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Abstract. Algorithmic model tuning is a promising approach
to yield the best possible forecast performance of multi-scale
multi-phase atmospheric models once the model structure
is fixed. The problem is to what degree we can trust algo-
rithmic model tuning. We approach the problem by studying
the convergence of this process in a semi-realistic case. Let
M(x, θ ) denote the time evolution model, where x and θ are
the initial state and the default model parameter vectors, re-
spectively. A necessary condition for an algorithmic tuning
process to converge is that θ is recovered when the tuning
process is initialised with perturbed model parameters θ ′ and
the default model forecasts are used as pseudo-observations.
The aim here is to gauge which conditions are sufficient in
a semi-realistic test setting to obtain reliable results and thus
build confidence on the tuning in fully realistic cases. A large
set of convergence tests is carried in semi-realistic cases by
applying two different ensemble-based parameter estimation
methods and the atmospheric forecast model of the Inte-
grated Forecasting System (OpenIFS) model. The results are
interpreted as general guidance for algorithmic model tun-
ing, which we successfully tested in a more demanding case
of simultaneous estimation of eight OpenIFS model parame-
ters.

1 Introduction

Numerical weather prediction (NWP) models solve non-
linear partial differential equations in discrete and finite rep-
resentation. Subgrid-scale physical processes, such as cloud
microphysics, are treated in specific closure schemes. Once

the model structure is fixed, some parametric uncertainty re-
mains depending on how closure parameter values are spec-
ified. Closure schemes are always simplified representations
of the real world, so “universally true” parameter values do
not exist. This uncertainty can be conceived as a probability
density of the closure parameters: the expected value corre-
sponds to the optimal model skill and the covariance to their
inherent uncertainty. The expected parameter value is the ob-
vious choice for deterministic forecasting while the covari-
ance can be utilised to represent parametric uncertainty in
ensemble forecasting (Ollinaho et al., 2017).

Model tuning is an attempt to unveil some statistics of the
probability density of the closure parameters, and algorith-
mic methods add objectivity and transparency to the process
(Hourdin et al., 2017; Mauritsen et al., 2012). It is paramount
in algorithmic model tuning that the method applied is able
to converge to the correct statistics with limited computing
resources.

The aim of this paper is to gauge the circumstances favour-
ing successful model tuning when ensemble-based parame-
ter estimation methods are used. These include, for instance,
differential evolution (Storn and Price, 1997) and its vari-
ants, genetic algorithm (Goldberg, 1989), particle swarm op-
timisation (Kennedy, 2010) and Gaussian importance sam-
plers (e.g. the ensemble prediction and parameter estimation
system, EPPES; Järvinen et al., 2012; Laine et al., 2012).
The results may also be useful for more deterministic algo-
rithms, such as multiple very fast simulated annealing (Ing-
ber, 1989), and filter-based estimation algorithms such as en-
semble Kalman filter and its variants (e.g. Annan et al., 2005;
Pulido et al., 2018) as well as particle filters (e.g. Kivman,
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2003). Of course, the length of the time window is limited in
filter-based estimation methods.

The results are interpreted so as to provide guidance on
successful tuning exercises and savings in computing time.
Convergence testing is always semi-realistic and can provide
insight on how to design fully realistic model tuning exer-
cises. Based on a very large amount of tests, the following
general guidance can be drawn up.

Trivial testing. It is important to start model optimisation
with some trivial testing before proceeding to more demand-
ing realistic cases. In a recommended trivial test, model pa-
rameters are offset slightly from their default values and op-
timisation is confined to a known training sample of model
initial states and forecasts. In this case, the chosen optimi-
sation method must be able to recover the default parameter
values. If the optimisation target (cost function) is too sim-
plistic, the process may not converge or convergence is very
slow. In the case of ensemble-based sampling, we noted that
stochastic initial state enhances the recovery of the parame-
ters.

Efficiency. It is important to consider how to efficiently
allocate computing resources. We noted that it is better to
perform a long convergence test with a small ensemble and
varying initial states rather than a short test with a large en-
semble; the variability of atmosphere is thus more robustly
sampled. Also, in the atmospheric forecast model of the In-
tegrated Forecasting System (OpenIFS), it turned out that al-
ready a 24 h forecast range is sufficiently long for parameter
convergence, offering potential savings in computing time.

Reproducibility. It is usually necessary that in realistic test-
ing, the optimisation result is verified in an independent sam-
ple. With the convection parameters of OpenIFS used in this
study, reproducibility is better for a relatively short fore-
cast range (24 h). At longer ranges, results are less repeat-
able. Thus, from both the efficiency and reproducibility view-
points, a 24 h forecast range seems optimal for the convection
parameters used in this study.

Practical concerns. Our testing showed that one should
not blindly trust algorithmic tuning – it is an efficient tool that
can potentially accelerate model development (Jakob, 2010),
but it must be used cautiously. For example, ensemble-based
sampling works well in fine tuning of an already well-
performing model but less well if the initial uncertainty of
model parameters is large. It is also worth noting the deep-
rooted ambiguity in the optimal parameter values which can
depend on the forecast range.

The paper contains the following sections: Sect. 1 intro-
duces the topic of convergence testing, Sect. 2 presents tools
and methods needed for running and evaluating convergence
tests, Sect. 3 presents the convergence test setups, Sect. 4
presents the results, Sect. 5 contains further discussion, and
Sect. 6 concludes the paper.

