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Abstract. While our understanding of pH dynamics has
strongly progressed for open-ocean regions, for marginal
seas such as the East China Sea (ECS) shelf progress has
been constrained by limited observations and complex in-
teractions between biological, physical and chemical pro-
cesses. Seawater pH is a very valuable oceanographic vari-
able but not always measured using high-quality instrumen-
tation and according to standard practices. In order to pre-
dict total-scale pH (pHT) and enhance our understanding of
the seasonal variability of pHT on the ECS shelf, an artifi-
cial neural network (ANN) model was developed using 11
cruise datasets from 2013 to 2017 with coincident observa-
tions of pHT, temperature (T ), salinity (S), dissolved oxy-
gen (DO), nitrate (N), phosphate (P) and silicate (Si) together
with sampling position and time. The reliability of the ANN
model was evaluated using independent observations from
three cruises in 2018, and it showed a root mean square error
accuracy of 0.04. The ANN model responded to T and DO
errors in a positive way and S errors in a negative way, and
the ANN model was most sensitive to S errors, followed by
DO and T errors. Monthly water column pHT for the period
2000–2016 was retrieved using T , S, DO, N, P and Si from
the Changjiang biology Finite-Volume Coastal Ocean Model
(FVCOM). The agreement is good here in winter, while the
reduced performance in summer can be attributed in large
part to limitations of the Changjiang biology FVCOM in sim-
ulating summertime input variables.

1 Introduction

Atmospheric carbon dioxide (CO2) levels have increased by
nearly 46 %, from approximately 278 ppm (parts per mil-
lion) in 1750 (Ciais et al., 2014) to 405 ppm in 2017 (Le
Quéré et al., 2018). The oceans have absorbed approxi-
mately 48 % of the anthropogenic CO2 emissions (Sabine
et al., 2004), resulting in decreasing long-term pH trends
of ∼ 0.02 decade−1 in open-ocean waters (e.g., Dore et al.,
2009; González-Dávila et al., 2010; Bates et al., 2014; Lau-
vset et al., 2015). While a gradual decrease in pH is a pre-
dictable open-ocean response to elevated anthropogenic CO2
emissions, the seasonal changes and long-term trends in pH
in coastal seas have not been fully understood due to the lack
of long-term pH data and complexity of coastal systems. In
this context, the development of approaches to predict car-
bonate chemistry parameters in coastal regions may assist
both the management of local water quality and our wider
understanding of the ocean carbon cycle.

Many attempts have been made to predict seawater pH
by developing empirical relationships between pH and en-
vironmental variables, such as temperature (T ) (Juranek et
al., 2011), salinity (S) (Williams et al., 2016), dissolved oxy-
gen (DO) (e.g., Juranek et al., 2011; Sauzède et al., 2017),
nutrients (e.g., Williams et al., 2016; Carter et al., 2016,
2018), and longitude and latitude (Sauzède et al., 2017).
Compared with traditional empirical methods, artificial neu-
ral networks (ANNs) have been proposed as powerful tools
for modelling uncertain and complex systems such as ecosys-
tems and environmental assessment (e.g., Olden and Jack-
son, 2002; Olden et al., 2004; Uusitalo, 2007; Raitsos et al.,
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Figure 1. Sampling stations during 11 cruises (the confirmatory
dataset) from 2013 to 2017 on the East China Sea shelf.

2008; Chen et al., 2017). Their main advantage compared
with, for example, multiple linear regression (MLR) mod-
els may be a greater flexibility and versatility in modelling
complex nonlinear relationships. ANNs have been used for
the retrieval of the partial pressure of carbon dioxide (pCO2)
(e.g., Friedrich and Oschlies, 2009; Laruelle et al., 2017), to-
tal alkalinity (e.g., Velo et al., 2013; Bostock et al., 2013;
Sasse et al., 2013), total dissolved inorganic carbon (e.g., Bo-
stock et al., 2013; Sasse et al., 2013) and phytoplankton func-
tional types (e.g., Raitsos et al., 2008; Palacz et al., 2013).
However, these studies mainly focus on the open ocean; rel-
atively few studies have focused on coastal seas, perhaps be-
cause of the complexity and heterogeneity of the continen-
tal shelves. Alin et al. (2012) developed an MLR model to
reconstruct pH in the southern California Current System,
while Moore-Maley et al. (2016) evaluated the interannual
variability of near-surface pH using a one-dimensional bio-
physical mixing-layer model in the Strait of Georgia. To our
knowledge, no empirical relationship for pH has yet been es-
tablished for the East China Sea (ECS).

