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Abstract. This study compares the performance of the Com-
munity Land Models (CLM4.5 and CLM5) against tower and
ground measurements from a tropical montane rainforest in
Costa Rica. The study site receives over 4000 mm of mean
annual precipitation and has high daily levels of relative
humidity. The measurement tower is equipped with eddy-
covariance and vertical profile systems able to measure var-
ious micrometeorological variables, particularly in wet and
complex terrain. In this work, results from point-scale simu-
lations for both CLM4.5 and its updated version (CLM5) are
compared to observed canopy flux and micrometeorological
data. Both models failed to capture the effects of frequent
rainfall events and mountainous topography on the variables
of interest (temperatures, leaf wetness, and fluxes). Overall,
CLM5 alleviates some errors in CLM4.5, but CLM5 still can-
not precisely simulate a number of canopy processes for this
forest. Soil, air, and canopy temperatures, as well as leaf wet-
ness, remain too sensitive to incoming solar radiation rates
despite updates to the model. As a result, daytime vapor flux
and carbon flux are overestimated, and modeled temperature
differences between day and night are higher than those ob-
served. Slope effects appear in the measured average diur-
nal variations of surface albedo and carbon flux, but CLM5
cannot simulate these features. This study suggests that both
CLMs still require further improvements concerning energy
partitioning processes, such as leaf wetness process, photo-
synthesis model, and aerodynamic resistance model for wet
and mountainous regions.

1 Introduction

Tropical forests play a critical role in determining regional
and global climate. Due to their significance for the global
water (Zhang et al., 2010; Choudhury and DiGirolamo,
1998) and carbon cycles (Huntingford et al., 2013; Beer
et al., 2010), accurate modeling of tropical regions is impor-
tant for the prediction of future climate and climate change
impacts. While tropical forests occupy only 16 % of the
global land, forests in the tropics house 25 % of the car-
bon stocks found in the terrestrial biosphere and account
for 33 % of global net primary production (NPP) (Bonan,
2008). They account for 33 % of terrestrial evapotranspira-
tion (ET), which ranges from 1000 up to 2200 mm yr−1, and
70 % of transpiration (TR) (Schlesinger and Jasechko, 2014;
Kume et al., 2011; Fisher et al., 2009; Loescher et al., 2005;
Sheil, 2018). Hydrological processes in the humid tropics
are also distinctly characterized by warm, uniform temper-
atures, large interannual and spatial variability, intense rain-
fall, and greater energy exchange than a temperate forest ac-
celerated by low albedos and high evaporative cooling (Wohl
et al., 2012; Bonan, 2008). The loss of such forests by climate
change or human impact can influence their local climate, but
also more remote regions (Lawrence and Vandecar, 2014).

Hence, building accurate land surface models (LSMs) is
important. LSMs, as a component of Earth system models
(ESMs), simulate the exchange of heat, water vapor, and car-
bon dioxide between the terrestrial surface and the atmo-
sphere, essentially based on the partitioning of net radiation
(Wang et al., 2016). The models have been used for the pre-
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diction of future climate and also its impacts on the land
surface such as tropical and extratropical forests (Cox et al.,
2013; Huntingford et al., 2013).

However, the models do not yet successfully capture the
underlying complexity of land–atmosphere interactions (Cai
et al., 2014; Wang et al., 2014; Lawrence et al., 2011; Oleson
et al., 2010). In particular, LSMs are known to make sig-
nificant errors in the prediction of carbon and water fluxes
for tropical regions. The reasons for these issues are not en-
tirely clear, even though significant improvements have been
made in this field of study (i.e., empirically and mechanisti-
cally). Lawrence et al. (2011) compared estimates obtained
using two versions of the Community Land Model (CLM3.5,
Oleson et al., 2008; CLM4.0, Oleson et al., 2010) against
observed sensible and latent heat flux data from FLUXNET
(Baldocchi et al., 2001). They found that CLM4.0 improved
predictions compared to CLM3.5 for most sites across the
network but continued to show low agreement for tropical
sites. Bonan et al. (2011) updated CLM4.0 by modifying the
structure of the radiative transfer model and physiological
parameters for canopy processes, which resulted in notable
improvements in CLM4.5 (Oleson et al., 2013), but overes-
timation of carbon and water vapor fluxes persisted in areas
closest to the Equator. The deficit is especially true for tropi-
cal wet mountain rainforests, which have rarely been studied
in the context of improving global LSMs due to the lack of
long-term, uniformly distributed measurements and the small
number of observation sites (Fisher et al., 2009; Wohl et al.,
2012).

To improve land surface models addressing tropical
ecosystem biosphere–atmosphere interactions, accurately
partitioning net radiation (energy) and water is critical for
these models, especially with respect to estimating latent heat
flux. Many studies maintain that vapor fluxes at tropical sites
are highly correlated (≈ 87 %) with net radiation (Andrews,
2016; Fisher et al., 2009; Hasler and Avissar, 2007; Loescher
et al., 2005). Others found that leaf wetness is also an im-
portant control (Andrews, 2016; Giambelluca et al., 2009).
Some studies indicate that the impact of leaf wetness sta-
tus on the model (which can contribute 8 %–20 % of ET)
can be detected depending on the canopy water storage ca-
pacity and rainfall pattern, although short-duration and high-
intensity rainfall does not significantly affect canopy evapo-
ration (Kume et al., 2011; Loescher et al., 2005). For tropical
sites, therefore, the interaction of interception and its evapo-
ration must be included in the modeling framework. Aerody-
namic conductance has also been considered a strong driver
for evapotranspiration in tropical forests because the large
amount of precipitation and frequently wetted canopy condi-
tions control leaf conductance (Shuttleworth, 1988; Loescher
et al., 2005). Vapor pressure deficit (VPD) has been shown to
only slightly influence (≈ 14 % predictor) tropical ET (Fisher
et al., 2009; Kume et al., 2011). However, when assessing
these studies, we can notice that the studies all highlight
the importance and difficulties of quantifying canopy-related

water fluxes. ET dynamics are dependent on how these mi-
crometeorological variables are related to the latent heat flux
within the energy balance. In tropical forests, the Bowen ra-
tio is consistently less than 1 (Loescher et al., 2005), which
implies that net radiation is highly correlated with latent heat
flux. Moreover, the forest canopy acts like a well-watered
crop without water limits (Loescher et al., 2005; Hasler and
Avissar, 2007; Kume et al., 2011). Hence, how to accurately
track water movement within the system (water balance) and
predict the ET proportion of net radiation (energy balance) is
still a critical question.

Water-related variables are not our only concern and can-
not be independently considered in Earth system or land sur-
face models. Other energy balance components and physio-
logical elements (e.g., thermal flux, radiative transfers, pho-
tosynthesis, and respiration) are likewise important because
they are dependent on the water. Normally, all LSMs handle
such main variables (e.g., heat and vapor flux, carbon flux,
and net radiation). However, the modeling community has re-
cently embraced additional components in order to represent
more realistic processes and to resolve research questions re-
lated to soil carbon and nitrogen cycling (Thornton et al.,
2007), multilayer plant canopies (Ryder et al., 2016; Launi-
ainen et al., 2015; Bonan et al., 2018), and even more so-
phisticated systems (e.g., urban settings, heat stress effects)
(Lawrence et al., 2018; Buzan et al., 2015). These changes
have led to the development of a plethora of sub-models,
making it difficult to identify a specific sub-model or set of
sub-models from which model error arises.

Land surface models have gradually increased in resolu-
tion with the improvement of observations through remote-
sensing technology. These changes have highlighted the im-
portance of spatial variability in the land surface system.
However, the models still cannot fully reflect the complexity
of the surface. The current parameterization being too sim-
plistic is one cause of model error (Singh et al., 2015; Wood
et al., 2011). For instance, hydrological processes are well
studied at the catchment scale and reflect topographic gradi-
ents, but LSMs are known to simplify the effect of the topo-
graphic slope (Fan et al., 2019a). Critical zone science has a
gap from the Earth system model, which normally focuses on
vertical flow (Fan et al., 2019a; Clark et al., 2015). The fail-
ure to reflect spatial heterogeneity and hydrologic connec-
tivity between large-scale process (land–atmosphere fluxes)
and microscale process (biogeochemical interactions) can be
problematic (Clark et al., 2015).

Hence, in order to properly parametrize global LSMs and
to precisely represent complicated systems, such as the trop-
ics and mountains, it is necessary to continue to diagnose
land surface models using site-based data. Unique sites like
tropical mountain forests are valuable test beds for model
improvement because their environment is an “edge case”
for the model; model calibration under more extreme cli-
mate conditions can provide valuable insight for the utility
of these models under conditions of climate change. Using
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detailed variables, such as soil moisture and temperature, in-
terception, and stomatal conductivity, site-based studies can
identify and alleviate errors in model subcomponents. Such
errors cannot be easily detected by the analysis of more inte-
grative variables, such as albedo or net radiation.

Measurements including eddy-covariance tower systems
have been widely used for the advance of global land surface
models via calibration and validation (Bonan et al., 2012;
Zaehle and Friend, 2010; Larsen et al., 2016; Chaney et al.,
2016). Gridded global data from the FLUXNET network are
also available for model development at large scales (Bonan
et al., 2011; Jung, 2009). However, point-scale and stand-
scale studies still form a core component of research at re-
gional to global scales. In this study, CLM4.5 (Oleson et al.,
2013) and its updated version (CLM5) (Lawrence et al.,
2018) are employed, and micrometeorological datasets from
a tropical rainforest in Costa Rica are compared with these
simulation results. The objectives are fourfold:

1. to compare the default mode and point-scale predictions
of both CLM 4.5 and CLM 5.0 against micrometeoro-
logical and flux measurements collected in a Costa Ri-
can wet montane tropical forest;

2. to identify the improvements in performance between
the two CLM versions and shortcomings remaining in
the newer version (CLM5);

3. to discern errors caused by the unique environment at
our study site (i.e., frequent rainfall and mountainous to-
pography) and to identify formulations that are too sim-
plistic and incorrect parameters (i.e., interception and
leaf wetness models, photosynthesis models, etc.); and

4. to determine which canopy–atmosphere processes (i.e.,
sub-models) are most poorly represented in order to
suggest priorities for future model improvements.

