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Abstract. Understanding future impacts of sea-level rise at
the local level is important for mitigating its effects. In par-
ticular, quantifying the range of sea-level rise outcomes in
a probabilistic way enables coastal planners to better adapt
strategies, depending on cost, timing and risk tolerance. For
a time horizon of 100 years, frameworks have been devel-
oped that provide such projections by relying on sea-level
fingerprints where contributions from different processes are
sampled at each individual time step and summed up to cre-
ate probability distributions of sea-level rise for each desired
location. While advantageous, this method does not readily
allow for including new physics developed in forward mod-
els of each component. For example, couplings and feed-
backs between ice sheets, ocean circulation and solid-Earth
uplift cannot easily be represented in such frameworks. In-
deed, the main impediment to inclusion of more forward
model physics in probabilistic sea-level frameworks is the
availability of dynamically computed sea-level fingerprints
that can be directly linked to local mass changes. Here, we
demonstrate such an approach within the Ice-sheet and Sea-
level System Model (ISSM), where we develop a probabilis-
tic framework that can readily be coupled to forward pro-
cess models such as those for ice sheets, glacial isostatic
adjustment, hydrology and ocean circulation, among others.
Through large-scale uncertainty quantification, we demon-

strate how this approach enables inclusion of incremental
improvements in all forward models and provides fidelity to
time-correlated processes. The projection system may read-
ily process input and output quantities that are geodetically
consistent with space and terrestrial measurement systems.
The approach can also account for numerous improvements
in our understanding of sea-level processes.
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contract with the National Aeronautics and Space Administration.
© Jet Propulsion Laboratory 2020.

1 Introduction

Reliable projections of local sea-level change, together with
robust uncertainties, are a key quantity for stakeholders to
shape adequate and cost-effective mitigation and adaptation
measures to sea-level rise (Kopp et al., 2019). Most regional
sea-level projections use a process-based approach, in which
all relevant processes are modeled separately and summed
up together, including the individual estimates of error, with
their spatial signature (Slangen et al., 2012; Church et al.,
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2013b; Kopp et al., 2014; Jackson and Jevrejeva, 2016; Kopp
et al., 2017; Jevrejeva et al., 2019). These projections are
widely used by coastal planners and stakeholders, as is, for
example, demonstrated by the impact of Kopp et al. (2014,
2017) on assessment reports across the United States (Gor-
nitz et al., 2019; City of Boston, 2016; Kopp et al., 2016; Ka-
plan et al., 2016; Callahan et al., 2017; Dalton et al., 2017;
Griggs et al., 2017; Miller et al., 2018; Boesch et al., 2018).

In their simplest form, these process based projections can
be expressed straightforwardly. We generally refer to these
as KOPP14 (Kopp et al., 2014)) and write

RSLtotal (θ,φ, t)=

n∑
i=1

FGRD,i(θ,φ) ·Bi(t)

+RSLsterodynamic (θ,φ, t)

+RSLGIA (θ,φ, t) . (1)

where RSLtotal (θ,φ, t) is the total projected relative sea-
level (RSL) change at time t , latitude θ and longitude φ.
For all barystatic processes, or processes that change the total
ocean mass, the effects of gravity, rotation and deformation
(GRD) on local sea level are computed by multiplying the to-
tal barystatic contribution Bi(t) by the associated barystatic-
GRD fingerprint (abbreviated by “fingerprint” from here on),
or FGRD,i(θ,φ), which is computed a priori. This procedure
is generally used to include the effects of glacier and ice-
sheet mass loss, as well as for projected changes in terrestrial
water storage (TWS). Note here that our definition of GRD is
not completely in line with Gregory et al. (2019), as glacial
isostatic adjustment (GIA) is considered as a separate con-
tributor, and the GRD contribution does contribute to global-
mean sea-level changes. It is rather in line with the definition
of contemporary GRD in Gregory et al. (2019). The effects
of sterodynamic sea-level change RSLsterodynamic (θ,φ, t),
which is the sum of global thermosteric expansion and lo-
cal sea-level changes due to ocean dynamics, is generally in-
cluded by directly using estimates from Earth system models
(ESMs) and atmospheric–oceanic global circulation models
(AOGCMs), such as the output of the Coupled Model Inter-
comparison Project phase 5 (CMIP5; Taylor et al., 2009). Fi-
nally, the GIA term RSLGIA (θ,φ, t) is generally accounted
for using output from a periodically updated global model.

To derive uncertainties for these local projections of sea-
level change, the barystatic components Bi are often sampled
from a probability distribution found in published probabilis-
tic projections, for example, from expert elicitation projects
(e.g., Bamber et al., 2019), or other ice-sheet models (De-
Conto and Pollard, 2016). The sterodynamic contribution of-
ten uses the inter-model spread as a source of the uncertain-
ties. While the basis of each probabilistic projection is sim-
ilar, each group adds additional components and physics to
Eq. (1). For example, in Kopp et al. (2014) and Kopp et al.
(2017), a Gaussian process regression model, based on tide-
gauge observations, is used to account for the effect of non-
climatic vertical land motion. Or in Jackson and Jevrejeva

(2016) and Kopp et al. (2017), the GRD effects of ocean dy-
namics (Richter et al., 2013) are explicitly taken into account,
with Kopp et al. (2017) computing these effects over the en-
tire projection time series.