The ECS is the largest marginal sea in the western North
Pacific Ocean and receives massive terrestrial inputs from the
Changjiang (Yangtze River). The shelf shallower than 200 m
covers more than 70 % of the entire ECS (e.g., Ichikawa
and Beardsley, 2002; Lie and Cho, 2016), where the domi-
nant currents present seasonal circulation patterns. The spa-
tial and temporal distributions of the carbonate system have
been investigated in the ECS (e.g., Chou et al., 2009; Cao
et al., 2011; Qu et al., 2015) and were found to largely re-
flect the distributions of various water masses. The pattern of

Figure 2. Sampling stations for three cruises (the exploratory
dataset) used to extend the utility of the ANN model. The green cir-
cles represent March 2018, the purple squares represent July 2018
and the red triangles represent October 2018.

carbon sources and sinks exhibits substantial seasonal varia-
tion (Guo et al., 2015), and the ECS is generally considered
as a sink of atmospheric CO2 throughout the year except in
fall (e.g., Shim et al., 2007; Zhai and Dai, 2009). A mech-
anistic semi-analytical algorithm (MeSAA) was developed
to study pCO2 variations in response to various controlling
mechanisms during summertime (Bai et al., 2015). However,
the seasonal variability of pH has been studied very little in
the ECS, mainly due to the limited observational coverage
and irregular variability caused by seasonal fluctuations of
the Changjiang discharge and anthropogenic processes. De-
veloping methods to extend the seasonal coverage of pH data
may thus help to improve our understanding of the ocean car-
bon cycle in the ECS.

This paper is structured as follows: Sect. 2 describes the
cruise data and ANN model building; Sect. 3 shows the per-
formance, sensitivity and application of the ANN model. A
summary is given and conclusions are drawn in the last sec-
tion.

2 Data and method

2.1 Data

Ten cruises were conducted on the ECS shelf during
the “Shiptime Sharing Project of National Natural Sci-
ence Foundation of China” from 2013 to 2017 (Fig. 1):
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Figure 3. Schematic representation of the neural network algorithm to retrieve pHT. (a) The architecture of the ANN model. Input variables
are observed temperature, salinity, dissolved oxygen, nitrate, phosphate and silicate together with the geolocation (longitude and latitude)
and time (month) of sampling. (b) Data distribution diagram for training and prediction.

the summer cruises from 17 to 28 August 2013, 10 to
17 July 2014, 9 to 20 July 2015, 4 to 28 July 2016 and 20
to 30 July 2017; the winter cruises from 21 to 28 Febru-
ary 2014 and 15 to 28 February 2017; and the spring cruises
from 4 to 20 March 2013, 11 to 21 March 2015 and 7 to
19 March 2016. T and S profiles were obtained directly
using conductivity, temperature and depth/pressure (CTD)
recorders (SBE 25plus or 911plus). Measurement of DO
followed the Winkler procedure, as described previously
by Zhai et al. (2014). Nutrients samples were first filtered
with a 0.45 µm Whatman GF/F membrane and then stored
in 250 mL high-density polyethylene (HDPE) bottles un-
til chemical analysis. Nitrate (N), phosphate (P) and sil-
icate (Si) were determined using a segmented flow ana-
lyzer (model: Skalar SANPLUS, Netherlands) with a preci-
sion < 5 % (Zhang et al., 2007); the detection limits are
0.14 µM for N, 0.06 µM for P and 0.07 µM for Si. pH sam-
ples were stored in 140 mL brown borosilicate glass bottles
and sterilized by addition of 50 µL saturated HgCl2 solution.
Three traceable pH buffers were used including NIST (Na-
tional Institute of Standards and Technology) buffers with
pH= 4.00, 7.02 and 10.09. As described by Zhai et al. (2012,
2014), we converted it into total-scale pH (pHT) by subtract-
ing 0.143, and the overall accuracy of the pHT dataset was
estimated as 0.01.

Three cruises were carried out on the ECS shelf in 2018
(Fig. 2) during the “National Natural Science Foundation
Shared Voyage Plan” – from 10 to 19 March, 12 to 20 July
and 12 to 21 October – and one cruise was carried out near
the Changjiang Estuary during May 2017 (Fig. 1). The mea-
surement methods of T , S, DO and nutrients are the same
as that of the above 10 voyages. pH samples were stored in

Figure 4. Comparison of the performance of one hidden layer vs.
two hidden layers in predicting independent validation data. The
number of neurons in the first hidden layer was the same in the one-
hidden-layer as in the two-hidden-layer model; numbers in paren-
theses show the number of neurons in the second hidden layer (for
the two-hidden-layer model). Bars show the mean and standard de-
viation of the root mean square error over a 10-fold cross-validation,
for different numbers of neurons in the first hidden layer.

