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Abstract. The complexity of each Coupled Model Inter-
comparison Project grows with every new generation. The
Phase 5 effort saw a dramatic increase in the number of
experiments that were performed and the number of vari-
ables that were requested compared to its previous genera-
tion, Phase 3. The large increase in data volume stressed the
resources of several centers including at the National Cen-
ter for Atmospheric Research. During Phase 5, we missed
several deadlines and we struggled to get the data out to the
community for analysis. In preparation for the current gen-
eration, Phase 6, we examined the weaknesses in our work-
flow and addressed the performance issues with new software
tools. Through this investment, we were able to publish ap-
proximately 565 TB of compressed data to the community,
with another 30 TB yet to be published. When compared to
the volumes we produced in the previous generation, 165 TB
of uncompressed data, we were able to provide 6 times the
amount of data and we accomplish this within one-third of
the time. This provided us with an approximate 18 times
faster speedup. While this paper discusses the improvements
we have made to our own workflow for the Coupled Model
Intercomparison Project Phase 6 (CMIP6), we hope to en-
courage other centers to evaluate and invest in their own
workflows in order to be successful in these types of mod-
eling campaigns.

1 Introduction

The Coupled Model Intercomparison Project Phase 6
(CMIP6) (Eyring et al., 2016) is a large international project
that consists of many centers around the world running the
same simulations, in order to seek a better understanding
of Earth processes under different scenarios. This includes,
but is not limited to, studying different mitigation strategies,
paleo climate analysis, and land mitigation strategies. Cen-
ters commit to running a core (or DECK) set of experiments
along with different tiers of experiments that can be com-
pared against the DECK experiments. The National Cen-
ter for Atmospheric Research (NCAR) committed to run-
ning most tier 1 experiments from almost all of the different
Model Intercomparison Project (MIP) groups. In total, this
included running 130 unique experiments with many having
multiple ensemble members. This commitment required over
1000 different model runs, simulating over 37 000 years of
climate. This consumed over 190 million CPU hours and pro-
duced over 2 PB of model output time-series data and 600 TB
of requested formatted data.

During the Coupled Model Intercomparison Project
Phase 5 (CMIPS) (Taylor et al., 2012), the post-processing
of the data became a large problem for NCAR. During that
process, NCAR used the Community Earth System Model
(CESM) version 1 (Hurrell et al., 2013) to generate roughly
2.5 PB of raw output in about 18 months. It then took NCAR
an additional 18 months to post-process and publish the data.
Due to inefficiencies in both the post-processing software
and workflow orchestration, NCAR was only able to publish
about 165 TB of data. To help ease the process of running the
CMIP6 experiments and post-processing the data, NCAR in-
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vested resources to improve the scientific workflow to ensure
everything would be published to the community efficiently.
These changes were required to work with the new version
of the model, the Community Earth System Model version 2
(Danabasoglu et al., 2020c), to be as efficient as possible, and
they needed to reduce the human burdens caused by running
such experiments.

In order to improve our end-to-end workflow, we needed
to focus on three areas. The first step was to improve the per-
formance of the data workflow by creating a set of new tools
that would allow us to parallelize each of the operations and
streamline the publication process. This work is discussed in
Sect. 2. Second, we needed to automate the process workflow
in order to remove the expertise needed to run the different
tasks and to have tasks run continuously without interven-
tion. This is discussed in Sect. 3. Finally, we needed a better
way to track simulation progress and document the exper-
iments. The improvements that were made in this area are
discussed within Sect. 4.

2 Data workflow

The first task in creating a new data workflow for CMIP6
was to evaluate the methods used in CMIPS in order to find
where improvements needed to be made. The life cycle of
the data consists of the multiple stages shown in Fig. 1. First,
the model is run and raw model output is generated. As the
model runs, diagnostics are generated in order to track the
simulation’s scientific progress. For CMIP5, this was a man-
ual process that was not done often because it would take
several hours for users to set up and run a full set. When the
model run is complete, the raw output is transformed into
a time-series format. For CMIPS, this process did not con-
tain any parallelism and it was slow to run because of the
amount of data that was required to be post-processed. The
time-series formatted data are then used to generate a new
set of data that complies with the specific MIP standards that
are defined within Taylor et al. (2017) and within the CMIP6
data request (Juckes et al., 2020). For CMIPS5, this process
also did not contain any parallelism and it was slow to run
because of the amount of data that was required to be post-
processed. In addition, our software for this process was dif-
ficult to run as it required expert knowledge to ensure the data
that were generated met the correct MIP standards. After the
standardized data were verified by the scientist, they were
then published to the Earth System Grid Federation (ESGF)
(Cinquini et al., 2014).

Fundamentally, the post-processing steps involved open-
ing a set of files and reading the data, performing one or more
simple operations on the data, and then writing out the re-
sults. While the post-processing steps were straightforward,
they were very time consuming to run due to the number of
files and total data volume on which they operated. For ex-
ample, during CMIP5, which had data volumes in the sev-
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Figure 1. This flowchart describes the tasks that are executed within
the CESM workflow in order to generate data for CMIP. The diag-
nostics task can be executed several times while the CESM model
run is executed. The remainder of the tasks are each executed once
when the CESM model run completes. This flow chart is a simplis-
tic view of our general workflows. In practice, our workflows are
more similar to the workflow depicted in Appendix Fig. Al.

eral tera-byte range, post-processing calculations would take
several days to run for each experiment. For CMIP6, which
involved a significantly larger number of files and total data
volumes in the peta-byte range, a better solution was needed.
In particular we needed tools with flexible interfaces that
could write compressed NetCDF files in parallel and mini-
mize the number of times output files were opened and closed
for writing.