One of the key strengths of this approach is its relative
simplicity and transparency, as the process from probabilis-
tic estimates of the underlying processes into local sea-level
changes is a simple multiplication operation with the re-
spective barystatic-GRD fingerprint. It provides a framework
that outputs a probability density function (PDF) for RSL
at any desired location, from which the expected sea-level
change and its confidence intervals can be derived. This pro-
vides both efficient calibration/validation quantities to pro-
jections and streamlines incrementally updated projections.
In essence, each modular input may be improved separately,
so updates are unencumbered by the queueing up of new
modules for incorporation into more complex ESMs and
AOGCMs.

Recently, a growing body of research indicates that addi-
tional processes should be considered in this process-based
approach. Inclusion of such processes is critical to improving
the quantification of uncertainties in local sea-level change
predictions, but they are not directly feasible within the
framework of Eq. (1). Below, we highlight some of the key
contributors to uncertainty that, until now, have not been con-
sidered together in large-scale estimates of sea-level change.

First, in Eq. (1), the multiplication of a barystatic mass
contributor Bi(t) with a fingerprint FGRD,i(θ,φ), assumes
that the fingerprint is constant through time, which is not
always the case (Mitrovica et al., 2011). Instead, a finger-
print results from feedbacks between the geometry of sea-
level components. For example, local sea level depends on
the geometry of ice mass loss, so temporal changes in ice
geometry will directly translate into local sea-level changes
(e.g., Larour et al., 2017; Mitrovica et al., 2018). As a re-
sult, this temporal variability not only affects the expected
local sea-level changes but also its uncertainties, as the un-
certainty of the input mass loss also has a pronounced spa-
tial pattern due to relative limitations in measurement and
data interpretation. An example of the inadequacy of tempo-
rally constant fingerprints is shown in Fig. 1 for a projection
of Greenland’s contribution to RSL at 2016 versus 2045 and
2075. Normalized RSL patterns are clearly different between
all three times, and the differences are not local to just Green-
land but spill over into regions such as North Europe, Alaska
and the Canadian arctic.

Second, covariance in time as well as the covariance be-
tween the individual processes is not always small, though
it is often considered to be or is approximated by a simple
relationship (e.g., Church et al., 2013b). Indeed, assuming so
could cause a significant misrepresentation of the estimated
uncertainties in local sea-level change. For example, Le Bars
(2018) showed that most driving factors of sea level are cor-
related with global-mean temperature changes, and ignoring
this inter-process covariance can underestimate uncertainty
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Figure 1. Normalized fingerprints for Greenland in (a) 2016, (b) 2045 and (c) 2075, based on the JPL ISSM experiment 5 simulation that
contributed to ISMIP6 (Goelzer et al., 2020). The relative sea-level change patterns in the North Atlantic and Arctic oceans vary significantly
in both space and time, resulting in very different contributions to local RSL in the years 2016, 2045 and 2075.

in local sea-level change. Note that in addition to covari-
ance between processes, the uncertainty in individual pro-
cesses may also be correlated temporally. Propagating this
full spatiotemporal covariance into projections and its uncer-
tainties promotes a better understanding of the spatial and
temporal coherence of uncertainties, which could, for exam-
ple, allow us to assess the likelihood of reaching specific sea
levels by 2100 given observed sea-level change during the
next 20 years.

Thirdly, recent work on the Antarctic Ice Sheet (AIS)
shows a strong coupling between GIA, elastic surface defor-
mation and ice mass loss (Gomez et al., 2018; Barletta et al.,
2018; Larour et al., 2019). Such relationships between these
processes suggest that any uncertainties in computed ice-
sheet histories and solid-Earth properties that propagate into
GIA projections (Caron et al., 2018) can also feed back into
ice-mass-loss projections; thus, considering these processes
as independent ignores these couplings. Here, the main prob-

lem is that projection frameworks are articulated in terms of
changes in mass, while most ice-sheet models, GIA mod-
els, TWS evolution models and glacier models are explic-
itly described in terms of local mass change evolution (or
thickness changes, in meters per water equivalent per year;
m w.e.yr−1). In order to be able to account for strong cou-
plings, or to even be able to ingest recent modeling results,
one needs to propagate the local mass changes and the asso-
ciated uncertainties into regional sea-level projections. This
is particularly relevant now given new modeling runs that
have been carried out within large modeling intercomparison
projects (MIPs) such CMIP5 and CMIP6, as well as ISMIP6
or GlacierMIP2.

Similarly, additional strong positive feedbacks between ice
sheet and ocean dynamics have been evidenced in work from
Goldberg et al. (2012, 2018, 2019) and Seroussi et al. (2017),
among others. Specifically, these studies suggest that strong
coupling between sub-ice-shelf ocean circulation (in particu-
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Figure 2. Contribution to uncertainty in 100-year extreme warming simulations of AIS and three subregions of the AIS, tested for four
different model variables independently. Each probability distribution function represents an ensemble of 800 ISSM ice-sheet forward model
runs, sampled using the DAKOTA uncertainty quantification framework (Schlegel et al., 2018).

lar melt rates) and ice-flow dynamics (in particular, ground-
ing line dynamics and mass transport resulting in modifica-
tions of an ice-shelf draft) results in significant retreat of ice
streams such as Thwaites Glacier and Pine Island Glacier, as
Antarctica’s warm circumpolar deepwater is advected close
to their grounding line. Other high-frequency processes (at
the daily to monthly level) such as ocean tides, and in par-
ticular how tidal currents affect water mass properties at ice-
sheet marine margins (Padman et al., 2018), are critical in un-
derstanding how mass loss rates will evolve. This will signifi-
cantly impact how melt-rate parameterizations are developed
to quantify melt rates, especially in the West Antarctic Ice
Sheet area (Seroussi et al., 2017). Significant work remains
in calibrating such melt-rate parameterizations to correctly
account for all aforementioned effects. While more work is
required in terms of constraining such parameterizations, the
impacts of such ice–ocean feedbacks have not been assessed
in probabilistic sea-level models (PSLMs).

