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Abstract. The Land Variational Ensemble Data Assimilation
Framework (LAVENDAR) implements the method of four-
dimensional ensemble variational (4D-En-Var) data assimi-
lation (DA) for land surface models. Four-dimensional en-
semble variational data assimilation negates the often costly
calculation of a model adjoint required by traditional varia-
tional techniques (such as 4D-Var) for optimizing parameters
or state variables over a time window of observations. In this
paper we present the first application of LAVENDAR, im-
plementing the framework with the Joint UK Land Environ-
ment Simulator (JULES) land surface model. We show that
the system can recover seven parameters controlling crop be-
haviour in a set of twin experiments. We run the same exper-
iments at the Mead continuous maize FLUXNET site in Ne-
braska, USA, to show the technique working with real data.
We find that the system accurately captures observations of
leaf area index, canopy height and gross primary productiv-
ity after assimilation and improves posterior estimates of the
amount of harvestable material from the maize crop by 74 %.
LAVENDAR requires no modification to the model that it is
being used with and is hence able to keep up to date with
model releases more easily than other DA methods.

1 Introduction

Land surface models are important tools for representing the
interaction between the Earth’s surface and the atmosphere
for weather and climate applications. They play a key role in
the translation of our knowledge of climate change into im-

pacts on human life. Most land surface models will converge
to a steady state; their state vector tends toward an equilib-
rium defined by forcing variables (i.e., the meteorology ex-
perienced by the model) and the model parameters. This is
quite unlike fluid dynamics models used for the atmosphere
and oceans, which exhibit chaotic behaviour; a small change
in their initial state can lead to large deviations in the state
vector evolution with time. Consequently, for some land sur-
face applications parameter estimation can have greater util-
ity than state estimation (Luo et al., 2015). This article deals
primarily with the problem of parameter estimation in land
surface models, although the technique we introduce could
easily be used for state estimation problems too.

Data assimilation (DA) combines models and data such
that resulting estimates are an optimal combination of both,
taking into account all available information about respec-
tive uncertainties. DA techniques are typically derived from
a Bayesian standpoint and have been largely developed to
service the needs of atmospheric and ocean modelling, espe-
cially where there is a need to provide near-real-time fore-
casts. Typically the focus of such activities is on estimating
the optimal model state as the fundamental laws underlying
fluid dynamics are well understood and many of the model
parameters are known physical constants. However, this is
not true for land surface models where parameters are much
less well understood. Indeed these parameters can be allowed
to change over time within a developing ecosystem or when
an ecosystem is subject to a disturbance event to account for
model structural inadequacies.
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DA applications for land surface models are becoming in-
creasingly common, using a wide variety of techniques and
estimating both state and parameters. Many studies have em-
ployed Markov chain Monte Carlo (MCMC) methods (e.g.,
Metropolis et al., 1953) to retrieve posterior estimates of pa-
rameter and state variables (Post et al., 2018; Bloom et al.,
2016; Bloom and Williams, 2015; Zobitz et al., 2014; Keenan
et al., 2012; Braswell et al., 2005). These methods use a
cost function to iteratively sample the posterior parameter
distribution and can deal with non-Gaussian error. However,
MCMC methods come at a large computational cost, requir-
ing of the order of 106 model runs even for simpler models
(Zobitz et al., 2011; Ziehn et al., 2012), which may be in-
feasible for applications at larger scales or for more complex
land surface models than used in these studies. Sequential en-
semble methods have also been used (such as the ensemble
Kalman filter (EnKF); Evensen, 2003) in numerous studies
(Kolassa et al., 2017; De Lannoy and Reichle, 2016; Quaife
et al., 2008; Williams et al., 2005). These methods are rel-
atively cheap (dependent on ensemble size) and easy to im-
plement, but for the problem of parameter estimation their
sequential nature leads to retrieval of time-varying parame-
ter sets not physically consistent with the behaviour of the
land surface. There is also a growing interest in model em-
ulation, (Gómez-Dans et al., 2016; Fer et al., 2018); these
techniques are extremely efficient but require some initial
construction of the emulator. Another option is to use vari-
ational methods, common in numerical weather prediction.
These have been shown to be an effective relatively cheap
method of DA in land surface problems (Pinnington et al.,
2017; Yang et al., 2016; Raoult et al., 2016; Bacour et al.,
2015; Sawada and Koike, 2014; Rayner et al., 2005). How-
ever, when using gradient-based decent algorithms to mini-
mize the variational cost function; these methods require the
derivative of the model code, which can be costly to com-
pute and maintain. The variational cost function can be min-
imized using non-gradient-based optimization routines (Pin-
nington et al., 2018) but comes at the cost of many more
model runs to find convergence and loss of accuracy. Re-
cently, however, there has been an increase in the develop-
ment of new hybrid methods combining both ensemble and
variational techniques (Bannister, 2016; Bocquet and Sakov,
2014; Desroziers et al., 2014; Liu et al., 2008). These meth-
ods present a way to retrieve time-invariant parameters over
some time window without the need for the derivative of the
model code or a debilitating number of model runs.

In this paper we present the first application of the
Land Variational Ensemble Data Assimilation Framework
(LAVENDAR) for implementing the hybrid technique of
four-dimensional ensemble variational (4D-En-Var) data as-
similation (DA) with land surface models. We show that
LAVENDAR can be applied to the Joint UK Land Environ-
ment Simulator (JULES) land surface model (Clark et al.,
2011; Best et al., 2011) with a focus on the Mead continuous
maize FLUXNET site, Nebraska, USA (Suyker, 2016). At

this site regular observations of canopy height, leaf area in-
dex (LAI) and FLUXNET gross primary productivity (GPP)
are available.