2 Methodology

2.1 Study site

The field site is located at the Texas A&M University Soltis
Center near San Isidro de Peñas Blancas in Costa Rica
(10◦23′13′′ N, 84◦37′33′′W; about 600 m above sea level)
(Fig. 1). It shares a boundary with the Children’s Eter-
nal Rainforest. This area has a mean annual temperature
of 24 ◦C, relative humidity of 85 %, and precipitation of
4200 mm (Teale et al., 2014). The study area is classified
as a moist, tropical pre-montane forest. The canopy height
ranges from 24 to 45 m and is located on a steep eastern
slope (Aparecido et al., 2016; Jung, 2009). Rainfall is fre-
quent, and a little over two-thirds of days have one or more
rain events. The dry season starts from January and continues
until April, and the mean rainfall is about 195 mm per month.

The wet season is from May until the end of the year: the av-
erage rainfall in the wet season is approximately 470 mm per
month (Teale et al., 2014; Aparecido et al., 2016).

2.2 Micrometeorological measurements

The site has two primary biometeorological measurement lo-
cations (Fig. 1). The main weather tower (hereafter called
the “met tower”) is located in a flat, grass-covered clear-
ing at the base of the mountain. The walk-up canopy access
tower (hereafter called the “canopy tower”) is located within
the forest, on the eastern slope. The met tower measures
meteorological conditions without the influence of canopy
processes and structure. Precipitation (mm; TE525, Camp-
bell Scientific, Logan, UT), incoming solar radiation, net ra-
diation (W m−2; CNR1, Campbell Scientific), air tempera-
ture (◦C; HMP60, Campbell Scientific), and relative humid-
ity data (%; HMP60, Campbell Scientific) have been col-
lected since 2010. The canopy tower has collected the same
variables as the met tower (with exception of precipitation).
A suite of additional measurements, including greenhouse
gas concentrations and fluxes, soil moisture, leaf wetness,
and sap flow, have been collected at the met tower since
2014. An infrared, trace-gas profile system (AP200, Camp-
bell Scientific, Logan, UT) and an eddy-covariance system
(LI-7200, LI-COR, Lincoln, NE; CSAT3, Campbell Scien-
tific, Logan, UT) are used to collect micrometeorological
data at various heights, including concentrations and fluxes
of vapor (i.e., H2O) and carbon dioxide (i.e., CO2), wind
speed and its direction, and air temperature. Additional data
are also collected to track canopy processes: leaf wetness
sensors at four different heights (LWS, Decagon Devices,
Utah), photosynthetically active radiation (PAR) profiles (LI-
190, LI-COR) at five heights, leaf area index (LAI) pro-
file using a lined PAR sensor (LI-191, LI-COR) and Beer–
Lambert law (Appendix A), leaf temperature sensors for sun-
lit and shade leaves (SI-111, Apogee Instruments, Logan,
UT), soil heat flux (HFT3, Campbell Scientific), soil temper-
ature (5TE, Decagon Devices, WA), soil moisture (EC-4 and
10HS, Decagon Devices, WA), soil respiration (LI-8100A,
LI-COR), and transpiration from the sap-flow system. Apare-
cido et al. (2016) and Andrews (2016) present more detailed
information about the sap-flow system and the profile mea-
surements, respectively. The datasets for this site, from 2014
to 2017, are available via the OAKTrust repository (Miller
et al., 2018a,b,c,d).

While the canopy tower exceeds the average canopy
height, some known interference is present from a nearby
emergent tree (Fig. 2), leading to a large gap in the canopy
between heights of roughly 30 and 40 m. This configuration
leads to two main challenges. Above the gap, the upslope
tree (emergent tree) provides a significant degree of shad-
ing, which leads to a 70 % reduction in PAR between mea-
surements at the downslope canopy surface (32 m) and above
the emergent tree (44 m). We also note that this configuration
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Figure 1. The map of the study site and the locations of the two towers (Andrews, 2016).

makes the eddy-covariance method less than ideal. However,
the sonic anemometer and infrared gas analyzer (IRGA) are
located at 33 m of height, extending away from the tower and
clear of obstructions in both the upwind and downslope di-
rections (Fig. 2). As shown in Figs. 1 and 2, predominant
winds flow parallel to the valley (N–S) and not perpendicu-
lar to this eastern mountain slope. This configuration allows
us to capture fluxes, albeit under a narrowed set of ambient
conditions. Thus, these data are not necessarily sufficient for
recording long-term, integrated measures of ecosystem-level
variables, like gross primary production. However, they are
suitable for testing and validating models, despite the hetero-
geneous structure created by the emergent tree.

2.3 Model description

In this section, we briefly describe CLM’s structure and its
formulation of the energy balance equation. Given the site’s
extremely high humidity and annual precipitation, we hy-
pothesize that the sub-models related to water fluxes are the
main sources of prediction errors, and as such, the discussion
focuses primarily on them. More detailed descriptions can be
found in the technical manual (Lawrence et al., 2018; Ole-
son et al., 2013, 2010). Hereafter we use CLM in a general
sense, applicable to both CLM4.5 and CLM5, but provide the
specific version number when distinguishing their respective
behavior or the effects of recent code modifications.

CLM calculates the radiative transfer through the canopy
and the ground surface using the two-stream approximation
method (Dickinson, 1983; Sellers et al., 1992; Bonan, 1996;
Oleson et al., 2013), which is a starting point for land sur-
face models to determine the exchange of energy. In the pro-
cedure, the canopy structure (e.g., LAI, leaf angle) and the
current conditions (e.g., wetness, solar angle) are main con-
trollers to determine the absorptivity of incoming solar radia-
tion (albedo). Based on the absorbed incoming energy, fluxes
of sensible heat, latent heat, and soil heat are estimated using
the energy balance equation. For example, the canopy energy

balance can be written as a function of vegetation tempera-
ture (Tv):

−Sv+Lv(Tv)+Hv(Tv)+LEv(Tv)= 0, (1)

where Sv is the absorbed solar radiation by the canopy, Lv
is the longwave radiation emitted by the canopy, Hv is the
sensible heat flux, and LEv is the latent heat flux from the
canopy, all of which are given in watts per square meter
(W m−2) (Oleson et al., 2013). Monin–Obukhov similar-
ity theory (MOST) is used to determine resistances along
the soil–plant–atmosphere continuum (Fig. 3), which is then
used to calculateHv and LEv (Zeng et al., 1998; Oleson et al.,
2013). Using a big-leaf model, CLM represents both sunlit
and shaded leaves (Dai et al., 2004).

The water balance equation tracks water flows through the
system and connects to the energy balance via its dual con-
trols on ET. The first of these controls, the influence of soil
moisture on stomatal conductance, is not considered in this
study. Soil moisture does not appear to limit stomatal con-
ductance in the model; the predicted average value of the
transpiration wetness factor in CLM was typically around
95 % in this study period and never fell below 50 % for any
30 min time period. Also, prior work has determined that ET
at the present study site is not limited by soil water deficits
during normal to above-normal rainfall years, such as the pe-
riod from 2014 to 2016 (Andrews, 2016). On the other hand,
leaf wetness can have an influence on this site. While its ef-
fect is considered to be small in some ecosystems (Burns
et al., 2018), previous studies have shown that leaf wetness
exerts a significant influence on fluxes from rainforests in
general (Loescher et al., 2005; Kume et al., 2011) and at this
site specifically (Aparecido et al., 2017; Moore et al., 2018).
CLM reflects these mechanisms as well in the resistance net-
work (Fig. 3b), and the leaf wetness can prevent transpiration
and contribute to canopy evaporation rates. Here, leaf wet-
ness is determined by the interception rate of incoming pre-
cipitation (Deardorff, 1978; Dickinson et al., 1993; Lawrence
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Figure 2. Sketch of the canopy tower located in a plot within a mature pre-montane moist tropical forest in Costa Rica (right) with LAI
profiles highlighted (left) along with the location of the eddy-covariance system (EC, 33 m) and the spire (44 m), which holds the net
radiometer. The leaf area index is given at 22 discrete points (100 points by spline interpolation) in the canopy (LAIz), and its sum (LAI)
is equal to 6 m2 m−2 for this stand. The LAIz was estimated based on light profile data and the Beer–Lambert law (Vose et al., 1995). The
method for measuring and deriving LAIz is explained in Appendix A.