There are a number of existing software package that
can be used to perform the post-processing steps includ-
ing the NetCDF Operators (NCO) (Zender, 2008), the Ul-
trascale Visualization Climate Data Analysis Tools (UVC-
DAT) (Williams, 2014), the Climate Data Operators (CDO)
(Kornblueh et al., 2019), and Pagoda (Daily, 2013). While
these packages provide a diverse set of operations, none of
them satisfied all of the necessary requirements. For exam-
ple, while CDO minimized the number of times output files
were opened and closed, it did not easily enable parallel exe-
cution. Conversely while Pagoda offered parallel execution,
it did not minimize the number of openings and closings. The
XML IO Server (XIOS) (Meurdesoif, 2020) is an IO library
that is able to write publication-ready output directly from
the model. While XIOS provides excellent performance, im-
plementing this method would have required us to rewrite the
IO interface within all of the modeling components, and this
would have required more people to work on this option than
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were allotted for this project. We therefore decided to de-
velop our own tools based on Python and the Message Pass-
ing Interface library (MPI) (Gropp et al., 1999) to enable par-
allelism. We choose to use Python because of its flexibility,
available libraries, and quick prototyping ability (Perez et al.,
2011; Oliphant, 2007) and MPI4Py (Dalcin, 2019) library
to enable parallelism. These benefits of Python allowed two
full-time employees to create the post-processing tools pre-
sented in this section within the 3-year timeline we needed
them completed by.

We also saw performance issues during the publication of
CMIP5 data contributions to the ESGF. During CMIP5, the
ESGF software stack was stressed when large amounts of
data were trying to be published by multiple organizations at
the same time. Over the past few years, a team of individuals
from around the world have been improving the ESGF soft-
ware stack (Abdulla, 2019). The process improvements that
were made to ESGF, along with the post-processing tools we
developed, are described in the following subsections.

Most of the performance improvements that are described
in the following subsections were run on the Cheyenne su-
percomputer (Cheyenne, 2017). Cheyenne is a 5.34 petaflop
machine that contains 4032 dual-socket nodes. Each node
contains two Intel Broadwell processors that are clocked at
2.3 GHz. For these tests, we used the standard nodes that con-
tain 64 GB of memory per node.

We also provide timing results from the Yellow-
stone supercomputer (Yellowstone, 2017). Yellowstone is a
1.51 petaflop machine that contains 4536 nodes, each con-
taining dual Intel Sandy Bridge processors. Each node con-
tains 32 GB of memory.

2.1 Time series generation

The first step within our post-processing workflow involved a
transformation of the raw CESM output data from time slice
into time series. This operation is represented in the “Con-
vert Output Data into Time Series Data” task within Fig. 1.
Each of the CESM components produces output files that
contain multiple variables in one time-slice chunk. Unfor-
tunately this is not an ideal format for distribution because
scientists are typically interested in evaluating a handful of
variables at multiple time steps. In order to increase the us-
ability of the data, the data are reformatted into a time-series
format, where each file contains one or more time slices of a
single variable.

In addition to transforming the data, this process also
needed to verify that all time slices were inserted correctly
into each time-series file. This involved sorting all of the time
slices, verifying that the time values were all unique, ensur-
ing there were no gaps in the time dimension, and correctly
putting the time slices into chronological order.

Interestingly, the conversion of time-slice to time-series
data was the single most expensive component of the CMIP5
workflow. While this operation is embarrassingly parallel
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due to the lack of data dependencies between each variable,
the serial CMIP5 workflow used individual NCO commands
that opened, read, and wrote each individual time slice. Con-
sider the number of file operations necessary to convert an
entire dataset which contains numrs (number of time slices)
and numy,,; (number of variables) from time slice to time se-
ries. Using the serial CMIP5 workflow, the execution con-
sisted of 2 X numTs X numy,, open and close operations and
numTs X numy, read and write operations. We were able
to significantly reduce the number of these expensive disk
input and output (I/O) operations through the creation the
PyReshaper (Paul et al., 2015, 2018). We next describe the
PyReshaper tool which was adopted into the CESM post-
processing framework (Bertini and Mickelson, 2019).

The approach used by PyReshaper is illustrated in Fig. 2.
An MPI rank is assigned one or more fields to read from the
time-slice file and write to the time-series file. Each MPI rank
i operates independently and performs num’,, - numrs + 1
open and close operations and num,. - numrs + 1 read and
write operations, where num’,, is the number of fields as-
signed to MPI rank i. Given a sufficient amount of memory,
it is possible to further reduce the number of write opera-
tions by writing multiple time slices to the file system in a
single call. This task based parallelism supports execution
on as many MPI ranks as there are fields in the input dataset.
Ideally if all the input fields were the same size and the cost
to read the data from and write the data to the file system
was negligible it would be possible to achieve a maximum
speedup of numy,,. Unfortunately the size of all input fields
is not the same and the cost of read data from and write data
to the file system is not negligible. We next describe the ac-
tual speedup the PyReshaper approach enables.

