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Abstract. To take decisions on how to improve air quality,
it is useful to perform a source allocation study that iden-
tifies the main sources of pollution for the area of inter-
est. Often source allocation is performed with a chemical
transport model (CTM) but unfortunately, even if accurate,
this technique is time consuming and complex. Comparing
the results of different CTMs to assess the uncertainty of
source allocation results is even more difficult. In this work,
we compare the source allocation (for PM2.5 yearly aver-
ages) in 150 major cities in Europe, based on the results
of two CTMs (CHIMERE and EMEP), approximated with
the SHERPA (Screening for High Emission Reduction Po-
tential on Air) approach. Although contradictory results oc-
cur in some cities, the source allocation results obtained with
the two SHERPA simplified models lead to similar results in
most cases, even though the two CTMs use different input
data and configurations.

1 Introduction

Air quality models are useful tools to perform a variety
of tasks like assessment (simulating concentrations fields at
a given moment), forecasting (predicting future concentra-
tions), and source allocation and planning (evaluating priori-
ties of interventions, and the impact of potential emission re-
duction policies on concentrations). For assessment (Alvaro
Gomez-Losada et al., 2018) and forecasting, it is possible to
compare the model results with observations. For example,
FAIRMODE1 (the Forum for Air Quality Modelling in Eu-

1The Forum for Air Quality Modeling in Europe (FAIRMODE)
was launched in 2007 as a joint response initiative of the European
Environment Agency (EEA) and the European Commission Joint

rope) proposes methods as the Model Quality Indicator and
Model Quality Objective (Pernigotti el al., 2013b; Viaene et
al., 2016) to assess the quality of the model results for a given
application. However, there is no benchmark against which to
compare model results for source allocation and planning, as
no measurements are available to test the impact of theoreti-
cal emission reduction scenarios on concentrations. So, even
if it is very useful to evaluate ex ante the impact of possible
policy options, it is hard to judge the quality of these results.
On the other hand, the uncertainty associated with source
allocation results can be assessed by comparing them with
results from other air quality models (Thunis et al., 2007;
Pernigotti et al., 2013). Both the absolute and relative im-
pacts of emission reductions can then be compared.

As an initial phase to design an air quality plan, one is
interested in identifying the main sources over a given do-
main that are responsible for the pollution at a given location
(Isakov et al., 2017). This step is defined in the literature as
source allocation (Thunis et al., 2019), i.e. a technique ap-
plied to understand the key contributors to air pollution at a
given location. Source allocation then serves as the corner-
stone to choose the target sector or geographical area when
designing measures for an air quality plan.

The ideal way to perform source allocation would be to
use a chemical transport model (CTM) directly, but this tech-
nique is unfortunately too time consuming to differentiate the
impacts of many sources at the same time for various cities

Research Centre (JRC). The forum is currently chaired by the Joint
Research Centre. Its aim is to bring together air quality modellers
and users in order to promote and support the harmonised use of
models by EU member states, with emphasis on model application
under the European Air Quality Directives. For more details, see
https://fairmode.jrc.ec.europa.eu/ (last access: 16 November 2020).
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in Europe. An alternative is to simplify the CTM with a so-
called source–receptor relationship (SRR) approach, which
mimics the CTM relationships between emission and con-
centration changes. The most precise SRR would consist
of an independent grid-cell-to-grid-cell approach. While this
approach would allow a high level of flexibility in defin-
ing the zones over which emissions are spatially reduced,
it involves simulating independently the effect of emissions
changes in each single grid cell that has pollutant emissions
in the model domain. It would require changing precursor
emissions in individual grid cells one at a time and looking at
the resulting change in concentrations in each receptor cell.
While theoretically very simple, the resulting number of un-
known parameters describing the transfers between source
and receptor cells that need to be identified is very large. For
example, for a domain with 50× 50 grid cells (Ngrid= 2500)
and 5 precursors (Nprec= 5), the identification of a maxi-
mum of 12 500 parameters would be required (if emissions
occur in, and concentration changes need to be calculated for,
all grid cells in the domain) to calculate the change of con-
centration at a given receptor cell. Therefore 12 500 equa-
tions, each connecting concentration changes and emission
changes, are necessary to identify these 12 500 unknown pa-
rameters. Because each of these equations requires an inde-
pendent CTM run, this independent grid-cell-to-grid-cell op-
tion is very costly, and simplifying assumptions that reduce
the number of CTM runs are required (Clappier et al., 2015).