Figure 3. Resistance network schemes incorporated within CLM for (a) sensible heat flux and (b) latent heat flux. Main state variables
are atmospheric potential temperature (θatm) and specific humidity (qatm), canopy air temperature (Ts) and specific humidity (qs), leaf
temperature (Tv) and its corresponding specific humidity (qv), and ground temperature (Tg) and its corresponding specific humidity (qg).
Relevant heights are the atmospheric reference height (zatm), the canopy roughness height (Z0), the groundwater roughness height (Z′0),
and the displacement height (d). Resistances are specified by their scalar (h for heat and w for water vapor), type (a for aerodynamic, b for
boundary layer, s for stomatal, or lit ter for litter), and lighting (sun or shade). Leaf wetness also exerts a control on fluxes via a wetness
fraction (fwet), and (L+ S) is the leaf and stem area index. Figure adapted after Oleson et al. (2013).

and Chase, 2007). The amount of interception qic is given in
CLM4.5 as

qic = 0.25 · qrain/snow · [1− e−0.5(L+S)
], (2)

and in CLM5 as

qic = 1.00 · qrain/snow · tanh(L+ S), (3)

where qrain/snow is the precipitation as liquid or snow, L+ S
is leaf and stem area index, and 0.25 is a model coefficient.
After determining intercepted rainfall, canopy water storage
(Wcan) is calculated through repartitioning based on the con-
dition of 05Wcan5Wmax (mm), where maximum canopy wa-
ter storage (Wmax) is 0.1(L+S) (Dickinson et al., 1993; Ole-
son et al., 2013). Finally, fwet is
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fwet =

[
Wcan

Wmax

]2/3

. (4)

Additionally, in CLM5, fwet cannot exceed a maximum
value (fwetmax) of 0.05. For instance, if fwet was 0.7, fwet
would become 0.05. Finally, fdry is calculated as

fdry =
(1− fwet) ·L

L+ S
. (5)

In Eq. (4), the 2/3 exponent was assumed following the
original literature (Deardorff, 1978) because the canopy wa-
ter tends not to be evaporated when it is set to 1 and evapo-
rates too fast when close to zero (Deardorff, 1978).

Additionally, CLM mainly uses the Farquhar model (Far-
quhar et al., 1980; Oleson et al., 2013) for photosynthetic
rates. At our site, air temperature varies little through-
out the year, and CO2 concentration does not vary signif-
icantly. Consequently, light-limited photosynthesis can be
considered a dominant process. The light-limited model wj
(µmol m−2 s−1) in CLM is developed based on the Farquhar
model (Oleson et al., 2013) and can be written as

wj = 0.25JxCi, Ci =
ci− cp

ci+ 2cp
, (6)

where ci is the intracellular CO2 concentration, cp is
the CO2 compensation point assuming four electrons per
CO2 molecule, Ci is a function of ci and cp, and Jx
(µmol m−2 s−1) is the electron transport rate, which can be
estimated through

2J 2
x − (IPSII+ Jmax)Jx + IPSII,Jmax = 0, (7)

where 2 is a curvature parameter (2= 0.7 by default), and
Jmax (µmol m−2 s−1) is the maximum rate of electron trans-
port. IPSII can be estimated as IPSII = 0.58 · IAPAR, where 8
is the quantum efficiency of photosystem II (8= 0.85), 0.5
is for two photosystems for one electron, and IAPAR is ab-
sorbed PAR (µmol m−2 s−1).

To further explore these relationships, Eqs. (6) and (7)
are simplified and recalculated to make them comparable to
the apparent quantum yield (α). This is because the light-
limited model has a hyperbolic shape and the shape changes
influenced by other environmental conditions. However, the
apparent quantum yield is a slope parameter (or the initial
slope of the light-limited model) between absorbed PAR and
the photosynthetic rate, which is a well-known and sim-
ple parameter with a long research history in the litera-
ture (Skillman, 2007; Evans, 2013). From Eq. (6), if am-
bient conditions include cp ≈ 40µmolmol−1, ca ≈ 400, and
ci/ca ≈ 0.7, then ci ≈ 0.7·400µmolmol−1 (Launiainen et al.,
2011; Katul et al., 2010) and Ci becomes 0.667. If ci be-
comes higher as atmospheric CO2 concentrations increase, it
will approach 1. Through Eqs. (6) and (7), the initial quan-
tum yield of CO2, also known as the apparent quantum yield

(α), can be estimated via ∂Jx/∂IAPAR×0.667×0.25, which
can be used with simple models such as wj = α · IAPAR. It
is worth noting that the differential has brought indepen-
dence from Jmax at zero APAR, which is highly related to
nitrogen and leaf temperature. The theoretical maximum for
α should be ≈ 0.11; α in saturated conditions is approxi-
mately 0.075 (absence of photorespiration), and in normal
atmosphere conditions α is about 0.05, which is estimated if
8≈ 0.6 in Eq. (7) (Evans, 2013; Raj et al., 2016; Skillman,
2007). These light-limited models with different parameters
are explored with observations in a later section.

2.4 Simulation setup and comparison method

CLM was tested in point-scale mode and the satellite phenol-
ogy (SP) mode with default settings, with exceptions noted
below. Extension modes, which consider additional pro-
cesses such as dynamic global vegetation (DGVM), biogeo-
chemical cycles (BGC), or carbon–nitrogen cycling (CN),
were in general not considered since they do not affect our
study interests here (e.g., tree growth and stand competi-
tion). Input parameters for the simulation were determined
using the mksurfdata_map utility provided in the Commu-
nity Earth System Model (CESM). The utility derives its val-
ues from satellite-based global datasets of phenology, soils,
and topography provided by University Corporation for At-
mospheric Research (UCAR) (Oleson et al., 2013).

Based on multiple initial tests, we decided to use default
parameters from the global surface data for our model, as
varying them had no significant influence on model perfor-
mance. Location-specific default parameters from the global
dataset include leaf area index (LAI, 5m2 m−2), stem area
index (SAI, 0.8m2 m−2), canopy height (34 m), sandy clay
loam soil (47 % sand, 26 % clay, 27 % silt), organic matter
density (33 kgm−3), and color class (15). We need to note
that default CLM cannot yet reflect leaf area density (LAD)
as in Fig. 2. Changing any of these parameters from the
global values to local values did not significantly affect the
model’s results in our tests. This is perhaps because our LAI
value is high enough to be the dominant parameter, and the
role of the soil is small. Moreover, the slope parameter exists
in the model, but it is not actually used in CLM’s radiative
transfer, canopy process, and turbulence sub-models. Addi-
tionally, most of the measured parameters at this site were
not very different from the default values. Therefore, we de-
cided to use the default setting except for some significant
differences as outlined below. The tropical broadleaf ever-
green tree (BET) plant functional type (PFT) was used as the
basis for representing the site’s specific land cover. The lo-
cation in question had a default value of 30 % BET tropical,
30 % tropical broadleaf deciduous trees (BDT tropical), and
25 % grass and crops, which we altered to 100 % BET for
purposes of this study. The atmospheric reference height was
set to 44 m to reflect the location of the net radiation sensor
on the canopy tower.
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As an input, a meteorological forcing dataset for CLM
was created based on the measurements collected on-site.
These variables included half-hourly averages of wind speed
(m s−1), incoming solar radiation, relative humidity, air tem-
perature, air pressure, precipitation, and CO2 concentration.
Comparison of the simulation was based on measurements
taken at the canopy tower; thus, canopy tower data were pri-
marily used as forcing data when data were available. Aver-
age precipitation and air temperature data collected at 10 m
of height at the met tower were also used for gap-filling. In
most cases, weather data obtained from the two towers were
highly correlated, as the locations are less than 1 km apart
and only differ in their immediate surroundings (i.e., forest
vs. clearing) and slope degree (i.e., ∼ 45◦ slope vs. flat ter-
rain).

Although flux methods cannot measure gross primary pro-
duction (GPP) directly, it is an extremely important vari-
able in the context of global carbon cycle modeling. In
light of this, we estimated GPP based on net ecosystem ex-
change (NEE), net ecosystem production (NEP), and ecosys-
tem respiration (ER), where NEE ≈NEP and GPP=NEP
– ER. With eddy-covariance data collected at the height
of 33 m, NEP was estimated as CO2 flux+CO2 storage
flux. Ecosystem respiration (ER) was estimated to be around
1.2 (µmol m−2 s−1) based on the nighttime data found us-
ing the u∗ threshold method (Papale, 2006; Reichstein et al.,
2005). These EC-based data for the CO2 and H2O flux can
still be questionable due to the instrument configuration.
However, comparison of the EC data and sap-flow data (dis-
cussed below) showed acceptable similarity, and these data
were accurate enough to give information on whether the
model has a significant error.

For transpiration (TR), measured data and simulated tran-
spiration rates are compared at daily timescales. For the com-
parison, it is necessary to estimate or measure each ma-
jor flux (partitioned flux) within ET. At this site, upscaled
sap-flow data provide a transpiration rate (Aparecido et al.,
2016), which in turns allows for water vapor flux partition-
ing. Although the sap-flow data at the site tend to lag tempo-
rally and nocturnal sap flow occurs (shown later), it provides
data to be used for comparison at a daily scale against CLM
estimates. As CLM cannot represent nighttime transpiration,
the nighttime sap-flow data, collected when the cosine zenith
in CLM is less than zero, were eliminated from the compar-
ison. However, taking into account the fact that the night-
time sap-flow rate possibly occurs to recharge the sap water,
an additional comparison was made without the elimination
of nighttime value. This daily-scale comparison is made by
a one-to-one figure with R-squared values. Also, regression
analysis provides additional information on how much the
model deviates from observations, as a slope of 1 and an in-
tercept of 0 are expected from model–measurement compar-
isons. We note that the intercept is related to the daily average
value, and it should be directly affected by the elimination of

the nighttime transpiration; a portion of this difference is re-
lated to the lag.