In the performance evaluation of PyReshaper, we evalu-
ated the time it took to convert 10 years of monthly atmo-
spheric data into the time-series format. This test configura-
tion represents the conversion of approximately 180 GB of
input data. The conversion took approximately 5.5h using
the existing serial method on NCAR’s Cheyenne supercom-
puter.

Figure 3 illustrates the performance improvements of the
PyReshaper tool over the existing method. Note that using
144 MPI ranks we achieve the same conversion in approxi-
mately 4.5 min.

The large improvement seen between 144 ranks and 72
ranks is an indication of a load-imbalance in the partition-
ing of fields to MPI ranks within the PyReshaper tool. This
behavior occurs because the algorithm does not take into ac-
count any difference in processing cost between variables.
Therefore, some ranks can end up with more expensive three-
dimensional variables to process while others may get only
two-dimensional variables.

For this evaluation we did not scale above 144 ranks be-
cause this is what we had run in production. As noted above,
the PyReshaper does not attempt to load balance between
the ranks and as the PyReshaper completes, several ranks re-
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Figure 2. This figure shows the process of converting the data from
a time-slice format to a time-series format in parallel within the
PyReshaper. Each MPI rank is responsible for taking a particular
variable from each time-slice file and writing it to the time-series
file.
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Figure 3. The comparative speedup in time of creating time-series
files from 10 years of monthly atmospheric data. In all cases, 493
time-series variable files were created. For comparison, the previous
CMIP5 sequential methods took approximately 5.5 h to complete.
With 144 MPI ranks we were able to bring the time to do this same
conversion down to approximately 4.5 min.

main idle while others still complete their work. We found
144 ranks to be a good balance of resources per through-
put based on the average number of three-dimensional and
two-dimensional variables, which was verified by running
throughput tests.
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Future work will be needed to handle the load-balancing
within the PyReshaper. Load-balancing techniques that could
be implemented include a coordinator—worker task assign-
ment method. Another naive implementation would in-
volve assigning work based on evenly dividing the three-
dimensional and two-dimensional variables amongst the
ranks. Either method would create a more predictable scal-
ing that would reduce the need to study performance tests
based on different problem sizes in order to achieve desired
performance.

2.2 Diagnostics

One of the main ways the NCAR scientists evaluate the out-
put of CESM during modeling campaigns such as CMIP5
and CMIP6 is to run the component diagnostic packages.
This task is represented by the “Diagnostics” task within
Fig. 1. They consist of four separate packages which are used
to evaluate atmosphere, ocean, ice, and land model output.
Each of these packages used a combination of shell scripts,
NCO, and NCAR Command Language (NCL) (NCL, 2019)
to create a set of average files, or climatology files, plot-
ted the data against observations or another model run, and
then created an HTML document that linked all of the plot
image files. While NCL was the preferred language to cre-
ate these plots, with a few modifications, any of the pack-
ages could create plots in other languages. The HTML docu-
ments generated from our diagnostic packages can be found
on our landing page (CESM Diagnostics Results, 2019), and
an example set of diagnostics specifically from one of our
CMIP6/PMIP4 experiments can be found within these links
(Atmospheric Diagnostics Results, 2019; Ocean Diagnostics
Results, 2019; Land Diagnostics Results, 2019; Sea Ice Di-
agnostics Results, 2019).

Each package requires different types of climatologies and
plot types which creates unique performance characteris-
tics for each of the packages. While previous efforts have
enabled parallelism in the diagnostic packages (Woitaszek
et al., 2011; Jacob et al., 2012), this approach resulted in
poor performance for multiple file operations, and it had a
steep learning curve for users. In order to create the clima-
tology files in parallel and to reduce the expensive disk I/O
operations, we developed the tool PyAverager (Paul et al.,
2015; Mickelson et al., 2018). We also chose to call the NCL
plotting scripts in parallel in order to improve performance
further.

The parallelism strategy the Py Averager uses is illustrated
in Fig. 4. When the application begins, the pool of MPI
ranks are partitioned into sub-communicators and the cli-
matologies to be computed are partitioned across all sub-
communicators. One MPI rank in each sub-communicator is
assigned to be the writer of the given climatology file. Then,
the field list is partitioned across the remainder of MPI ranks
within the sub-communicator. Each of these ranks is respon-
sible for retrieving its assigned field, computing the correct
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Figure 4. A depiction of the parallelism strategy that the PyAv-
erager uses for writing each climatology file. This figure de-
scribes how four MPI ranks are tasked within an example sub-
communicator.

climatology, and then sending the result to the writer. After
all fields have been written, the sub-communicator group be-
gins computing the next climatology file it was assigned.

The number of MPI ranks within a sub-communicator was
set to four. If the total number of MPI ranks that were given
to the PyAverager was less than four or there were less than
four variables that needed to be operated on, the number of
ranks within a sub-communicator was set to two. The to-
tal number of sub-communicators was computed by dividing
the total of MPI ranks by the number of ranks within a sub-
communicator. Once the MPI ranks were evenly distributed
to their corresponding sub-communicators, the averages
were then assigned evenly amongst the sub-communicators.

The second part of the diagnostics involves creating plots
from the climatologies that were created. The plotting scripts
individually can take a long time to run and run times vary
among the plotting scripts. In order to improve the perfor-
mance further, the CESM post-processing framework calls
the existing individual NCL scripts and some newly cre-
ated Python plotting scripts in parallel. We are able to exe-
cute them in parallel because there are no data dependencies
within the scripts. Therefore, if we have as many MPI ranks
available as we do plotting scripts, the performance is limited
to the longest running script.