In GAINS (“Greenhouse gas – Air pollution Interactions
and Synergies”; Amann et al., 2011) the grid-cell-to-grid-cell
relation is simplified by aggregating source cells into coun-
tries. The number of unknown parameters that need to be
identified for one receptor cell equals the number of coun-
tries (Ncountry) multiplied by the number of precursors. This
system can only be solved if at least “Nprec ×Ncountry” equa-
tions are available, requiring a similar number of independent
CTM scenarios. In GAINS, about 50 countries and 5 precur-
sors lead to the need for 250 independent CTM scenarios to
identify 250 unknowns. However, because they are derived
from emission reductions at country level, these SRRs are
not applicable at the urban scale.

In the RIAT+ tool (“Regional Integrated Assessment
Tool”; Carnevale et al., 2014), emissions are aggregated into
“quadrants” that are defined relatively to each grid cell within
the domain. The “quadrant” emissions and their related grid
cell concentrations are then used to feed a neural network
that delivers the SRR (Carnevale et al., 2009). Although the
approach requires a limited number of full CTM simulations
(around 20), the set-up of the SRR remains complex due to
the need to implement sophisticated neural networks.

In SHERPA (Thunis et al., 2016; Pisoni et al., 2017), a dif-
ferent approach is taken that reproduces the grid-cell-to-grid-
cell approach but does not require anywhere near as many
CTM runs. SHERPA assumes that the unknown parameters
vary on a cell-by-cell basis but are no longer independent
of each other. Instead, these coefficients are assumed to be

related through a “bell shape function”. With the SHERPA
approach, the number of unknown parameters is then equal
to 2 for each precursor and receptor cell. Consequently, for
the five precursors of PM2.5 (VOC, SO2, NOx , PPM and
NH3), 10 independent CTM simulations are needed for a
given receptor cell. Provided that they deliver independent
information, the same CTM scenarios can be used to identify
both parameters for all cells within the domain (see details in
Pisoni et al., 2017). Based on these 10 CTM simulations the
SHERPA approach allows the impact of emission reductions
to be quickly assessed for many combinations of sectors, ge-
ographical areas and precursors. It is currently the only ap-
proach that allows systematic analysis to be performed for
about 150 EU cities in terms of sectors and precursors.

First, the SHERPA SRR approximation of the two CTMs,
CHIMERE and EMEP, is built. With these two SRR models
the contribution of 100 sector–area–precursor combinations
to the concentration in the city centre is determined and we
assess the similarities and differences between these two sets
of results. Obviously some of the differences are caused by
the fact that the two CTM models rely on different formula-
tions and parametrisations but also by the fact that they use
different input data (emissions, meteorology, etc.). The ob-
jective of this work is to assess the overall uncertainty (or
better, variability) attached to source allocation rather than to
assess the sensitivity of the results to a given parameter (e.g.
emissions).

The focus of this study is on PM2.5 yearly averages, be-
cause this is the pollutant with the highest impact on human
health and is therefore a key focus for policy-makers in Eu-
rope. Because a large number of sources contribute to PM2.5
concentrations at one location, this is also the most challeng-
ing pollutant to manage in air quality plans.

The paper is structured as follows. We briefly present the
two CTMs and their set-up in Sect. 2. We then describe the
SHERPA methodology and its assumptions in Sect. 3. Sec-
tion 4 details the methodology followed for the source allo-
cation, while the inter-comparison of the results is presented
in Sect. 5. Conclusions are proposed in Sect. 6.