Unlike radiative transfer models, CLM5 notably updated
from CLM4.5 the physiological models for GPP and TR as
well as their associated parameters. The Ball–Berry model
(BB) (Ball et al., 1987) was supplanted by a combination
of the Medlyn model for the stomatal conductivity (Med-
lyn et al., 2011), a plant hydraulic stress model (Bonan
et al., 2014), and the Leaf Use of Nitrogen for Assimila-
tion (LUNA) routine (Ali, 2016). For the stomatal conductiv-
ity, regardless of the type of model (BB or Medlyn model),
the slope parameter, which links stomatal conductivity and
carbon fixation (i.e., photosynthesis), has been reduced by
the model update. While the BB model can still be used for
CLM5, its slope parameter has been changed from 9 to 7.3
for C3 plants. We have tested several options in CLM5 and
determined that changing the stomatal conductivity model
does not affect photosynthesis-related results (e.g., GPP) in
our case.

To facilitate comparisons, CLM requires assigning the
height of each output variable. In this case, each reference
height was determined based on given parameters in CLM:
the displacement height was d = 23.45 m, ground rough-
ness height was z0mg = z0qg = z0hg = 0.01 m, and surface
height was z0 = z0mv = 2.625 m, so the canopy height be-
came d + z0 = 26.075 m. For instance, canopy air tempera-
ture (Ta) in CLM was 2 m temperature in this comparison
study, and it was d + z0+ 2= 28.075 m. CLM uses the Ts
term in Fig. 3, which refers to canopy air temperature, but
the CLM module does not provide Ts values as one of the
output variables. This 2 m temperature (Ta), called TSA in
CLM outputs, would be the closest available value from the
canopy. Moreover, our profile data indicate that air tempera-
ture does not vary much at different heights near the top of
the canopy, and 28.075 m is still within the canopy. Our in-
strument heights did not exactly correspond to those heights
from CLM, so the nearest one or two data points were used
for the comparison rather than interpolating all data.

Additionally, CLM5 has a low default leaf wetness ratio;
the maximum is 0.05 as in Eq. (4). For fair comparison, all
leaf wetness values from CLM were normalized to a [0–1]
scale based on the water amount on the canopy using Eq. (4).
Additionally, the question of whether or not to apply the
power of 2/3 did not change our comparison results signifi-
cantly.

Soil-related data were spatially upscaled and vertically in-
terpolated to compare with the simulation. For the spatial up-
scale, soil temperatures and soil heat fluxes were measured at
five different places near the canopy tower, and the vertical
profile data were also collected close to the base of the tower.
For the vertical profile, CLM considers a larger number of
soil layers. Therefore, the results of CLM were linearly in-
terpolated to compare with the measured data.

To initialize the simulations, CLM was first executed with
a cold start (i.e., randomly produced initial values) and
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run for 100 years to get stable soil temperatures, cycling
(through) the 6-year forcing data collected between the be-
ginning of 2010 and the end of 2015. Once stable soil tem-
peratures were obtained, CLM was rerun for 2 years (2014–
2016) at a 30 min time step. For some cases, linear regres-
sions were performed to compare CLM outputs to field data.
The goodness of fit of the regression analysis was determined
based on coefficient of determination (R squared) where ap-
propriate. In this analysis, we focused on the following vari-
ables: net radiation, PAR, albedo, CO2 flux, GPP, transpira-
tion, latent heat flux, air temperature, leaf temperature, leaf
wetness, and soil-related variables. We additionally tested
how changes in levels of maximum leaf wetness (fwetmax)
and the quantum efficiency of the photosystem (8) affected
the goodness of fit. Modifications of LAI, light-extinction-
related coefficients, and canopy heights (34–44 m) were also
tested. Unlike fwetmax and8, however, they provided no sig-
nificant difference or better results, so comparison and dis-
cussion of them are not made here.

3 Simulation results and comparison

3.1 Net radiation and albedo

A comparison of light-related variables indicated that the
simulated land surfaces received less energy than field mea-
surements, but the difference was not significant. Simulated
net radiation values were 20 W m−2 less than the average
measured values, although diurnal patterns closely matched
(R2
= 0.99). Net radiation in CLM was approximately 15 to

45 W m−2 lower than field measurements during the daytime
and 10 to 15 W m−2 lower during the nighttime (Fig. 4a,
b). Little difference (< 5 W m−2, R2

= 0.99) was detected
between CLM4.5 and CLM5. The simulated shortwave re-
flectance (albedo) in CLM was around 15 % higher than the
gauged albedo (+0.022 across all daytime data) (Fig. 4c),
which likely caused the differences in daytime net radiation.

Light data were clearly affected by the sloped terrain. Al-
though the models were developed for all the global sur-
face, sub-grid-scale heterogeneity in land surface elevations
has not yet been implemented in CLM4.5 and 5.0. Albedo
from CLM tended to have a symmetric form, while the mea-
sured albedo had a skewed diurnal pattern (Fig. 4c). This
skew caused a noticeable discrepancy with the modeled val-
ues in the early morning, which peaked during midafter-
noon (+0.0517 at 15:00; Fig. 4c). The highest PAR inten-
sity (or highest incoming solar radiation) occurred at 10:00
(Fig. 4e) when the albedo difference between the observa-
tions and the simulation was smallest (+0.0214). In some
parts, this may be caused by albedo models that are too sim-
ple, which cannot properly respond to the intensity of solar
radiation and angle. However, the skewed albedo seen in the
measured data in Fig. 4c and d clearly indicates that CLM
cannot represent the slope effect of the land surface. Such

skewed diurnal variations were also observed in the PAR
profiles (Fig. 4e, f). The measured PAR values, generated
by sensors somewhat shaded by the upper canopy, were di-
urnally skewed compared with shaded PAR from CLM. In
contrast to the solar radiation above the canopy (i.e., the top
of the tower, net radiation), the radiation profile started to
become skewed right after infiltrating the top canopy layer.
When revisiting the effect of canopy gaps created by the
emergent tree, we observed that radiation values between the
top of the canopy (≈ 400 W m−2 at 44 m from net radiation)
and the next nearest heights (≈ 110 W m−2 at 32–38 m from
PAR) were considerably different (about 70 %–80 % reduc-
tion from the top), as mentioned before. The height of the pri-
mary canopy, consisting of the dominant trees, is about 38 m
(Aparecido et al., 2016). Therefore, the shade effect (opti-
cal thickness) may be substantial, even though the emergent
trees added minimal thickness. This feature can be impor-
tant because the hillslope surface is more sensitive to the sun
angle, which affects the sunlit–shaded area ratio.

Simple manipulation was attempted by changing the so-
lar angle to mimic the slope effect on albedo (Fig. 4c, d,
e). The cosine zenith angle in the two-stream approxima-
tion was reestimated by pushing back 30◦ to apply to the
light extinction coefficient K in the two-stream approxima-
tion. This simple modification reduced some of the skewness
of the albedo (Fig. 4d). However, shaded PAR showed op-
posite behavior compared to the observation, mainly because
sunlit area was increased.

3.2 CO2 flux (GPP)

All CLM versions (CLM4.5, CLM5, and CLM5BGC) over-
estimated GPP (6.7, 4.9, and 3.6 µmol m−2 s−1) (Fig. 5a, b).
Results from the new version, CLM5, were generally more
similar to the measured data than those in CLM4.5 (Fig. 5a).
CLM5 yielded lower photosynthetic rates than CLM4.5, pos-
sibly due to the lower BB slope parameter and also due to
suppressed maximum rates of Vc,max25 and Jmax25 by the
LUNA and BGC mode. Inactivating the plant hydraulic stress
model in CLM5 increased the carbon assimilation rate, while
disabling the LUNA model decreases it in this site study. The
prediction for the middle range of the photosynthetic rate
(5–15 µmol m−2 s−1) did not improve much compared with
CLM4.5.

One of the possible causes of the discrepancy between the
estimated GPP and its observed values may be the model de-
termining the response to light limitations (Fig. 5b). Compar-
ison between absorbed PAR (APAR) versus GPP shows that
the initial slope of measured data is much lower than the sim-
ulated one (Fig. 5c). The APAR, including sunlit and shade
leaf area, was estimated in CLM using measured incoming
solar radiation above the canopy at 44 m. As previously ex-
plained (Fig. 5d), an extensive literature study by Skillman
(2007) and Evans (2013) showed the theoretical maximum
for α should be ≈ 0.11, that α under saturated conditions is
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Figure 4. (a, b) Comparison of net radiation between CLM and measurements on the canopy tower at 44 m. (c, d) albedo at 44 m. (e, f) PAR
comparison for shaded canopies. All left plots (a, c, e) are ensemble diurnal variation, and the right plots (b, d, f) are one-to-one comparison
plots between CLM and measured data. Hysteresis depicted in (d) and (f) is based on hourly ensemble average values for daytime. “Modified”
is an attempt to mimic the slope effect with a simple update of the two-stream approximation.

approximately 0.075 (absence of photorespiration), and that
in normal atmospheric conditions α is about 0.05, which
is estimated when considering 8≈ 0.6 in Eq. (7) (Evans,
2013; Raj et al., 2016; Skillman, 2007). From our observa-
tions, the fitted value for α was 0.021 (8≈ 0.25). This low
value may have been caused by other factors such as phys-
iological stress or a scale problem. The fitted value was es-

timated from eddy-covariance measurements rather than at
the leaf scale. By default, α is around 0.07 in CLM4.5 and
CLM5, with Ci = 0.667, which is higher than 0.05 as usu-
ally reported (Skillman, 2007; Ehleringer and Pearcy, 1983;
Ehleringer and Björkman, 1977). Of course, this method it-
self has a possible error caused by the issues inherent in the
eddy-covariance measurements, as well as the estimation of
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APAR in CLM, which contains only sunlit and shade leaf
area, making it too simplistic. For this study,8 was modified
to produce an appropriate value for α, but the issue should be
revisited in future studies.