In order to evaluate the performance of our improvements,
we ran original versions of the diagnostic packages and com-
pared them to the time it took our new version to create the
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Figure 5. The performance comparison across different diagnostic
packages from 10 years of monthly CESM data. These timings in-
clude the total time to create all of the required climatology files
and to run each of the NCL plotting scripts. The PyAverager/NCL
in Parallel timings were all computed using 16 MPI ranks.

same climatology files and the same NCL plots. We ran these
comparisons on the Yellowstone supercomputer, and we used
16 MPI ranks for all PyAverager/NCL in parallel timings.
Figure 5 shows that we were able to achieve a 5.8 times
faster speedup for the atmospheric diagnostics, a 6 times
faster speedup for the ice diagnostics, and a 4.6 times faster
speedup for the ocean diagnostics.

In order to evaluate the scalability of the PyAverager, we
compared the time it took to create 12 monthly and 4 sea-
sonal climatology files with the PyAverager against the NCO
tools run in serial. We chose to operate on the same data that
were used to evaluate the performance of the PyReshaper
in the previous section and all timings were performed on
Cheyenne.

You can see from Fig. 6 that the PyAverager is able to scale
better than the PyReshaper. This is because the problem size
is more load balanced. As you recall, the PyAverager dis-
tributes the number of averages to be done amongst the avail-
able sub-communicators and the number of variables are dis-
tributed amongst the ranks within the sub-communicator. For
this particular problem, the work is more evenly distributed
because the problem sizes were all similar and this leads to
the better scaling.

The lack of improvement seen between ranks 16 and 32
is because the work was not evenly distributed and a sub-
communicator ended up with slightly more work to do. This
was unavoidable because of the order in which the tasks were
assigned. To improve the performance on 32 tasks, we would
have to evaluate the problem size before assignment and
evenly distribute the work among the sub-communicators.
This can be difficult to predict because some calculations
can become more expensive under different variable sizes.
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Figure 6. The comparative speedup of creating climatology files
from 10 years of monthly atmospheric data. Four seasonal and
twelve monthly climatology files were created. For comparison, the
original methods took approximately 26.5 min to generate the cli-
matologies. The PyAverager took approximately 46s to create the
same climatologies with 64 MPI ranks.

We chose to avoid this complexity because we were content
with the improvements we had seen, but this is something we
can improve on in the future.

2.3 Conforming data to meet specifications

The final step before publishing the data involves conform-
ing the data to meet experiment specifications. This is repre-
sented as the “Conform Data to Experiment Specifications”
task within Fig. 1. This requirement is done in order to enable
scientists to directly compare the data from different centers
without having to perform data transformations that can be
error prone. Some examples include renaming model vari-
ables, combining fields (e.g., adding or subtracting) to cre-
ate one output field, converting units, verifying the data re-
sides on the specified grid, and checking that the correct at-
tributes are attached to the files. The recommended method
to create the specified data requires users to write code to
make required data transformations and to call the Climate
Model Output Rewriter (CMOR) (Taylor et al., 2006) library
to check for compliance and to add file attributes. The soft-
ware we had written and used for CMIP5 used this recom-
mended method, but it was written as serial code and it took a
long time to execute on a large dataset. It was also difficult to
extend this software to include the many additional variables
added for CMIP6. In order to meet the demands of CMIP6,
we developed the tool PyConform (Paul et al., 2016, 2019)
because we needed a tool with a flexible interface that could
adapt to changes in requirements more easily, that could cre-
ate variable output in parallel, and that still produced data
that met specification requirements.

Geosci. Model Dev., 13, 5567-5581, 2020

An example of a PyConform job is shown in Fig. 7. The
input fields are found on the left side of the figure. These
fields are operated on as they are fed through the system in
order to produce the output fields on the right. There are a
variety of operations that can be performed on the data and
this figure only shows a small subset. Several common func-
tions and arithmetic operations are provided with the tool,
but we could not account for all functions users may need.
We provide an example PyConform CESM model output to
MIP compliance definition file (Mickelson, 2019a) to list the
available functions and operations that PyConform provides.
If more functionality is needed, we provide a framework in
which users can create their own functions in Python and
plug them into the framework. For this application, we again
relied on a task-parallel approach in which an MPI rank was
assigned to create one output file. Once the file was written,
the MPI rank was given another output file to create.

PyConform depends on the CMIP6 data request Python
API, dregPy (Juckes et al., 2020). This package interfaces
with the CMIP6 data request database which contains infor-
mation regarding all of the fields within the request. This
includes field names, descriptions, units, coordinates, and
other specific information. Experiment information is also
contained within the data request, specifying experiment de-
scriptions and which fields are being requested for that ex-
periment.

During the development of PyConform, we chose to keep
our dregPy interface code as flexible as possible. dregPy
was intended to be an evolving database, adding new fields
and experiments in time, and PyConform needed to be able
to handle new information without any code modifications.
Once the user installs the latest version of dregPy in their
path, PyConform automatically queries the dregPy pack-
age to obtain experiment and field information. This infor-
mation is then used within the PyConform software to gener-
ate the requested field output files with the correct attributes
attached to them.

