2)+ (R2,R3)+ (R3,R4)] . (44)

Once adopting the NRK scheme as the temporal integration
scheme, the model will be completely square conservative,
which implies that the total energy will be completely con-
served from the beginning to the end of the integration. The
NRK scheme is expected to perform better than RK in a nu-
merical test. Moreover, NRK decays to RK by setting τn = τ .

While the integral time step is modified from τ to τn, the
precision order of NRK is the same as RK; when constructing
NRK based on the nth order RK, NRK has nth order preci-
sion as well, a conclusion proven by Theorem 1 in Wang et
al. (1996).

4 Mass and absolute vorticity conservation

In the CSCS introduced above, although the integral time
step is modified from τ to τn, total mass and total absolute
vorticity are nevertheless conserved. In the following demon-
strations, we note that the mass conservation property and
absolute vorticity conservation property are independent of
temporal integration.

Geosci. Model Dev., 13, 581–595, 2020 www.geosci-model-dev.net/13/581/2020/
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4.1 Mass conservation

Considering the total mass, multiplying Eq. (7) by Ai and
summing all cells,

nCells∑
i=1

Ai
∂φi

∂t
=−

nCells∑
i=1

Ai[∇ · (φu)]i

=−

nCells∑
i=1

∑
e∈EC(i)

ne,i leφeue

=−

nEdges∑
e=1

∑
i∈CE(e)

ne,i leφeue

=−

nEdges∑
e=1

leφeue− leφeue = 0. (45)

Note that the mass conservation property is independent of
temporal integration.

4.2 Absolute vorticity conservation

According to Eq. (23) in Ringler et al. (2010), the relative
vorticity is calculated according to the following diagnostic
equation:

ξ =
1
Av

∑
e∈EV(v)

te,vuede. (46)

Multiplying by Av and summing all of the vertices yields

nVertices∑
v=1

Avξ =

nVertices∑
v=1

∑
e∈EV(v)

te,vuede

=

nEdges∑
e=1

∑
v∈VE(e)

te,vuede

=

nEdges∑
e=1

uede− uede = 0, (47)

where e ∈ EV(v) represents the set of edges that share the
vertex v; v ∈ VE(e) are the two vertices on edge e. The in-
dicator function te,v always points to the left side of ne,i . If
k×ne,i is directed toward vertex v, then te,v = 1; otherwise,
te,v =−1. k is the unit vector, which points in the local verti-
cal direction. See Fig. 1 for details. The total relative vorticity
is shown to always be zero and independent of time.

Another method to compute the relative vorticity is to use
the following prognostic equation, as described in Eq. (33)
of Ringler et al. (2010):

∂ξ

∂t
+

1
Av

∑
e∈EV(v)

− te,vQ
⊥
e de = 0. (48)

Multiplying the above equation by Av and summing all the
vertices yields

nVertices∑
v=1

Av
∂ξ

∂t
=

nVertices∑
v=1

∑
e∈EV(v)

te,vQ
⊥
e de

=

nEdges∑
e=1

∑
v∈VE(e)

te,vQ
⊥
e de

=

nEdges∑
e=1

Q⊥e de−Q
⊥
e de = 0. (49)

Therefore, the relative vorticity is conserved during temporal
integration.

Taking the partial derivative of the absolute vorticity with
time yields

∂ξa

∂t
=
∂ξ

∂t
+
∂f

∂t
. (50)

The Coriolis parameter is independent of time, ∂f
∂t
= 0; thus

nVertices∑
v=1

Av
∂ξa

∂t
= 0. (51)

5 Numerical tests

To test the square conservation schemes using TRiSK, a
new TRiSK-based shallow water dynamic core is devel-
oped, which is named TRiSK-based Multiple-Conservation
dynamical cORE (TMCORE). The spatial discrete operators
are the same as those introduced by Ringler et al. (2010),
the evolution variable ue is replaced by Ue, as we de-
scribed above, and the temporal integration scheme is se-
lected from RK or NRK, both of which are of fourth-order
precision.

