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Abstract. This study assesses the impact of different sea
ice thickness distribution (ITD) discretizations on the sea
ice concentration (SIC) variability in ocean stand-alone
NEMO3.6–LIM3 simulations. Three ITD discretizations
with different numbers of sea ice thickness categories and
boundaries are evaluated against three different satellite
products (hereafter referred to as “data”). Typical model and
data interannual SIC variability is characterized by K-means
clustering both in the Arctic and Antarctica between 1979
and 2014. We focus on two seasons, winter (January–March)
and summer (August–October), in which correlation coeffi-
cients across clusters in individual months are largest. In the
Arctic, clusters are computed before and after detrending the
series with a second-degree polynomial to separate interan-
nual from longer-term variability. The analysis shows that,
before detrending, winter clusters reflect the SIC response to
large-scale atmospheric variability at both poles, while sum-
mer clusters capture the negative and positive trends in Arc-
tic and Antarctic SIC, respectively. After detrending, Arctic
clusters reflect the SIC response to interannual atmospheric
variability predominantly. The cluster analysis is comple-
mented with a model–data comparison of the sea ice extent
and SIC anomaly patterns.

The single-category discretization shows the worst model–
data agreement in the Arctic summer before detrending, re-
lated to a misrepresentation of the long-term melting trend.
Similarly, increasing the number of thin categories reduces
model–data agreement in the Arctic, due to a poor repre-
sentation of the summer melting trend and an overly large

winter sea ice volume associated with a net increase in basal
ice growth. In contrast, more thin categories improve model
realism in Antarctica, and more thick ones improve it in cen-
tral Arctic regions with very thick ice. In all the analyses
we nonetheless identify no optimal discretization. Our re-
sults thus suggest that no clear benefit in the representation
of SIC variability is obtained from increasing the number of
sea ice thickness categories beyond the current standard with
five categories in NEMO3.6–LIM3.

1 Introduction

Analysis of recent observations has allowed identification of
different drivers of sea ice variability. Interannual sea ice
variability, for example, has been associated primarily with
changes in atmospheric and oceanic circulation: atmospheric
variability related to large-scale atmospheric modes, such as
the North Atlantic Oscillation (NAO) or Siberian High in the
Northern Hemisphere and the Southern Annular Mode over
Antarctica, can drive changes in the sea ice both dynamically
and thermodynamically (e.g., Rigor et al., 2002; Rigor and
Wallace, 2004; Ogi et al., 2007; Yuan and Li, 2008; Wang
et al., 2009; Hobbs and Raphael, 2010; Holland and Kwok,
2012; Renwick et al., 2012; Kohyama and Hartmann, 2016;
Lynch et al., 2016; Close et al., 2017; Blackport et al., 2019;
Olonscheck et al., 2019). Similarly, interannual changes in
ocean heat transport to high latitude can contribute to anoma-
lous episodes of Arctic sea ice melting in both the Atlantic

Published by Copernicus Publications on behalf of the European Geosciences Union.



4774 E. Moreno-Chamarro et al.: Impact of the ice thickness distribution discretization

and Pacific sectors (e.g., Hibler, 1986; Venegas and Mysak,
2000; Ingvaldsen et al., 2004a; b; Woodgate et al., 2010;
Schlichtholz, 2011). On longer timescales, the accelerating
thinning in Arctic sea ice (Comiso et al., 2008; Serreze and
Stroeve, 2015) might be modulated by lower-frequency vari-
ability in modes such as the NAO (e.g., Delworth et al., 2016)
or Atlantic multidecadal variability (e.g., Day et al., 2012;
Drinkwater et al., 2014; Miles et al., 2014). Accurately cap-
turing the complex range of variability in sea ice, together
with the potential impacts on the lower-latitude climate (e.g.,
Screen, 2013), demands a realistic representation of sea ice
in climate models.