Data assimilation has previously been implemented with
the JULES land surface model with Ghent et al. (2010) us-
ing an ensemble Kalman filter to assimilate satellite observa-
tions of land surface temperature, Raoult et al. (2016) con-
ducting experiments with four-dimensional variational data
assimilation focusing on the carbon cycle and Pinnington
et al. (2018) assimilating satellite observations of soil mois-
ture over Ghana. Of these studies Raoult et al. (2016) and
Pinnington et al. (2018) are directly related to the technique
presented here in that they used variational DA techniques
to estimate parameters in JULES. Raoult et al. (2016) use
an adjoint of JULES (ADJULES) in their study to estimate
carbon-cycle-relevant parameters for different plant func-
tional types. However, the adjoint is only currently available
for JULES version 2.2, and considerable effort would be re-
quired to update it to the most recent model version (5.3 as of
1 January 2019). Pinnington et al. (2018) used a more recent
version of JULES (4.9) but avoided the need for an adjoint
by using a Nelder–Mead simplex algorithm to perform the
cost function minimization. This inevitably requires a greater
number of model integration steps than using a derivative-
based technique and is unlikely to work effectively for large
dimensional problems.

Our results show that 4D-En-Var is a promising technique
for land surface applications that is easy to implement for
any land surface model and provides a reasonable trade-off
between the computational efficiency of a full 4D-Var sys-
tem and the complexity and effort of maintaining a model
adjoint. Perhaps most significantly, no modification to the
model code itself is required. In Sect. 2 we present the
JULES model, describe the 4D-En-Var technique in detail
and outline the experiments conducted in the paper. Results
are shown in Sect. 3, with discussions and conclusions in
Sects. 4 and 5, respectively.

2 Method

2.1 JULES land surface model

The Joint UK Land Environment Simulator (JULES) is a
community-developed process-based land surface model and
forms the land surface component in the next-generation UK
Earth System Model (UKESM). A description of the energy
and water fluxes is given in Clark et al. (2011), with car-
bon fluxes and vegetation dynamics described in Best et al.
(2011). Current versions of JULES now include a param-
eterization for crops with four default crop types (wheat,
soy bean, maize and rice). Crop development is governed
by a crop development index which increases as a function
of crop-specific thermal time parameters with the crop be-
ing harvested when the development index crosses certain
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thresholds. The crop grows by accumulating daily net pri-
mary production (NPP) and partitioning this between a set of
carbon pools (harvestable material, leaf, root, stem, reserve);
equations for JULES-crop can be found in Williams et al.
(2017) Appendix A1. A further description and evaluation
for JULES-crop can be found in Osborne et al. (2015) and
Williams et al. (2017). Williams et al. (2017) conducted a
calibration and evaluation for JULES-crop at the Mead con-
tinuous maize site. The setup of JULES described in detail
by Williams et al. (2017) forms the basis for the JULES runs
within this paper with JULES version 4.9 being used. We
drive JULES with observed meteorological forcing data of
humidity, precipitation, pressure, solar radiation, temperature
and wind.

2.2 Mead field observations

We have used observations from the Mead FLUXNET US-
Ne1 site (Suyker, 2016) for meteorological driving and eddy
covariance carbon flux data. A description of the eddy co-
variance flux data and derivation of gross primary productiv-
ity (GPP) is given in Verma et al. (2005). In this study we
only select GPP observations corresponding to unfilled ob-
servations of net ecosystem exchange (NEE) with the high-
est quality flag and remove zero values from outside of the
growing season. It is important to note that GPP is not an
observation per se and is derived by partitioning the net car-
bon flux using a model which is likely to be inconsistent with
the process model we are assimilating the data into. This site
has grown maize continuously since 2001 (previously the site
had a 10-year history of maize–soybean rotation) on a soil of
deep silty clay loam and has been the subject of many previ-
ous studies (Yang et al., 2017; Nguy-Robertson et al., 2015;
Suyker and Verma, 2012; Guindin-Garcia et al., 2012; Viña
et al., 2011). The site is irrigated using a centre-pivot sys-
tem. The JULES model can be run with irrigation turned off
or on; we have run the model with irrigation turned on. In
addition to the FLUXNET observations, there are also regu-
lar leaf area index, canopy height, harvestable material, leaf
carbon and stem carbon observations. Leaf area index, har-
vestable material, leaf carbon and stem carbon observations
are made using a method of destructive sampling and an area
meter (model LI-3100, LI-COR, Inc., Lincoln, NE) (Viña
et al., 2011).

2.3 Data assimilation

2.3.1 Four-dimensional variational data assimilation

This section follows the derivation given in Pinnington et al.
(2016). In 4D-Var we consider the dynamical non-linear dis-
cretized system

zt = ft−1→t
(
zt−1,pt−1

)
, (1)

with zt ∈ Rn the state vector at time t , pt−1 ∈ Rq the vec-
tor of q model parameters at time t − 1 and ft−1→t the non-

linear model updating the state at time t − 1 to time t for
t = 1,2, . . .,N . If we consider a set of fixed parameters, then
the value of the state at the forecast time zt is uniquely deter-
mined by the initial state zt−1. As the model parameters are
time invariant, their evolution is given by

pt = pt−1 (2)

for t = 1,2, . . .,N . We join the parameter vector p with the
model state vector z, giving us the augmented state vector

x =

(
p

z

)
∈ Rq+n. (3)

The augmented system model is given by

xt =mt−1→t (xt−1), (4)

where

mt−1→t (xt−1)=

(
pt−1

ft−1→t (zt−1,pt−1)

)
=

(
pt
zt

)
∈ Rq+n. (5)

Process error could be included in Eq.( 5) by specifying an
additional term but in this application is neglected. The vec-
tor yt ∈ Rrt represents available observations at time t . These
observations are related to the augmented state vector by the
equation

yt = ht (xt )+ εt , (6)

where ht : Rq+n→ Rrt maps the augmented state vector to
the observations and εt ∈ Rrt denotes the observation errors.
Often the errors εt are treated as unbiased Gaussian and un-
correlated in time with known covariance matrices Rt .