Flexibility was also needed within the interface used
to define how CESM data would be used to derive
the variables that were being requested for CMIP6. We
chose to use text files (Mickelson, 2019a) to define
how these variables would be created. The variable def-
initions within the text files follow the simple format
cmipvariable=modelvariable. These variable def-
initions were provided by and verified by many of the scien-
tists who work on the CESM model. If we needed to make
any modifications due to changes within the CESM model
or changes within the CMIP6 data request or if a variable
was added, all that was required was to add a line to the text
file or modify a line. This allowed us to make modifications
quickly because we did not have to modify any Python code.
Instead PyConform would see the updated information in the
text definition file and automatically use the new definition to
create the output file.
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Figure 7. An example of a PyConform job. Each MPI rank is responsible for creating a particular output dataset. Its job is to retrieve the
variable data it needs, map operations, execute these operations, and then write the data.

The flexibility we added in for the PyConform tool al-
lowed us to fix data quickly if inconsistencies were found.
Once we retracted data, we were able to republish data within
a few days because we were able to make modifications
quickly to a text definition file or simply just read in a new
version of the data request and regenerate the data quickly.

In order to evaluate the performance of the PyConform
tool, we chose to compare it against the performance of the
software that we used for CMIPS. In this example we were
limited to generating only 50 variables because this was the
union of variables that matched between CMIP5 and CMIP6
for the atmosphere model.

In our evaluation on the Cheyenne supercomputer, we
found that the original method took approximately 9.5 min
to generate the CMIP compliant output and it took PyCon-
form about 1.5 min to generate the same output using 16 MPI
ranks. This provided us with an over 6 times faster speedup
over existing methods. Since this was a smaller problem, we
chose to run the timing tests on a smaller number of ranks.
When PyConform was executed in a production mode for
CMIPO, it generated thousands of variable files and we are
able to scale out to more MPI ranks efficiently.

2.4 Data publication

The final step in the CMIP workflow within Fig. 1 is the pub-
lication of reviewed experiments to the ESGF, which is the
data distribution and access platform designated for sharing
CMIP and related simulation data. This part of the workflow
was not automated. Instead it was a step triggered by the lead
scientist once the data had been visually inspected. NCAR
operates an ESGF data node, which is a software applica-
tion stack that includes tools for checking conformance to
the CMIP6 metadata standards and serving NetCDF data files
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using a Thredds Data Server and Globus Transfer, replication
services, automated citation generation, and experiment life
cycle support, including data retraction and republication.

A significant challenge with CMIPS5 data publication was
managing the velocity and complexity of data publication us-
ing ad hoc communications, such as email. Given the chal-
lenges of post-processing noted above, each experiment was
published incrementally. This led to multiple versions of ex-
periments and added unnecessary complexity to the publica-
tion process. A separate challenge was managing an evolv-
ing ESGF software stack during the production of CMIP5
data publication. The burden of updating the ESGF node fre-
quently coupled with changing metadata requirements led to
further slowdowns in the overall process.

For CMIP6 the ESGF software components were signif-
icantly improved, due to the increase in diversity, complex-
ity, and volumes being managed, as well as the experiences
of data managers and node operators during CMIP5. In ad-
dition, a number of new components were developed for
CMIP6, including the PrePARE data quality control (QC)
tools, a data replication tool, the Errata Service, and the Cita-
tion Service. These components were tested through a series
of five “Data Challenges”, which NCAR participated in as
a member of the CMIP Data Node Operations Team (CD-
NOT)(Petrie et al., 2020) from January to June 2018. These
data challenges were performed in advance of the model data
availability and served to strengthen and improve the ESGF
software stack with a series of integration and other system
level tests. The significant improvements to the ESGF soft-
ware stack and related tools vastly improved the rate of data
publication for CMIP6. These performance improvements
are shown within Fig. 8. In the first 2 months of the CMIP6
publication process, NCAR was able to smoothly publish
50 TB more than it had published in the full 25 months it
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CMIP5 vs CMIP6 publication rate comparison
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Figure 8. The cumulative and per-month increases in the volume of data published to ESGE. During CMIPS5, the ESGF software was stressed
and problems arose. Despite those problems, NCAR was able to publish 165 TB of data. In preparation for CMIP6, the problems with the
ESGEF software stack were addressed and through these improvements, NCAR was able to publish 528 TB of data within 14 months, an
increase in volume by 3 times. In the first 2 months of the CMIP6 publication process, NCAR smoothly published over 216 TB of data, over

50 TB more than it contributed towards CMIPS5.

took to publish data towards the CMIP5 campaign because
of the improvements that were made. There data (ESGF-
NCAR, 2020; CMIP6 Data References, 2020) are available
to download via ESGF.

Another reason why we were able to publish large volumes
of data quickly is because we had used a stand-alone version
of PrePARE (PrePARE, 2020) to verify that our data con-
tained all of the correct attributes before we started the publi-
cation process. The PrePARE package is part of the CMOR3
(Taylor et al., 2006) package produced by the Program for
Climate Model Diagnostics and Intercomparison (PCMDI)
group within the Lawrence Livermore National Laboratory.
The small problems that PrePARE was able to find allowed
us to make corrections before large quantities of data were
generated. Once the errors were corrected, PrePARE allowed
us to verify that the data that were being created from the Py-
Conform tool met the standards and gave us the confidence
that we would be able to pass the publishing quality verifica-
tion checks.