Finally, in the past decade, extensive work has been carried
out to probabilistically characterize components such as GIA
(Whitehouse et al., 2012; Gunter et al., 2014; Caron et al.,
2018; Melini and Spada, 2019) or ice-sheet mass balance
(Larour et al., 2012b, a; Schlegel and Larour, 2019; Schlegel
et al., 2013, 2015, 2016, 2018; Smith-Johnsen et al., 2020).
Substantial understanding of the impact of rheological pa-
rameters and ice history on the distribution of bedrock uplift
and rate of change in geoid rates has been generated through

modeling of GIA. Similarly, for ice-sheet models, significant
knowledge has been generated about how the mass balances
of both the AIS and Greenland Ice Sheet (GIS) are impacted
by surface mass balance (SMB), ice-shelf basal melt, ice–
bedrock friction, geothermal heat flux or ice rheology (see,
e.g., Fig. 2a). All of these advances need to be fully inte-
grated into new probabilistic projections of sea-level change,
and a new approach therefore needs to be envisioned that will
allow for such new processes to be accurately modeled.

Indeed, moving from strategies where continental-scale
mass changes are sampled and multiplied with the corre-
sponding fingerprint to actually sampling upstream model
inputs is important for improving the state of the art. In par-
ticular, there is a strong need to fully account for spatial pat-
terns of mass change and their uncertainty (see Fig. 2b–d).
This applies to, among others, SMB, basal friction or ice and
solid-Earth rheological properties.

For example, Eq. (1) relies on masses that are aggre-
gated at the basin/continental level. However, most ice-sheet
models compute high-resolution thickness change patterns
that are not aggregated. This aggregation greatly reduces the
complexity in representation of model physics and uncer-
tainty propagated at the interface between ice-sheet mod-
els and PSLMs. A more comprehensive approach that re-
establishes interfaces between forward models and PSLMs is
therefore necessary, where model outputs are not aggregated
or simplified.
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Here, we propose a new framework for sea-level projec-
tions that is able to account for all terms in Eq. (1). We
improve the existing process-based approach by using the
Ice-sheet and Sea-level System Model (ISSM; Larour et al.,
2012c), which allows for inclusion of forward model physics.
It also improves the modeling and sampling of covariance be-
tween input processes, both temporally and spatially through
the computation of high-resolution barystatic-GRD patterns.
The latter feature builds the basis for a geodetically compli-
ant projection system where GRD patterns and their compu-
tation are done systematically and which does not introduce
biases in the projections.

2 Methods

2.1 Theory

Sterodynamic sea-level changes form a significant contribu-
tor to both global-mean sea-level rise and are responsible for
large parts of the regional deviations from the global-mean
projected changes (e.g., Slangen et al., 2012; Church et al.,
2013b; Slangen et al., 2017). Following the CMIP5 conven-
tions, sterodynamic sea-level changes consist of a global-
mean thermosteric contribution (variable name zostoga)
and a local dynamic contribution (variable name zos) with a
zero mean over the oceans. Generally, an ensemble of model
runs, either based on multiple models (e.g., Church et al.,
2013b) or on large-ensemble experiments based on perturb-
ing a single model (for example, Little et al., 2017), can be
used to directly sample regional sea-level changes. An al-
ternative approach to generate more samples than model en-
semble members is to determine common modes of variabil-
ity, for example, by extracting the largest empirical orthogo-
nal functions from each model and perturbing the associated
principal components (e.g., Thompson et al., 2016, Fig. 3).

While sterodynamic effects do not change the total ocean
mass, ocean dynamics can be coupled to redistribution
of ocean mass, which manifests in ocean-bottom-pressure
changes, particularly on shallow shelf seas (Landerer et al.,
2007). These bottom-pressure changes load the solid Earth
below and thus result in GRD effects, which are often re-
ferred to as self-attraction and loading (SAL) effects (Ray,
1998; Stepanov and Hughes, 2004; Vinogradova et al.,
2015). These SAL effects could cause several centimeters
of additional sea-level rise above the sterodynamic signal
in century-scale sea-level projections made by atmosphere–
ocean general circulation models (AOGCMs) (Richter et al.,
2013). By adding the ocean-bottom-pressure changes to the
sea-level equation solver, this effect can be incorporated in
regional sea-level projections.

As depicted in Eq. (1), in the classical approach, static sea-
level fingerprints are computed a priori for each individual
process, which typically include glaciers (GLA), the GIS and
AIS, and TWS. These fingerprints are subsequently multi-

Figure 3. Diagram of ISSM’s Sea-Level Projection System (ISSM-
SLPS) model. The system is driven by requirements from Eq. (2).
ISSM-SESAW is the GRD core of the system (in pink). ISSM-SLPS
is a combination of ISSM-SESAW and a layer (in green) that han-
dles STR, DSL and GIA inputs, as well as all uncertainty quantifi-
cation aspects.

plied by the equivalent barystatic contribution, which is of-
ten sampled from a PDF and added, together with the stero-
dynamic and GIA contribution, to obtain local RSL changes
and the associated confidence intervals. This method is both
transparent and simple, while maintaining computational ef-
ficiency due to the fact that the fingerprints do not have to be
computed for each sample or time step.