We expected that the square conservation scheme will
work on arbitrarily structured C-grids with a different ini-
tial field and mesh of a different resolution. In this section,
we test the new scheme by using standard shallow water test
cases 2, 5 and 6 (SWTC2, SWTC5, SWTC6) with two dif-
ferent meshes, as presented by Williamson et al. (1992). The
first mesh has 2562 Voronoi cells (x1.2562), with an approx-
imate resolution of 480 km, and the second mesh contains
40 962 Voronoi cells (x1.40962), with an approximate reso-
lution of 120 km. The corresponding integral time steps to
x1.2562 and x1.40962 are 900 and 360 s. Here, the midpoint
scheme is selected as the method for interpolating the poten-
tial vorticity from vertices to edges for all tests.

In all of the test cases, we expect the complete energy
conservation scheme (NRK) is able to conserve total mass,
total absolute vorticity and total energy in the round-off er-
ror; meanwhile, it would be even better if NRK could pro-
vide us with a lower simulation error. Note, total energy is
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not merely conserved in time truncation error anymore; we
need the change ratio of total energy to be limited to at least
10−14 magnitude.

5.1 Error measure methods

The global invariants error measure is as follows:

I
(
Xn
)
=
S
(
Xni

)
− S

(
X0
i

)
S
(
X0
i

) , (52)

where Xni is the variable at the nth time point on the ith cell
andX0

i is the variable at the initial time. The I function is the
change ratio of the invariants.

The total mass error measure is as follows:

Xni = h
n
i , (53)

Mass change ratio= I
(
hn
)
. (54)

The total energy error measure is as follows:

Xni = ε
n
i , (55)

Energy change ratio= I
(
εn
)
. (56)

Measuring the fluid thickness error by L2 and L∞ error
norms is expressed as

L2 =

{
S
[
(fm(i)− fR(i))

2]} 1
2[

S
(
fR(i)2

)] 1
2

, (57)

L∞ =
max |fm(i)− fR(i)|

max |fR(i)|
, (58)

where i denotes the index of each cell; fm(i) and fR(i),
respectively, are the model solution and reference solution
at the ith cell on the mesh; and the S function is the area-
weighted accumulation of an arbitrary variable X.

S(X)=

N∑
i=1
X(i)A(i)

N∑
i=1
A(i)

, (59)

where A(i) is the area of the ith cell.
The reference solution should be an analytical solution or,

when an analytical solution is not available, a high-resolution
solution from the model with sufficient accuracy.

In the following context, NRK4 represents the NRK
with fourth-order precision and RK4 represents the original
Runge–Kutta scheme with fourth-order precision.

The differences of the error norms between NRK4 and
RK4 schemes by using the different ratios of L2 (L2DR) and

L∞ (LInfDR) are expressed as follows:

L2DR=
L2CRK4 −L2RK4

L2RK4

, (60)

LInfDR=
L∞CRK4 −L∞RK4

L∞RK4

, (61)

where L2NRK4 and L2RK4 are the L2 error norms of NRK4 and
RK4, respectively, which is similar for L∞NRK4 and L∞RK4 .
NRK4 performs better than RK4 when the different ratios are
negative; otherwise, NRK4 performs worse than RK4.

5.2 Global steady-state nonlinear zonal geostrophic
flow (SWTC2)

For the global steady-state nonlinear zonal geostrophic flow
test case, the initial velocity field has the following form

u= u0 cosθ, (62)
v = 0. (63)

The geopotential height field is

gh= gh0−

(
a�u0+

u2
0

2

)
sin2θ. (64)

Here, we set �= 7.292× 10−5 s−1, g = 9.80616 m s−2,
a = 6.37122× 106 m, gh0 = 2.94× 104 m2 s−2 and u0 =

2πa/(12 d), where h is fluid thickness and θ denotes lati-
tude. In this test case, the exact solution is the initial state,
and any difference between the numerical solution and the
initial state is the simulation error.

In SWTC2, the true solution of ∂u
∂t

, ∂v
∂t

, ∂φ
∂t

is always zero;
therefore, this test case can only represent the precision of
spatial discrete operators but not the precision of temporal
integration. This simulation is integrated for 10 years, but
the shape of geostrophic flow breaks after 7 years. There-
fore, we choose the simulation results from the first to the
seventh year to compare the error norms of NRK4 and RK4.

Figure 2 measures the L2 and L∞ error norms of geopo-
tential height. In the first 4 years, the NRK4 and RK4 exhibit
similar results, but in the last 3 years, the shape of geopo-
tential flow tends to break. The error norms increase sharply
after 6 years, and the differences between NRK4 and RK4
become more evident. Both the L2 and L∞ error norms of
NRK4 are evidently smaller than RK4, and the collapse of
geopotential flow is delayed approximately 1 month when
using NRK4.