Another improvement to ESGF involved data versioning.
Each ESGF dataset is allocated a version number. This al-
lows any dataset to be uniquely referenced. Versioning en-
ables data managers to retract any data that may have errors
and replace it with a new version without any interruption on
any ancillary services. This method of versioning allows all
end users to know which dataset version was used in their
analysis, making data versioning critical for reproducibility.

ES-DOC was used to document climate models that par-
ticipated in CMIP6 as well as to document the datasets the
participating modeling centers published to ESGF (Pascoe
et al., 2020). CESM2 has been extensively documented in
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ES-DOC (ES-DOC Model, 2020). Links to the unique ES-
DOC documentation pages for each dataset published are lo-
cated within each NetCDF file within the CMIP6 collection
on ESGF. The link can be located via the global history at-
tribute further_info_url.

3 Process workflow

During the completion of the CMIP5 simulations, each of the
processes illustrated in Fig. 1 was an independent task, and
each task was not automatically run in succession. Another
problem was that each of the tasks were run by different in-
dividuals causing workflows to stop while they waited for
someone to start the next task. For a run to have continuous
forward progress, it needed to be monitored repeatedly at all
hours and people needed to be on call continuously to post-
process the data, and this was not practical. There was also no
fault tolerance built into this workflow. If part of the simula-
tion failed because of machine error, the simulation stopped,
and it would not restart until someone did a manual check.
We adopted the use of Cylc (Oliver et al., 2018) for our
CMIP6 experiments in order to coordinate the execution of
all of the tasks within the end-to-end workflow of an experi-
ment except for the publication task. Cylc is a workflow man-
agement tool developed at the National Institute of Water
and Atmospheric Research (NIWA) and supported through
NIWA and the UK Met Office. We also evaluated Rocoto
(Harrop, 2017) as a workflow management tool. While Ro-
coto provided the basic functionality we required, we pre-
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ferred Cylc’s more robust interface, and we valued its larger
active development community.

A Cylc workflow can be invoked through command line
tools or through a graphical user interface (GUI). Both pro-
vide intuitive control of the workflow and the individuals
tasks. In order to track the status of all of the tasks within a
workflow, Cylc updates its internal database that contains in-
formation about each of the tasks. This allowed the workflow
to recover to a previous state if a problem was encountered
on the machine.

The Cylc workflows were able to incorporate all of the
tasks that a user wanted to execute. This included the model
iterations, the moving of data, and the running of all of the
Python tools discussed in this paper. The ability to automate
the submission of all of the tasks we needed to run made
the end-to-end workflow seamless, and users did not have to
worry about submitting any of the tasks by hand. This also
eliminated the necessary expertise to run the post-processing
tools. Instead they were set up correctly and automatically
ran as part of the workflow. All of these tasks are shown
within an example Cylc dependency workflow graph within
Appendix Fig. Al and the Cylc workflow description file
used to create this workflow can be found within the CESM
Workflow (CESM-WF) repository (Mickelson, 2020b).

Cylc also provided fault tolerance within the workflows by
allowing users to specify if they would like Cylc to try rerun-
ning a particular executable if it fails. For example, if one of
the model runs failed because of machine error, it was resub-
mitted to the queue and rerun without user intervention. This
became extremely useful when compute nodes on Cheyenne
would become unresponsive due to network issues. In these
cases, the CESM execution would fail and the non-zero fail-
ure exit code triggered Cylc to resubmit the task again. This
allowed us to automatically continue our workflow during the
many network issues that plagued Cheyenne while we exe-
cuted these simulations. Without this Cylc feature, we would
have had to resubmit the tasks to the queue by hand and this
would have caused us to loose productivity.

The process of setting up a CMIP6 workflow is complex
because of the different tools that need to be set up for a
particular experiment. This includes the setup of the Python
tools discussed in this paper and the Cylc workflow descrip-
tion file. In order to reduce the burden on the users, a Python
setup script (Mickelson, 2020a) performed many of the setup
steps, so users did not need any CMIP6 expertise. Once
the users set the run time option values, such as run length
and post-processing options, the script created the CESM
experiment, created a post-processing directory, set up the
post-processing tools for the specified CMIP6 experiment,
and created a Cylc workflow definition file based on known
task dependencies between the different tasks that were to
run. After the script was completed, users only needed to
set experiment-specific information, such as specific input
file information and output variable names, into the CESM
model and to build the model. Then the users started the ex-
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periment through Cylc. Human intervention was only needed
if the Cheyenne login nodes went down or if the CESM sim-
ulation needed to be restarted from the beginning. In each
case, users were able to restart the simulation from any point
within the workflow. We have made our auto-generated Cylc
suite definition files that we used to run our CMIP6 experi-
ments available on github (Mickelson et al., 2020).

Once the experiment was started with Cylc, the user
running the simulation was able to view the simulation’s
progress through the GUI or command line interface. Users
were also able to pause or stop individual tasks, rerun tasks,
or skip tasks. It was also possible to add and remove tasks
from the workflow graph after Cylc had started to execute.
Cylc also provided process status information for all of the
tasks, including start and stop run times and job identifica-
tion numbers given by the queuing system. This provided our
users with the control they needed to run the full experiment
and any post-processing task.