Test simulations with CLM4.5 and CLM5 were conducted
using 8= 0.25 and 2= 0.7. When 8 was updated, both
CLM4.5 and CLM5 performed better than before (Figs. 6,
5a). This change resulted in more stable predictions, as
judged by the middle range of GPP (5–15 µmol m−2 s−1).
Maximum GPP was reduced as expected (Fig. 5d), and it was
possible to further fix such an over-reduction by updating 2
(curve shape), as shown on Fig. 5d. The change in the slope
can alter the maximum assimilation rate, and the alteration
can be counterbalanced if 2 is modified. In the simulated
diurnal variation plot, the trend was slightly shifted in the af-
ternoon, also probably due to the effects of the topographical
slope (Fig. 6b). Time-dependent classification (i.e., regres-
sion lines with the intercept forced through zero; Fig. 6b) and
the fitted slopes indicated that geographical features have an
influence on photosynthetic activity, which is mostly caused
by the radiative transfer models, like albedo. However, the
model failed to accurately represent such features, since the
CO2 flux in CLM was lower in the morning and higher in the
afternoon.

3.3 H2O flux

The effect of the change in fwetmax was detected in the
model’s results for vapor fluxes (Fig. 7). Again, CLM5 has a
low leaf wetness coefficient (i.e., the maximum rate is 0.05
as in Eq. 4, which reduced canopy evaporation and elevated
the transpiration rate). In this simulation, fwetmax was con-
sidered to be 1 for CLM5 (hereafter referred to as CLM5
fmx= 1), and we used this when we wanted to make a fairer
comparison with CLM4.5

Similarly to the CO2 flux, total H2O fluxes of CLM5 were
overestimated (2.1× 10−5 mm s−1 higher in daytime than
eddy-covariance values). Flux rates in the CLM5 fmx= 1
simulations were reduced in comparison to those predicted
by CLM4.5 (Fig. 7a, b). The notable decrease (CLM4.5 and
CLM5 with 8= 0.25) was due to the change in the quan-
tum yield (α) parameter needed for GPP predictions (Fig. 6).
Transpiration rates (TR) also showed similar trends, and this
indicates that TR is an important process at this site.

At the daily timescale, CLM4.5 produced the highest es-
timates for both ET and TR in comparison to the other ver-
sions (Fig. 7e, f). CLM5 yielded a notable reduction of ET
and TR due to the newly implemented leaf wetness parameter
fwetmax. We can visually determine that applying a quantum
efficiency of 8= 0.25 made fitted lines closer to the 1 : 1
line for both ET and TR (Fig. 7e, f). However, we cannot con-
clude that it was improved, since although the low8 changed
the slope and intercept values it did not change theR-squared
values significantly. This change might also be influenced by
other components such as leaf wetness. Here, correlations of

TR were slightly increased by around 0.01 (R2
CLM4.5 = 0.67,

R2
CLM5 = 0.68) when considering 8 = 0.25. On the other

hand, the correlations of ET were decreased by around 0.1
(R2

CLM4.5 = 0.42, R2
CLM5 = 0.44) (Table 1). When assuming

a lower quantum efficiency, the change in TR makes the fitted
slope for ET decrease (Fig. 7e), possibly since transpiration
is a more influential component than evaporation at this site.
Thus, TR drove ET rates when there were higher energy ex-
change conditions (i.e., warm, sunnier, and drier time). On
the other hand, these results also highlighted the importance
of other sub-models such as canopy evaporation.

3.4 Leaf wetness

The leaf wetness fraction predicted by CLM was compared
to observations made using capacitance sensors (Fig. 8).
In the analysis, the ensemble diurnal variations of leaf
wetness were plotted; 38 m, 11 m, and 3 m are the mea-
surement heights, and the others are leaf wetness from
CLM5 (fwetmax = 0.05), CLM5 fmx= 1 (fwetmax = 1), and
CLM4.5 (fwetmax = 1) (Fig. 8b). The predicted leaf wetness
was not in agreement with the diurnal leaf wetness variation
measured at this site (Fig. 8b). In particular, the nighttime
fraction of leaf wetness was significantly higher when com-
pared with gauged data. The biggest problem detected in this
study was that intercepted canopy water was rarely evapo-
rated in the model. The canopy water tended to accumulate,
especially due to frequent nighttime rainfall that started in
the late afternoon or high daytime humidity, which caused
condensation. Daytime leaf wetness seems to be reasonably
simulated (Fig. 8b). However, no trend could be identified in
the comparison between simulated and measured data (not
displayed here), which indicated that the formula cannot ad-
equately represent the actual behavior of the wet fraction in
both CLM5 and CLM4.5.

Intercepted precipitation was usually too high in CLM
compared to observed leaf wetness (Fig. 8c, d). The val-
ues in Fig. 8c and d show the increasing rate of leaf wet-
ness due to precipitation, with the large and thick mark-
ers indicating their averages. The collected data were con-
ditioned upon the absence of a rainfall event at least 2 h
prior and an initial leaf wetness lower than 0.2. Figure 8c
shows 0.5 h rainfall events (one consecutive event at a 30 min
scale) and Fig. 8d is for 2 h rainfall events (four consecu-
tive events). This increment was directly related to canopy
interception: the usual increment for 2 h (and 30 min) rain
was 0.71 (0.33) at a 38 m height, 0.48 (0.28) at a 3 m height,
around 0.88 (0.73) in CLM5, 0.97 (0.77) in CLM5 fmx= 1,
and 0.94 (0.46) in CLM4.5. The modified interception model
(CLM5 fmx= 1) from Eq. (3) resulted in a higher intercep-
tion rate than CLM4.5 fmx= 1 (Eq. 2). The interception rate
also seemed higher with CLM5 fmx= 1 than with original
CLM5 as in Fig. 8c because CLM5 fmx= 1 had a higher
canopy evaporation rate. This effect resulted in the acceler-
ation of canopy evaporation while allowing interception to
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Figure 5. (a) Ensemble diurnal variation of the CO2 flux: differences between eddy covariance (canopy tower 33 m) and CLM in daytime
are 6.7, 4.9, and 3.6 µmol m−2 s−1 for CLM4.5, CLM5, and CLM5BGC, respectively. (b) Scatter plot using data shown in previous panel
with one-to-one line noted (a). (c) APAR vs. GPP, and wj is simulated with default parameters and Ci = 0.667. (d) The light-limited model
tested with different parameters. “Max” is the theoretical maximum, “Elv” is saturated–elevated conditions, “Amb” is normal atmosphere
conditions, and “Fit” is a fitted value from our observations. In the legend, [2] means the usage of the hyperbolic function in Eq. (7), like
Elv[2]. Without [2], only the slope parameter is active as “Elv”. These parameters are described in full in Sects. 2.3 and 3.2.

Table 1. Fitting parameters and regression coefficients for sap-flow and eddy-covariance measurements versus simulations by CLM at a daily
scale for Fig. 7e and f. The nighttime data are excluded (set to zero) for both and values in parentheses are with nighttime data (intercept
unit: 10−6 mm s−1).

Figure Line Model Data Slope Intercept R2

1 CLM5 0.92 9.98 0.51
2 CLM5 fmx= 1 EC 33 m 0.82 10.79 0.51

Fig. 7e 3 CLM4.5 (ET) 1.04 8.06 0.55
4 CLM5 8= 0.25 0.69 8.51 0.42
5 CLM4.5 8= 0.25 0.75 7.65 0.44

1 CLM5 1.11 (1.01) +1.79 (−0.22) 0.80 (0.66)
2 CLM5 fmx= 1 Sap flow 1.29 (1.17) −3.00 (−5.32) 0.81 (0.67)

Fig. 7f 3 CLM4.5 (TR) 1.51 (1.37) −4.43 (−7.29) 0.81 (0.67)
4 CLM5 8= 0.25 0.87 (0.79) −0.51 (−2.14) 0.80 (0.67)
5 CLM4.5 8= 0.25 1.12 (1.03) −3.67 (−5.84) 0.80 (0.68)
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Figure 6. Test simulation using 8= 0.25 and 2= 0.7 as in Fig. 5d. By the modification of 8, maximum GPP has been reduced. It is
possible to improve this model by updating 2; r2 is an R-squared value without an intercept. The units for both (a) and (b) are the same
(µmol m−2 s−1).

play a larger role in the canopy water balance. In the one-
to-one comparison, the increase in leaf wetness in CLM was
usually higher than in measured data. Consequently, the wet
canopy fraction at the beginning of the drying process was
usually higher in CLM than in the measurements: 0.63 in the
38 m observation, 0.47 in the 3 m observation, 0.96 in CLM5,
0.9 in CLM5 fmx= 1, and 0.78 in CLM4.5 (see y-axis data
on the 0 x axis in Fig 7e).

Another analysis showed that leaf wetness behavior is
highly sensitive to incoming solar radiation. The water state
on a leaf in Fig. 8e and f was tracked over consecutive no-rain
events for 3 h right after the last rain events in the daytime be-
tween 10:00 and 14:00. Figure 8e shows events with low so-
lar radiation (0–300 W m−2) and Fig. 8f shows events when
solar radiation was higher than 300 W m−2. Although it was
difficult to gather data for these serial drying events (each
plot uses at least 12 groups of six consecutive half-hourly
time periods with no rain), the result clearly indicated that
leaf wetness is strongly influenced by an increase in incom-
ing solar radiation when fwetmax = 1 (CLM5 fmx= 1 and
CLM4.5). In the case of fwetmax = 0.05 (CLM5), the dry-
ing rate is reasonable at low solar radiation, but it is higher
than values observed during high incoming solar radiation.
The measured data in the analysis showed relatively smaller
values of leaf wetness at lower levels of the canopy. This indi-
cated that rainfall does not frequently reach the lower canopy,
and thus interception rates are low there. This finding would
suggest that lower fwetmax values are reasonable.