2 CHIMERE and EMEP chemical transport models:
set-up and simulations

In this work, we use two sets of model simulations, per-
formed with two of the leading chemical transport mod-
els in Europe: CHIMERE and EMEP. More details on the
models can be found in Mailler et al. (2017) and Couvi-
dat et al. (2018) (for CHIMERE) and Simpson et al., 2012
(for EMEP). Because a brute-force source allocation for 150
cities with these models would be too time consuming, we
use two sets of SHERPA SRRs, each based on a training set
of about 20 CHIMERE and EMEP CTM simulations. These
SRRs are then used to perform the source allocation. De-
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tails on the SHERPA training for CHIMERE can be found in
Clappier et al. (2015), and for EMEP in Pisoni et al. (2019).

The CHIMERE and EMEP modelling set-ups differ in the
following aspects:

– Grid setting. CHIMERE uses a grid of 0.125◦ longitude
by 0.0625◦ latitude, corresponding to rectangular cells
of more or less 9 km by 7 km (in the centre of the do-
main), whereas EMEP uses a regular grid of 0.1◦ by
0.1◦, corresponding to rectangular cells of more or less
7 km by 11 km.

– Emissions. The CHIMERE emission reference year is
2010 with a gridding based on the EC4MACS project
proxies (Terrenoire et al., 2015), while EMEP uses a
JRC set of emissions (Trombetti et al., 2017) based on
2014 as the reference year.

– Boundary conditions. The CHIMERE domain extends
from 10.5◦ E to 37.5◦W and between 34 and 62◦ N,
while the EMEP domain extends from 30◦ E to 90◦W
and between 30 and 82◦ N.

– Meteorology. The two models use a different reference
meteorological year: 2009 for CHIMERE and 2014 for
EMEP. Both meteorological fields are modelled through
the Integrated Forecasting System (IFS) of ECMWF.

– Model parameterisation. Apart from the vertical and/or
horizontal resolutions, transport, deposition and chem-
ical processes are reproduced with different levels of
complexity in the two models.

Some of the validation results for the two model configu-
rations (CHIMERE and EMEP) are briefly presented in the
Supplement, showing similar performances in terms of com-
parison against observations. For CHIMERE the relation be-
tween predictions and observations at background stations is
best characterised by a line through the origin with slope of
1.05, indicating a slight under-prediction. The standard er-
ror is 5.7 µg m−3 and uniform over the range of concentra-
tions. The R2 is 0.9. Concentrations at traffic and industrial
stations are underestimated by roughly 10 %. For EMEP the
relation between predictions and observations is best charac-
terised by a power law with exponent 0.66. The data show a
relative standard error constant over the range of concentra-
tions and equal to 30 %. Concentrations at traffic stations are
under-predicted by 9 % and over-predicted at industrial sites
by 7 %. It is important to note that the use of different in-
put and model set-ups (as listed before) represents the usual
practice when air quality models are used, at the local scale,
to assess the impact of air quality plans. This is why it is im-
portant here to analyse how this choice influences the results
and the subsequent design of an air quality plan, an issue that
is often not tackled in the literature. Finally, differences can
arise from the SRR approximations themselves, even if vali-
dation against CTM simulations show similar results for the
two model set-ups considered (see Supplement).

Starting from these configurations, two sets of SRRs are
built for yearly average PM2.5 concentrations, based respec-
tively on CHIMERE and EMEP data.

Before looking at the source allocation results, in the next
section a brief description of the SHERPA methodology is
proposed.

3 SHERPA methodology

Starting from the simulations performed with CHIMERE and
EMEP, two sets of SHERPA SRR are built. Here we briefly
summarise how the SHERPA methodology works; we refer
to Pisoni et al. (2019) for more details.

In the SHERPA approach, the PM concentration change in
receptor cell “j” is computed as follows:

1PMj =

Nprec∑
p

Ngrid∑
i

a
p
ij1E

p
i , (1)

where Ngrid is the number of grid cells within the domain,
Nprec is the number of precursors,1Epi denotes the emission
changes, and apij are the unknown parameters to be identified,
representing the transfer coefficients between each source
cell i and receptor cell j . In SHERPA the apij coefficients are
cell-dependent and assume a bell shape function. This bell
shape function accounts for variation in terms of distance but
is directionally isotropic and can be defined as follows:

a
p
ij = α

p
j

(
1+ dij

)−ωpj , (2)

where dij is the distance between a receptor cell “j” and a
source cell “i”. Thus, in SHERPA the matrix of transfer co-
efficients is known when the two parameters α and ω are
identified for a given receptor cell j and a given precursor p
(see Eq. 2). The final formulation implemented in SHERPA
is as follows:

1PMj =

Nprec∑
p

Ngrid∑
i

α
p
j

(
1+ dij

)−ωpj 1Epi . (3)

With the SHERPA approach, the key step is so to find the
optimal α,ω coefficients. As the number of unknown param-
eters is equal to 2 (α,ω) for each precursor and receptor cell
“j”, for the five precursors of PM2.5 (VOC – volatile organic
compounds, SO2 – sulfur dioxide, NOx – nitrogen oxides,
PPM – primary particulate matter and NH3 – ammonia), 10
independent CTM simulations are needed for a given recep-
tor cell. We refer to Pisoni et al. (2018) and Thunis et al.
(2016) for additional details about the SHERPA formulation
and evaluation process.
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Given its cell-to-cell characteristics (Eq. 3), the SHERPA
formulation can be used to assess the impact of emission re-
ductions over any given set of grid cells. Different geographi-
cal entities can therefore be freely defined in terms of bound-
aries.

As mentioned earlier, the SHERPA approach is used in
this work to analyse the differences in source allocation re-
sults between two CTMs: CHIMERE and EMEP, referred
to in this paper as S-CHIMERE and S-EMEP, respectively.
The “S-“ first letter in these acronyms reminds that we com-
pare the EMEP and CHIMERE SRRs rather than the models
themselves.

4 Source allocation methodology

The aim of this work is to compare the main contributors to
urban pollution in terms of sectors, geographical areas and
precursors, obtained with S-CHIMERE and S-EMEP. We fo-
cus on the PM2.5 yearly average concentrations as a target in-
dicator, because PM2.5 is responsible for most of the health-
related burden in the EU urban areas (EEA 2019). The ap-
proach is applied to 150 European cities, those analysed in
the “PM2.5 Urban Atlas” (Thunis et al., 2018).

As mentioned above, the cell-to-cell characteristics of the
SHERPA approach allow the impact of emission reductions
to be assessed over any given set of grid cells (cities, regions
or countries can be freely defined in terms of boundaries),
and emission reductions can be freely defined in terms of
precursors or sectors. The following single (or combination
of) sectors, source areas and precursors are considered as
sources.

In terms of sectors, the source categories follow the CORI-
NAIR SNAP nomenclature for emissions:

– Combustion in energy and transformation industries
(SNAP 1),

– Non-industrial combustion plants (SNAP 2),

– Combustion in manufacturing industry (SNAP 3),

– Production processes (SNAP 4),

– Extraction and distribution of fossil fuels and geother-
mal energy (SNAP 5),

– Solvent use and other product use (SNAP 6),

– Road transport (SNAP 7),

– Other mobile sources and machinery (SNAP 8),

– Waste treatment and disposal (SNAP 9) and

– Agriculture (SNAP 10),

which have been aggregated in this work into five sectors:

– industry (SNAP 1, 3 and 4),

– residential (SNAP 2),

– traffic (SNAP 7),

– agriculture (SNAP 10) and

– others (SNAP 5, 6, 8 and 9).

In terms of geographical sources, four areas are considered
for the analysis:

– the core city,

– the commuting zone,

– the rest of the country and

– international (what is outside the country considered).

The commuting zone is defined as the area surrounding
the city where at least 15 % of the population commutes
daily to the core city. The combination of the core city and
the commuting zone is referred to as the functional urban
area, or FUA (see https://www.oecd.org/cfe/regional-policy/
functionalurbanareasbycountry.htm, last access: 16 Novem-
ber 2020, for details).

Finally, the precursors considered are NOx , VOC, NH3,
PPM and SO2.