2 Methods

2.1 OpenIFS and closure parameters of the convection
scheme

OpenIFS is the atmospheric forecast model of the ECMWF
IFS. In this study, we use a version based on the model ver-
sion that was operational from November 2013 to May 2015
(cycle 40r1; ECMWF, 2014). Convergence tests are run at
two resolutions: TL159 and TL399, corresponding to ap-
proximately 125 and 50 km resolutions, respectively, both
with 91 vertical levels. Initial conditions are produced closely
following what is done in the operational ECWMF IFS en-
semble (Ollinaho et al., 2020) for the year 2017 to cover
different weather regimes and seasons. Each convergence
test contains 52 ensemble forecasts; i.e. an ensemble is ini-
tialised once per week. The data set of ensemble initial con-
ditions (containing a control member plus 50 perturbed anal-
yses) has been generated with IFS cycle 43r3. Thus, some
spinup/spindown is possible at early forecast ranges of a few
hours. The differences between the two model versions can
be found in ECMWF (2019).

We focus on closure parameters of the convection scheme,
consisting of a bulk mass flux with an updraught and down-
draught pair in each grid box for shallow, deep and mid-level
convection (ECMWF, 2014; Bechtold et al., 2008). The pa-
rameters, their default values and short descriptions are in
Table 1. The tests also involve the use of a stochastic repre-
sentation of model uncertainty: stochastically perturbed pa-
rameterisation tendency (SPPT; Palmer et al., 2009).

2.2 OpenEPS – ensemble prediction workflow manager

Convergence tests involve running large amounts of en-
semble forecasts. Traditionally, ensemble forecasting and
research on ensemble methods have been tied to major
NWP centres providing operational ensemble forecasts to
end users. Usually, these platforms are not suited for aca-
demic research. Instead, we use a novel and easily portable
ensemble prediction workflow manager (called OpenEPS),
developed at the Finnish Meteorological Institute specifically
for academic research purposes (https://github.com/pirkkao/
OpenEPS, last access: 19 November 2020).

OpenEPS has been designed for launching, running and
post-processing a large number of ensemble forecast experi-
ments with only a small amount of manual work. OpenEPS
is very flexible and can be easily coupled with external ap-
plications required in parameter tuning, such as autonomous
parameter sampling.

2.3 Optimisation algorithms

Brute force sampling of the parameter space of full-
complexity NWP models is computationally far too expen-
sive. Typically, one can afford running perhaps only some
tens or a maximum of a few hundred simulations in a tun-
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Table 1. Parameters of the convection scheme of OpenIFS. θ1 and θ2 are used the most in this study.

Parameter Default value Short description

ENTSHALP (θ1) 2.0 Entrainment rate scaling factor for shallow convection
ENTRORG (θ2) 1.75× 10−3 m−1 Entrainment per unit length for deep convection
DETRPEN (θ3) 0.75× 10−4 m−1 Turbulent detrainment per unit length for deep convection
RPRCON (θ4) 1.4× 10−3 s−1 Conversion factor from cloud water/ice to rain/snow
RDEPTHS (θ5) 20 000 Pa Depth of layer for shallow convection
RMFDEPS (θ6) 0.3 Fractional mass flux for downdrafts at level of free sinking
RHEBC (θ7) 0.9 Critical relative humidity below cloud for evaporation
ENTRDD (θ8) 3.0× 10−4 m−1 Average entrainment per unit length for downdrafts

ing experiment. Therefore, the tuning methods need to be so-
phisticated. In these convergence tests, we use two ensemble-
based optimisation algorithms: EPPES (Laine et al., 2012;
Järvinen et al., 2012) and differential evolution (DE) (Storn
and Price, 1997; Shemyakin and Haario, 2018).

EPPES is a hierarchical statistical algorithm which uses
Gaussian proposal distributions, importance sampling and
sequential modelling of parameter uncertainties to estimate
model parameters. A parameter sample is drawn from the
distribution, an ensemble forecast is run with these parameter
values, and the goodness of the parameter values is evaluated
by calculating a cost function for each ensemble member.
The proposal distribution is sequentially updated such that it
shifts towards more favourable parameter values. Here, the
shift of parameter mean values between consecutive itera-
tions is limited to a conservative value of 5 %.

DE (Storn and Price, 1997) is heuristically based on nat-
ural selection. It consists of evolving population of parame-
ter vectors where vectors leading to good cost function val-
ues thrive and produce an offspring, while vectors leading
to bad cost function values are eliminated. The population
update procedure of DE is achieved by a certain combina-
tion of mutation and crossover steps. These steps ensure that
the new parameter vectors differ at least slightly from the
vectors that already belong to the population. The natural se-
lection is achieved through the selection step, where the ele-
ments of the current population compete with the new candi-
dates based on the defined cost function. The fittest are kept
alive and proceed to the next generation. Besides the standard
DE algorithm, we use generation jump (Chakraborty, 2008),
DE/best/1 mutation strategy (Feoktistov, 2006; Chakraborty,
2008; Qing, 2009) with randomised scale factor by jitter and
dither (Feoktistov, 2006; Chakraborty, 2008) and recalcula-
tion step (Shemyakin and Haario, 2018). Jitter and dither act
to increase the diversity of the parameter population so that
they cause small random variation in the parameter values
preventing DE from sticking to some specific values. Jitter
corresponds to the approach when the scale factor is ran-
domised for every mutant parameter vector in the mutation
process by sampling from the given (usually uniform) dis-
tribution. Dither corresponds to the approach when the fixed

scale factor is slightly randomised for each single component
of the mutant vector in the mutation process. The recalcula-
tion step enhances the convergence when the cost function is
stochastic. This means that occasionally the parameter vector
is not updated but passed for a new iteration in order to en-
sure that only those parameter vectors leading to good scores
for two times are used in generation of new vectors.