One among the many crucial features of sea ice to en-
sure its realistic representation is its thickness heterogeneity,
which determines other important physical properties, such
as ice’s salt and heat content, resistance to deformation and
fracture, and melting and growth rates. State-of-the-art sea
ice models typically use an ice thickness distribution (ITD)
(Thorndike et al., 1975) to account for subgrid-scale variabil-
ity in ice properties. In most cases, through an ITD the dif-
ferent ice thicknesses are sorted into a fixed number of cat-
egories in a configuration, usually with the finest resolution
in the thinnest ice range. Several studies have explored the
advantages of including an ITD to simulate the mean state
and seasonality of the sea ice accurately, as well as the num-
ber of categories that would render its most realistic repre-
sentation, albeit with mixed results (among others, Bitz et
al., 2001; Lipscomb, 2001; Holland et al., 2006; Masson-
net et al., 2011; Uotila et al., 2017; Ungermann et al., 2017,
and Massonnet et al., 2019). Although five to seven cate-
gories were initially found sufficient to simulate large-scale
sea ice realistically (Bitz et al., 2001; Lipscomb, 2001), the
later study by Hunke (2014) concluded that such numbers
might lead to an inaccurate representation of the observed
sea ice thickness and a model misrepresentation of mechan-
ical sea ice processes controlling its volume. The optimal
number of categories and discretization are therefore still de-
bated (a more detailed review is given in the companion pa-
per, Massonnet et al., 2019). Interestingly, we note that these
previous studies partly overlook the impact of the ITD dis-
cretization on the simulated sea ice variability. To our knowl-
edge, only Massonnet et al. (2011) reported a more realistic
interannual variability in the Arctic sea ice extent (SIE) in
the LIM3 sea ice model than in the previous model version,
LIM2 (although this improvement cannot exclusively be at-
tributed to the addition of an explicit five-category ITD in
LIM3 but rather to all the refinements in sea ice parametriza-
tions absent in LIM2). Thus the question of whether a par-
ticular ITD discretization or number of categories ensures a
more realistic sea ice variability and long-term trend remains
unanswered.

Sea ice concentration (SIC) and thickness are the main
quantities used to characterize ice cover variability. Most of
the previous studies have focused on the impact of an ITD
on the sea ice thickness, especially in the Arctic (e.g., Hol-

land et al., 2006; Hunke, 2014; Ungermann et al., 2017).
By contrast, SIC has received less attention, perhaps moti-
vated by the relatively minor or only indirect effect that the
ITD appears to have on the representation of the mean state
(e.g., Massonnet et al., 2011; Uotila et al., 2017; Masson-
net et al., 2019). However, while SIC has continuously been
measured by satellites since 1978 (Cavalieri et al., 1996; EU-
METSAT Ocean and Sea Ice Satellite Application Facility,
2015), equivalent measurements of thickness have only be-
come available in the past decade (e.g., Laxon et al., 2013).
Literature exploring the observed SIC variability is therefore
much richer than that on sea ice thickness and offers a more
exhaustive account of its key features and drivers (see most of
the references above). This study therefore represents a step
forward with respect to previous ones, as it presents, to our
knowledge, the first detailed assessment of the impact of the
ITD discretization on the SIC variability at both poles since
1978, using the state-of-the-art coupled ocean–sea ice model
NEMO3.6–LIM3. This study is a companion paper to Mas-
sonnet et al. (2019), in which the response of the modeled
sea ice mean state to an ITD discretization is investigated.

The paper is structured as follows: Sect. 2 describes the
model and experimental design; Sect. 3 follows with the
main results of the model–data comparison; and Sect. 4 fin-
ishes with the discussion of the results and main conclusions.

2 Model and experimental setup

2.1 Model description

We use the dynamic–thermodynamic sea ice model LIM3.6
(Louvain-la-Neuve sea Ice Model) (Rousset et al., 2015)
coupled to a finite-difference, hydrostatic, free-surface-
primitive-equation ocean model within version 3.6 of the
NEMO framework (Nucleus for European Modelling of the
Ocean) (Madec, 2008). Only a short description of the model
is provided in the following; for more details we refer to
Barthélemy et al. (2018) and Massonnet et al. (2019). Both
the ocean and sea ice models are run on the global eORCA1
grid with a 1◦ nominal zonal resolution. The ocean has 75
vertical levels which increase non-uniformly from 1 m at the
surface to 10 m at 100 m depth and 200 m at the bottom.
To avoid spurious model drift, a restoring toward the World
Ocean Atlas 2013 surface salinity climatology (Zweng et al.,
2013) is applied with a strength of 167 mm d−1. The restor-
ing is damped under the sea ice (multiplied by 1 minus its
concentration), where observations are less reliable, to avoid
altering ocean–ice interactions.