None of our workflow users had any experience with the
new Python tools we developed nor did they have any ex-
perience with Cylc before starting their first CMIP6 experi-
ment. Therefore each of our users needed to be trained. We
provided each of our 20 users with an individual training ses-
sion that lasted roughly 2 h. We also answered questions they
had via direct email and through an NCAR CMIP6 email
group that was set up to only contain the workflow users
and a few individuals from the NCAR supercomputing user
support group. In addition to this support, we provided doc-
umentation (Mickelson, 2019b). The documentation walks
through the workflow setup instructions, provides instruc-
tions on how to run Cylc, and provides answers to common
questions we would receive. As a final method of support,
we helped monitor the status of their simulations along with
them and provided direct help when needed. We found that
these training methods provided the confidence most of our
users needed to finish their first simulation and to try setting
up their next experiment independently.

The Cylc workflow description file was set up to run each
task as a separate job in the Portable Batch System (PBS)
scheduler on Cheyenne. Therefore, each CESM model iter-
ation and post-processing task that needed to be performed
were separate jobs within the PBS scheduler and they were
submitted only when the task the proceeded it finished suc-
cessfully. Throughout the duration of our CMIP6 experi-
ments, we were able to achieve high throughput of our ex-
periments with low wait times in the PBS queue. As a result,
we did not suffer from lower job priorities by not pre-staging
our jobs, though our approach may have achieved slower per-
formance on busier systems that give higher priority to jobs
that have been queued for longer periods of time. For running
on these systems, it is possible to configure the Cylc work-
flow description file to submit multiple jobs to the queue at
once with dependencies on each other in order to increase
job throughput.
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The modifications described within this section had the
largest positive impact on our ability to complete our con-
tributions towards CMIP6. Through this process, the users
did not have to have expert knowledge on how to run any
of the post-processing tools nor did they need to know how
to format the published data. This eliminated the need to
have an extra person run the post-processing tasks by hand.
Also, having the workflow submit all tasks and resubmit
failed tasks allowed us to complete experiments and publish
data sooner because everything was continuously running.
Finally, it made the process of completing complex experi-
ments easier. As an example, for a particular MIP exercise,
we were required to run eight different experiments, each
containing 100 ensemble members (Deser and Sun, 2019;
Smith et al., 2019). This would have required the user to
build all 800 experiments, run each experiment, create time-
series files for each, and then create the standardized files for
each experiment, and all these steps would have been done
by hand. This becomes a labor-intensive process that requires
extensive bookkeeping. With the workflow automation pro-
vided by Cylc, we were able to complete the eight experi-
ments with each taking only a couple of days to complete
and the user was only required to run a script that set up each
case and to click on a start button.

4 Experiment documentation

The experiments that NCAR had done for CMIP5 contained
little documentation and no provenance was obtained. This
made the simulations difficult to reproduce without having
to contact the person who ran the original simulation. An-
other problem that was encountered was that it was difficult
to track the progression of the simulations for CMIP5. Dur-
ing the process, only one individual knew which runs were in
progress, the status of each of the simulations, and what was
complete. To address these problems for CMIP6, the CESM
experiment database was extended to provide the extra fea-
tures that were needed.

The first task was to make it easier for the scientists to en-
ter new experiments into the database. The previous version
of the database required users to enter several pieces of infor-
mation, and this made it a cumbersome process. To improve
this, known information was automatically harvested from
the CESM experiment through CESM XML query com-
mands and from the CMIP6 data request. This reduced the
number of fields users had to fill in by hand and made the
process more streamlined.

The next task was to allow for the experiments to up-
load the specific setup configuration files that were used and
the CESM run-time timing files to a Subversion repository
so that experiment provenance could be captured. This was
done by adding a Subversion commit call right after a run it-
eration completed. When the data archiving step was run, all
of the experiment’s configuration and timing files were gath-
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ered up and were uploaded to a new SVN Subversion direc-
tory with the current date stamp. The database then gathered
the differences and displayed them under the experiment’s
entry within the database. This allowed users to quickly iden-
tify changes that were made mid-run. Noting these changes
and when they happen is critical to reproducing an experi-
ment. These changes can be scripted into the experiment’s
Cylc workflow definition file and this would allow it to be
rerun exactly how the original was run.

Another feature request was to link the diagnostic package
results (CESM Diagnostics Results, 2019) to the database.
As discussed in Sect. 2.2, the diagnostic packages produce
several plots that are linked within an HTML document. The
workflow uploaded these HTML documents automatically
to a web server so people could view the results as soon
as they were produced. The links to these web pages are
found within each experiment’s entry in the database so oth-
ers could easily locate all of the results at one location.

The final feature request was to provide real-time exper-
iment status within the database. As stated previously, it
was difficult in CMIP5 to know the status of any given ex-
periment. In order to update the run-time status within the
database, we had each experiment’s Cylc workflow email the
database its status. This new interface allowed management
and scientists to monitor the status of all CMIP6 experiments
and to identify simulations that had stopped running and that
had not finished.

Collectively these enhancements allowed us to track the
progress of the experiments and document model configu-
rations, output, and diagnostics all within one utility. This
work also lends itself to other research projects that allowed
for analyzing the timing information that was collected from
each model run in order to study the model performance over
time. This allowed for the identification of a degradation of
performance after a machine upgrade, users selecting imbal-
anced processor layouts for their model runs, and model per-
formance degradations (Mannik, 2019). This information can
be then used to improve model performance and allow for
more efficient use of computational resources.