This leads to 100 (4 areas× 5 precursors× 5 sectors) runs
for each SRR and city. For small cities (66 out of 150) the
core city covers too few grid cells, which would lead to dis-
cretisation errors. In such cases, the analysis is restricted to
the FUA. For these cities, 75 runs (3 areas× 5 precursors× 5
sectors) per city and model were therefore performed. With
150 analysed cities for two CTM models, we note that the
SHERPA approach allows for a comparison that would have
implied 26 700 ((66×75+84×100)×2 models) independent
air quality simulations with a full CTM. The same amount of
runs with the SHERPA simplified model only takes few sec-
onds per scenario. The results for S-CHIMERE were pub-
lished in the “Urban PM2.5 Atlas” (Pisoni et al., 2018). In
this paper, the same runs are done with S-EMEP, and a com-
parison between the two is provided.

Each run performed with the SHERPA SRRs provides a
concentration change (1C) that results from an emission re-
duction (1E) with an intensity α applied to a given precur-
sor, for a given sector and within a given area. The “rela-
tive potential” of a given precursor–sector–area source is ex-
pressed as 1C/αC (Thunis and Clappier, 2014). This indi-
cator represents the share of a particular emission source to
the concentration. From a policy point of view, high “rela-
tive potential” sources are the ones to be addressed first to
achieve the largest improvements. In this work, the SRRs
1C are obtained for emission reductions of α = 50 %, a level
that represents a threshold below which the quasi-linearity
of the model responses is preserved (Thunis et al., 2015).
In other words, with this approach the model response in
terms of concentration change remains proportional to the
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emission change. It is important to stress that this thresh-
old is only valid for PM2.5 and for yearly average concen-
trations, as considered here. Because of this 50 % threshold,
it is also worthwhile to note that the source allocation results
discussed here provide information on the impact of potential
emission reductions up to that level, not beyond.

To compare the “relative potentials” from S-CHIMERE
and S-EMEP, we calculate the correlation. A high correlation
means that both models agree well on the emission sources
(sectoral and/or geographic) that contribute most to the con-
centration for a given city. The main advantage of a corre-
lation indicator is that it ignores systematic differences. In
other words, if one model systematically predicts higher con-
centration changes for all sources than the other, this is not
detected by the correlation metric. This is a desirable charac-
teristic because from a policy perspective, it is the “relative
ranking” among the sources contributions that counts rather
than their absolute values.

5 Comparison of the results

In this study, we compare the relative potentials for 150
cities, based on the two SHERPA implementations, S-
CHIMERE and S-EMEP. Source allocation is calculated at
the city location characterised by the worst target indicator
value, i.e. the most polluted cell in the city considered. We
first discuss the results for a few cities, before moving to an
EU wide perspective. Tables 1 to 4 show, for each emission
area, sector and precursor, the “relative potential” expressed
in percentage of the total concentration for the two models
(“chimere_rp” and “emep_rp”) and the resulting ranking in
terms of importance (“emep.rank” and “chimere.rank”) for
four cities: Liège, Genova, Turin and Madrid. These cities
are selected as representative samples to illustrate the char-
acteristic behaviours obtained in our comparison. In addition
to this, Figs. 1 to 4 show the S-CHIMERE/S-EMEP correla-
tions obtained for various relative potentials defined in terms
of geographical area, sector or their combinations. For Liège
(Belgium), the overall (all individual sectors, precursors and
areas included, i.e. about 15 000 relative potentials) Pearson
correlation2 between the relative potentials of both SRRs is
the highest among the 150 cities (r = 0.99; see Fig. 1). Both
models identify ammonia emissions from agriculture, out-
side Belgium, as the main contributor to local PM2.5 con-
centrations. Primary PM from local industry comes second
and NOx from international traffic third. Although the lower
ranked combinations are not identical, they are quite similar.
From a policy perspective, the fact that both SRRs provide
similar information is a sign of robustness. It increases our
confidence in the priority of interventions (which sectors and

2The main aim of this work is to assess the policy implications
(i.e. which source to tackle first) of using a model rather than an-
other. This is why we focus on the ranking of the contributions
(Pearson correlation) rather than on their absolute values.

areas to act on first to achieve the maximum air quality im-
provement). The values for the main sector–precursor–area
relative potentials are reported in Table 1.