2.2 Experimental setup: atmospheric forcing

The model is run over the period 1979–2014. The atmo-
spheric forcing is provided by the DRAKKAR Forcing Set
version 5.2 (DFS5.2) (Brodeau et al., 2010; Dussin et al.,
2016). This global forcing set is derived from the over the
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period 1979–2015. It has a spatial resolution close to 0.7◦,
or 80 km, and it is used within the CORE forcing formu-
lation of NEMO, which uses bulk formulae developed by
Large and Yeager (2004). Continental freshwater inputs in-
clude river runoff rates from the climatological dataset of
Dai and Trenberth (2002) north of 60◦ S, prescribed melt-
water fluxes from ice shelves along the Antarctic coast-
line (Depoorter et al., 2013), and climatological freshwater
fluxes from iceberg melting at the Southern Ocean surface
(Merino et al., 2016). Forcing the NEMO3.6–LIM3 model
with observation-based atmospheric variability ensures that
simulated SIC variability follows observations to a large ex-
tent, in particular the atmospheric-driven changes; this al-
lows us to compare model and observations (hereafter also
referred to as data) and evaluate the impact of the different
ITD discretizations.

2.3 Experimental setup: ITD discretizations

LIM3.6 employs an ITD to represent the subgrid-scale dis-
tribution of the sea ice thickness, enthalpy, and salinity
(Thorndike et al., 1975), discretized into a fixed number of
categories. An ITD discretization is characterized by both the
number of categories and the position of their boundaries. We
run three different sets of sensitivity experiments to evaluate
the impact of the ITD on the SIC variability (Fig. 1). In the
first set (hereafter, S1), the categories are set by the default
ITD discretization of LIM, which varies both the position
and the resolution of the thickness categories according to the
number of categories following a predefined formula that sets
the finest resolution to the thinnest ice (Eq. 2 in Massonnet
et al., 2019). In the second set (S2), new thickness categories
are successively appended without changing the existing cat-
egory boundaries, which allows assessment of the impact of
thick ice categories. In the third set, the lower boundary of
the thickest category is set as 4 m thick, and the ITD reso-
lution is increased or reduced by merging or splitting exist-
ing categories. The upper limit at 4 m thick corresponds to
the maximum thickness that thermodynamic ice growth can
sustain in the Arctic (Maykut and Untersteiner, 1971) and
therefore allows the thickest category to host the deformed
ice produced in the model. For more details of the ITD and
these experiments we refer to Massonnet et al. (2019).

2.4 Reference observations

Arctic and Antarctic SIC variability in the model simula-
tions is compared with that from three satellite observational
products for the period 1979–2014: OSI SAF (OSI-409/OSI-
409-a) (EUMETSAT Ocean and Sea Ice Satellite Applica-
tion Facility, 2015), NSIDC-0051 (Cavalieri et al., 1996), and
HadISST v2.2 (Titchner and Rayner, 2014). Both OSI SAF
and NSIDC provide monthly mean SIC since October 1978;
NSIDC, however, lacks a circular sector centered over the
North Pole (“pole hole”), where SIC is set as 1. HadISST

Figure 1. Boundaries of the ice thickness categories in the three sets
of sensitivity experiments. The last category’s upper boundary is al-
ways set as 99 m thick. The thickness scale changes across the three
panels. Because the third ITD discretization, S3, branches from the
experiment S2.09, we repeat the latter on the bottom panel but re-
named as S3.09. Figure is adapted from Massonnet et al. (2019).

blends historical sources, such as sea ice charts, with OSI
SAF passive microwave data to provide monthly SIC since
January 1850, with concentration values between 0 and 0.15
reset as 0 (open water).