The main focus here is on the EPPES results. More details
about the algorithms and their specific settings are explained
in Appendices A1 and A2.

2.4 Optimisation target functions

We will apply two very different optimisation target func-
tions (hereafter cost functions) in the convergence tests. The
first one is the global root mean squared error of the 850 hPa
geopotential height (1Z):

1Z =

√√√√ 1
D

∫
D

(Z850−Z
∗

850)
2dD, (1)

where Z850 and Z∗850 denote 850 hPa geopotential in the
pseudo-observations and perturbed forecast at each grid
point.D denotes the horizontal domain. Pseudo-observations
are default model forecasts with fixed default parameter val-
ues. Full fields are three-dimensional but for 1Z only two-
dimensional slices are used. This is a restrictive cost func-
tion formulation and used here merely as a useful demon-
strator. There are three reasons why we expect 1Z to per-
form sub-optimally. First, it exploits information only from
a small fraction of the model domain and the upper parts
of the model domain remain unconstrained. This means that
1Z is not (directly) sensitive to perturbations in the mid-
dle and upper troposphere where the most influential effects
of perturbed convection are present. Second, it requires sub-
stantial interpolation of forecasts and reference data because
OpenIFS has a terrain-following hybrid-sigma vertical coor-
dinate, and hence the model levels are not aligned with pres-
sure levels in lower troposphere. Third, the 850 hPa level in-
tersects with the ground level in mountainous areas.

The second cost function is the global moist total energy
norm (1Em, e.g. Ehrendorfer et al., 1999) and it is a very

https://doi.org/10.5194/gmd-13-5799-2020 Geosci. Model Dev., 13, 5799–5812, 2020



5802 L. Tuppi et al.: Necessary conditions for algorithmic tuning

comprehensive integral measure of the distance between two
atmospheric states. The moist total energy norm can be writ-
ten as

1Em =
1

2Ma

∫
η

∫
D

[
u′

2
+ v′

2
+
cp

Tr
T ′

2
+ cq

L2

cpTr
q ′

2
]

dD

δpr

δη
dη+

1
2

∫
D

[
R
Tr

pr
lnp′s

2
]

dD, (2)

where u′, v′, T ′, q ′ and lnp′s refer to differences between
forecast and pseudo-observations in wind components, tem-
perature, specific humidity and the logarithm of surface pres-
sure. Ma is the mass of the atmosphere, cq is a scaling con-
stant for the moist term, L vaporisation energy of water,
cp specific heat at constant pressure, Tr reference tempera-
ture and pr reference pressure. Here, we set Tr = 280 K and
pr = 1000 hPa as in Ollinaho et al. (2014). D and η denote
increments of horizontal and vertical integrals. Unlike in Ol-
linaho et al. (2014), we set cq to 1 and dη to equal the differ-
ence of pressure between consecutive model levels. Ollinaho
et al. (2014) also show instructions how to discretise 1Em
for practical use.

We expect that at short forecast ranges, the linkage be-
tween variations in the values of 1Em and parameter per-
turbations is detectable, enabling us to estimate parameter
densities.

2.5 Evaluation of convergence tests

The parameter convergence is measured with fair continu-
ous ranked probability score (fCRPS; Ferro et al., 2008) for-
mulated as the kernel representation (see, e.g. Leutbecher,
2018). fCRPS rescales the scores as if the ensembles were
infinitely large so that there is no dependence between en-
semble size and the score itself. The property of fairness is
essential in comparison of convergence tests with different
ensemble sizes. fCRPS has not been designed for evaluation
of ensembles of parameter values, so a direct application of
fCRPS may lead to cancellation of the two terms (see Eq. 6;
Leutbecher, 2018) causing difficulties in interpreting the re-
sults. Therefore, we use the two terms separately for each
parameter θn:

fCRPS1 =
1
M

M∑
j=1
|θ ′j,n− θd,n| (3)

and

fCRPS2 =
1

2M(M − 1)

M∑
j=1

M∑
k=1
|θ ′j,n− θ

′

k,n|, (4)

where n is the index over tunable parameters, θ ′j,n and θ ′k,n
are the parameter values used by ensemble members j and
k, θd,n is the default parameter value, and M is the ensem-
ble size. Each ensemble member is run with a unique set of

Table 2. Summary of convergence tests with different degrees of
complexity.

Number of Different initial Stochastic
parameters conditions physics (SPPT)

Level 0 (L0) 2 No No
Level 1 (L1) 2 Yes No
Level 2 (L2) 2 Yes Yes
Level 3 (L3) 5 Yes Yes

parameter values. The first part (Eq. 3) is a measure of how
much the ensemble mean parameter value differs from the
default value, while the second part (Eq. 4) indicates how
much spread is associated with the ensemble mean parame-
ter value; in other words, it indicates how certain or uncer-
tain the algorithm considers the parameter value. Both parts
of fCRPS have a perfect score of zero.

3 Setups of the convergence tests

Table 2 shows the outline of our experiments. The table ex-
plains the different levels of complexity we use in the con-
vergence tests. The different levels of complexity are tested
to see which is the optimal way to extract information of the
parameter space. On the one hand, keeping convergence tests
as simple as possible makes interpretation of the test results
easy, but on the other hand, more complex tests provide infor-
mation on how the parameter tuning system would perform
in fully realistic tuning tasks.