In 4D-Var we require a prior estimate to the state and/or
parameters of the system at time 0 denoted by xb. This prior
estimate is usually taken to have unbiased, Gaussian errors
with a known covariance matrix B. Including a prior term in
4D-Var regularizes the problem and ensures a locally unique
solution (Tremolet, 2006). The aim of 4D-Var is to find the
initial state and/or parameters that minimize the distance to
the prior estimate, weighted by B, while also minimizing the
distance of the model trajectory to the observations, weighted
by Rt , through the set time window 0, . . .,N . We do this by
finding the posterior augmented state that minimizes the cost
function

J (x0)=
1
2
(x0− x

b)TB−1(x0− x
b)+

1
2

N∑
t=0

(ht (xt )− yt )
TR−1

t (ht (xt )− yt ), (7)

J (x0)=
1
2
(x0− x

b)TB−1(x0− x
b)+

1
2

N∑
t=0(

ht (m0→t (x0))− yt
)TR−1

t (ht (m0→t (x0))− yt ). (8)
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The state that minimizes the cost function is often called the
analysis or posterior estimate. The posterior estimate is found
by inputting the cost function, prior estimate and the gradient
of the cost function into a gradient-based decent algorithm.
The gradient of the cost function is given by

∇J (x0)= B−1(x0−x
b)+

N∑
t=0

MT
t,0HT

t R−1
t (ht (xt )−yt ), (9)

∇J (x0)= B−1(x0− x
b)+

N∑
t=0

MT
t,0HT

t R−1
t

(ht (m0→t (x0))− yt ), (10)

where Mt,0 =Mt−1Mt−2· · ·M0 is the tangent linear model
with Mt =

∂mt−1→t (xt )
∂xt

; MT
t,0 is the model adjoint propagat-

ing the state backward in time (this is required for efficient
minimization of the cost function using gradient descent
techniques) and Ht =

∂ht (xt )
∂xt

is the linearized observation op-
erator. Both the linearized observation operator and the tan-
gent linear model can be difficult to compute, as discussed
in Sect. 1. In Sect. 2.3.2 we show how 4D-En-Var allows us
to avoid the computation of these quantities in the gradient
of the cost function. We can avoid the summation notation
in the cost function and its gradient by using vector notation
and rewriting as

J (x0)=
1
2
(x0− x

b)TB−1(x0− x
b)+

1
2
(ĥ(x0)− ŷ)

T

R̂−1(ĥ(x0)− ŷ) (11)

and

∇J (x0)= B−1(x0− x
b)+ ĤT R̂−1(ĥ(x0)− ŷ), (12)

where,

ŷ =


y0
y1
...

yN

 , ĥ(x0)=


h0(x0)

h1(m0→1(x0))
...

hN (m0→N (x0))

 ,

R̂=


R0,0 R0,1 . . . R0,N
R1,0 R1,1 . . . R1,N
...

...
. . .

...

RN,0 RN,1 . . . RN,N

 and

Ĥ=


H0
H1M0
...

HNMN,0

 . (13)

The matrix R̂ is a symmetric block diagonal matrix with the
off-diagonal blocks representing observation error correla-
tions in time as discussed in Pinnington et al. (2016).

For certain applications the prior error covariance matrix
B can become large, ill-conditioned and difficult to invert. As
a result minimizing the cost function in Eq. (11) and finding
the optimized model state or parameters can be slow. To en-
sure the 4D-Var cost function converges as efficiently as pos-
sible and to avoid the explicit computation of the matrix B,
the problem is often preconditioned using a control variable
transform (Bannister, 2016). We define the preconditioning
matrix U by

B= UUT (14)

and

x0 = x
b
+Uw (15)

so that

w = U−1(x0− x
b). (16)

Substituting Eqs. (15) and (16) into the cost function (Eq. 11)
we find

J (w)=
1
2
wTw+

1
2
(ĥ(xb

+Uw)− ŷ)T

R̂−1(ĥ(xb
+Uw)− ŷ). (17)

Under the tangent linear approximation that

hi(m0→i(x
b
+Uw))≈ hi(m0→i(x

b))+HiMi,0Uw, (18)

we can approximate Eq. (17) as

J (w)=
1
2
wTw+

1
2
(ĤUw+ ĥ(xb)− ŷ)T R̂−1

(ĤUw+ ĥ(xb)− ŷ), (19)

with the gradient of the cost function given as

∇J (w)= w−UT ĤT R̂−1(ĤUw+ ĥ(xb)− ŷ). (20)

As the square root of a matrix is not unique there will be
multiple choices for the preconditioning matrix U.