2.5 K-means clustering

K-means clustering as included in the s2dverification R
package (Manubens et al., 2018) is used to characterize in-
terannual SIC variability in model simulations and observa-
tions. K-means clustering aims at simultaneously minimiz-
ing the Euclidean distance between members of a given clus-
ter and maximizing the distance between centroids of differ-
ent clusters (Wilks, 2011). It is an alternative method of di-
mension reduction to other, more commonly used methods,
such as principal component analysis. With respect to those,
K-means clustering is more robust in a physical sense; it can
account for potential nonlinearities in a climate field (Ande-
berg, 2014; Hastie et al., 2009), and it does not assume or-
thogonality or linearity between dominant modes. K-means
clustering has successfully been employed to extract atmo-
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spheric weather regimes over the North Pacific and North
Atlantic (e.g., Michelangeli et al., 1995; Rossow et al., 2005;
Coggins et al., 2014), dynamically similar regions of the
global ocean circulation (Sonnewald et al., 2019), or variabil-
ity clusters from the pan-Arctic sea ice thickness (Fučkar et
al., 2016, 2018). In this study, each cluster is characterized by
a pattern of SIC anomalies (cluster centroids) and a discrete
time series of occurrence. Both the spatial features of the pat-
terns and their occurrence in time vary with the computed
total number of clusters, K . Cluster validity, characterized
by the most robust choice of K , is determined using 10 in-
dices that assess both intra-cluster similarity and inter-cluster
dissimilarity. The indices are Duda–Hart, Ratkowsky–Lance,
Ball–Hall, SD, cubic clustering criterion, traceCovW, Rubin,
Beale, Scott, and Marriot, and they form a selection of the
10 computationally fastest ones out of the 30 included in the
NbClust R package (Charrad et al., 2014). We test K values
between 2 and 5 and evaluate the results of K-means cluster-
ing with those validity indices. Since this is a very computa-
tionally demanding analysis, we previously reduce the num-
ber of degrees of freedom by interpolating the SIC field from
satellite observations onto a 3◦ horizontal regular grid. For
all seasons and observational datasets, the optimal K (i.e., the
most frequent value for the 10 validity indices) thus evaluated
is 3. Therefore we hereafter apply K-means clustering with
K value set as 3 to the SIC fields on a 1◦ horizontal regular
grid from both model and observational data. Our results are
insensitive to the initial seed used to calculate clusters (not
shown). All the calculations are done over the period 1979–
2014. Clusters are computed from the original time series
and after detrending by removing a spatially varying second-
degree polynomial fit with respect to time using the “Trend”
function in the s2dverification R package (Manubens et al.,
2018)

3 Results

3.1 Defining the winter and summer seasons

We intend to focus on the comparison between simulated and
observed SIC variability in two seasons centered around win-
ter and summer, when maximum and minimum sea ice areas
occur, respectively. To avoid any a priori assumption about
which months define these seasons, we first assess agree-
ment across monthly clusters and aggregate months with
similar variability. Following the steps described in Sect. 2.3
for each observational product separately, we first calculate
three (the optimal number) clusters in each individual month
in the Arctic and Antarctica. At each pole, we then compute
the spatial correlation coefficients between all the clusters in
any 2 months. We retain the maximum positive value from
the resultant distribution, which sets the uppermost limit of
cluster agreement between those 2 months. Results in OSI
SAF are shown in Fig. 2 (results of NSIDC and HadISST

Figure 2. Maximum correlation coefficient across the monthly clus-
ters in (a) the Arctic and (b) Antarctica in OSISAF. Two 3-month
periods (seasons) stand out with the largest coefficients: January
through March (JFM) and August through October (ASO). Values
smaller than 1/e (∼ 0.37) are considered statistically nonsignificant
and plotted in gray. Similar results are obtained using NSIDC and
HadISST SIC (and therefore are not shown).

are very similar and therefore not shown). The winter and
summer seasons are then defined by finding the 3 months
which have the largest and the immediately second-largest
correlation coefficients in the winter and summer half year
(November–April and May–October, respectively). The two
seasons must be and are consistent across the three obser-
vational datasets included in the analysis. This method ren-
ders two seasons in which monthly cluster agreement is con-
sistently high: January through March (JFM), and August
through October (ASO). The use of JFM as the winter season
is consistent with the principal component analysis in Close
et al. (2017), in which monthly modes were best correlated
in JFM as well. We find no major differences if the clusters
are calculated in winter including April (JFMA) and summer
including July (JASO). All the subsequent analyses focus on
the two seasons JFM and ASO, which we refer to as winter
and summer (even though they include climatological spring
and fall months).
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3.2 Sea ice extent