L0, L1 and L3 tests are performed with one setup: a fore-
cast range of 48 h and an ensemble size of 50 members. 1Z
is only tested at the L1 level. Most of the effort is put on L2
testing with1Em so they are performed with various combi-
nations of forecast range and ensemble size. The focus is on
L2 tests on one hand because we assume that if the conver-
gence is good at this level of complexity, it will be good also
at lower levels. On the other hand, convergence in L2 and L3
tests is relatively similar. We use the parameters θ1 and θ2 in
L0 to L2 tests and parameters θ1 to θ5 in L3 tests. In L0 tests,
all forecasts are initialised from an unperturbed initial state
of the control forecast (1 January 2017, 00:00 UTC). L1, L2
and L3 tests use ensemble initial conditions from 52 dates.

Throughout the paper, the pseudo-observations are gener-
ated with a default model with fixed parameter values (see
Table 1). Therefore, the target of the convergence is always
known (i.e. the default parameter set), and it stays the same
during the tests. Analyses, reanalyses or real observations are
not used in this study.

4 Results

For brevity, we mainly concentrate on discussing results ob-
tained with EPPES, although most of the convergence tests
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have been run with both algorithms. Due to the nature of the
algorithms, EPPES produces less noise near the end of the
convergence tests. Therefore, results generated with EPPES
are easier to interpret. However, none of the results produced
with DE contradict the results of EPPES.

4.1 Selection of level of complexity

We test how much complexity should be included in algo-
rithmic tuning. Figure 1 shows four convergence tests with
different levels of complexity, described in Table 2. As ex-
pected, the parameters converge slower the higher the level of
complexity is as the parameter uncertainties decrease slower.
Both parameters converge very fast in the trivial L0 con-
vergence test. Convergence to the default values in the L0
convergence test is trivial as minimisation of the parameter
perturbations is the only way to minimise the cost function
values. However, we want to emphasise that fully realistic
tuning at L0 level of complexity could lead to overfitting of
the parameters since the parameters would be optimised for
that specific weather state only. L0 can still be used to test
that the tuning infrastructure works.

L1, L2 and L3 tests resemble more fully realistic model
tuning. Figure 1 shows that the convergence tests at differ-
ent levels of complexity behave quite reasonably. The un-
certainty cannot vanish completely since some uncertainty is
always present due to ensemble initial conditions.

L1, L2 and L3 tests have a common feature that the pa-
rameters tend to converge to some off-default values. This
feature is inherent to convergence tests, which use pseudo-
observations generated with the default model. The conver-
gence to off-default values will be discussed further below.

We recommend using L1 (only perturbed initial condi-
tions) in fully realistic model tuning. L1 is the simplest safe
option. Higher levels of complexity do not provide additional
information; instead, they only make convergence more diffi-
cult. L0 is only recommended for testing purposes. Depend-
ing on user needs, L1 can be modified by adding more pa-
rameters.

4.2 Selection of optimisation target

Here, we compare convergence tests that use different cost
functions. Figure 2 compares L1 convergence tests with
1Em (shown with solid and dash-dotted black lines) and
1Z (shown with dotted cyan lines and shading in the back-
ground). Figure 2 shows that 1Em leads to much faster con-
vergence than 1Z. The superior performance of 1Em is ex-
plained by two factors. First, the global integral of several
variables catches the signal of parameter perturbations much
better than a single level measure. Second, perturbations of
convection parameters do not affect 850 hPa geopotential di-
rectly, so 48 h may not be long enough to develop a traceable
signal. Perturbations of convection parameters modify spe-
cific humidity, wind components and temperature directly.

These fields must change substantially before the signal is
seen in geopotential at 850 hPa.

We recommend in general using a more comprehensive
cost function that accounts for more than one atmospheric
level and more than one variable. Targeted forecast range also
plays a crucial role in constructing a suitable cost function
and thus should be carefully chosen based on what type of
parameterised processes are being optimised. However, it is
likely that with some other parameters a cost function other
than 1Em might work better.

4.3 Finding the most efficient setup

The process of finding a forecast range and an ensemble size
that give satisfactory convergence with a minimal amount of
computational resources is done in two steps. First, we com-
pare forecast ranges. Second, we take the forecast range with
the fastest convergence in order to find optimal ensemble size
using an L2 level of complexity. We expect that the results
obtained with such a high level of complexity generalise well
to lower levels. This step can also be seen as fine tuning of
the cost function.

We take the final parameter values proposed by EPPES
to calculate the components of fCRPS (Eqs. 3 and 4). Low
bias and low uncertainty are desired since they indicate that
the mean value has converged close to the default value and
that the uncertainty is small. However, we do not expect pre-
cise convergence to the default values because initial con-
dition and model perturbations are activated in the experi-
ments. Figure 3 shows the components of fCRPS of the final
ensemble for the parameter θ2 from numerous convergence
tests with different forecast ranges and ensemble sizes. From
Fig. 3, it is obvious that the convergence of θ2 is the most
efficient when the forecast range is 24 h. It is remarkable
that 24 h and also 48 h lead to significantly better conver-
gence than 72 h that was used, for example, in Ollinaho et al.
(2014). For θ1, 12, 24 and 48 h forecasts are the best and
roughly equally good (not shown).

The superior convergence with 24 h forecasts can be ex-
plained by relatively linear response of OpenIFS to param-
eter perturbations, which 1Em is able to detect. The sub-
optimal performance of 12 h forecasts compared to 24 h fore-
casts may be, at least partly, due to the spinup related to dis-
crepancy of model versions. Consequently, we are somewhat
uncertain about the true performance at very short forecast
ranges. Against our expectations, some convergence occurs
also at the longest forecast ranges when the response to pa-
rameter perturbations is definitely non-linear. At least some
parameter convergence takes place with all forecast ranges
but the convergence is by far the fastest at short ranges.