However, several issues arise from this approach, which
can be mitigated using a different method. First, it is assumed
that the spatial pattern of mass loss is known a priori and does
not vary over time. A common approach is to assume that the
mass loss is uniformly distributed over the ice sheet, or that
it follows the spatial pattern derived over the Gravity Recov-
ery and Climate Experiment (GRACE) period. Jackson and
Jevrejeva (2016) quantified the errors induced by assuming
a uniform mass loss and found that this bias could be up to
1 and ≥ 10 cm for sites distant from and close to centers of
mass loss. Furthermore, the approximation of time-invariant
fingerprints could lead to biases, when the spatial pattern of
mass loss varies over time.

In our approach (Fig. 3), ISSM Sea-Level Projection Sys-
tem (ISSM-SLPS) solves for RSL as follows:

RSL(θ,φ, t)= RSLSTR(t)+RSLDSL(θ,φ, t)

+RSLGIA(θ,φ, t)+RSLGRD(θ,φ, t). (2)

The first two terms on the right-hand side, i.e.,
RSLSTR(t)+RSLDSL(θ,φ, t), together represent the stero-
dynamic sea-level change. STR represents the global-mean
thermosteric expansion and DSL local sea-level changes due
to ocean dynamics. These can be obtained from CMIP re-
sults. The GIA contribution to ongoing sea-level change,
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RSLGIA, is given, for example, by Caron et al. (2018). The
last term, RSLGRD, refers to the component of sea-level
change due to mass-induced contemporary GRD response
of the solid Earth (Gregory et al., 2019), excluding the GIA
processes. This implies that viscoelastic deformation is split
between long-term timescales and short-term fast rebound
of the bedrock uplift, such as observed in West Antarctica
(Barletta et al., 2018), acting essentially over timescales of
10–100 years. This includes mass transport between the land
and the ocean, as well as that due to dynamic ocean circu-
lation. The latter field is provided by CMIP as the ocean-
bottom-pressure (OBP) products. Note that GRD associated
with land–ocean mass transport is usually termed “sea level
fingerprint” (e.g., Mitrovica et al., 2009), while the GRD due
to OBP variability is termed the “self-attraction and loading”
phenomenon (e.g., Ray, 1998). As we shall see, we unify
both of these elements of contemporary GRD sea level in
Eq. (3). Note also that the global-mean OBP is removed from
the ocean models, since ocean dynamics do not add or re-
move any mass from/to the ocean. In fact, our projections
rely on CMIP5 and CMIP6 “zos” (the sea-surface height
change above geoid) and “zostoga” fields for which the
Greatbatch correction has been applied (Greatbatch, 1994).

We compute RSLGRD using ISSM’s Solid Earth and Sea-
Level Adjustment module (ISSM-SESAW; Adhikari et al.,
2016). Assuming that all of land ice–water mass change di-
rectly modulates the ocean mass, we define a global mass-
conserving loading function, Mglobal(θ,φ, t), that describes
the change in mass per unit area on the solid-Earth surface as
follows:

Mglobal(θ,φ, t)=Mland(θ,φ, t)
[
1−O(θ,φ)

]
+ ρo

[
HOBP(θ,φ, t)

+RSLGRD(θ,φ, t)
]
O(θ,φ), (3)

where the land loading function (with dimensions of mass
per unit area) Mland(θ,φ, t) is given by Adhikari et al.
(2016):

Mland(θ,φ, t)= ρi

[
HAIS(θ,φ, t)+HGIS(θ,φ, t)

+HGLA(θ,φ, t)
]
+ ρwHTWS(θ,φ, t). (4)

Here, ρi is the ice density, ρw is the freshwater density,
ρo is the mean density of ocean water, and HOBP is the
(ocean) water equivalent height of the ocean-bottom-pressure
change. Similarly, HAIS, HGIS and HGLA are the ice height
change in the respective cryospheric domains, and HTWS
is the freshwater height change in the non-cryospheric land
domain. Note that we invoke an ocean function O(θ,φ) in
Eq. (3) to ensure mass conservation in the system. This func-
tion is equal to 1 over the oceans and 0 everywhere else.

The contemporary mass transport functionMglobal(θ,φ, t)

loads the underlying solid Earth that is self-gravitating, ro-
tating and viscoelastically compressible. The induced spatial

pattern of RSLGRD(θ,φ, t) is dictated by the perturbation in
Earth’s gravitational and rotational potentials and associated
viscoelastic deformation of the solid Earth (Farrell and Clark,
1976; Milne and Mitrovica, 1998). In the absence of dynamic
sea level and meteorologically induced high-frequency sig-
nals, the sea-surface height mimics the spatial pattern of the
geoid (Gregory et al., 2019). Therefore, we may write

RSLGRD(θ,φ, t)= C(t)+GGRD(θ,φ, t)−BGRD(θ,φ, t),

(5)

whereGGRD(θ,φ, t) and BGRD(θ,φ, t) represent the change
in geoid and bedrock elevation induced by the loading of the
solid Earth (Eq. 3), respectively. Spatial invariant C(t) is in-
voked to ensure mass conservation in the Earth system, and
it may be readily derived by inserting Eq. (5) into Eq. (3) and
integrating it over the solid-Earth surface.