2.3.2 Four-dimensional ensemble variational data
assimilation

In this section we outline a 4D-En-Var scheme using the
notation defined in Sect. 2.3.1 and following the approach
of Liu et al. (2008). Given an ensemble of Ne joint state-
parameter vectors, we can define the perturbation matrix

X′b =
1

√
Ne− 1

(
xb,1
− xb,xb,2

− xb, . . .,xb,Ne − xb
)
. (21)

Here the Ne ensemble members can come from a previous
forecast (in which case xb is the mean of the Ne ensemble
members) or from a known distribution N (xb,B) such that
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xb
= xb. Using X′b we can approximate the background or

prior error covariance matrix by

B≈ X′bX′Tb . (22)

We can then transform to ensemble space using the matrix
X′b as our preconditioning matrix by defining

x0 = xb+X′bw, (23)

where w is a vector of length Ne. Defining x0 in this way
reduces the problem in cases where the state or parameter
vector is much larger than the ensemble size (Ne) and also
regularizes the problem in cases where the state or parameter
vector contains elements of contrasting orders of magnitude.
From Sect. 2.3.1 the cost function (Eq. 19) becomes

J (w)=
1
2
wTw+

1
2
(ĤX′bw+ ĥ(xb)− ŷ)T

R̂−1(ĤX′bw+ ĥ(xb)− ŷ) (24)

with gradient

∇J (w)= w+X′b
T ĤT R̂−1(ĤX′bw+ ĥ(xb)+ ŷ). (25)

We can see that the tangent linear model and adjoint are
still present in Eqs. (24) and (25) within Ĥ (see Eq. 13).
However, we can write X′b

T ĤT as (ĤX′b)
T where ĤX′b is

a perturbation matrix in observation space given by

ĤX′b ≈
1

√
Ne− 1

(ĥ(xb,1)− ĥ(xb), ĥ(xb,2)− ĥ(xb), . . .,

ĥ(xb,Ne)− ĥ(xb));

(26)

the gradient then becomes

∇J (w)= w+ (ĤX′b)
T R̂−1(ĤX′bw+ ĥ(xb)− ŷ), (27)

avoiding the computation of the tangent linear and adjoint
models as we can calculate (Eq. 26) using only the non-linear
model and non-linear observation operator.

2.3.3 Implementation with JULES

In order to implement 4D-En-Var we construct an ensem-
ble of parameter vectors and then run the process model for
each unique parameter vector over some predetermined time
window. We then extract the ensemble of model-predicted
observations from then ensemble of model runs and com-
pare these with the observations to be assimilated over
the given time window. In our code (Pinnington, 2019)
we implement the method of 4D-En-Var with JULES us-
ing a set of Python modules. The data assimilation rou-
tines and minimization are included in fourdenvar.py.
This part of the code does not need to be modified to be

Figure 1. Test of the gradient of the 4D-En-Var cost function.

used with a new model. Model-specific routines for run-
ning JULES are found in jules.py and run_jules.py.
JULES is written in FORTRAN with its parameters be-
ing set by FORTRAN namelist (NML) files, jules.py
and run_jules.py operate on these NML files updating
the parameters chosen for optimization. The data assimila-
tion experiment is setup in experiment_setup.py with
variables set for output directories, model parameters, en-
semble size and functions to extract observations for assim-
ilation. The module run_experiment.py runs the en-
semble of model runs and executes the experiment as defined
by experiment_setup.py. Some experiment-specific
plotting routines are also included in plot.py. More in-
formation and a tutorial can be found at https://github.com/
pyearthsci/lavendar (last access: 6 January 2020).

To use another model in this framework, new wrap-
pers would have to be written to mimic the functionality
of jules.py and run_jules.py and allow for mul-
tiple model runs to be conducted while varying parame-
ters. The module run_experiment.py would need to
be updated to account for these new wrappers and func-
tions to extract the observations for assimilation included in
experiment_setup.py. Although we have used Python
here to implement a stand-alone setup of LAVENDAR, we
envisage that the technique could be added to existing work-
flow systems such as Cylc (Oliver et al., 2019) or the Predic-
tive Ecosystem Analyzer (PEcAn) (LeBauer et al., 2013).

2.3.4 Tests of the four-dimensional ensemble
variational data assimilation system

It is important to ensure correctness of the 4D-En-Var sys-
tem. We show that our system is correct and passes tests for
the gradient of the cost function (Li et al., 1994; Navon et al.,
1992). For the cost function J and its gradient ∇J , we show
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Table 1. Description of parameters optimized in experiments and model truth value. PAR represents photosynthetically active radiation.

Parameter Description xtrue

α quantum efficiency of photosynthesis (mol CO2 mol−1 PAR) 0.055
neff nitrogen use efficiency (mol CO2 m−2 s−1 kg C (kg N)−1) 5.7× 10−4

fd scale factor for dark respiration (-) 0.0096
µ allometric coefficient for calculation of senescence (-) 0.02
ν allometric coefficient for calculation of senescence (-) 4.0
γ coefficient for determining specific leaf area (-) 17.6
δ coefficient for determining specific leaf area (-) -0.33

that our implementation of ∇J is correct using the identity,

f (η)=
|J (w+ ηb)− J (w)|

αbT∇J (w)
= 1+O(η), (28)

where b is a vector of unit length and η is a parameter control-
ling the size of b. For small values of η we should find f (η)
close to 1. Figure 1 shows |f (η)− 1| for a year’s assimila-
tion window with b = w||w||−1 where w is calculated from
the prior parameter values (see Table 3) perturbed by 30 %.
We can see that |f (η)− 1| → 0 as η→ 0 as expected, un-
til f (η) gets too close to machine precision at O(η)= 10−9.
This was also tested with different choices of b finding simi-
lar results.