A breakdown analysis for Liège is proposed in Fig. 1,
where correlations are calculated for relative potentials that
are aggregated in terms of sectors (5 relative potentials), area
(4 relative potentials) or area/sector (5 × 5 relative poten-
tials). In the case of Liège, all correlations are very good.

Unfortunately, the agreement is not always so good. For
the city of Genova (Table 2 and Fig. 2), both models agree
that national and international ammonia emissions from agri-
culture are the largest contributors to local PM2.5 (see Ta-
ble 2). But the third position in the priority ranking is oc-
cupied by NOx from national traffic for S-EMEP while it is
PPM from the national residential sector for S-CHIMERE.
However, the overall correlation still reaches 89 % and the
two main sources are similar. The agreement between the
two models is therefore still satisfactory. It is interesting to
note that for area-aggregated relative potentials, the correla-
tion drops to 42 %, highlighting possible differences in the
way emission inventories are spatially distributed in the two
models.

In the case of Torino (Table 3 and Fig. 3), the two models
give contradicting recommendations. While S-CHIMERE
points to city residential heating as the main contributor
to PM2.5, S-EMEP points to national agriculture ammonia
emissions. The model disagreement extends to the top five
relative potentials. As indicated, the problem is probably re-
lated to the sectoral (R2

= 0.78) rather than to the geograph-
ical dimension (R2

= 0.97). Nevertheless, the overall corre-
lation (0.81) is not too bad and can be explained by the fact
that the contribution values are not too different from each
other (although the ranking is quite different).

In our last example (Madrid – Table 4 and Fig. 4), differ-
ences are extremely important in terms of relative potentials
and ranking, leading to an overall correlation of 41 %. All
other correlations, with the exception of the spatial ones, are
extremely poor. Uncertainties for this city are important, and
the choice among policy options is not robust.

As seen from the city examples presented above, we can
have both strong (Liège) and weak (Madrid) agreement be-
tween the two modelling set-ups.

The analysis presented above was done for all 150 cities,
and we can here present the results in an aggregated way. We
will consider that an overall correlation is very good above
95 %, good between 90 and 95 %, fair between 85 and 90 %,
poor between 70 % and 85 %, and very poor below 70 %.
This is an arbitrary choice, but it is useful to start group-
ing and classifying the results. The histogram of the overall
correlations for all 150 cities (Fig. 5) shows that the model
agreement is good or very good for about half of the cities
and satisfactory for another 21 %, leaving 32 % of doubtful
or problematic cities.

The mapping of the overall correlations (Fig. 6) shows
that cities with the highest variability are mostly located in
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Table 1. Top 10 area–sector–precursor relative potentials to PM2.5 concentrations in Liège (B).

Area Sector Precursor emep_rp emep.rank chimere_rp chimere.rank

International Agriculture NH3 22.9 1 20.6 1
FUA Industry PPM 12.6 2 12.4 2
International Road transport NOx 7.5 3 6.9 3
International Industry NOx 4.9 5 5.2 4
National Agriculture NH3 4.2 6 4.6 5
International Industry SOx 5.1 4 2.3 10
International Residential PPM 2.2 7 2.5 8
FUA Road transport PPM 2.1 10 2.9 6
International Industry PPM 2.2 8 2.4 9
FUA Industry SOx 1.9 15 2.7 7
International Other NOx 2.2 9 1.9 13

Figure 1. Correlation between S-EMEP and S-CHIMERE relative potentials for different sector–area–precursor source aggregations in Liège
(B).

Spain, northern Italy and the Baltic countries. For these ar-
eas, meteorological factors, emissions and/or the impact of
these inputs on concentrations in the air quality models is
larger than in other areas. In the Supplement we show that
even for the base case, results are quite different for countries
like Spain. This might also have an impact on the correlation
results shown in this figure.