3.5 Temperatures and soil flux

The simulated canopy air temperature in both CLM4.5 and
CLM5 was overestimated during daytime (+0.8 and +1 ◦C,
respectively) and underestimated during the nighttime (−1.9

and −1.1 ◦C, respectively) (Fig. 8). In other words, the
simulated temperature may be overly sensitive to incom-
ing solar radiation, like leaf wetness, which was overesti-
mated during the day and underestimated at night. The up-
dated MOST scheme improved nighttime air temperatures
in CLM5 (Burns et al., 2018), but they were still underes-
timated. As reported in the previous section, water remain-
ing on the canopy during nighttime tended to be inefficiently
evaporated (Fig. 8b), which was also possibly related to low
canopy temperature in CLM. At lower canopy levels, the
ground air temperature at the surface was overestimated dur-
ing daytime, and it was even higher than air temperature at
heights of 1–5 m (Fig. 9b).

The ground surface tended to have high energy exchange
during daytime, similar to the canopy processes. Consider-
ing the soil temperatures (Fig. 9) and the soil heat fluxes
(Fig. 10), we found they were overestimated during day-
time and underestimated in the nighttime. Soil temperature
and heat flux in CLM were highly variable. Soil evapo-
ration rates in both CLM4.5 and CLM5 were also over-
estimated compared with estimated data from soil respira-
tion chamber measurements (LI8100) (Fig. 10). For daytime
soil evaporation, the average difference from the observation
was 5× 10−7 mm s−1 with CLM4.5 and 15× 10−7 mm s−1

with CLM5. The measured field value was around 1×
10−7 mm s−1. The simulated soil moisture also had high vari-
ability, with low mean water contents (around 0.2 m3 m−3)
compared with gauged values (0.3–0.4 m3 m−3).

The overestimation of vegetation temperature (Tv) in both
CLM4.5 and CLM5 also appeared in the daytime simulation
(≈+1.0 to 2.4 ◦C) (Fig. 11a, b). Another model test was also
made using global forcing datasets (Qian et al., 2006) to cor-
roborate our simulations, and the result showed very simi-
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Figure 7. (a) Ensemble diurnal variation of the total H2O flux; “measured 33 m” is measured by eddy covariance (at 33 m), “sap flow” is
transpiration measured through sap flow, all CLMs are about evapotranspiration (ET), fmx= 1 represents fwetmax= 1, and8= 0.25 means
0.25 applied to 8 in Eq. (7). (c) Partitioned H2O flux, where ET, TR, and VE are evapotranspiration, transpiration, and canopy evaporation
from CLM; (b, d) the one-to-one plots of (a) and (c). (e, f) Daily ET and TR (except nighttime) against eddy-covariance and sap-flow data.
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Figure 8. (a) TR /ET versus leaf wetness and classified by relative humidity [0–1]. (b) The ensemble diurnal variation of leaf wetness.
Panels (c) and (d) indicate interception rates, and panels (e) and (f) represent the behavior of a drying canopy. The marked lines are from
measurements, and lines are estimated from CLM.
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Figure 9. The ensemble diurnal variation of air temperatures. Canopy levels at 22–33 and 1–5 m are measured air temperatures, Ta represents
air temperature at 28.075 m in CLM, and Tg is ground air temperature at 0.01 m in CLM. Ts −0.02 m is measured and simulated soil
temperature. In (a), both CLM4.5 and CLM5 overestimate in daytime (+0.8 and +1 ◦C) and underestimate during the nighttime (−1.9 and
−1.1 ◦C). In (b), differences between measured Ta 01–05 m and all CLM values (CLM5.0 Tg, CLM4.5 Tg, CLM5.0 Ts, and CLM4.5 Ts) are
−0.39, −0.14, −0.32, and −0.06 in daytime and −0.02, 0.18, −0.11, and 0.08 ◦C in nighttime. Differences with measured Ts −0.02 m are
−0.04, 0.21, 0.03, and 0.30 in daytime and 0.90, 1.10, 0.81, and 1 ◦C in nighttime.

lar behavior (≈+5 ◦C, not depicted here). The high Tv and
Ta from CLM simulations resulted in lower relative humid-
ity than gauged-based canopy air humidity. We note that the
sunlit–shade scheme in CLM does not consider two different
vegetation temperatures, so it only takes a single variable Tv
to represent the entire canopy. Canopy temperature (Tv) in
CLM should be an average of sunlit and shaded leaf temper-
ature, but the simulated results were far from our expectation
(Fig. 11a). A comparison plot also showed significant error
(Fig. 11b). The additional comparisons indicate that Tv on
sunlit leaves normally followed the canopy air temperature
(leaf thermoregulation), but CLM did not reproduce such be-
havior (Fig. 11c, d).

4 Discussion and conclusions

In this study, two versions of the Community Land Model
(CLM4.5 and CLM5), running primarily in the satellite phe-
nology (SP) mode, were tested against measured data from a
mountainous tropical rainforest in Costa Rica. Net radiation
was underpredicted by an average of−20 W m−2 (Fig. 4a, b)
in both CLM4.5 and CLM5. The discrepancy was attributed
to CLM’s overprediction of surface albedo, which was on av-
erage 0.022 lower in the measurements (Fig. 4c, d).

The effects of topographic slope clearly appeared in the di-
urnal plots for albedo, PAR (Fig. 4), and theCO2 flux (Fig. 6).
With respect to albedo, the hillslope shading effect magnified
these discrepancies, with afternoon values having larger dif-
ferences as the sun moved behind the north–south-trending
mountain (Fig. 4). The level of discrepancy varied accord-
ing to the diurnal cycle of the intensity of incoming solar

radiation and the solar angle (Fig. 4c, d). PAR profiles also
showed that radiation levels within the canopy had a skewed,
or hysteretic, cycle (Fig. 4e, f), which was not captured by
CLM. These results indicated that canopy radiative trans-
fer, including the surface albedo and sunlit–shade separa-
tion, may need to be better represented in advanced land sur-
face models in order to simulate a more realistic response
to solar radiation or topographical slope. A simple modifica-
tion of albedo was attempted, but it resulted in an error on
other variables such as PAR. The update may require more
complicated manipulation to satisfactorily match variables
in addition to albedo (e.g., PAR). This finding suggests that
a multiple-layer scheme is necessary to properly represent
light penetration. More importantly, aerodynamic resistance
models, such as MOST, are also currently incapable of rep-
resenting a sloped terrain. If the effects of both can be im-
plemented in CLM, predictions can be highly improved for
mountainous regions, especially if they can be considered at
a fine grid scale.

The study found that slope affected various data and out-
puts to an important degree and suggested that additional ob-
servations are necessary to examine and capture such fea-
tures. Several past studies to compare and improve CLM
have taken a similar approach. However, they focused on spe-
cific sub-model performance (Burns et al., 2018; Swenson
and Lawrence, 2014; Bonan et al., 2011), rather than study-
ing the effects of spatial complexity. For albedo, the slope
effects were minor in this study; skewness in the diurnal av-
erage curve was relatively small, and it is difficult to identify
the difference between measured and modeled net radiation
curves. On the other hand, the skewness for PAR is signifi-

https://doi.org/10.5194/gmd-13-5147-2020 Geosci. Model Dev., 13, 5147–5173, 2020



5162 J. Song et al.: Modeling land surface processes over a mountainous rainforest in Costa Rica

Figure 10. The ensemble diurnal variation of soil–ground heat fluxes (into soil+) (a) and soil evaporation.

cant, and this was obviously related to the different response
of GPP through time (Fig. 6). Such an influence might not be
noticeable if the GPP comparison were not classified by time
because the error appears similar to white noise. If this effect
is captured, the prediction of physiological variables (e.g.,
GPP and TR) can be improved. We anticipate the same effect
would be present in a wider range of forests. Also, recent land
surface models are becoming more elaborated by reflecting
vertical (e.g., multilayered canopies; Bonan et al., 2018; Ry-
der et al., 2016) and horizontal (e.g., vegetation demograph-
ics; (Fisher et al., 2018) heterogeneity. The performance of
these advanced models would be affected by topographical
characteristics. Hence, further investigation should focus on
both improved model parameterization for hillslopes and ad-
ditional data from mountainous forests.

The simulated photosynthesis rates tended to be higher
than those observed; these results have also been reported
in similar studies of montane rainforests (Fan et al., 2019b;
Muñoz-Villers et al., 2012). Such errors could possibly be
alleviated by updating parameters associated with light limi-
tation effects. For carbon flux (GPP) and transpiration (TR),
the overestimation in CLM4.5 has been reduced in CLM5
(Figs. 5b; 7b, d). However, CLM5 and CLM-BGC seem to
reduce the maximum assimilation rate limit by lowering the
BB slope and other photosynthesis-limiting parameters (i.e.,
Vc,max25 or Jmax25). The curved shape error in GPP at the
middle range of photosynthesis rates still exists compared
with CLM4.5 (Fig. 5b). At this point, we suggest that the
light-response photosynthesis model could be the cause. We
briefly addressed the electron transport model (Eqs. 6 and
7), and tested it by changing the quantum efficiency and cur-
vature parameters (Fig. 5c and d). The analysis of GPP and
transpiration values showed that changing the fitted quantum
efficiency parameter resulted in better agreement with the
observations and the effect of topographical slope appeared
more clearly (Figs. 6, 7f). The analysis contains possible er-

rors caused by the simplified model for APAR and measure-
ment error for GPP.