Figure 3 presents the variation of invariants as a func-
tion of time. The change ratio of total mass is limited
to 10−15 magnitude, and total absolute vorticity oscillates
around 10−20 magnitude, which means these two invariants
are strictly conserved. The total energy of RK4 decreased
approximately 0.5 % in the final year, but NRK4 maintains
strict energy conservation (at 10−15 magnitude). Although
the geopotential flow has been broken, NRK4 prevents an in-
creasing rate of total potential enstrophy.
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Figure 2. Geopotential height error norms of SWTC2. (a) L2 error norm; (b) L∞ error norm. The results of RK4 and NRK4 are represented
by blue and red lines, respectively. The model mesh is x1.2562.

Figure 3. The variation of integral invariants as a function of time of SWTC2. (a) Total mass change ratio; (b) total absolute vorticity;
(c) total energy change ratio; (d) total potential enstrophy change ratio. The results of RK4 are represented by blue lines; the results of NRK4
are represented by red lines. The model mesh is x1.2562.

5.3 Zonal flow over an isolated mountain (SWTC5)

SWTC5 is the fifth test case described by Williamson et
al. (1992); the wind and height fields are similar to SWTC2,
but h0 = 5960 m, u0 = 20 m s−1 and mountain height is de-
termined according to the following equation:

hs = hs0

(
1−

r

R

)
, (65)

where hs0 = 2000 m; R = π
9 ; r =√

min[R2, (λ− λc)2+ (θ − θc)2]; and λc and θc are the
center longitude and latitude of the mountain, respectively.

Here, we set λc =
3π
2 and θc =

π
6 . As the analytical solution

is not available, the reference solution is provided by a T511
idealized global spectral atmospheric model from GFDL,
where 8× 1012 m4 s−1 is selected as the coefficient for the
∇

4 dissipation, and the test case is integrated for 50 d.
Figure 4 presents the different ratios of error norms. In

the first 35 d, the L2 and L∞ error norms of NRK4 are con-
siderably smaller than those of RK4. Compared with RK4,
the L2 error norm of NRK4 decreases by approximately
2.5 % at the minimum point of L2DR, and the L∞ error
norm also decreases by approximately 3 % at the minimum
point of LInfDR. The error norms increase very quickly after
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Figure 4. The different ratios of fluid thickness error norms of SWTC5. (a) L2 error norm difference ratio; (b) L∞ error norm difference
ratio. The model mesh is x1.40962.

35 d; therefore, the differences between error norm ratios for
NRK4 and RK4 tend to be similar, along with time.

Figure 5 presents the variation of the invariants as a func-
tion of time. The total mass and total absolute vorticity are
completely conserved for both NRK4 and RK4. NRK4 is
able to maintain strict energy conservation (at 10−15 mag-
nitude) from the beginning to the end, but the total energy of
RK4 is dissipative. The CSCS exhibits no influence on the
total potential enstrophy.

5.4 Rossby–Haurwitz wave (SWTC6)

The classical four-zonal wavenumber Rossby–Haurwitz
wave was selected as the third test case. The initial condition
follows Williamson et al. (1992). The initial state is the ana-
lytical solution of the nonlinear barotropic vorticity equation
on the sphere but not the analytical solution of the shallow
water equations. The reference field is provided by a T511
idealized global spectral atmospheric model from GFDL. To
limit the noise of the spectral model, we use 5× 1012 m4 s−1

as the coefficient for the ∇4 dissipation. As presented by
Williamson et al. (1992), the phase speed of the Rossby–
Haurwitz wave is calculated as follows:

c =
R(R+ 3)ω− 2�
(R+ 1)(R+ 2)

, (66)

where R = 4 is the zonal wavenumber of the Rossby–
Haurwitz wave; ω = 7.848× 10−6 s−1; and �= 7.292×
10−5 s−1 is the rotation rate of the earth; therefore, the four-
zonal wavenumber period of the Rossby–Haurwitz wave is
approximately 29.52 d. We integrate the test case over one
period (33 d).