Figure 3 also shows that there is relatively more error in
the parameter mean value than there is spread when long or
very short forecasts are used. This is discussed further below.

We now focus on the forecast range of 24 h and per-
form convergence tests with different ensemble sizes again
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Figure 1. Comparison of convergence tests at different levels of complexity. Panels (a) and (b) show the evolution of distribution mean value
(µ) and the mean value±2 standard deviations of uncertainty (µ±2σ ) for θ1, and panels (c) and (d) show the same as (a) and (b) but for θ2.
The purple dots show the parameter default values. The x axes show running number of iterations, i.e. how many ensemble forecasts have
been used. 1Em is used as the cost function, and the levels of complexity are summarised in Table 2. EPPES is used as the optimiser, the
ensemble size is 50 members, and the forecast range is 48 h.

measured with fCRPS. Figure 4 indicates that convergence
tests with ensemble sizes > 20 are stable, while convergence
tests with smaller ensemble sizes do not show the desired
smooth decrease of both parts of the fCRPS. Sampling vari-
ance seems to have a strong effect in those cases. Sampling
variance seems to play a smaller role when the ensemble size
is 20 or larger. Figure 4 also enables comparison of the con-
vergence tests from the resource point of view. For example,
tests with 50 ensemble members and 20 iterations, and 20
members and 50 iterations both use 1000 forecasts. How-
ever, the latter option leads to much better convergence. The
same pattern seems to apply to most of the similar pairs. In-
creasing the ensemble size beyond about 20 members does
not seem to be necessary to achieve good convergence. Re-
sults here are for θ2 but the same conclusions can be drawn
for θ1, although the results with θ1 are less conclusive (not
shown). Interestingly, these results are in line with the con-
clusions of Leutbecher (2018) that in ensemble-forecasting-

related research it is better to have a large number of small
ensembles than a small number of large ensembles.

Based on these results, we recommend using relatively
short forecasts of 24 h, at least when convection parameters
are concerned. We also recommend using medium-sized en-
sembles of about 20 members. Very small ensembles of less
than 10 members increase sampling variance and destabilise
the convergence. Moreover, convergence with DE was prac-
tically impossible with small ensembles. We are fairly sure
that about 20 members is close to the optimal ensemble size
at least for tuning these two parameters. However, we are
somewhat uncertain about whether 24 h is the optimal fore-
cast range for all parameters.

4.4 Reliability of convergence tests

Two example convergence tests are repeated four times first
using L1 and then L2: the first one with a sub-optimal setup

Geosci. Model Dev., 13, 5799–5812, 2020 https://doi.org/10.5194/gmd-13-5799-2020
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Figure 2. Convergence tests with different cost functions: (a) θ1 and (b) θ2. The x axes show running number of iterations. Solid black lines
show the evolution of distribution mean values (µ) and dash-dotted black lines the mean values ±2 standard deviations when 1Em is used
as the cost function. Dotted cyan lines and shading in the background show the same for 1Z. Default value shows the fixed parameter value
used in the default model. Both convergence tests are L1 tests with 50 ensemble members and 48 h forecasts. EPPES is used as an optimiser.

Figure 3. Components of fCRPS from the final iteration of the con-
vergence tests with various forecast ranges and ensemble sizes. In
this example, the optimisation algorithm is EPPES and the param-
eter is θ2. The left-hand side of each block represents the average
distance of the parameter values from the default value (Eq. 3), and
the right-hand side represents the spread of the parameter value dis-
tribution (Eq. 4). Low values and blue colours of both sides of the
blocks indicate good convergence. Green and yellow boxes high-
light the tests repeated in Fig. 5.

Figure 4. Evolution of fCRPS of θ2 in convergence tests with L2,
1Em, EPPES, 24 h forecasts and various ensemble sizes. The in-
terpretation of the blocks is the same as in Fig. 3. The number of
iterations indicates how many iterations of the algorithm have been
done or, in other words, how many ensemble forecasts have been
run. Components of fCRPS have been calculated using Eqs. (3) and
(4).

of 48 h forecasts and 20 ensemble members and the second
one with a close-to-optimal setup of 24 h forecasts and 26
ensemble members. These setups are highlighted in Fig. 3.
We test whether these convergence tests yield similar results
every time, i.e. the repeatability.

Figure 5 shows the evolution of the repeated convergence
tests measured with fCRPS in a similar fashion to that in
Fig. 4. L1 convergence tests are on the left-hand side and L2
tests on the right-hand side. Labels A1 to A4 refer to the sub-

https://doi.org/10.5194/gmd-13-5799-2020 Geosci. Model Dev., 13, 5799–5812, 2020



5806 L. Tuppi et al.: Necessary conditions for algorithmic tuning

optimal setup and labels B1 to B4 to the optimal setup. The
left-hand side of Fig. 5 shows that both L1 setups yield fairly
reproducible convergence. However, when the level of com-
plexity is raised to L2, only the more optimal setup seems
to yield repeatable convergence with EPPES. The results ob-
tained with DE are less conclusive as DE tends to fluctuate
around the optimum (not shown).

We recommend using such a setup that is the most likely to
yield reliable parameter convergence. At least in our case, the
optimal setup of 24 h forecasts and about 20 member ensem-
bles is also the most reliable setup. Also, using only initial
condition perturbations (L1) besides the parameter perturba-
tions leads to more reliable convergence than initial condition
plus stochastic model perturbations (L2).