500 mL high-quality borosilicate glass bottles without filter-
ing and sterilized by addition of 200 µL saturated HgCl2 so-
lution until measurement in the lab. The pHT was measured
at the temperature in the flow cell using an automated flow-
through system for embedded spectrophotometry (AFtes)
with a precision of 0.0005 pH and uncertainty of < 0.003
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Figure 5. Comparison of the performance of different training functions and transfer functions on independent validation data. (a) Three
training functions: gradient descent backpropagation (trainGD), Levenberg–Marquardt backpropagation (trainLM) and scaled conjugate gra-
dient backpropagation (trainSCG). (b) Three transfer functions: log-sigmoid transfer function (logsig), hyperbolic tangent sigmoid transfer
function (tansig) and positive linear transfer function (poslin). Bars show the mean and standard deviation of the root mean square error over
a 10-fold cross-validation, for different numbers of neurons in the first hidden layer.

(Reggiani et al., 2016). Water samples were collected at three
or four different depths during all cruises.

We omitted data points where one or more other physi-
cal variables were missing. The three cruises during 2018
(Fig. 2) were used to estimate model-predicted performance
as an exploratory dataset, while the remaining 11 cruises
(Fig. 1) were used to train the model as a confirmatory
dataset. The final number of observations in the confirmatory
dataset was 1854 (see Table 1 for more detailed information
on the field survey).

2.2 Artificial neural network development

The ANN we used is a feed-forward multilayer perceptron
(Tamura and Tateishi, 1997) with two hidden layers. The
neurons of each layer are connected with the neurons of
the previous layer and the next layer by weights (Fig. 3a).
The coefficients of the weight matrix are iteratively tuned
in the training step. In order to avoid overfitting, a 10-fold
cross-validation was used to assess model prediction accu-
racy (Fig. 3b). Here, the confirmatory dataset was randomly
divided into 10 equal subsamples. One subsample was used
as the independent validation data (10 % of the confirmatory
dataset) and was always excluded from training; the remain-
ing nine subsamples were used as training data (90 % of the
confirmatory dataset). The training data were further divided
randomly into a training set (70 % of the training data), val-
idation set (15 % of the training data) and testing set (15 %
of the training data) during the training process. The training
set was used for computing the gradient and updating the net-
work weights and biases, the validation set was used to mon-
itor the error and control model stop, and the testing set was
used to monitor whether the model was over-fitted (Palacz et
al., 2013). We compared performances in predicting the inde-

pendent validation data from the 10-fold cross-validation and
selected the optimal model based on the lowest root mean
square error (RMSE). Then we applied the optimal model to
the exploratory dataset (Fig. 2) and evaluated model perfor-
mance by calculating error statistics. In our study, calcula-
tions were done in the MathWorks MATLAB environment,
using the Deep Learning Toolbox.

First, we compared the performance of one hidden layer
vs. two hidden layers in predicting independent validation
data. The number of neurons varied from 22 to 28 for the
first hidden layer and was fixed at four in the second hid-
den layer for the two-hidden-layer model; the number of
neurons in the first layer was the same in the one-hidden-
layer vs. two-hidden-layer model (Fig. 4). The 10-fold cross-
validation showed that the model with two hidden layers per-
formed better as the number of neurons increased. Second,
in order to choose suitable training techniques and activa-
tion functions of the ANN model with two hidden layers,
we tested three training functions (gradient descent back-
propagation (trainGD), Levenberg–Marquardt backpropaga-
tion (trainLM) and scaled conjugate gradient backpropaga-
tion (trainSCG)), which differed in how the weights are
modified, and three transfer functions (log-sigmoid transfer
function (logsig), hyperbolic tangent sigmoid transfer func-
tion (tansig) and positive linear transfer function (poslin))
(Fig. 5). The output values of logsig, tansig and poslin were
compressed onto [0, 1], [−1, 1] and [0, +∞], respectively
(Fig. S1). As the number of neurons increased, the perfor-
mances of trainGD and tansig became poor. Although there
was no obvious difference between trainLM and trainSCG,
the training technique trainSCG was selected and the trans-
fer function logsig was applied to two hidden layers consid-
ering the overall performance (Fig. 5). Third, in the training
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Table 1. Field survey information and measurements of water temperature, salinity, dissolved oxygen, nitrate, phosphate, silicate and pHT
(mean±SE).

Sampling period Temperature Salinity Dissolved oxygen Nitrate Phosphate Silicate pHT
(◦) (mmol m−3) (mmol m−3) (mmol m−3) (mmol m−3)