2.4 Experiments

2.4.1 Twin experiments

A so-called “twin” experiment in data assimilation is one
where a model is used to generate synthetic observations to
be assimilated. This is a commonly used approach to test
whether particular combinations of observations can, in prin-
ciple, be used to retrieve desired target variables using some
DA method. In effect the model that the observations are be-
ing assimilated into is “perfect” because it represents the un-
derlying physics that gave rise to them in the first place. We
conducted a parameter estimation twin experiment with the
aim to recover values for key JULES-crop parameters: the
quantum efficiency of photosynthesis, nitrogen use efficiency
(scale factor relating Vcmax with leaf nitrogen concentra-
tion), scale factor for dark respiration, two allometric coeffi-
cients for calculation of senescence and two coefficients for
determining specific leaf area (see Table 1). These seven pa-
rameters have an effect on the crop’s seasonal growth cy-
cle and its photosynthetic response to meteorological forcing
data. The choice of parameters was motivated by the analy-
sis of Williams et al. (2017), who found that they were least
able to constrain these parameters with the available data.
We assimilated synthetic observations of gross primary pro-
ductivity (GPP), leaf area index (LAI) and canopy height, all
generated by JULES, over a year-long assimilation window.

The model truth was taken from the values given in
Williams et al. (2017) and perturbed using a normal distri-

bution with a 10 % standard deviation to find a prior param-
eter vector, xb. We then generated an ensemble by drawing
50 parameter vectors from the normal distribution with mean
xb and variance (0.15× xb)

2. Synthetic observations were
sampled from the model truth with the same frequency as the
real observations available from Mead and perturbed using
Gaussian noise with a standard deviation of 2 % of the syn-
thetic truth value. This provided an idealized test case where
we have high confidence in the assimilated observations to
ensure our system is working and can recover a set of known
parameters, given known prior and observation error statis-
tics. We also include a twin experiment using the same error
statistics as those used for the real data experiments at the
Mead site (outlined in Sect. 2.4.2) in Supplement Sect. S1.1.

2.4.2 Mead experiments

For the experiments using real data from the Mead US-
Ne1 FLUXNET site, the same seven parameters were op-
timized (shown in Table 1) by assimilating observations over
a year-long assimilation window in 2008. The prior param-
eter vector, xb, is taken from the values given in Williams
et al. (2017). We then generated an ensemble of 50 param-
eter vectors by sampling from the normal distribution with
mean xb and variance (0.25×xb)

2. We apply the same vari-
ance to all parameters here as the analysis of Williams et al.
(2017) showed these parameters to all be poorly constrained
with the available data in a more traditional model calibra-
tion study. In reality it is unlikely that all parameters will
have the same variance but in the absence of additional in-
formation and for the purposes of this demonstration we
used (0.25× xb)

2. Observations for the site are described in
Sect. 2.2. We prescribe a 5 % standard deviation for canopy
height and leaf area index errors and a 10 % standard de-
viation for errors in GPP. These uncertainties are rough es-
timates that we considered adequate for demonstrating our
system, but for any specific application the errors estimates
should be determined more carefully. However, our uncer-
tainties are consistent with Schaefer et al. (2012), who found
an uncertainty of 1.04 to 4.15 g C m−2 d−1 (scaling with flux
magnitude) for estimates of GPP; Raj et al. (2016), who
found an uncertainty of the order of 10 % for daily estimates
of GPP; and Guindin-Garcia et al. (2012), who found a stan-
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Figure 2. 4D-En-Var twin results for leaf area index using 50 en-
semble members. Blue shading: prior ensemble spread (±− 1σ ),
orange shading: posterior ensemble spread (±1σ ), pink dots: ob-
servations with error bars, dashed black line: model truth.

Figure 3. 4D-En-Var twin results for gross primary productivity us-
ing 50 ensemble members. Blue shading: prior ensemble spread
(±1σ ), orange shading: posterior ensemble spread (±1σ ), pink
dots: observations with error bars, dashed black line: model truth.

dard error of 0.15 m2 m−2 for destructively sampled green
LAI at the Mead flux site. The error statistics used within
the data assimilation experiments could be investigated more
thoroughly but are appropriate for demonstrating the validity
of the technique and providing an optimal weighting between
prior and observation estimates.

3 Results

3.1 Twin experiments

Figures 2 to 4 show plots of the three target variables over the
year-long assimilation window. For these figures the blue line
and shading represent the 50 member prior ensemble mean
and spread (±1 standard deviation), the orange line and cor-
responding shading represent the same but for the 50 mem-

Figure 4. 4D-En-Var twin results for canopy height using 50 ensem-
ble members. Blue shading: prior ensemble spread (±1σ ), orange
shading: posterior ensemble spread (±1σ ), pink dots: observations
with error bars, dash black line: model truth.

Table 2. 4D-En-Var twin assimilated observation RMSE for the
four target variables when an ensemble of size 50 is used in ex-
periments.

Target variable xb RMSE xa RMSE

LAI 1.95 0.15
GPP 5.17 0.33
Canopy height 0.39 0.03

ber posterior ensemble of JULES model runs, pink dots with
vertical lines are the synthetic observations with error bars
(±1 standard deviation) and the dashed black line is the tra-
jectory of the JULES model using the “true” parameter val-
ues. Figure 2 shows that after data assimilation the posterior
model estimate tracks the model truth trajectory closely with
the LAI model truth always being captured by the posterior
ensemble spread. For GPP, Fig. 3 shows a very similar re-
sult as for LAI with the posterior estimate fully capturing the
model truth. Figure 4 illustrates the effect the large spread of
the prior ensemble has on harvest dates towards the end of
the season, with the ensemble spread increasing markedly as
different ensemble members are harvested on different days.
The spread for the posterior estimate of canopy height re-
duces considerably and tracks the model truth well. Figure 5
shows prior, posterior and true trajectories for harvestable
material. We have not assimilated any observations of this
quantity but this figure shows we improve predictions of har-
vestable material after assimilation of the three previously
discussed target variables. In Table 2 we show root-mean-
square error (RMSE) for the three target variables before and
after assimilation. We find an average 93.67 % reduction in
RMSE for the three target variables.