4.5 Potential pitfalls

First, during the convergence tests, we noticed that some pa-
rameters tend to converge to some off-default values. As an
example, the two most used parameters (θ1 and θ2) tend to
converge to slightly different values depending on the fore-
cast range used. θ2 tends to converge to a value smaller
(larger) value than the default value when forecasts longer
(shorter) than 24 h are used. The opposite is true for θ1. How-
ever, at least θ2 tends to converge in one-parameter conver-
gence tests in the similar way to that in the two-parameter
tests. The behaviour of the parameters is illustrated in Fig. 6,
which shows the final mean values for θ1 (Fig. 6a) and for θ2
(Fig. 6b). Convergence of θ2 seems to depend very strongly
on the forecast range used in the convergence tests. We now
examine the cost functions for two sets of 6 h to 6 d ensemble
forecasts: one using the default parameters and one using pa-
rameters obtained from the optimisation (Fig. 6). Both sets
of ensemble forecasts were compared to respective control
forecasts with 1Em. The tests were repeated with only ini-
tial condition perturbations active and with initial condition
plus stochastic model perturbations active. Results show that
globally optimal parameter values are different from their
respective default values even though the default model is
used as reference. It is indeed possible to obtain lower cost
function values with some off-default parameter values than
with the default parameter values. This means that the pecu-
liar dependence is not caused by any deficiencies in the cost
function or optimisation algorithms. However, convergence
tests and fully realistic tuning are so different that we are un-
sure about whether this dependency even exists at all in fully
realistic tuning. Even if the dependency exists, it is unclear
whether it hinders tuning after all.

A potential pitfall might emerge if there is a need to do
algorithmic tuning with ensembles of very different sizes. At
least the two algorithms, EPPES and DE, are difficult to set
up so that they would work satisfactorily regardless of the
ensemble size. If the algorithms produce good convergence
with small ensembles of approximately five members, the
parameter convergence is very slow with medium-sized and

large ensembles, or the parameters may even diverge. Vice
versa, if the algorithms work well with medium-sized and
large ensembles, they tend to be unstable with small ensem-
bles.

At least two potential pitfalls are related to bad initialisa-
tion of tuning exercises. The first pitfall is that convergence
of EPPES suffers from too-large initial parameter offsets,
while DE is very robust. For example, in an extreme conver-
gence test, where parameter offset is an order of magnitude,
convergence of EPPES may stop while DE suffers much less.
The second pitfall may be encountered if the initial uncer-
tainty of some parameter is too small with respect to the ini-
tial offset, which makes convergence to some local optimum
likely. Both algorithms show that in such a case, the badly
initialised parameter remains practically unchanged, while
the other parameters appear to compensate the error.

We do not recommend completely blind algorithmic tun-
ing. The parameter offset should not be excessively large, and
the initial parameter offset and uncertainty should be well
proportioned. We also recommend paying attention to selec-
tion of the tuning algorithm. In the case of tuning very un-
certain parameters, we recommend using robust algorithms,
which do not suffer from large parameter offset.

4.6 A recipe for successful tuning

Our recipe for economic and efficient tuning is summarised
below:

– level 1 of complexity (at least initial condition perturba-
tions, possibly also stochastic model perturbations);

– a comprehensive measure as a cost function (1Em in
our case);

– a relatively short forecast range (24 h in our case); and

– a relatively small ensemble size (20 in our case).

Here, we put the recipe into test with more demanding
convergence tests with EPPES. We run four five-parameter
tests with TL159, two five-parameter tests with TL399 and
one eight-parameter test with TL159 resolution. The param-
eters in the five-parameter tests are the same as those in the
L3 convergence tests. In the eight-parameter test, there are
three additional parameters from the convection scheme (see
Table 1). The parameters are initialised randomly with an ei-
ther 10 % too-large or too-small value and large uncertainty.
The set of initial conditions is the same as before, meaning
52 iterations.

We discuss all the four TL159 and the two TL399 conver-
gence tests at once, meaning there are a total of 30 converge
cases to be discussed (six experiments all involving five pa-
rameters). In these six tests, the parameter values converge
towards the default values during the convergence tests in
20 out of 30 cases. θ1 converges to an off-default value in
four of the cases as does θ3. θ4 converges to an off-default
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Figure 5. Evolution of θ2 in repeated convergence tests with two selected forecast range – ensemble size combinations highlighted in Fig. 3.
The level of complexity is (a) L1 and (b) L2. Tests A1 to A4 have been run with forecast range of 48 h and ensemble size of 20 members, and
tests B1 to B4 with 24 h and 26 members. EPPES was used as an optimiser in these examples. Components of fCRPS have been calculated
using Eqs. (3) and (4).

Figure 6. Mean values of the parameter distributions proposed by EPPES at the end of the convergence tests: (a) θ1 and (b) θ2. Purple (green)
colour means that the final mean values are larger (smaller) than the default value.

value twice. Furthermore, θ2 tends to converge to a slightly
smaller value, and θ1, θ4 and θ5 to slightly larger value than
their respective default values. In 25 out of 30 cases, the final
parameter value and the default value are both within 2 stan-
dard deviations of each other, and hence the default value
is inside the parameter distribution proposed by EPPES. In
the remaining five cases, the remaining parameter offset is
slightly more than 2 standard deviations. These five cases dis-
tribute so that each parameter ends up outside of a distance
of 2 standard deviations to the default value for one time. In
all 30 cases, the uncertainty of the parameter value decreases
during the convergence tests meaning that the parameters do
converge even though in some cases they converge to some
off-default values.