5 Conclusions

Every generation of MIP exercises introduces new layers of
complexity. We learned in CMIP5 that we could no longer
use traditional serial methods to post-process the required
amount of data and still meet our deadlines. CMIP6 required
us to develop a new tool chain and forced us to change our
methodologies. These new methods, described in this paper,
provided us with an 18 times faster speedup. This allowed us
to meet our deadlines, and we were able to publish more than
half a million datasets on the ESGF (ESGF-NCAR, 2020;
CMIP6 Data References, 2020) for the CMIP6 project.
While Cylc has a learning curve, it was shown through
this work to be extremely useful in coordinating all of the in-
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dividual tasks of running a simulation, running diagnostics,
and post-processing the data. It was shown to save both hu-
man time and time to simulation completion. Because of this
success, Cylc is being more tightly integrated within CESM.
This tighter integration now resides within the CESM infras-
tructure code, and a Cylc workflow can now be generated
with an option set within the CESM environment instead of
it being a stand-alone Python script.

While we have shown that our new Python tools were
successful, we believe these fundamental tasks should also
be integrated more tightly within the CESM. This includes
the time-series and data conforming tasks. The current prac-
tices force multiple versions of the data to be on disk at a
given time. As future MIP’s grow more complex, their re-
quested data volumes grow larger. This growth in data being
requested makes it more difficult to carry multiple versions
of the data around and the tighter integration of having the
formatted data generated directly from the model simulation
will allow us to save disk space.

The work we have done to improve the diagnostic pack-
ages has inspired new analysis workflows written by our sci-
entists in Python. This work is being designed to run ana-
lytics on data that reside on our compute resources and on
cloud platforms interchangeably. Current efforts are under-
way to combine these individual efforts in order to produce
new versions of the diagnostic packages.
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Having stronger data standards that the community con-
forms to will help ease the ability to perform intercompar-
isons across models. As more modeling centers move their
data into the cloud, the interest in comparing results between
models increases, and the community should make their data
as easy to use as possible within these types of analytic work-
flows. We believe dregpy is a great resource that moves the
community in that direction.

The complexity continues to grow with every generation
of CMIP, and focused efforts are needed to coordinate the im-
provements to the infrastructure code around these attempts.
While we present a detailed description of the workflow we
chose to use for CMIP6, we hope to encourage other cen-
ters to evaluate their own workflows. It is important to con-
sider developing flexibility within these types of workflows
as workflow tools should be able to adapt to changes eas-
ily. Other important considerations when evaluating work-
flows include a reduction in the data footprint and an increase
of the model data throughput. CMIP exercises are resource-
expensive and time-consuming to run, and it is important to
be prepared for the commitment involved with these types of
campaigns.
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Appendix A

Figure Al. This figure shows a Cylc dependency workflow graph that was generated for an experiment we ran for CMIP6 which required
us to simulate the climate from 1850 to 2015. The CESM model and its data movement utility were run within this workflow. The CESM
component diagnostic packages were also run within this workflow. The ocean and ice model diagnostics were run after every 30 years of
simulation, and the atmosphere and land model diagnostics were run after every 10 years of simulation. The different diagnostic packages
were run as part of the many three-chained tasks that are leaves within the workflow graph. The first task runs the PyAverager to generate the
climatologies. The second task runs the NCL scripts in parallel to generate the plots and the web pages they are displayed on. The third task

is a post-command that copies the image and web files onto the web server. The PyReshaper and the PyConform tools were run at the end of
the simulation.
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Code availability. The versions of the code that were used within
our end-to-end workflow process for CMIP6 can be found at the
following locations.

The version of the PyReshaper (version 1.0.6)
that was used in this work can be downloaded from
https://doi.org/10.5281/zenodo.3894842 (Paul et al., 2018). Further
information can be found at https://github.com/NCAR/PyReshaper.

The version of the PyAverager (version 0.9.16)
that was used in this work can be downloaded from

https://doi.org/10.5281/zenodo.3894862 (Mickelson
et al., 2018). Further information can be found at
https://github.com/NCAR/pyAverager (last access: Novem-
ber 2020).

The version of the PyConform (version 0.2.8)

that was used in this work can be downloaded from
https://doi.org/10.5281/zenodo.3895009 (Paul et al., 2019). Further
information can be found at https://github.com/NCAR/PyConform
(last access: November 2020).

The version of the CESM post-processing framework (ver-
sion 2.2.1) that was used in this work can be downloaded from
https://doi.org/10.5281/zenodo.3895033 (Bertini and Mickelson,
2019). Further information can be found at https:/github.com/
NCAR/CESM_postprocessing (last access: November 2020).

The version of the CESM workflow generation tool set (ver-
sion 1.0) that was used in this work can be downloaded
from https://doi.org/10.5281/zenodo.3895058 (Mickelson, 2020a).
Further information can be found at https://github.com/NCAR/
CESM-WEF (last access: November 2020).

The CESM model (version 2) can be found at
https://doi.org/10.5065/D67HIHOV ~ (Danabasoglu et  al,
2020c). This work wused the CESM versions 2.1.0
(https://doi.org/10.5281/zenodo.3895306, Danabasoglu et
al., 2020a), 2.1.1 (https://doi.org/10.5281/zenodo.3895315,
Danabasoglu et al., 2019), and 2.1.2
(https://doi.org/10.5281/zenodo0.3895328, Danabasoglu et al.,
2020b).

For this work we wused Cylc version 7.8.3. The
source code for this version can be retrieved at
https://doi.org/10.5281/zenodo.3243691, and it is referenced
within Oliver et al. (2018).
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