Prior and posterior distributions for the seven parameters
are shown in Fig. 6 (light grey and dark grey, respectively)
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Figure 5. 4D-En-Var twin results for harvestable material using 50
ensemble members. Blue shading: prior ensemble spread (±1σ ),
orange shading: posterior ensemble spread (±1σ ), pink dots: ob-
servations with error bars, dashed black line: model truth.

with the true model parameter values shown as dashed black
vertical lines. For all seven parameters, the posterior distri-
bution moves toward the model truth and in most cases the
posterior distribution mean appears very close to the model
truth. The posterior distributions also narrow significantly in
comparison to the prior distributions with the exception of
fd. Table 3 shows the mean prior and posterior parameter
vectors and percentage error values between prior parameter
estimates and the model truth and posterior parameter esti-
mates and the model truth. The percentage error in the pos-
terior estimate is reduced for all parameters, again with the
exception of fd. The inability of the technique to recover fd
is discussed further in Sect. 4.1. There is an average error of
10.32 % in the prior parameter estimates and this is reduced
to 2.93 % for the posterior estimates.

3.2 Mead field observations

Figures 7 to 9 show assimilation results for the three target
variables over the year-long window for the Mead field site.
For these figures, the blue line and shading represent the 50
member prior ensemble mean (taken from Williams et al.,
2017) and spread (±1 standard deviation), the orange line
and shading represent the same but for the 50-member pos-
terior ensemble of JULES model runs after data assimilation
and the pink dots with vertical lines are the field observa-
tions from Mead site US-Ne1 with error bars (±1 standard
deviation). From Fig. 7 we can see that the prior mean un-
derestimates LAI, reaching a much lower peak than observa-
tions; despite this, the technique finds a posterior mean esti-
mate that agrees well with all but two LAI observations (in
September and October). We find similar results for GPP in
Fig. 8, with the posterior capturing the majority of obser-
vations but missing some of the highest values. For canopy
height in Fig. 9, the effect of the spread in ensemble harvest

dates for the prior is again obvious (also seen in the twin
experiments, Fig. 4); this spread is reduced for the posterior
estimate and all observations are captured by the posterior
ensemble spread.

Prior and posterior estimates for unassimilated indepen-
dent observations are shown in Figs. 10 to 12. From Fig. 10
we can see the prior estimate is underestimating the amount
of harvestable material for the maize crop. After assimilation
the posterior estimate predicts the amount of harvestable ma-
terial well and with increased confidence. Figure 11 shows
that our posterior estimate of leaf carbon content improves
after assimilation but is still too low; this is the same for stem
carbon content in Fig. 12. The fact that we can find good
agreement for LAI with a poorer fit to leaf carbon content
is likely due to the optimized parameters controlling specific
leaf area compensating for errors in model parameters con-
trolling the partitioning of net primary productivity into the
leaf carbon pool. This allows us to achieve the correct leaf
area with the incorrect leaf carbon content.

Prior and posterior ensemble parameter distributions are
shown in Fig. 13. After assimilation the distributions have
shifted and narrowed for all parameters, except fd, with α
being the most extreme example of this. The effect these up-
dated parameter distributions have on the model prediction
of the three target variables in Table 4 is clear. We find the
largest reduction in RMSE for canopy height (73 %) with
the smallest reduction in RMSE for GPP (44 %); overall, we
found an average 59 % reduction in RMSE for the three tar-
get variables. From Table 5 we can see the updated parame-
ters have also reduced the model prediction RMSE in inde-
pendent unassimilated observations. The largest reduction is
in the prediction of harvestable material (74 %); overall, we
have found an average 47 % reduction in RMSE for the three
independent observation types.

4 Discussion

4.1 Twin experiments

In Sect. 3.1 we have demonstrated that the 4D-En-Var tech-
nique is able to retrieve a synthetic truth given known prior
and observation error statistics. There is good agreement be-
tween the mean posterior trajectory and model truth for the
three target variables (see Figs. 2, 3 and 4). We also retrieve
accurate predictions of independent unobserved quantities
such as harvestable material (see Fig. 5). The mean poste-
rior parameter vector after assimilation is very close to the
model truth as shown in Table 3 and Fig. 13 with the ex-
ception of the scale factor for dark respiration fd. Our in-
ability to recover this parameter is likely due to the fact that
the assimilated daily averaged observations are not greatly
impacted by changes in dark respiration. Assimilating total
aboveground carbon could improve the estimation of fd by
giving us a proxy to the net primary productivity of the crop
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Figure 6. 4D-En-Var twin distributions for the seven optimized parameters for both the prior ensemble (light grey) and posterior ensemble
(dark grey). The value of the model truth is shown as a dashed vertical black line.

Table 3. 4D-En-Var twin results and percentage error for each of the seven optimized parameters when an ensemble of size 50 is used in
experiments.

Parameter xtrue xb xa xb % error xa % error

α 0.055 0.067 0.056 22.4 1.1
neff 0.00057 0.00062 0.00056 9.5 2.2
fd 0.0096 0.0087 0.0082 9.8 14.6
µ 0.020 0.024 0.021 18.7 5.3
ν 4.0 4.16 3.90 4.0 2.4
γ 17.6 20.7 18.1 17.6 2.9
δ −0.33 −0.29 −0.30 9.8 8.0

Table 4. 4D-En-Var Mead assimilated observation RMSE for the
three target variables when an ensemble of size 50 is used in exper-
iments.