Partitioning the water flux is a critical task, and this needs
more investigation for each sub-model. Errors in vapor flux
were particularly difficult to diagnose since the discrepancy
can be caused by the failure of any of the embedded sub-
models, although transpiration is the largest driver of the
overall pattern of total vapor flux (ET) (Fig. 7c). Evapotran-
spiration (ET) consists of three major components: soil evap-
oration, canopy evaporation, and transpiration. Therefore, an
error in any one of the sub-models can make the entire water
flux (ET) inaccurate. We can also recognize that the compar-
ison of total vapor flux (Fig. 7b) has much more uncertainty
than the CO2 flux (Fig. 5b).

Among the sub-models, canopy evaporation was key to
proper partitioning for this site, and the process relies on both
the rainfall interception sub-model and the leaf wetness sub-
model. Both ET and TR were affected by the canopy evap-
oration (Fig. 7a, c) because leaf wetness suppressed transpi-
ration and enhanced canopy evaporation in CLM (Figs. 3b,
8a). However, the leaf wetness variable in CLM caused a
high degree of uncertainty in a number of analyses, includ-
ing ensemble diurnal variation (Fig. 8b) and interception rate
(Fig. 8c, d), possibly due to throughfall processes that are too
simple as reported in a previous study (Fan et al., 2019b). In
Eq. (3), when the leaf–stem area index is high (L+ S > 2)
the interception rate approaches 100 % in CLM5. This value
is questionable in our view because of the canopy at this
site. The observed tree having high LAI (far higher than
2 (m2 m−2)) does not cover 100 % of the sky (≈ tanh(2)).
On the other hand, the value of 0.25 in Eq. (2) for CLM4.5
seems too low. Leaf-wetness-related parameters are also op-
timized for large-scale forcing (e.g., 6-hourly data). The im-
properly modeled canopy water levels and the wetted fraction
resulted in errors in canopy evaporation, which overreacted
to the intensity of solar radiation or net radiation (Fig. 8e,
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Figure 11. (a) The diurnal variation of leaf temperatures with measured canopy air temperatures. (b) The one-to-one plot of leaf temperatures:
CLM vegetation temperatures (Tv) are compared with measured values for the both gauged shade (shade Tv) and sunlit (sunlit Tv) vegetation
temperatures. (c) The one-to-one plots for measured canopy air temperatures versus measured leaf temperatures (sunlit and shade). (d) The
one-to-one plots for canopy air temperatures versus leaf temperatures from CLM (CLM5 Ta vs. CLM5 Tv) and observations (canopy Ta
22–38 m vs. averaged Tv from sunlit and shade Tv): averaged Tv is estimated through (LAIShade× TvShade +LAISunlit× TvSunlit)/LAI. In
panel (a), daytime differences for CLM 5.0 Tv minus measurements (measured Ta 22–38 m, measured shade Tv, and measured sunlit Tv)
are 1.1, 2.4, and 1.0. In nighttime, the differences are −2, −0.3, and −1.8 ◦C. CLM5 is normally 0.2 higher in daytime and 0.8 higher in
nighttime.

f). We observed some improvement in CLM5 by low max-
imum wetness fwetmax, but the simulated leaf wetness was
still sensitive to the incoming solar energy. We have tested
more complicated interception models (e.g., Aston, 1979),
but they resulted in only a small difference in the leaf wet-
ness. Such water-related processed can have vertical–spatial
variation due to the structure and shape of the canopy and to
the sloped topography. Our observations also showed vari-
ations in behavior based on height within the canopy, and
such changes imply that more layers are necessary for accu-
rate predictions of canopy water storage.

The new maximum leaf wetness applied in CLM5 may
need to vary more by vegetation and leaf morphology, as
highlighted in a previous study (Fan et al., 2019b). Changing
fwetmax had a significant impact on latent heat fluxes (Fig. 7a,
c, e, f), contrary to the results noted by Burns et al. (2018).

This effect could be attributed to much more frequent rain-
fall at our site. Also, a low fwetmax is more reasonable for
needleleaf species than it is for those with large, broad leaves.
Leaf surfaces within the canopy cannot be easily fully wet-
ted even in this tropical forest. However, simply applying
fwetmax = 0.05 for all sites cannot be realistic. The role of
the leaf wet faction is not negligible in CLM, and the pho-
tosynthesis is still sensitive to leaf wetness (fwet50.4). At
low relative humidity, the role becomes stronger (Fig. 8a).
At our site, different leaf wetness behaviors have been ob-
served between the upper and lower layer of the canopy (An-
drews, 2016), which may also be an important characteristic
for tracking leaf wetness, canopy evaporation, and ET.

From the similarity of two observations (EC vs. TR), we
suspect the influence of a nearly emergent tree on the EC
measurements, which is possibly diagnosed by the advanced
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model (e.g., profiled simulation). Such interference by the
upslope tree can occur anywhere in a sloped area, and the
CLM insufficiently represents spatial variability. Also, the
TR was estimated using more than 40 trees with a 2200 m2

plot. However, the footprint of the EC measurement does not
necessarily match the area of the tree plot. In this case, incor-
porating a demographic model and a multilayer model could
provide a more appropriate basis of comparison for the TR
and EC data. These additions might resolve the spatial-scale
issue and provide a method to handle some heterogeneity in
the canopy (e.g., the emergent tree) beyond the traditional
land surface model.

Temperature-related variables were also problematic in
CLM (Figs. 9, 10, 11). This issue may be caused by errors
in modeling energy partitioning, aerodynamic resistance, and
physiological regulation. Daytime versus nighttime changes
in canopy air temperature and leaf temperature in CLM were
found to be excessively high. Consequently, soil temperature
and all soil fluxes in CLM also had a higher degree of daily
fluctuation than their measured counterparts (Fig. 10). Dur-
ing the daytime, when peak temperatures occurred, the mod-
eled relative humidity was too low in the canopy airspace.
These two variables could affect other physiological simula-
tion results, such as transpiration. In the Burns et al. (2018)
study, changing the MOST parameters partially corrected un-
derestimates of nighttime air temperature in CLM5, suggest-
ing that these issues relate to the modeling of turbulent trans-
fer. Other researchers have attributed these issues to incorrect
parameterization of the roughness length for heat and have
made a number of advances toward reducing these tempera-
ture errors (Yang et al., 2002; Wang et al., 2014; Chen et al.,
2010; Zheng et al., 2012; Zeng et al., 2012). However, we
noted that our case is different since most studies discussed
diurnal variations that were too low and thus underestima-
tions. The source of this error was similar to, and perhaps in-
tertwined with, the issues found with leaf wetness and other
physiological regulations. The one-to-one comparisons be-
tween the canopy air temperature and the leaf surface temper-
ature (Fig. 11c, d) indicated that Tv on sunlit leaves normally
followed the canopy air temperature (i.e., leaf thermoregula-
tion), as described in other literature (Michaletz et al., 2016).
However, CLM does not consider such leaf thermoregulation
processes. These temperature-related variables (e.g., photo-
synthesis, aerodynamic resistance, soil moisture, and soil and
canopy fluxes) are highly related each other, so it was diffi-
cult to precisely diagnose the cause of such high variation.

Adjustments in light-related parameters (e.g., LAI, leaf an-
gle, and optical depth) did not noticeably improve model re-
sults. The ratio of the absorbed energy on the soil surface
to the total incoming solar radiation in CLM was 0.03, but
our PAR profile data (Fig. 4e) indicated the ratio should be
lower, around 0.01. The average incoming solar radiation in
the daytime was around 300 W m−2. Estimated absorbed en-
ergy on the ground and vegetation in CLM and the received
energy at the 10 m PAR sensor (units were converted) were

9.4, 252.5, and 3.1 W m−2. Even though the modeled ground
surface tended to receive excess solar energy, changing this
value did not seem to result in significant improvement in any
simulated variables because it was a relatively low portion of
the energy budget. Likewise, increasing LAI to 7.7, based on
nearby site measurements (Teale et al., 2014), only slightly
alleviated issues associated with soil temperatures and made
no difference in canopy temperatures. We have also tested
different leaf angles, which are directly related to the optical
depth (K), but there was no significant difference; a change
in leaf angle from χL = 0.1 to χL = 0.4 resulted in a 0.3 ◦C
decrease in ground surface temperature. These supplemen-
tary tests indicated that the reduction of absorbed solar radi-
ation on the ground and some changes in parameters for soil
albedo did not significantly alter canopy temperatures. The
problem may more likely be caused by errors in the aerody-
namic resistance above the canopy or canopy structures that
are too simplistic, as has been reported in other studies (Wang
et al., 2014; Chen et al., 2010; Zheng et al., 2012; Zeng et al.,
2012).

A more complex big-leaf (two-layer) scheme may be nec-
essary to improve the model. We find that both CLM5 and
CLM4.5 used a two-big-leaf scheme to describe the differ-
ences between sunlit and shade areas in the canopy. How-
ever, while this module partitions incoming solar radiation, it
does not calculate the resulting differences in leaf tempera-
ture. Partitioning leaf temperature into sunlit and shaded val-
ues may be a promising adjustment due to the fact that the
two have somewhat different behaviors. This effect was ev-
ident in measured versus modeled vegetation temperatures
(Fig. 11a); the fraction of sunlit LAI for these plots was about
26 % in CLM. The fraction of leaf wetness also represents
the entire canopy area in CLM, which seems too simplistic.
Maybe the sunlit area should intercept the precipitation first
and dry out faster than the shaded area. On the other hand,
this two-layer scheme still involves upscaling issues to cap-
ture in-canopy variability such as the vertical segmentation
of light, physiological parameters, and the energy exchange
(Bonan et al., 2011; Wang and Leuning, 1998; De Pury and
Farquhar, 1999).