BothGGRD(θ,φ, t) andBGRD(θ,φ, t) appearing in Eq. (5)
may be partitioned into two components each: those re-
lated to gravitational potential and those to rotational po-
tential. These components can be computed by convolving
Mglobal(θ,φ, t)with respective Green’s functions. These may
be defined in terms of surface harmonics with loading Love
numbers as coefficients. Given the structure and viscoelastic
properties of the solid Earth, these numbers characterize the
axisymmetric deformational and gravitational response of
Earth to the applied unit surface load. The rotational compo-
nents depend upon tesseral second-degree loading and tidal
Love numbers as well as on the perturbation in Earth’s iner-
tia tensor, which in turn depends on Mglobal(θ,φ, t). In order
to solve for RGRD(θ,φ, t), we require an a priori knowledge
of Mglobal(θ,φ, t), which in turn depends on RGRD(θ,φ, t)

itself. The system of Eq. (3) and (5) is therefore solved itera-
tively until a desired solution accuracy is achieved. One key
feature of this field is that as ice sheets lose mass, the near-
field relative sea level drops, and far-field sea level rises at
a much larger rate than the barystatic term for the sake of
mass conservation. While theoretical/numerical treatments
on the topic are found elsewhere (e.g., Farrell and Clark,
1976; Mitrovica and Peltier, 1991; Mitrovica and Milne,
2003; Spada and Stocchi, 2007; Adhikari et al., 2019), ver-
sion 1.0 of the SESAW algorithm where RSLGRD is solved
for is presented in Adhikari et al. (2016).

2.2 Meshing

SESAW is a mesh-based convolution based on Eq. (2) in Far-
rell and Clark (1976). As such, it relies on an anisotropic un-
structured mesh of the surface of the Earth which is refined
according to specific metrics such as distance to the nearest
coastline, presence of loads (such as changes in ice thick-
ness or TWS) and the complexity of the coastline. Given the
amount of inputs being sampled for in the SLPS system, a
systematic approach to refining such a mesh needs to be de-
veloped. The main tool for such a refinement is the ISSM im-
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Figure 4. A 3-D plot of the boundaries used to mesh each continental area of the Earth’s surface. Regions include South and North America,
Australia, Eurasia and the Pacific, as well as Greenland and Antarctica. In this particular scenario, Greenland has been subdivided into 18
regions along the boundaries defined in Zwally et al. (2012).

plementation of the Bidimensional Anisotropic Mesh Gen-
erator (BAMG) anisotropic mesh refiner (Hecht, 2006a, b).
This is a 2-D-based anisotropic mesher which can refine a
mesh according to several constraints at the same time: a
metric to specify directions along which the mesh resolution
needs to be improved, specific vertex or segment positions,
in particular vertex positions of the region outlines, and spec-
ified mesh resolutions for user-defined locations. Combining
these constraints, we develop an approach based on mesh-
ing of a set of 2-D continental areas of the Earth, projec-
tion of such 2-D meshes onto the 3-D Earth surface and then
stitching of the resulting meshes into one seamless global 3-
D mesh.

A plot of the 2-D regions is given in Fig. 4, which in-
clude South America, North America, Australia, Eurasia and
the Pacific. At the north and south, we have regions defined
for Antarctica and Greenland. Greenland itself has been fur-
ther refined into 18 regions drawn along its main ice divides,
following Zwally et al. (2012, Fig. 3). The approach facili-
tates a direct linkage of models from the existing literature,
or potentially from previous ISSM studies such as Seroussi
et al. (2017); Schlegel et al. (2018), without having to remesh
the entire Earth. This in turn allows for direct comparisons
between uncertainty quantification projection results where
only one specific region is modified, hence allowing an ap-
proach where control runs can be compared against specific
variations of an uncertainty quantification projection run.

An example mesh of the South American continent is
shown in Fig. 5. This mesh relies on defined vertices for
the outline, which match the outline vertices for the Pacific,
Antarctica and Eurasian meshes, so that the stitching within
a larger 3-D mesh can be done without redundancy in ver-
tices along continental boundaries. In addition, GRACE ice
mass trends from 2003 to 2016 (Adhikari and Ivins, 2016)
are provided as a metric to be used for refinement of the
mesh, in particular around the Patagonian ice fields. The min-
imum mesh resolution attained for this mesh is 500 m, and
the largest is 1400 km. Finally, Global Self-consistent, Hier-
archical, High-resolution Geography database (GHSSH) L1
coarse version (Wessel and Smith, 1996) was used as a ver-
tex constraint, so that the final mesh perfectly coincides with
the coastline dataset (in black). This allows for the most op-
timum sea-level solution using the SESAW solver.

Once each region has been meshed in 2-D using BAMG,
it is projected onto latitude and longitude, and concatenated
together to create a 3-D mesh. This is possible because each
2-D mesh relies on the same set of boundaries as shown in
Fig. 4. The resulting mesh is shown in Fig. 6 and comprises
38 944 surface elements for 19 486 vertices. For compari-
son, an equiangular 1×1◦ grid would require 64 800 vertices,
which is 3 times as many as for a coarse grid resolution.
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Figure 5. A 2-D adaptive mesh of South America using GRACE ob-
servations of ice and hydrological mass change (in cm yr−1) from
2003 to 2016. Seismic effects (Richter et al., 2019) are not removed
in this rendering of Patagonian ice mass loss that was directly taken
from Adhikari and Ivins (2016). The Global Self-consistent, Hier-
archical, High-resolution Geography database (GHSSH) L1 coarse
version coastline is shown in green. Segments of the triangular mesh
are plotted in black. The color bar for the thickness changes was
saturated at [−1,1] cm yr−1 in order to improve the contrast of the
figure given the high mesh resolution.

2.3 Sampling and partitioning

In order to sample variables at each time step, our approach is
to use a geographical partitioning of the unstructured mesh.
An example is shown in Fig. 7, where a range of values from
1 to 5 has been attributed for each vertex (and element) of the
mesh, corresponding, respectively, to Antarctica (1), Green-
land (2), glaciers (3), the ocean (4) and land (5). For each par-
tition and for each variable that is probabilistically sampled,
we define a probability density function (PDF). For normal
distributions, for example, this will be done through a mean
and standard deviation.