In both simulations of NRK4 and RK4, the Rossby–
Haurwitz wave begins to distort on the 25th day and then
collapse a few days later.

Figure 6 presents the error norm difference ratios. NRK4
has a smaller L2 error norm than RK4 in the first 20 d. With
growth of the L2 error norm, the difference between NRK4

and RK4 trends toward zero. On the fourth day, the L2 error
norm of NRK4 is more than 0.11 % lower than that of RK4.
NRK4 also has a smaller L∞ error norm a majority of the
time. On the sixth day, the L∞ error norm of NRK4 is more
than 0.08 % lower than that of RK4.

Figure 7 presents the variation of invariants as a function
of time. The total mass and total absolute vorticity are strictly
conserved for both NRK4 and RK4. As expected, NRK4
maintains strict energy conservation (at 10−15 magnitude),
and RK4 cannot conserve the total energy during integration.
With the Rossby–Haurwitz wave collapse, the total energy
of RK4 rapidly dissipates after 25 d. There is no influence of
NRK4 to potential enstrophy in this case.

The red lines and blue lines in Figs. 3c, 5c, and 7c
are exactly the results of two kinds of energy conservation
schemes; the blue lines present the property of conserving
energy in time truncation error, and the red lines show con-
serving energy in the round-off error. The differences are
clear to see. As mentioned above, conserving total energy in
time truncation error leads to slight energy dissipation, and
the dissipation accumulates during integration. Total energy
may become zero after a long-term simulation, which is un-
reasonable for a pure dynamic core without any energy sinks
or sources. On the other hand, the complete energy conser-
vation scheme maintains strictly energy conservation in the
entire integration period, even though it is not able to pre-
vent the collapse of SWTC2, but the collapse time is delayed.
Meanwhile, the simulation errors in SWTC5 and SWTC6 are
reduced even in a short-term simulation.

6 Summary

In this paper, we extend the CSCS to arbitrarily structured
C-grids with shallow water equations, and we estimate the
performance of the CSCS by using standard shallow water
test cases.
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Figure 5. Integral invariants of SWTC5. (a) Total mass change ratio; (b) total absolute vorticity; (c) total energy change ratio; (d) total
potential enstrophy change ratio. The results of RK4 and NRK4 are represented by blue and red lines, respectively. The model mesh is
x1.40962.

Figure 6. The different ratios of fluid thickness error norms of SWTC6. (a) L2 error norm difference ratio; (b) L∞ error norm difference
ratio. The model mesh is x1.40962.

There are two prerequisites for constructing CSCS: the
anti-symmetrical spatial discrete operator and the square
conservative temporal integration scheme. It is difficult to di-
rectly construct an anti-symmetrical spatial discrete opera-
tor on quasi-uniform grids; therefore, we take advantage of
the instantaneous energy conservation property of the spatial
discrete operators, as described by Ringler et al. (2010), to
obtain the anti-symmetrical operator. After the IAP transfor-
mation, the units of evolution variables are unified, and the
evolution variable ue is replaced with Ue =

√
φeue. Accord-

ing to the derivative rule (Eq. 33), the temporal trend of Ue
is expressed as a combination of the temporal trends of ue
and φi , and we demonstrate that the spatial discrete opera-
tor of Ue is an anti-symmetrical operator. Then, we integrate
the model with the square conservative temporal integration
scheme NRK4, and the complete square conservation prop-
erty is achieved.

An important finding is the equivalency between the en-
ergy conservative operator and anti-symmetrical operator for
both the continuous system and discrete system. In most pre-
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Figure 7. Integral invariants of SWTC6. (a) Total mass change ratio; (b) total absolute vorticity; (c) total energy change ratio; (d) total
potential enstrophy change ratio. The results of RK4 and NRK4 are represented by blue and red lines, respectively. The model mesh is
x1.40962.

vious studies, anti-symmetrical operators were constructed
on uniform grids, especially longitude–latitude grids, and the
equation’s advection term was in the advection flux form. We
extend the square conservation theory to a more general sit-
uation. The anti-symmetrical spatial discrete operator is con-
structed on quasi-uniform grids, and the equation is in the
vector-invariant form.