Beyond this two-layer structure, full profiled models, in-
cluding momentum and mass conservation schemes with
storage flux, would be much more promising. It was not dif-
ficult to identify the vertical variability of micrometeorolog-
ical variables through observations (Andrews, 2016). For in-
stance, the higher locations in the canopy tended to be more
easily wetted and dried than the lower locations; the more
exposed canopy area (higher location) was normally wetter
than shaded canopy area (Fig. 8e, f). Schemes with many
layers can better simulate the full range of temperature, leaf
wetness, and net radiation, which can naturally give a more
realistic function of fwetmax, temperature, interception, and
physiological behavior compared to a single- or two-layer
scheme. The structure update of applying an LAD profile
(LAIz) as in Fig. 2 should be done first before reparameteriz-
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ing other sub-models. Such a multilayer scheme would be a
bridge between leaf-scale parameters and canopy-scale sim-
ulations. Additionally, adding storage flux can be influential
in the tall, dense canopies of rainforests (Heidkamp et al.,
2018), since the storage flux was not implemented in CLM.
The heat storage can be related to air under the canopy, but
the role of vegetation biomass is significant; adding heat stor-
age of vegetation biomass reduced the diurnal temperature
range (Swenson et al., 2019; Meier et al., 2019).

In conclusion, we have tested CLM’s predictions of land–
atmosphere processes in a mountainous tropical rainforest.
This study determined the degree to which global-scale pa-
rameterizations work at this unique site. Very few case stud-
ies like this are currently available, and these results have
provided some unique insights. We found that CLM5 has
some advantages over CLM4.5 under wet and steep con-
ditions. However, CLM5 does not yet sufficiently resolve
a number of critical problems, such as the partitioning of
energy. Model updates to the representation of in-canopy
processes and features – namely photosynthesis, turbulence
transport, and canopy structure – are still needed to capture
temperature variations and physiological activity. More im-
portantly, further investigation into including terrain slope ef-
fects in the models is required.

Additionally, we found that canopy temperatures and leaf
temperatures were oversensitive to incoming solar radiation.
These errors caused a number of cascading issues: low rel-
ative humidity near the canopy surface, subsequently affect-
ing tree physiological processes, and excessive heating of the
soil surface, leading to unrealistically high average and day-
to-night differences in soil temperatures and soil heat fluxes.
The formulation describing leaf wetness processes is too sim-
plified, which caused model failure for the frequently rainy
areas. The transpiration rate, which was the largest part of
latent heat flux at the site, and carbon uptake through pho-
tosynthetic activity were also overestimated in CLM. In the
photosynthesis model, quantum efficiency also needs to be
reparameterized. Other attempts, such as the slope effect to
a radiative transfer scheme and a more complex intercep-
tion model, did not lead to significant improvement. Ulti-
mately, however, it may be necessary to apply a complete
big-leaf scheme (two-layer scheme) or multilayer scheme to
better depict the multifaceted interactions between leaf wet-
ness, temperature, and shading to properly represent canopy
processes in tall, dense, or mountainous forests such as the
location of this study.

Based on these new findings, further investigations are
necessary. In particular, actual improvement at this study site
by applying a multilayer scheme, new parameterizations, and
global-scale tests will be the next goal. Also, to enhance the
reliability of the land surface model, more observations of
water movement and energy exchange are essential at both
this site and other locations in the neotropics. Tracking the
spatial heterogeneity of variables related to canopy structure
(e.g., leaf temperatures, leaf distributions, canopy water) is
particularly important.
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Appendix A: Estimating leaf area density (LAD)
profiles based on the Beer–Lambert law

Estimates of leaf area density were developed based on a
series of photosynthetically active radiation (PAR) measure-
ments in the canopy. This site has a canopy walk-up tower
situated on a steep slope between two large trees. A net
radiation sensor (CNR1) is located at the top (44 m); this
provided incoming solar radiation (Rs; W m−2) data, which
were in turn converted into PAR data (PAR= Rs · 0.5 · 4.5;
units: µmol m−2 s−1). Five PAR sensors were permanently
situated at heights of 05, 21, 27, 32, and 38 m; data from
these have been collected at 5 min intervals since 2014. To
complement these data, a line quantum sensor (LI-191R, LI-
COR) was utilized to measure PAR at all levels over 1 to 3 h
on three sunny days: 31 January 2016, 1 February 2016, and
4 February 2016 (Fig. A1). This sensor was manually trans-
ported to each tower platform, where a 1 min integrated value
was measured. This allowed us to determine PAR at equal
height intervals of 1, creating a profile measurement. These
data were then synced by time to the PAR data from the per-
manent sensors, which were temporarily collected at shorter
1 s intervals. Weather conditions (e.g., incoming solar radia-
tion) did not change abruptly during these field campaigns.

LAD was estimated based on the Beer–Lambert law (Lalic
et al., 2013; Maass et al., 1995). This was appropriate, given
that most LSMs follow this law to estimate radiative transfer.
The Beer–Lambert law can be written as

ln

(
Qz

Qmax

)
=−

k

cosθ
·LAI(z), (A1)

where Qz is photosynthetically active radiation (PAR) at
level z, Qmax is maximum PAR at the uppermost location,
k is the canopy extinction coefficient, LAI(z) is cumulative
leaf area index (LAI) at the z level, and θ is solar zenith an-
gle. Using the equation, the leaf area index profile LAI(z)
can be estimated through θ and measured Q, which vary in
time and height. If the time-dependent variables are moved
into the left-hand side, the relationship for LAI(z) can be es-
tablished via averaging the time-dependent term E[X(t)]t as

E

[(
Qt, z

Qt,max

)cosθt
]
t

= e−k·LAI(z),= q̄z (A2)

where q̄z is normalized light extinction. In this experiment,
PAR data Qt, z were measured using permanent sensors on
the tower for long-term observations or a line quantum sensor
(LQS) synced in time with the tower sensors for high vertical
resolution (1.8 m). One complication is that data measured
by LQS must be normalized across the profile because each
level cannot be simultaneously measured (Fig. A2). There-
fore, continuously observed data on the top of the tower were
employed as a reference and the PAR profiles were regener-
ated using Eq. (A2). In the same manner, the other static PAR

sensors were used to estimate light extinction data for vali-
dation of the campaign data.

Based on this idea, Eq. (A2) for LQS is rewritten as

q̄z = E

( Q
LQS
t, z

QTower
t,max

)cosθt

t

, (A3)

where QLQS
t, z represents data measured by the LQS and/or

from the tower sensors QTower
t, z for comparison. Also, LAI(z)

is cumulative LAD, so LAD is written as an integrated form
of

LAI(z)=−

z∫
ztop

LAD(z)dz=−LAItot

z∫
ztop

a(z)dz, (A4)

where a(z) is the leaf area density function (m2 m−3),∫ z
ztop
a(z)dz= 1, and ztop is the height of the top, so LAI(ztop)

refers to total LAI (LAItot). Then, after combining Eqs. (A2)
and (A4), the two are rewritten as

log(q̄z)=−k ·LAItot

z∫
ztop

a(z)dz. (A5)

To get the density a(z), it is differentiated as

log(q̄z)′ = k ·LAItot · a(z). (A6)

The numerical results are shown in Fig. A3 as log(q̄z) and
log(q̄z)′ to facilitate presentation. To produce the final LAD
profiles, all datasets were smoothed using a spline interpo-
lation method, and negative values were eliminated. In gen-
eral, k ·LAItot is constant, making it a one-parameter model.
If LAItot is known, k can be estimated through Eqs. (A5) and
(A6).

This analysis indicated that very short-period data and
simple field measurements can produce LAD profiles. The
PAR profiles were measured using an LQS, and the LAD val-
ues were estimated from the Eqs. (A5) and (A6). The profiles
from LQS had a high vertical resolution over a short tempo-
ral period. The simulation results were compared with data
from several long-term sensors on the tower, and the results
showed strong agreement (Fig. A4).
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Figure A1. Data points collected using the line interval sensor at a 1 s sampling rate (31 January 2016 at 10:00–11:30, 1 February 2016 at
15:00–16:00, 4 February 2016 from 09:00 to 12:00). On the first day (the first up and down), more data points are collected at each platform
level, while subsequent visits are shorter but more frequent.

Figure A2. Data collected at each level by the line quantum sensor (gray) and the top-of-canopy sensor (dark gray) for Eq. (A2) for a single
campaign event (i.e., one cycle up and down the tower).
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Figure A3. Values found at each step in calculating LAD and LAI(z) profiles. Here, ln[qz] is equal to −k ·LAI(z), and 1ln[qz]/1z is
identical to −k ·LADz.

Figure A4. The PAR/PARTop profile is measured based on Eq. (A2). Tower 2014–15 indicates measured data at the tower from 2014 to
2015. Tower Jan2016 indicates measured data at the same time with LQS data.
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the OAKTrust repository (http://hdl.handle.net/1969.1/169521.2,
Miller et al., 2018a; http://hdl.handle.net/1969.1/169522,
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Miller et al., 2018c; http://hdl.handle.net/1969.1/169524,
Miller et al., 2018d). Input forcing data for the simulation
(https://doi.org/10.5281/zenodo.3958253, Song, 2020) and CLM
code (https://doi.org/10.5281/zenodo.3779821, Sacks, 2020) are
available via GitHub.
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