The algorithm for sampling through SLPS is explained in
Algotithm 1, in the generic case where spatial covariance
is available between variables. Here, t is the time variable

(ranging from the years 2019 to 2100, at 1-year intervals), j
is the counter for each sample, from 1 to nsamples (in our
case, 10 000), VAR is the sampled variable (from one of the
SESAW inputs, excluding RSLGIA which is deterministic in
our framework), VERTEX is a counter for all vertices in the
mesh MESH, PARTITION is the partition vector (for exam-
ple, ranging from 1 to 5 in Fig. 7), PDF is the joint prob-
ability distribution of variables across all geographical lo-
cations, DAKOTA is the sample generator in ISSM (Eldred
et al., 2008; Larour et al., 2012b), alpha is the j th sam-
ple matrix of scaling factors with size (number of variables,
number of partitions), VAR0 the unmodified variable (stored
in memory at the beginning of the model run), and SLPS
is the sea-level solver, generating RSL for a specific sample
of all the probabilistic variables. In this algorithm, the PDF
distribution is built by specifying its nature and parameters;
e.g., the “type” argument can indicate the choice of a multi-
variate Gaussian distribution and “pdfspec_arg” can specify
the vector of means and covariance matrix of alpha between
each other and between partitions.

For this application, we assume that each variable and each
partition is independent, and we set the mean of all distri-
butions to 1. This ensures that values of alpha behave as
scaling parameters. We use them to directly scale a variable
locally, according to which partition area this location geo-
graphically belongs. This method is therefore significantly
different from the approach in KOPP14, where the entire
mass within a certain partition (for example, GIS or AIS) is
sampled. Here, the sampling is a scaling of a vectorial field,
which therefore preserves the local geographical distribution
of a given variable. This is shown in Fig. 8 for a scenario
where thinning rates of the GIS are sampled using one geo-
graphical partition (corresponding to Fig. 7 partition value of
2, in blue). We display the average thinning rates µ, µ+ 3σ
and µ− 3σ (for an arbitrary value of the standard deviation
σ = 5 %). The structure of the thinning rate as it is sampled is
kept intact, implying that the spatial covariance of the vari-
able being sampled across the mesh is kept closely similar
across samples and within any given partition.

2.4 Modularity

The advantage of the partition approach as implemented in
SLPS is that various approaches to probabilistic projections
can be executed with the same framework. First, as we will
show in the next section, the KOPP14 approaches are fully
compatible with the SLPS framework. Indeed, fingerprint
patterns can be recomputed using local thickness change rate
patterns that are spatially constant on the basis of only one
partition, such as the entire Greenland or Antarctic ice sheets
(contrary to Fig. 12 where Greenland is subdivided). Once
several partitions are adopted, however, the refinement in the
fingerprint patterns significantly departs from the KOPP14
approach. Second, existing probabilistic assessments for spe-
cific components (such as the impact of changes in surface
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Figure 6. A 3-D Earth mesh stitched from 3-D projections of 2-D regional meshes of the following regions: South and North America,
Australia, Eurasia and the Pacific, as well as Antarctica and Greenland. GRACE observations of ice mass change (in cm yr−1) from 2003 to
2016 (Adhikari and Ivins, 2016) are laid over the mesh. The left frame azimuth is 30◦ with an elevation of 64◦. The right frame azimuth is
205◦ with an elevation of 23◦.

Figure 7. Partition vector (values from 1 to 5: 1 for Antarctica, 2 for Greenland, 3 for glaciers around the world, 4 for the ocean and 5
for ice-free land). The partition vector is used to sample probabilistic variables in a geographically consistent way, with PDF distribution
moments (mean and standard deviation) defined for each partition area.

mass balance or basal friction in Antarctica – as shown in
Schlegel et al., 2018 – on ice thickness changes) can be
used directly, using model output (for example, for thickness
change rates), or PDF distributions from such model outputs.
If the uncertainty quantification was done using a Bayesian
framework, the model output statistics can be reused directly
(using some type of uniform discrete sampling of each model
output), hence replicating a Bayesian-type exploration ap-
proach of SLPS without incurring any additional computa-
tional cost (meaning, not having to rerun the analysis car-
ried out to compute such model outputs). Third, ISSM mod-

ules can be activated upstream of the SLPS solver to push
further the boundaries of the uncertainty assessment. For
example, an analysis of the impact of SMB variations in
one specific region of Antarctica could be carried out us-
ing the ice-flow modeling core of ISSM, capable of deliver-
ing ice thickness changes directly to the SLPS core. Fourth,
these modules can be activated while remaining coupled to
other modules. For example, in Larour et al. (2019), it was
demonstrated that over centennial timescales, coupling be-
tween the elastic uplift of the grounding line and ice-flow-
related grounding line migration are key to controlling the
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Figure 8. Random sampling of thinning rates across Greenland. (a) GRACE-generated thinning rate pattern at 2005 (in m yr−1). (b) Thinning
rate along the AB profile (from a) (in red, representing the average of the PDF) and samples generated at−3σ (blue) and+3σ (yellow) from
the average.