The CSCS is able to maintain three integral invariants, in-
cluding total mass, total absolute vorticity and total energy,
in all the test cases, and the error norms decrease to varying
degrees. The square conservation scheme improves the sta-
bility in SWTC2, and the error norms of NRK4 are evidently
lower than RK4 after 4 years of simulation. For RK4, the to-
tal energy dissipates very quickly after the geostrophic flow
collapse, but NRK4 maintains complete energy conservation
for the entire period, and the increasing rate of the total po-
tential enstrophy is also limited by the square conservation
scheme. In both SWTC5 and SWTC6, NRK4 not only main-
tains strict conservation for three integral invariants; it also
leads to less error norms than RK4.
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Appendix A

In this appendix, we attempt to demonstrate that the spatial
discrete operatorL is energy conservative. Our objective is to
prove that the following equation is able to be satisfied by L:(
U,
∂U

∂t

)
e

+

(
φ,
∂φ

∂t

)
i

= 0. (A1)

Consider the inner product on edge(
U,
∂U

∂t

)
e

=

nEdges∑
e=1

Ue
∂Ue

∂t
Ae. (A2)

Substituting Eq. (33) into the above formula,(
U,
∂U

∂t

)
e

=

nEdges∑
e=1

Ue

(
Ce
∂ue

∂t
+
ue

2Ce

∂φe

∂t

)
Ae, (A3)

where Ce =
√
φe is the phase speed of external gravity wave

on edge e.
According to Eq. (52) in Ringler et al. (2010),(
U,
∂U

∂t

)
e

=

nEdges∑
e=1

(
φeue

∂ue

∂t
+
u2
e

4

∑
i∈CE(e)

∂φi

∂t

)
Ae. (A4)

According to Eqs. (63) and (A8) in Ringler et al. (2010),(
U,
∂U

∂t

)
e

=

nEdges∑
e=1

φeue
∂ue

∂t
Ae+

nCells∑
i=1

Ki
∂φi

∂t
Ai . (A5)

Substituting Eq. (6) into the above formula,(
U,
∂U

∂t

)
e

=

nEdges∑
e=1

φeueAe

(
Q⊥e +

1
de

∑
i∈CE(e)

ne,iEi

)

+

nCells∑
i=1

Ki
∂φi

∂t
Ai . (A6)

According to Sect. 3.7.2 in Ringler et al. (2010),

nEdges∑
e=1

φeueAeQ
⊥
e = 0. (A7)

Since Ae = lede,(
U,
∂U

∂t

)
e

=

nEdges∑
e=1

φeuele
∑

i∈CE(e)

ne,iEi

+

nCells∑
i=1

Ki
∂φi

∂t
Ai (A8)

where Ei =Ki +φi .
According to Eq. (A4) in Ringler et al. (2010),(
U,
∂U

∂t

)
e

=

nCells∑
i=1

Ei
∑

e∈EC(i)

ne,iφeuele

+

nCells∑
i=1

Ki
∂φi

∂t
Ai . (A9)

According to Eq. (7),

−Ai
∂φi

∂t
=

∑
e∈EC(i)

ne,i leφeue. (A10)

Therefore,(
U,
∂U

∂t

)
e

=−

nCells∑
i=1

Ei
∂φi

∂t
Ai +

nCells∑
i=1

Ki
∂φi

∂t
Ai . (A11)

Consider the inner product on cell(
φ,
∂φ

∂t

)
i

=

nCells∑
i=1

φi
∂φi

∂t
Ai . (A12)

Thus,(
U,
∂U

∂t

)
e

+

(
φ,
∂φ

∂t

)
i

=−

nCells∑
i=1

Ei
∂φi

∂t
Ai

+

nCells∑
i=1

Ki
∂φi

∂t
Ai +

nCells∑
i=1

φi
∂φi

∂t
Ai = 0. (A13)
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Code availability. Idealized Global Spectral Atmo-
spheric Models (GFDL): https://www.gfdl.noaa.gov/
idealized-spectral-models-quickstart/ (last access: 3 May 2019).
TMCORE is available at https://github.com/TMCORE-Project/
TMCORE (last access: 3 May 2019). The digital ob-
ject identifier for Idealized Global Spectral Atmo-
spheric Models (GFDL) with standard shallow water test
cases is https://doi.org/10.5281/zenodo.3249878 (GFDL,
2007). The digital object identifier for TMCORE v1.0 is
https://doi.org/10.5281/zenodo.3241647 (Zhou and Dong, 2019).
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