To the knowledge of the authors, this is one of the first at-
tempts to systematically compare the sources and causes of
pollution in European cities using a harmonised approach.
The reasons for the differences between cities highlighted

above are, however, not easy to identify. This is because the
SRRs used in this study are based on different meteorologi-
cal years (2009 vs. 2014), emissions (2010 vs. 2014) and air
quality models (CHIMERE vs. EMEP). Although this anal-
ysis provides an overall estimate of the variability between
policy responses and does not allow the specific cause for the
observed differences to be identified, it indicates where mod-
elling improvements need to be made. Modelling inconsis-
tencies are indeed categorised in terms of geographical area,
sectors and precursors, useful information to trigger discus-
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Table 2. Top 10 area–sector–precursor relative potentials to PM2.5 concentrations in Genova (IT).

Area Sector Precursor emep_rp emep.rank chimere_rp chimere.rank

National Agriculture NH3 14.5 1 11.3 1
International Agriculture NH3 6.8 2 10.1 2
National Residential PPM 4.3 4 4.7 3
FUA Residential PPM 3.2 5 3.5 4
National Road transport NOx 4.9 3 2.6 8
FUA Road transport NOx 3.2 6 2.8 7
International Industry SOx 2.2 10 3.4 5
National Industry SOx 1.7 15 2.5 9
International Residential PPM 1.4 18 2.8 6
FUA Road transport PPM 1.4 17 2.1 10
FUA Other NOx 2.5 8 0.7 21
FUA Industry NOx 2.4 9 0 59
FUA Industry SOx 3.1 7 0 62

Figure 2. Correlation between S-EMEP and S-CHIMERE relative potentials for different sector–area–precursor source aggregations in
Genova (I).

sion among modelling groups and direct the investigations
towards the most problematic issues.

It is also worth noting that using different input and model
set-ups represents the usual practice whenever air quality
models are used at the local scale to assess the impact of
air quality plans. Indeed, each local and regional authority
generally uses its own set of data and applies its own model.
Therefore, only a single meteorology, a single emission in-
ventory for a single reference year and a specific model are

used to identify the sources of pollution to target. The impact
of these choices on source allocation and on the subsequent
design of an air quality plan is an issue that is not often tack-
led.

It is probably unreasonable to think that a local author-
ity can evaluate in a comprehensive way the variability of
a particular modelling pathway (too demanding in terms of
sensitivity analysis). We, however, believe that this work can
be used to develop further guidance to select the proper mod-

https://doi.org/10.5194/gmd-13-5725-2020 Geosci. Model Dev., 13, 5725–5736, 2020
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Table 3. Top 10 area–sector–precursor relative potentials to PM2.5 concentrations in Torino (I).

Area Sector Precursor emep_rp emep.rank chimere_rp chimere.rank

FUA Residential PPM 8.6 2 13.3 1
National Agriculture NH3 10.6 1 5.9 4
FUA Industry PPM 6.4 3 13.3 2
FUA Road transport NOx 6.2 4 4.8 6
National Residential PPM 4.9 7 5.4 5
International Agriculture NH3 6.1 5 4.2 8
FUA Industry NOx 5.2 6 4.7 7
FUA Road transport PPM 2.6 13 8.4 3
FUA Other PPM 2.9 12 3.5 10
International Residential PPM 2 16 4 9
National Road transport NOx 4.3 8 1.3 18
FUA Residential NOx 3.8 9 1 23
International Road transport NOx 3.1 10 0.8 25

Figure 3. Correlation between S-EMEP and S-CHIMERE relative potentials for different sector–area–precursor source aggregations in
Torino (I).

elling set-up (choice of meteorological year, emission, model
to use) to reduce the uncertainty attached to the results and
increase their robustness.

The ultimate goal of this work would be to help deci-
sion makers to properly define key sources, so that only “no-
regret” policies are selected. As mentioned above, the present
approach flags up potential issues and a possible lack of ro-
bustness (by quantifying the overall variability), but it cannot
provide explanations for the observed differences. The only

process to identify the causes of differences is to perform reg-
ular inter-comparison exercises where the responses of mod-
els to emission changes are systematically tested via sensitiv-
ity analysis. While exercises of this type occurred in the past
years (Colette et al., 2017; Cuvelier et al., 2007; Pernigotti et
al., 2013), it is crucial that these are performed on a regular
basis as models and input data continuously evolve.
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Table 4. Top 10 area–sector–precursor relative potentials to PM2.5 concentrations in Madrid (E).