retreat of Thwaites Glacier in West Antarctica. Assessing
the uncertainty brought by such processes on sea-level rise
(SLR) projections would require this coupling to be acti-
vated, which could be done (assuming computational costs
are still realistic) without modifications to the SLPS frame-
work. Finally, given how closely ISSM can be integrated
within Web Server architectures using its native JavaScript
interface (Larour et al., 2017), SLPS is potentially fully com-

patible with open-source types of collaborative approaches
where inputs from the community could be provided directly
to web servers running ISSM in the background to generate
model projections without significant investment in a com-
putation core and/or an interface to the latter.
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Figure 9. ISSM-SLPS projections based on Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) Represen-
tative Concentration Pathway 8.5 (RCP8.5). For each time step, we sample (10 000 times with Latin hypercube sampling, or LHS) the
following inputs: HGIS, HAIS, thermal expansion of the ocean (STR), HTWS and glacier contributions HGLA (see AR5 WG1 chap. 13;
Church et al., 2013b). Each input’s PDF is calibrated using the AR5 5 %–95 % projection confidence interval, similar to Kopp et al. (2014).
The resulting global mean sea-level (GMSL) probability distribution function (PDF) distribution is shown in panels (a) (in time) and (b) (at
a subset of time steps). The 5 %–95 % confidence interval (likely range, following AR5 definition) is plotted in black in panel (a), along with
the temporal mean. Each time step is fully decorrelated from the previous time steps, with this test being used to validate against existing an
existing AR5 projection.

3 Results and discussion

SLPS probabilistic projections were validated using model
inputs from the Intergovernmental Panel on Climate Change
Fifth Assessment Report (IPCC AR5) (Church et al., 2013a).
AR5 supplies several projection components in SLR equiva-
lents: the “expansion” term (STR), the “glacier” term (which
can be converted into an average thickness change rate for
HGLA), “antnet” and “greennet” for net barystatic contribu-
tion from the Antarctica and Greenland ice sheets, which
can also be converted into an average change rate for HAIS
and HGIS, and the “landwater” term for TWS contribution
to SLR (which can be converted into an average change rate
for HTWS). For each of these terms, AR5 supplies the mean
projection and the 5 %–95 % confidence interval. We can
use this information to calibrate PDF distributions for thick-
ness change rates at each time step, with the mean of each
PDF corresponding to the AR5 mean and the standard devia-
tion calibrated from the 5 %–95 % interval (corresponding to
the −1.65σ to 1.65σ interval). Because AR5 does not sup-
ply spatial patterns, we rely on GRACE 2003–2016 thick-
ness change rate patterns from Adhikari and Ivins (2016) for
HGLA,HAIS andHGIS. ForHTWS, we assume a uniform spa-
tial distribution over all the spatial partitions. STR is also
considered uniform over all the oceans. DSL is not sam-
pled but rather deterministically set to the DSL term of the
CMIP5 NorESM-ME runs (Bentsen et al., 2013). GIA is in-
dependently sampled (from Caron et al., 2018) and proba-
bilistically added as an independent PDF. The sampling is
carried out on the partitions described in Fig. 7 with the no-
table exception that the GIS is further divided into 18 differ-
ent basins as defined in Zwally et al. (2012) and as plotted in

Fig. 12. For each year between 2007 and 2100, 10 000 sam-
ple runs of SLPS are carried out (with full geodetic capabili-
ties of the SESAW core). For each partition, samples for the
corresponding inputs are generated using a Latin hypercube
sampling (LHS) algorithm. The runs were carried out on the
Pleiades cluster at the NASA Ames Research Center, on 20
Ivy nodes (20 cores per node for an equivalent 400 cores)
over 7 h.

Figure 9 shows projection results for GMSL computed at
each time step between 2007 and 2100, and histograms for
several time snapshots. We match the mean and 5 %–95 %
confidence intervals of AR5 (Fig. 9a) as expected. We also
show the evolution of RSL in Fig. 10 for nine cities around
the world. We provide the mean and standard deviation for
each PDF and show how the sampling of ice-related thick-
ness changes impacts mean and standard deviation. In par-
ticular, as expected from the AR5 inputs, we show a marked
increase in PDF spreads as time evolves from 2007 to 2100.

Figure 11 shows the impact of using existing statistics
from Caron et al. (2018) to include into SLPS. These statis-
tics were evaluated using a Bayesian inversion method based
on simulated annealing (Kirkpatrick et al., 1983), a variation
of the Monte Carlo with Markov chains (MCMC) method
(Metropolis and Ulam, 1949; Metropolis et al., 1953). They
can be used directly in SLPS either during a standard proba-
bilistic projection run or a posteriori as is the case here. These
statistics reflect the statistical fitness to a global GIA dataset
composed of paleo-RSL indicators and vertical GPS trends.
The impact of the migrating Laurentide isostatic bulge on
Norfolk, Virginia, is apparent in Fig. 11, with an offset of
16 cm in the average projection for the city.
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Figure 10. AR5 calibrated projection of RSL for nine cities around the world from 2007 to 2100. Sampling was carried out for HAIS, HGIS,
HGLA, STR andHTWS using mean and standard deviations from AR5 (Church et al., 2013a). The patterns for ice thickness are from GRACE
2003–2016 trends (Adhikari and Ivins, 2016). DSL is fully deterministic, from the CMIP5 Norwegian Earth System Model (NorESM) runs
(Bentsen et al., 2013). RSLGIA was deterministically set to 0. Each time step was sampled for using 10 000 LHS samples.