The results of the eight-parameter convergence test are
presented in Fig. 7. It shows convergence of the eight param-

eters in normalised form, and the text boxes in each panel in-
dicate the remaining parameter offset after 52 iterations. All
parameters converge towards their default values. In the case
of θ5, the default value is outside of the uncertainty range.
Additional dimensionality seems to slow down the conver-
gence only a little, which definitely encourages to use algo-
rithmic tuning methods for large parameter sets.

5 Discussion

The choice of the cost function is an essential part of the tun-
ing problem. In order to illustrate the importance of choos-
ing a suitable cost function, we intentionally chose two rad-
ically different cost functions: the root mean squared error
of geopotential at 850 hPa and the moist total energy norm.
The former was, as expected, a bad choice, whereas the lat-
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Figure 7. Progress of the convergence in the eight-parameter test.
The parameter values and uncertainties have been normalised with
their default values. Black dots show sampled parameter values, the
red line with stars shows parameter mean value, blue lines with dots
show mean value ±2 standard deviations, and the green line shows
the default parameter value that is 1.0 due to the normalisation. The
text boxes indicate the remaining parameter offset, which is the rela-
tive distance between the final parameter mean value and the default
value. Initial parameter offset is randomly ±10 %.

ter was a clearly more suitable choice. However, the moist
total energy norm was not a perfect choice due to the proper-
ties of the tunable parameters. Parameters θ1 and θ2 are not
equally sensitive to the components of the moist total energy
norm. θ1, which is related to the shallow convection, is active
only in the lowest 200 hPa layer of the model atmosphere.
θ1 mainly affects how specific humidity is distributed in the
layer. Therefore, contribution of θ1 comes almost only from
lower tropospheric specific humidity. θ2 controls deep con-
vection so it has direct impact on wind, temperature and spe-
cific humidity throughout the model troposphere. Therefore,
contribution of θ2 to the cost function dominates, which may
in some cases decrease the overall sensitivity of the moist to-
tal energy norm when estimating the two parameters simul-
taneously. An option would be to use multiple cost functions,
having one dedicated for each tunable parameter. However,
this could lead to a question of scaling: would each cost func-
tion have equal weight or are some of the cost functions con-
sidered more important? At the moment, we do not have a
definitive answer for this.

In our study, we aimed at finding an optimal setup for con-
vergence tests by studying different combinations of forecast
range and ensemble size. Using an ensemble of 20 members
and a forecast range of 24 h gave the best results. When the
ensemble size is too small, the sample size will also be small,
which could lead to the case of not having a representative
sample. A forecast range of 24 h seems optimal. When the
forecast range is shorter, θ1 tends to converge to smaller val-
ues and θ2 to larger values than the default parameter value,
whereas a longer forecast leads to θ1 converging to larger
value and θ2 to smaller value than the default value. The
question of whether the parameter values depend on the fore-
cast range is profound. The entire forecast range could also
be considered but may lead to similar scaling issues (e.g. Ol-
linaho et al., 2013) as when using multiple cost functions.

The two optimisers used in this study, EPPES and DE,
have different properties. EPPES converges more slowly and
estimates the covariance matrix of the parameters, whereas
DE gives faster but less steady convergence. The optimisers
could therefore be used at different stages of the optimisa-
tion: first, DE could be used as a coarse tuner finding the
approximate direction, and then EPPES could be used to fine
tune the results. This type of tuning process would be of most
use when the parameters are known poorly a priori.

Local minima of the cost function are potential problems.
According to our observations, convergence to a local min-
imum may occur if the initialisation of the parameter val-
ues is bad. A large initial distance from the optimal value
combined with a too-small initial uncertainty range might
lead to a case where the cost function becomes locally min-
imised, and the algorithm gets stuck exploring parameter val-
ues from around this local minimum. Other parameters may
compensate the error, and the cost function becomes locally
minimised. When the parameters are initialised appropriately
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and initial condition perturbations are active, problems of this
sort are less likely.

We compared the perturbed forecasts against the control
forecast run with default parameters. In this case, one would
expect that forecasts with default parameters would result in
minimum cost function, but this turned out not to be the case.
This leads us to the question of whether changing the val-
ues of the model parameters affects properties of the ensem-
ble, such as its spread. In a well-tuned ensemble prediction
system, not only should the model be as good as possible
(i.e. having optimal parameter values) but the relationship
between the spread of the ensemble and the ensemble mean
skill should be in balance. We leave this question open for
future studies.

6 Conclusions

In this paper, we have studied the convergence properties of
two algorithms used for tuning model physics parameters in a
numerical weather prediction model. The tuning process is a
computationally demanding task and using an optimal exper-
imental setup would minimise the amount of computational
resources required.

In our experiments, we studied two different tuning algo-
rithms and how the convergence properties were affected by
(1) the choice of cost function, (2) forecast range, (3) ensem-
ble size and (4) the complexity of the model setup (pertur-
bations of initial conditions and stochastic physics turned on
or off). In our case, we focused on tuning two parameters
of the convection scheme of the OpenIFS model. The model
resolution in these tests was T159 (about 125 km).

Our goal was to find an optimal setup of forecast range and
ensemble size with the highest likelihood for fast and reliable
convergence, hence minimising the amount of computations.
We ran many convergence tests with different experimental
setups, calculated the moist total energy norm between the
forecasts with perturbed parameters and the control forecast
having default parameters values, calculated a fair verifica-
tion metric (fCRPS) and finally compared the experiments
against each other. The optimal setup in our experiments was
an ensemble of 20 members and a forecast range of 24 h.