4–20 Mar 2013 11.54± 1.34 32.04± 2.26 275.28± 19.30 12.25± 8.25 0.58± 0.17 17.54± 7.65 8.19± 0.04
17–28 Aug 2013 23.45± 3.17 32.32± 2.91 142.22± 63.45 12.16± 8.05 0.55± 0.32 16.47± 12.18 8.04± 0.18
21–28 Feb 2014 9.56± 2.38 32.14± 1.78 293.07± 19.52 11.92± 9.17 0.59± 0.18 12.52± 6.50 8.10± 0.04
10–17 Jul 2014 21.66± 2.13 29.50± 5.10 186.44± 43.29 21.57± 22.10 0.57± 0.46 21.45± 17.76 8.07± 0.11
11–21 Mar 2015 11.42± 1.44 31.57± 2.60 279.72± 15.29 22.04± 18.88 0.81± 0.35 16.48± 11.64 8.19± 0.03
9–20 Jul 2015 22.14± 1.55 29.73± 4.71 207.32± 56.12 19.73± 18.62 0.60± 0.42 20.87± 17.48 8.13± 0.09
7–19 Mar 2016 10.77± 2.02 30.85± 2.92 284.00± 31.40 20.26± 12.80 0.82± 0.25 19.17± 11.62 8.20± 0.05
4–28 Jul 2016 23.19± 3.19 28.17± 6.67 122.90± 49.97 25.77± 23.60 0.63± 0.46 28.56± 25.03 8.06± 0.16
15–28 Feb 2017 11.03± 2.57 32.00± 2.43 296.21± 21.27 12.30± 9.13 0.56± 0.18 13.09± 7.45 8.13± 0.05
12–24 May 2017 17.71± 1.54 29.62± 2.79 171.58± 49.52 12.60± 4.83 0.29± 0.24 10.95± 4.29 8.08± 0.13
20–30 Jul 2017 24.85± 3.41 27.70± 6.31 192.11± 76.55 20.57± 23.23 0.42± 0.34 19.28± 18.92 8.09± 0.18

Figure 6. Comparison of pHT retrieved by the ANN model with
corresponding observations. (a) Training data (90 % of confirma-
tory dataset); (b) independent validation data (10 % of confirmatory
dataset); (c) histogram of residuals for confirmatory dataset. The
1 : 1 line is shown in each plot as a visual reference. Three statistics
are the mean absolute error (MAE), the coefficient of determina-
tion (R2) and the root mean square error (RMSE). N represents the
number of data points.

phase of the ANN model, the number of neurons was tested,
varying from 4 to 128 for two hidden layers (Table S1). The
best performance for both training data and independent val-
idation data was obtained with 40 neurons in the first hidden
layer and 16 neurons in the second layer. Finally, different
combinations of input variables were tested to choose the
optimal architecture of the ANN model (Table 2); the best
performance was obtained using longitude, latitude, month,

T , S, DO, N, P and Si as input variables. The utility of these
variables for predicting pH has a strong a priori basis: the car-
bonate system thermodynamic relationships depend on both
T and S (Lueker et al., 2000); a positive correlation is ex-
pected between DO and pH (Wootton et al., 2012) because
of the role of photosynthesis and respiration in removing or
generating CO2 in the water; and various nutrients influence
phytoplankton growth and abundance, thereby increasing or-
ganic carbon fixation/uptake and increasing pH (Wootton et
al., 2008, 2012). We found geographical information to be a
powerful addition in improving the skill of the method (Ta-
ble 2), allowing the network to learn spatiotemporal patterns
that could not be explained by other input variables (Sasse et
al., 2013).

In order to avoid bias towards high-value inputs/outputs
and to eliminate the dimensional influence of the data, all
data used by the ANN model were normalized using the fol-
lowing equation (e.g., Sauzède et al., 2015, 2016):

xi,j =
2
3
·
xi,j −mean

(
xi,j

)
σ

(
xi,j

) , (1)

with σ being the standard deviation of the considered input
variables or output variable pHT. Similar to the approach of
Sauzède et al. (2015, 2016), the longitude and month input
variables were transformed as follows to account for the pe-
riodicity:

slongitude= sin
(

Lon ·π
180

)
,

clongitude= cos
(

Lon ·π
180

)
; (2)

smonth= sin
(

month ·π
6

)
,

cmonth= cos
(

month ·π
6

)
. (3)
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Table 2. Different model structures and their performance in the training step. The variables (Long (longitude), Lat (latitude), Month (month),
T (temperature), S (salinity), DO (dissolved oxygen), N (nitrate), P (phosphate), Si (silicate)) marked with 1 represent the input variables.
Skill statistics include the coefficient of determination (R2), the root mean square error (RMSE) and the mean absolute error (MAE).