Target variable xb RMSE xa RMSE Reduction

LAI 1.49 0.60 59 %
GPP 3.86 2.15 44 %
Canopy height 0.38 0.10 73 %

and with the concurrent assimilation of GPP a better con-
straint on respiration. Alternatively, including correlations in
the prior error covariance matrix would provide information
to update fd even when the assimilated observations are not
impacted by changes in this parameter. It has been shown
that suitable correlations can be diagnosed by sampling from
a set of predetermined ecological dynamical constraints and

Table 5. 4D-En-Var Mead unassimilated observation RMSE when
an ensemble of size 50 is used in experiments.

Target variable xb RMSE xa RMSE Reduction

Harvestable material 0.06 0.02 74 %
Leaf carbon 0.05 0.03 32 %
Stem carbon 0.10 0.06 34 %

taking the covariance of an ensemble run forward over a set
time window (Pinnington et al., 2016).

In the results for all predicted variables we find that the
posterior ensemble converges around the model truth. This
can also be seen for the parameters in Fig. 6, where the pos-
terior ensemble spread of the parameter α is particularly nar-
row. This could lead to problems when using our posterior
estimate as the prior for a new assimilation cycle. It is also
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Figure 7. 4D-En-Var results for leaf area index using 50 ensem-
ble members. Blue shading: prior ensemble spread (±1σ ), orange
shading: posterior ensemble spread (±1σ ), pink dots: observations
with error bars.

Figure 8. 4D-En-Var results for gross primary productivity using
50 ensemble members. Blue shading: prior ensemble spread (±1σ ),
orange shading: posterior ensemble spread (±1σ ), pink dots: obser-
vations with error bars.

possible that equifinality could become an issue when at-
tempting to optimize a larger number of parameters. From
Table 3 we can see this issue for the two parameters control-
ling photosynthetic response with the posterior slightly over-
predicting α and under-predicting neff, as different combi-
nations of these parameters can produce the same trajectory
for the observed target variables. The effect of equifinality
can be seen more clearly for the posterior ensemble correla-
tion matrix included in Fig. S7 in the Supplement. It is also
clear that selection of the prior ensemble is important to the
success of the technique. From Figs. 4 and 5 it can be seen
that the prior ensemble is poor, suggesting that it could be
better conditioned to deal with the discontinuity of the har-
vest date. It may be the case that for more complex problems
an iterative step in the assimilation would be needed to ad-
dress this (Bocquet, 2015) or ensemble localization in time.

Figure 9. 4D-En-Var results for canopy height using 50 ensemble
members. Blue shading: prior ensemble spread (±1σ ), orange shad-
ing: posterior ensemble spread (±1σ ), pink dots: observations with
error bars.

Figure 10. 4D-En-Var results for harvestable material using 50 en-
semble members. Blue shading: prior ensemble spread (±1σ ), or-
ange shading: posterior ensemble spread (±1σ ), pink dots: obser-
vations.

In this study we have only considered the uncertainty in the
parameters and initial conditions and not the uncertainty in
forcing data, random effects (parameter variability) or uncer-
tainty in the process model (Dietze, 2017). The inclusion of
these additional sources of error would avoid the ensemble
converging too tightly around any given value. In order to in-
clude uncertainty in the forcing data, it would be necessary
to run each ensemble member with a different realization of
the driving meteorology. Process error could be included in
Eq. (5) resulting in a new term in the 4D-En-Var cost function
in Eq. (24), containing a model error covariance matrix; it
has also been shown that these different types of uncertainty
could be built into the observation error covariance matrix R
(Howes et al., 2017). If estimates to these sources of error are
not available, the use of methods such as ensemble inflation
(Anderson and Anderson, 1999), a set of techniques where
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Figure 11. 4D-En-Var results for leaf carbon using 50 ensemble
members. Blue shading: prior ensemble spread (±1σ ), orange shad-
ing: posterior ensemble spread (±1σ ), pink dots: observations.

Figure 12. 4D-En-Var results for stem carbon using 50 ensemble
members. Blue shading: prior ensemble spread (±1σ ), orange shad-
ing: posterior ensemble spread (±1σ ), pink dots: observations.

the ensemble spread is artificially inflated, will help alleviate
problems of ensemble convergence.

4.2 Mead field observations

We have demonstrated the ability of the technique to improve
JULES model predictions using real data in Sect. 3.2. Poste-
rior estimates improve the fit to observations with the pos-
terior ensemble spread capturing the majority of assimilated
observations (see Figs. 7, 8 and 9). We reduce the RMSE
in the mean model prediction by an average of 59 % for the
three target variables. As independent validation that we are
improving the skill of the JULES model, we also improve
the fit to three unassimilated observation types (see Figs. 10,
11 and 12) with an average reduction in RMSE of 47 %. We
find the largest reduction in RMSE for the independent ob-
servations for harvestable material (74 % reduction), which
is an important variable closely linked to crop yield. The im-
provement in skill for the unassimilated observations gives

us confidence that the technique has updated the model pa-
rameters in a physically realistic way and that we have not
over-fitted the assimilated data. By conducting a hindcast for
2009 (shown in the Supplement Fig. S6 and Table S2), we
also find the retrieved posterior ensemble improves the fit to
the unassimilated observations in the subsequent year, with
an average reduction in RMSE of 54 % when compared with
the prior estimate.