We tested the optimal setup for a more complex optimi-
sational task: tuning five and eight parameters at once. In
these experiments, the ensemble had 20 members, the fore-
cast range was 24 h, and the algorithm was run for 52 iter-
ations. Such an experiment would be the same as running
a single 1040 d forecast consuming roughly 400 core hours
for TL159 model resolution and 4200 core hours for TL399
model resolution on Intel Haswell computation nodes. These
experiments showed that the convergence of most of the pa-
rameters was good.

Finally, we conclude our study by answering the question
of whether algorithmic tuning (of model physics parameters)
could be trusted: the answer is yes when used with care.
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Appendix A

A1 Experimental details of EPPES

EPPES needs four hyperparameters: µ,6, W and n. The for-
mer two describe the initial guess for the distribution of the
parameters that are to be estimated, whereas the latter two
describe how accurate the initial guess is.

Let θ = {θ1, . . .,θn} be the closure parameters. In EPPES,
the prior guess is that the closure parameter follows a Gaus-
sian distribution θ i ∼N (µ,6), where µ is the mean vector
of θ and 6 the covariance matrix.

Details of initialisation of the parameter distribution are
listed in Table A1 and other settings of EPPES are sum-
marised in Table A2. The mean values are always multiplied
with 0.9 or 1.1 in the initialisation of the convergence tests.

Table A1. Initial values of the convection parameters for EPPES.

Parameter Mean Variance Lower bound Upper bound

ENTSHALP (θ1) 2.0 0.5625 0.5 6.0
ENTRORG (θ2) 1.75e-3 1.40625e-7 1e-4 1e-2
DETRPEN (θ3) 0.75e-4 2.25e-10 1e-5 1e-3
RPRCON (θ4) 1.4e-3 7.84e-8 1e-4 1e-2
RDEPTHS (θ5) 20 000 1.6e7 1000 60 000
RMFDEPS (θ6) 0.3 0.08 0.1 0.6
RHEBC (θ7) 0.9 0.01 0.5 1.0
ENTRDD (θ8) 3.0e-4 0.65e-9 3.0e-5 3.0e-3

Table A2. Other settings of EPPES.

Namelist object Value Explanation

maxn 5 Length of memory in iterations
maxstep 0.05 Maximum change of parameter

mean value in one iteration
lognor 0 Use log-normal distribution,

0= no
useranks 1 Ranking of cost function values

instead of using values them-
selves

A2 Experimental details of DE

DE requires the boundaries for the parameter search domain
to be specified. DE does not explicitly limit any searching
directions by default, but some constraints can be specified
in order to avoid unfeasible parameter values. In our case,
we are targeting only non-negative values.

The initial search domain is specified in Table A3 and
other settings written in the namelist file are summarised in
Table A4.

The recalculation step is employed every fifth iteration; it
substitutes all usual DE steps (mutation, crossover, selection)
and just computes/updates the value of the cost function in
the current environment for the elements already in the pop-
ulation.

Table A3. Initial parameter value search area of DE.

Parameter Lower bound Upper bound

ENTSHALP (θ1) 1.0 4.0
ENTRORG (θ2) 1.25e-3 2.25e-3
DETRPEN (θ3) 5.0e-5 1.0e-4
RPRCON (θ4) 1.0e-3 1.8e-3
RDEPTHS (θ5) 15 000 25 000

Table A4. Other settings of DE.

Namelist object Value Explanation

F 0.5 Control for amplification of
differential variation

CR 0.9 Crossover probability
JP 0.1 Probability of generation jump-

ing
mutation_type 2 Use the best parameter vector in

mutation
scale_factor_type 5 Scale factor randomisation

scheme
F_l 0.5 Lower boundary for scale fac-

tor F
F_u 1.0 Upper boundary for scale fac-

tor F
pop_function positive Limits parameters to be positive
Jttr 0.01 Scale factor randomisation
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Code and data availability. The basic version of OpenEPS is avail-
able under Apache licence version 2.0, January 2004 on Zen-
odo (https://doi.org/10.5281/zenodo.3759127; Ollinaho, 2020). The
amended version of OpenEPS, which was used in the conver-
gence tests, is also available under Apache licence version 2.0,
January 2004 on Zenodo (https://doi.org/10.5281/zenodo.3757601;
Ollinaho and Tuppi, 2020). The amended version contains var-
ious modifications such as setup scripts for EPPES and DE,
scripts for calculating cost function values and scripts for pro-
cessing and plotting output of convergence tests. The latest
development versions of OpenEPS are available on GitHub
(https://github.com/pirkkao/OpenEPS, last access: 19 Novem-
ber 2020 and https://github.com/laurituppi/OpenEPS, last access:
19 November 2020). The licence for using the OpenIFS NWP
model can be requested from ECMWF user support (openifs-
support@ecmwf.int). EPPES is available under MIT licence on
Zenodo (https://doi.org/10.5281/zenodo.3757580; Laine, 2020),
and DE is available upon request from vladimir.shemyakin@lut.fi.
The initial conditions used in the convergence tests belong to a
larger data set. Availability of the data set will be described in Ol-
linaho et al. (2020). We want to emphasise that reproducing the re-
sults does not require using exactly the same initial conditions as in
this paper and any OpenIFS ensemble initial conditions can be used.
Output data of the convergence tests are not archived since they can
be easily reproduced.
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