Model Long Lat Month T S DO N P Si Training data Independent
validation data

R2 RMSE MAE R2 RMSE MAE

1 1 0.40 0.092 0.068 0.47 0.076 0.058
2 1 1 0.62 0.073 0.053 0.62 0.067 0.051
3 1 1 1 0.69 0.065 0.048 0.72 0.060 0.044
4 1 1 1 1 0.76 0.057 0.044 0.77 0.052 0.041
5 1 1 1 1 0.81 0.051 0.040 0.79 0.051 0.040
6 1 1 1 1 0.77 0.056 0.044 0.79 0.054 0.043
7 1 1 1 1 1 0.80 0.053 0.042 0.79 0.051 0.041
8 1 1 1 1 1 0.81 0.051 0.040 0.81 0.049 0.039
9 1 1 1 1 1 0.76 0.058 0.044 0.77 0.054 0.044
10 1 1 1 1 1 1 0.83 0.048 0.037 0.86 0.046 0.037
11 1 1 1 1 1 1 0.85 0.046 0.035 0.87 0.043 0.032
12 1 1 1 1 1 1 0.85 0.046 0.034 0.85 0.045 0.035
13 1 1 1 1 1 1 0.82 0.049 0.036 0.84 0.050 0.036
14 1 1 1 1 1 1 1 0.84 0.046 0.035 0.87 0.045 0.033
15 1 1 1 1 1 1 1 0.86 0.044 0.033 0.79 0.046 0.034
16 1 1 1 1 1 1 1 0.87 0.043 0.032 0.87 0.044 0.034
17 1 1 1 1 1 1 1 0.87 0.043 0.033 0.82 0.045 0.035
18 1 1 1 1 1 1 1 1 0.88 0.040 0.031 0.88 0.039 0.031
19 1 1 1 1 1 1 1 1 0.87 0.042 0.032 0.87 0.042 0.033
20 1 1 1 1 1 1 1 1 0.84 0.046 0.035 0.85 0.047 0.036
21 1 1 1 1 1 1 1 1 1 0.88 0.040 0.031 0.93 0.033 0.024

Figure 7. Box plots of the differences between retrieved pHT and the observations. (a) The differences vs. longitude (mean±SE); (b) the
differences vs. latitude (mean±SE). The height of each box represents the mean value of the differences; the whiskers represent the standard
error (SE) value of the differences.

The latitude variable was transformed into the range of the
sigmoid function by dividing by 90 and then normalized us-
ing Eq. (1).

3 Result and discussion

3.1 ANN model performance

To evaluate the performance of the ANN model, we com-
pared model-simulated pHT (pHM

T ) with corresponding ob-
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Figure 8. Comparison of retrieved pHT with corresponding observations for exploratory dataset. (a) pHT retrieved by the ANN model vs.
observations; (b) pHT retrieved by CANYON (Sauzède et al., 2017) vs. observations. The red circles represent March 2018, the blue squares
represent July 2018 and the green triangles represent October 2018. The 1 : 1 line is shown in the plot as a visual reference. Three statistics
approaches used are the mean absolute error (MAE), the root mean square error (RMSE) and the coefficient of determination (R2). N
represents the number of data points.

Figure 9. Sensitivity of the ANN model for environmental input variables. (a) Temperature (T ); (b) salinity (S); (c) dissolved oxygen (DO);
(d) nitrate (N); (e) phosphate (P); (f) silicate (Si). Three statistics approaches used are the mean bias (MB), the root mean square error
(RMSE) and the coefficient of determination (R2). N represents the number of data points.

servations (pHOT ) using several statistical indices, including
the mean absolute error (MAE), the coefficient of determi-
nation (R2) and the RMSE. The model simulated pHT with
a RMSE of 0.04 and R2 of 0.88 for the training data (90 %
of confirmatory dataset, Fig. 6a), and predicted pHT with a
RMSE of 0.03 and R2 of 0.93 for the independent validation

data (10 % of confirmatory dataset, Fig. 6b). The histogram
of residuals in the confirmatory dataset (Fig. 6c) showed that
68 % of the residuals were within the RMSE of 0.04. In or-
der to further explore where the ANN model may lead to
large errors, we plotted distributions of differences (pHM

T –
pHOT ) with respect to the longitude and latitude (Fig. 7).
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Table 3. Model comparison between traditional empirical methods (MLR and MNR) and machine-learning-based empirical methods (de-
cision tree, random forest and SVM). The statistics was derived from the confirmatory dataset (training data and independent validation
data) using input variables: T , S, DO, N, P and Si. Note that R2 statistics in our study were based on the calculation of the coefficient of
determination; therefore negative R2 could be derived when there was a strong bias.

Model Kernel function Input variables RMSE R2 MAE

MLR – T , S, DO, N, P, Si 0.078 0.56 0.062
MNR – T , S, DO, N, P, Si 0.060 0.74 0.047
Decision tree Simple tree T , S, DO, N, P, Si 0.064 0.71 0.047

Medium tree T , S, DO, N, P, Si 0.060 0.74 0.044
Complex tree T , S, DO, N, P, Si 0.061 0.73 0.043

Random forest Boosted trees T , S, DO, N, P, Si 0.340 −7.51 0.339
Bagged trees T , S, DO, N, P, Si 0.056 0.77 0.04

SVM Linear T , S, DO, N, P, Si 0.079 0.55 0.061
Quadratic T , S, DO, N, P, Si 0.061 0.73 0.046
Cubic T , S, DO, N, P, Si 0.060 0.74 0.043
Fine Gaussian T , S, DO, N, P, Si 0.064 0.70 0.042
Medium Gaussian T , S, DO, N, P, Si 0.054 0.79 0.041
Coarse Gaussian T , S, DO, N, P, Si 0.069 0.65 0.054