The experiments with Mead field observations do not show
the same level of reduction in ensemble spread as in the twin
experiments (see Fig. 13) due to the specified prior and ob-
servation errors being much larger. However, the posterior
distribution for some parameters is still quite narrow. We
again find very little update for fd as in the twin experiments,
suggesting that the assimilated observations (at their current
temporal resolution) are not sensitive to changes in this pa-
rameter. In our experiments we have held back observations
of harvestable material, leaf carbon and stem carbon to use
as independent validation of the technique. However, these
observations could have been included in the assimilation to
better constrain the current parameters or consider a larger
parameter set.

4.3 Challenges and opportunities

Avoiding the computation of an adjoint makes the technique
of 4D-En-Var much easier to implement and also agnostic
about the land surface model used. By maintaining a varia-
tional approach and optimizing parameters over a time win-
dow against all available observations, we also avoid retriev-
ing non-physical time-varying parameters associated with
more common sequential ensemble methods. However, as
with other ensemble techniques, results are dependent on
having a well conditioned prior ensemble. Methods of en-
semble localization (Hamill et al., 2001), where distant cor-
relations or ensemble members are down-weighted or re-
moved, could be used to improve prior estimates. In this in-
stance we would need to consider localization in time (Boc-
quet, 2015). In order to extend this framework to model runs
over a spatial grid we will need a method to sample prior pa-
rameter distributions regionally or globally, it would then be
possible to conduct parameter estimation experiments over a
region, either on a point-by-point basis or for the whole area
at once. Considering a large area would increase the parame-
ter space and require more ensemble members. Localization
in space could help to reduce the parameter space and thus
allow for use of a smaller ensemble. The ensemble aspect of
the technique also allows us to retrieve posterior distributions
of parameters, whereas in pure variational methods we would
only find a posterior mean. However, this also presents a pos-
sible issue of posterior ensemble convergence around certain
parameters. Including additional sources of error within the
assimilation system (driving data error, parameter variabil-
ity, process error) or using methods such as inflation (Ander-
son and Anderson, 1999) will help to avoid this and ensure

www.geosci-model-dev.net/13/55/2020/ Geosci. Model Dev., 13, 55–69, 2020



66 E. Pinnington et al.: LAVENDAR

Figure 13. 4D-En-Var distributions for the seven optimized parameters for both the prior ensemble (light grey) and posterior ensemble (dark
grey).

our posterior estimates maintain enough spread to be used
as a prior estimate in new assimilation cycles. While poste-
rior parameter estimates could be used in future studies with
their associated uncertainties, we envisage that cycling of the
assimilation system will be more appropriate for state esti-
mation (after initial parameter estimation) where the system
could be cycled on a timescale suitable for the required state
variable and data availability.

In 4D-En-Var we approximate the tangent linear model
using an ensemble perturbation matrix. Without the explicit
knowledge of the tangent linear and adjoint models 4D-En-
Var could be less able to deal with non-linearities in the
process model in cases where the ensemble is small or ill-
conditioned. For the examples presented in this paper 4D-En-
Var deals well with the non-linearity of the JULES land sur-
face model. However, it is possible that for high dimensional
spaces, a technique of stochastic ensemble iteration (Bocquet
and Sakov, 2013) will need to be implemented to cope with
increased non-linearity at the cost of multiple model runs
within the minimization routine. The framework proposed in
this paper allows for the implementation of such a technique
fairly easily.

In this paper we have focused on using LAVENDAR for
parameter estimation. However, the technique we present can
just as easily be used to adjust the model state at the start of
an assimilation window in much the same way as is done in
weather forecasting (Liu et al., 2008). In this case it is likely
that a shorter assimilation window would be required. The
posterior ensemble is then used to provide the initial condi-

tions for the next assimilation window. This would require
additional modules to be written within LAVENDAR, which
would handle the starting and stopping of the process model.
It would also require that the implemented model was able to
dump the full existing model state and then be restarted with
an updated version of this state (as is possible with JULES).
In this iterative framework accounting for model error would
also become more important.

A particularly appealing aspect of LAVENDAR as pre-
sented in this paper is that there is no interaction between
the DA technique and the model itself – once the initial en-
semble is generated it is not necessary to run the model again
to perform any aspect of the DA. Because the main compu-
tational overhead is running the model, this makes the DA
analysis extremely efficient. This is quite unlike related tech-
niques such as 4D-Var and provides some unique opportuni-
ties. For example, it lends itself to efficient implementation of
Observing System Simulation Experiments (OSSEs). OSSEs
are used to examine the impact of different observation net-
works and sampling strategies on specific model data assim-
ilation problems by repeating twin experiments with differ-
ent sets of synthetic observations used to mimic different in-
struments and/or sampling regimes. In LAVENDAR the syn-
thetic observations for a large number of different scenarios
can all be generated with the initial ensemble and hence fa-
cilitate a large number of OSSE experiments without any fur-
ther model runs.
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5 Conclusions

Variational DA with land surface models holds a lot of po-
tential, especially for parameter estimation, but as land sur-
face models become more complex and subject to more fre-
quent version releases the calculation and maintenance of a
model adjoint will become increasingly expensive. One way
to avoid the computation of a model adjoint is to move to en-
semble data assimilation methods. In this paper we have doc-
umented LAVENDAR for the implementation of 4D-En-Var
data assimilation with land surface models. We have shown
the application of LAVENDAR to the JULES land surface
model, but as it requires no modification to the model itself
it can easily be applied to any land surface model. Using
LAVENDAR with JULES we retrieved a set of true model
parameters given known prior and observation error statis-
tics in a set of twin experiments and improved model predic-
tions of real-world observations from the Mead continuous
maize US-Ne1 FLUXNET site. The use of 4D-En-Var with
land models holds a great deal of potential for both parameter
and state estimation. The additional computational overhead
compared to 4D-Var is an appealing compromise given the
simplicity and generality of its implementation.
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