Area Sector Precursor emep_rp emep.rank chimere_rp chimere.rank

City Road transport PPM 9.9 2 24.6 1
City Residential PPM 6.2 3 8.9 2
City Other PPM 2 9 5 4
National Agriculture NH3 2.5 6 2.4 8
Commuting Road transport PPM 1.7 11 5.3 3
National Agriculture PPM 0.9 13 4.3 5
City Industry PPM 2.4 7 1.4 12
City Other NH3 2.3 8 1.8 11
Commuting Residential PPM 1 12 2.3 9
City Industry SOx 25.4 1 0.8 21
City Road transport NOx 0.8 16 2.7 6
City Residential SOx 4.7 4 0.9 20
National Residential PPM 0.7 18 2.4 7
National Road transport PPM 0.8 15 2.2 10
National Industry SOx 1.8 10 0.8 22
Commuting Industry SOx 2.8 5 0.4 28

Figure 4. Correlation between S-EMEP and S-CHIMERE relative potentials for different sector–area–precursor source aggregations for
Madrid (E).

6 Conclusions

Before applying emission reduction measures to improve air
quality, it is important to evaluate the importance of the key
sources contributing to pollution in a given area. The main
methodology to perform this task is referred to as “source
allocation”.

Source allocation can be implemented in various ways. In
this paper we use the SHERPA model, a source–receptor re-
lationship mimicking the behaviour of a fully fledged CTM.
With SHERPA one can perform hundreds of simulations in
a few minutes to test the impact of various geographical,
sectoral or precursor-based emission sources on the concen-
tration at a location of interest. The result is a complete
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Figure 5. Distribution of the Pearson correlation coefficients be-
tween relative potentials, for 150 cities.

Figure 6. Pearson overall correlation between EMEP and
CHIMERE relative potentials.

source allocation study for a given domain explaining the key
sources of pollution at a given location.

In this work, we developed two SHERPA versions, based
on two modelling set-ups using different meteorological ref-
erence years, emission inventories and air quality models.
Even if these settings are quite different and difficult to com-
pare, they represent what happens in the real world when de-
signing air quality plans. Indeed, local authorities in Europe
are free to use different reference meteorological years, emis-

sions and models. The comparison of these results therefore
provides an estimate of the variability attached to source al-
location results for a given area.

The results can also be used to provide further guidance to
define the modelling set-up and understand how this choice
impacts the selection of priorities when designing air quality
plans.

The two SHERPA SRR versions (based on CHIMERE and
EMEP) have then been used to perform source allocation on
150 main cities in Europe, and results have been presented in
terms of priorities of interventions (i.e. which are the sectors,
geographical areas or pollutants that are more relevant for air
quality in a given city?).

The results are consistent for some cities, i.e. the mod-
elling set-up produces the same ranking in terms of contri-
butions, whereas for other cities (about 30 %) the two SRRs
deliver different results. Even if it is not possible in this work
to identify the causes for these differences, as additional sen-
sitivity simulations would be needed for this, this work indi-
cates where modelling improvements need to be made. Mod-
elling inconsistencies are indeed categorised in terms of geo-
graphical area, sectors and precursors, useful information to
trigger discussion among modelling groups and direct the in-
vestigations towards the most problematic issues. Although
differences in terms of results were expected (different as-
sumptions deliver different results), it is comforting to see
that similar policy decisions would be taken in about 75 % of
cities considered in this study.

Thanks to the limited number of required simulations to
build SHERPA, future work could envisage the implemen-
tation of “constrained settings” to build SRR (i.e. keeping
the same air quality model but changing emissions, or keep-
ing the same emissions but changing the model) to be able
to discriminate the role of these factors. Also, further model
inter-comparison works should be fostered.

Code and data availability. The code and data used to perform the
analysis presented in this paper are available in a Zenodo repos-
itory (https://doi.org/10.5281/zenodo.4059786, Degraeuwe et al.,
2020a). The SHERPA model, providing the source–receptor rela-
tionships applied in this paper, is also available in another Zenodo
repository (https://doi.org/10.5281/zenodo.4059770, Degraeuwe et
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