The points with large errors are mainly concentrated in the
longitude range [122.5, 123◦ E] and the latitude range [31,
32.5◦ N], in an area strongly influenced by the Changjiang
Diluted Water (CDW). The reduced performance of the ANN
model here may be primarily due to the strong seasonal os-
cillations of the Changjiang discharge (Dai and Trenberth,
2002). As a reference, the performance of some other em-
pirical approaches – including MLR, multi-variate nonlinear
regression (MNR), decision tree, random forest and support
vector machine (SVM) regression – is shown in Table 3. The
selected ANN model (Table 2, model no. 10) showed better
performance than the other tested approaches using the same
input variables (Table 3).

3.2 ANN model validation using the exploratory
dataset

To further assess the ability of the ANN model to estimate
pHT on the ECS shelf, we applied the ANN model to an ex-
ploratory dataset not used in ANN model development and
sampled during March, July and October 2018 (Fig. 2). Scat-
terplots of retrieved pHT vs. observations (Fig. 8a) showed a
RMSE of 0.04, R2 of 0.80 and MAE of 0.03, which is con-
sistent with the performance of the training data (Fig. 6a).
Although the RMSE for pHT we obtained here was higher
than obtained in some previous studies (e.g., Juranek et al.,
2011; Williams et al., 2016; Sauzède et al., 2017), these lat-
ter studies considered open-ocean regions, not coastal seas.
For example, Juranek et al. (2011) developed empirical al-
gorithms to estimate pH with a RMSE of 0.018 for data be-
tween 30 and 500 m in the NE subarctic Pacific, Williams et
al. (2016) also developed empirical algorithms to predict pH
with a RMSE of 0.01 in the Southern Ocean and Sauzède et
al. (2017) developed a neural network method to estimate

pH with a RMSE of 0.02 in the global ocean. As a fur-
ther comparison we applied the CANYON model developed
by Sauzède et al. (2017) to our coastal exploratory dataset
(Fig. 8b) and obtained a RMSE of 0.09 and MAE of 0.06. It
is not surprising that the ANN model (developed here for the
ECS shelf) outperforms the CANYON model (developed for
the global ocean) for predicting pHT on the ECS shelf. The
carbon chemistry parameters in this region are not only un-
der the direct impact of the Taiwan Warm Current and remote
control of the Kuroshio water intrusion into the shelf, but
they are also significantly controlled by seasonal variations
of the Changjiang discharge (e.g., Isobe and Matsuno, 2008;
Chen et al., 2008; Chou et al., 2009). Taking into account the
highly complex hydrographic, biological and chemical con-
ditions, the accuracy of pHT presented is promising.

3.3 ANN model sensitivity to environmental input
variables

To assess the ANN model sensitivity to different environ-
mental input variables, we added 5 % perturbation for each
environmental variable separately. Statistically, with 5 %
T errors added, the ANN model showed slight overestima-
tion in pHT, with a mean bias (MB) of 0.0059, RMSE of
0.0079 and R2 of 0.9949 (Fig. 9a); with 5 % DO errors
added, the ANN model also showed slight pHT overesti-
mation, with a MB of 0.0050, RMSE of 0.0090 and R2 of
0.9934 (Fig. 9c); and with 5 % S errors added, the ANN
model showed an overestimation in pHT, with a MB of
−0.0111, RMSE of 0.0162 andR2 of 0.9789 (Fig. 9b). These
results suggested that the ANN model responded to T and
DO errors in a positive way and to S errors in a negative way.
The positive response to increasing DO reflects a positive
correlation between pHT and DO (Cai et al., 2011), which
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Figure 10. Comparison of surface pHT retrieved by the ANN model using Changjiang biology FVCOM output with corresponding ob-
servations at six sites with repeated sampling for 3 to 4 years. Red dots represent observed pHT, solid blue line represents retrieved pHT,
and dotted black lines represent upper and lower bounds of the ANN model accuracy (ANN±RMSE). (a) Station A1-5; (b) station A1-6;
(c) station A6-7; (d) station A6-9; (e) station A7-5; (f) station A8-5.

Figure 11. Comparison of water column pHT retrieved by the ANN
model using Changjiang biology FVCOM output with correspond-
ing observations at six sites with repeated sampling for 3 to 4 years.
The 1 : 1 line is shown in the plot as a visual reference. Skill statis-
tics include the mean absolute error (MAE), the coefficient of de-
termination (R2) and the root mean square error (RMSE). N repre-
sents the number of data points.

can be attributed to the processes of photosynthesis (gener-
ating DO and removing CO2, hence increasing pH) and aer-
obic respiration (consuming DO and generating CO2, hence
lowering pH); the negative response to increasing S reflects
the influence of the (lower-salinity) Changjiang discharge,
carrying large amounts of nutrients that fuel increased pri-
mary production (uptake of nutrients and CO2, hence rais-
ing the pH) in surface waters during warm seasons (Gong et
al., 2011). It was found that the ANN model was insensitive
to nutrient errors (Fig. 9d–f) and most sensitive to S errors
(Fig. 9b), followed by DO and T errors.