Figure 12 shows results for a different experiment, in
which we quantify the impact of refining the amount of par-
titions used to sample the uncertainty in ice thickness change
rates. For the area of Greenland, we use either one parti-
tion (blue boundary) or 18 boundaries (brown basins) from
the Zwally et al. (2012) dataset. Each basin is delimited by
ice divides and thus represents a dynamically coherent area,
expected to behave (short of ice divides migrating actively)
independently from one another. We rerun an SLPS projec-

tion using a similar AR5 setup and display the contribution
of ice-related basins to SLR in New York and Hawaii for
1 and 18 partitions respectively. As expected, the mean in
PDF distributions are identical for both 1 and 18 partitions.
However, the tails are much larger for the one-basin sce-
nario. The relative difference in standard deviations between
1 and 18 basins ranges from −23 % for New York to −34 %
for Hawaii. This implies that current probabilistic RSL pro-
jections are significantly overestimating (by 20 %–30 %) the
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Figure 11. AR5 calibrated projection of RSL for Norfolk (in brown)
versus same projection in which GIA statistics from Caron et al.
(2018) are used to account for GIA-induced RSL (in blue). Note that
both PDF distributions have standard deviations that are essentially
identical within 0.4 % relative difference.

width of the “likely” (5 %–95 %) range in ice-melt contribu-
tion to RSL.

This is understandable because of the fact that in a one-
partition scenario, variations of ice thickness are dictated by
scaling of the local ice thickness change rate mean by an
identical scalar for the entire partition, which leads to more
extreme values for the contribution to RSL. With finer par-
titions, basins that have low thickness change rates do not
impact RSL as much, and in aggregate the total contribu-
tion range varies less. This can be visualized better by tak-
ing the example of New York, where following Larour et al.
(2017) contributions from South Greenland are almost neg-
ligible. This implies that all the basins (and corresponding
GRD patterns) in South Greenland will contribute zero vari-
ance to the PDF for RSL in New York. This will therefore
result in smaller tails for projections that rely on more refined
basins. A very similar conclusion was found in Schlegel et al.
(2018), where Antarctica had to be subdivided in spatially
coherent areas, which were not obvious initially and did not
mandatorily map into individual basins. The issue is that the
error distribution in model inputs had a specific spatial co-
herence that had to be respected. Assuming this coherence
extended to the entire ice sheet led to significantly larger and
unrealistic uncertainty ranges in model outputs. Of course,
given differing dynamics in each geographical basin, we can-

not assume that the input scaling should be similar (same
standard deviation). This will modify the results in Fig. 12.
But our aim here is to point out the issue of sub-partitioning
as being essential in quantifying the right range of spread in
modeled statistical outputs.

This analysis also shows that using SLPS, it is possible to
efficiently address the question of how to sample uncertainty
in a manner that is consistent with the local behavior of sepa-
rate basins, glaciers and ice sheets. In Jackson and Jevrejeva
(2016), for example, it is shown that the impact of glacier
ice thickness variations around the world is significantly dif-
ferent and that relying on one fingerprint alone can lead to
significant differences in the projection of glacier contribu-
tion (up to several percent). Our approach in SLPS ensures
that the GRD contribution is systematically reassessed for
each sample, at each time step, and the partitioning of our
sampling ensures that we correctly capture the specificity
of each glacier/ice/hydrological area and their unique mass
change trends. It is to be noted that a similar approach is
currently implemented in new instantiations of the KOPP14
projection system based on sampling of glacier projections
across the 19 Randolph Glacier Inventory (RGI) areas used
in the GlacierMIP results (Hock et al., 2019). However, these
areas can be very large in spatial extent (such as the low lati-
tudes or north Asian areas) and should be broken down. Our
approach scales for any barystatic contributor at any spatial
scale (for example, sub-basin or at the glacier level) required
by the structure of the error distribution of model inputs.

4 Conclusions

ISSM SLPS is a new sea-level probabilistic projection sys-
tem which relies on a new partitioning approach to sampling
of boundary conditions, forcings and inputs. It is compati-
ble with previous probabilistic frameworks but allows for a
more robust integration of state-of-the-art results in the mod-
eling of ice flow in ice sheets and glaciers, sterodynamic
sea level, TWS evolution and GIA. It re-establishes temporal
correlation in projections where they were previously lack-
ing and allows for better constraints on spatial and temporal
covariance in the model inputs. In particular, it is capable of
systematically computing geodetically compliant patterns of
sea level that are consistent with space and terrestrial mea-
surement systems. The system relies heavily on the use of
high-resolution anisotropic meshes and allows for a better
interfacing with existing modeling frameworks which oper-
ate at higher resolutions and consistently generate changes
in mass density patterns around the globe. SLPS has been
validated against previous frameworks and is fully back-
wards compatible. Differences between SLPS and previous
approaches have also been shown both in terms of integra-
tion of GIA statistics and integration of new high-resolution
sampling of ice thickness change patterns in Greenland. This
new approach offers a roadmap towards further increasing

https://doi.org/10.5194/gmd-13-4925-2020 Geosci. Model Dev., 13, 4925–4941, 2020



4938 E. Larour et al.: ISSM-SLPS

Figure 12. Impact of subsampling the GIS mass (from 1 basin for the whole ice sheet to 18 basins) on barystatic sea-level rise in New York
and Hawaii. The distributions are a result of SLPS, where HGIS, HAIS and HGLA were sampled 10 000 times using an LHS algorithm.
The means in PDF distributions for both scenarios are identical; however, the tails are much larger for the one-basin scenario. The relative
difference in standard deviations between 1 and 18 basins ranges from −23 % for New York to −34 % for Hawaii. This implies that current
probabilistic RSL projections could significantly overestimate (20 %–30 %) the “likely” (5 %–95 %) range in ice-melt contribution from
glaciers and ice sheets.

the complexity and realism of sea-level probabilistic projec-
tion frameworks.
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