3.4 ANN model application

3.4.1 Comparison

In order to retrieve monthly pHT on the ECS shelf, the
monthly T , S, DO, N, P and Si from the Changjiang biol-
ogy Finite-Volume Coastal Ocean Model (FVCOM) (http:
//47.101.49.44/wms/demo, last access: 20 July 2018) were
fed into the ANN model as input variables. The resolution
of the Changjiang biology FVCOM output is 1–10 km in the
horizontal, 10 depth levels in the vertical and day in the tem-
poral (refer to Ge et al., 2013, for detail information). Com-
parisons of monthly average FVCOM variables with surface
and bottom observations on the ECS shelf showed that sim-
ulated T was close to observed values (Fig. S2a), simulated
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Figure 12. Comparison of monthly average pHT on the East China Sea shelf. Solid blue line represents retrieved pHT by the ANN model us-
ing Changjiang biology FVCOM output, dotted black lines represent upper and lower bounds of the ANN model accuracy (ANN ±RMSE),
and red points show monthly average pHT observations from 2013 to 2016. (a) Surface; (b) bottom.

S was also close to observed values except at the bottom in
August 2013 and at the surface in July 2016 (Fig. S2b), sim-
ulated DO was higher than observed at the bottom (Fig. S2c),
and simulated nutrients were higher than observed at the
surface (Fig. S2d–f). Comparisons of monthly average pHT
from the FVCOM biogeochemical model with pHT retrieved
by the ANN model suggested that the ANN model can po-
tentially provide a more accurate pHT (Fig. S3). The possible
reason was that the carbonate system from the Changjiang
biology FVCOM was not optimized due to challenges ob-
taining sufficient boundary information.

Considering the discreteness and discontinuity of the
sampling sites, we compared pHT retrieved by the ANN
model using the Changjiang biology FVCOM output
with the corresponding observations at some sites with
repeated sampling for 3 to 4 years. These sites were
A1-5 (32.2145◦ N, 123.0140◦ E), A1-6 (32.2679◦ N,
123.2750◦ E), A6-7 (30.7050◦ N, 122.9880◦ E), A6-9
(30.5723◦ N, 123.4990◦ E), A7-5 (30.2523◦ N, 123.4990◦ E)
and A8-5 (29.9940◦ N, 123.4930◦ E). Overall, the re-
trieved pHT agrees well (within the ANN model accuracy:
ANN±RMSE) with the observed values at the surface,
except for three samples in summer (Fig. 10). There are
relatively large deviations (greater than the RMSE of 0.04) in
August 2013 at stations A1-5 and A6-9, and in July 2016 at
station A8-5. To illustrate the application performance in the
water column, a scatterplot of retrieved pHT vs. observations
at six sites with repeated sampling for 3 to 4 years (Fig. 11)
showed that the ANN model predicted pHT with a RMSE of
0.05 and R2 of 0.71.

We further compared monthly pHT retrieved by the ANN
model using the Changjiang biology FVCOM output with in

situ measured pHT values (Fig. 12). The agreement is good
(within the ANN model accuracy: ANN±RMSE) here in
winter, but large deviations (greater than the RMSE of 0.04)
appear in summer. The reduced performance in summer can
be attributed in large part to a reduced performance of the
Changjiang biology FVCOM in predicting summertime in-
put variables S and DO, and nutrients (Fig. S2).

3.4.2 Spatial and temporal patterns of ANN-derived
pHT

The temporal and spatial variations of monthly surface pHT
from 2000 to 2016 based on Changjiang biology FVCOM
output are shown in Fig. 13. During the dry season (Novem-
ber to March of the next year), pHT values vary from ∼ 7.62
to ∼ 8.24. Relatively higher pHT values are found in the
southeast of the study area (Chou et al., 2011), whereas lower
pHT values are found in the northeast of the study area. Dur-
ing the wet season (April to October), pHT values vary from
∼ 7.77 to ∼ 8.35, and water of higher pHT corresponds well
to the seasonal dispersion of the Changjiang Diluted Water
(Chou et al., 2009, 2013). Water of higher pHT is found in
the center of the study area during April, spreads to the south-
western part of the study area (along the coast of China) dur-
ing May and June, and shifts to the northeastern part of the
study area during August. In September and October, water
of higher pHT is found in the southeastern part of the study
area, strongly influenced by the Taiwan Warm Current (Qu
et al., 2015).

A clear seasonality is that surface pHT gradually increases
during spring (March to May), after which it gradually de-
creases during summer and fall (June to November) (Fig. 14).
The surface pHT displays its maximum in May and minimum
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Figure 13. Spatial distribution of monthly average surface pHT retrieved by the ANN model using Changjiang biology FVCOM output.
(a) January; (b) February; (c) March; (d) April; (e) May; (f) June; (g) July; (h) August; (i) September; (j) October; (k) November; (l) De-
cember.

https://doi.org/10.5194/gmd-13-5103-2020 Geosci. Model Dev., 13, 5103–5117, 2020



5114 X. Li et al.: Retrieving monthly and interannual pHT

Figure 14. Seasonal cycles of surface pHT on the East China Sea
shelf from 2000 to 2016. The green circles represent the monthly
regional average; the dashed blue line represents the mean value of
each month.

in December, and the pHT varies seasonally by up to ∼ 0.3.
Larger changes in pH were also discovered on the Washing-
ton shelf; the pH varied ∼ 1.0 over the seasons and ∼ 1.5
spanning 8 years (Wootton et al., 2008). Accordingly, sea-
sonal dynamics of surface pHT can be mainly attributed to
temperature changes and strong biological activities (produc-
tion and respiration processes) over the season. From March
to June, a rapid increase in surface pHT indicates that pro-
duction increases faster than respiration, which can be re-
flected in the drop in surface phosphate (Fig. S5d) and ap-
parent oxygen utilization (AOU) (Fig. S5c). It may be driven
by the Changjiang discharge (Fig. S4), which carries large
amount of nutrients, resulting in stronger primary produc-
tion in warm seasons under the combined action of nutri-
ents and suitable temperature (Gong et al., 2011). From July
to October, although surface temperature remains at a high
level (Fig. S5a), the rise in surface AOU (Fig. S5c) suggests
a decrease in primary production or increase of respiration,
which leads to a gradual drop in surface pHT (Wootton et al.,
2012). It implies that respiration processes dominate relative
to primary production during summer and fall.

4 Summary and conclusions

We have developed an artificial neural network (ANN)
model, demonstrated its reliability and used it to retrieve
monthly pHT for the period 2000–2016 on the East China
Sea shelf. We trained this ANN model using 11 cruise
datasets from 2013 to 2017. In order to choose the optimal
architecture of the ANN model, we tested different training
and transfer functions, the number of neurons in two hidden
layers and different combinations of input variables. We also
validated the reliability of the ANN model with a root mean

square error accuracy of 0.04 using three cruises in 2018 as
an exploratory dataset. The ANN model responded to tem-
perature and dissolved oxygen errors in a positive way and
to salinity errors in a negative way, and it was most sensitive
to salinity errors, followed by dissolved oxygen and temper-
ature errors. We also retrieved monthly average pHT using
the ANN model in combination with input variables from
the Changjiang biology Finite-Volume Coastal Ocean Model
(FVCOM).

The approach has several potential applications. First, it
can provide estimates of seawater pHT with known accura-
cies for the East China Sea shelf and the period 2013–2018.
Within this region the model could be used as a cost-effective
way to handle restrictions of marine observations conducted
from ships, such as coarse resolution and undersampling of
carbonate system variables. Second, while the ANN model
is not a replacement for direct measurements of the carbon-
ate system, it may be a valuable tool for understanding the
seasonal variation of pHT in poorly observed regions. Third,
this approach can be applied to other regions to predict pH by
suitably adapting the input variables and network structure
using a local dataset. The MATLAB code used in this study
to develop and apply the ANN model is freely available and
is accompanied by a README file providing detailed guid-
ance on how to use and adapt the code.

Code and data availability. MATLAB code of the ANN
model for pHT estimation and datasets are available at
https://doi.org/10.5281/zenodo.3519219 (Li, 2019a). The monthly
average input variables (T , S, DO, N, P, Si) from the Changjiang
biology Finite-Volume Coastal Ocean Model, retrieved pHT values
from 2000 to 2016 on the East China Sea shelf and the data from
three cruises during 2018 used to evaluate the ANN model are
available at https://doi.org/10.5281/zenodo.3519236 (Li, 2019b).
Requests to access the raw data should be directed to Richard
Bellerby: richard.bellerby@niva.no. Six stations with repeated
sampling for 3 to 4 years and corresponding retrieved pH values
from the Changjiang biology FVCOM output are available at
https://doi.org/10.5281/zenodo.3491747 (Li, 2019c).

Video supplement. Monthly distribution of surface pHT
on the East China Sea shelf from 2000 to 2016:
https://doi.org/10.5281/zenodo.2672943 (Li, 2019d). Profile
distribution of pHT at 31◦ N on the East China Sea shelf from 2000
to 2016: https://doi.org/10.5281/zenodo.2672929 (Li, 2019e).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-13-5103-2020-supplement.
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