Before comparing SIC clusters, we explore the impact of the
ITD discretization on the temporal evolution of the Arctic
and Antarctic sea ice extent (SIE) over the period 1979–2014
(Fig. 3). This analysis will help interpret results from the
clusters presented later. Note that impacts on the simulated
climatological mean state and seasonal cycle over this period
have previously been described by Massonnet et al. (2019).
In the model, seasonal SIE is calculated from monthly SIC
on the original model grid; in observations, seasonal SIE is
calculated from the monthly SIE directly provided by the dif-
ferent products. The impact of different ITD discretizations
on the Arctic SIE in both seasons and Antarctic SIE in win-
ter is marginal, and all the simulations show values that are
within observational uncertainty (which we assume to be de-
fined by the envelope of the different observational products;
Fig. 3). The largest differences across simulations are for the
summer Antarctic SIE. Increasing the number of categories
from 1 to 50 in the S1 discretizations reduces the Antarctic
SIE by about 4 × 106 km2, although the largest decrease, of
about 2 × 106 km2, is between S1.01 and S1.03. This ren-
ders the simulated SIE values in the S1 cases closer to those
in OSI SAF and NSIDC but further from those in HadISST.
HadISST SIE values are consistently above those in OSI SAF
and NSIDC in the Arctic and Antarctica in both seasons, as
also noted by Titchner and Rayner (2014). Increasing the
number of categories in the S2 and S3 discretizations has
a comparatively smaller impact, reducing and increasing the
summer Antarctic SIE by about 1 × 106 km2, respectively,
yet still within observational uncertainty. The simulated SIE
trend is slightly underestimated in the winter Arctic, although
it is well captured in summer, as well as in Antarctica in
both seasons. In terms of interannual variability, the simu-
lations disagree the most with the observations in Antarctica,
especially in summer, when the simulations show large inter-
annual variations that are not found in observations (for ex-
ample, around 2000). By contrast, the simulated Arctic SIE
variability for all ITD discretizations is very close to the ob-
servations in both seasons.

To characterize differences between simulated and ob-
served SIC, we calculate the integrated ice edge error (IIEE)
as the total area where model and observations disagree on
SIC values above 15 % (Goessling et al., 2016). In general
terms, the largest IIEE is in the Arctic and Antarctica in win-
ter, with the smallest values when compared with NSIDC
(Fig. S1 in the Supplement ). For all the simulations, the
IIEE remains relatively constant over the period 1979–2014
at both poles and seasons, and the impact of a different ITD
discretization on the IIEE is marginal in the Arctic in both
seasons and in Antarctica in winter. The situation is differ-
ent in the Antarctic summer (JFM), when differences in IIEE
due to the ITD are the largest (Fig. 4). IIEE between simu-
lations and observations is overall larger than across obser-
vations for all the ITD discretizations. The single-category

discretization exhibits the largest IIEE with respect to all ob-
servations. Increasing the number of categories in the S1 and
S3 cases tends to reduce the IIEE by about 1 × 106 km2 be-
tween the coarsest and finest resolutions. Changes in cate-
gories across S2 discretizations have a smaller impact on the
IIEE, with no clear improvement or worsening for a finer or
coarser ITD. These results suggest that a finer resolution of
the thinner ice and not of the thicker sea ice to some degree
improves the representation of the simulated Antarctic SIC in
winter in our model with respect to observations. This might
be related to an improved response of the thin ice (the easiest
to melt, grow, and advect) to the atmospheric forcing.

3.3 SIC cluster analysis

In the following, we describe the three clusters of SIC vari-
ability in the observations. Clusters in OSI SAF are shown in
Figs. 5 and 6 in the Arctic and Antarctica, respectively (since
clusters in NSIDC and HadISST are very similar, they are
shown in Figs. S2 and S3, respectively, in the Supplement).
In the Arctic winter, the first cluster shows four poles of dom-
inant variability, with more ice in the Barents, Greenland,
and Okhotsk seas and less ice in the Labrador and Bering
seas (Fig. 5); this pattern agrees with the quadrupole mode
described in previous literature associated with variations in
the strength of the Siberian High (e.g., Ukita et al., 2007;
Close et al., 2017). The second cluster presents similar cen-
ters of action to the first one, but SIC anomalies are negative
in the Labrador, Barents, and Okhotsk seas and positive in
the Bering Sea. The third cluster shows strong anomalies of
opposite signs in the Labrador (strongly positive) and Nordic
seas (negative), a pattern that resembles the typical finger-
print of a positive NAO phase on the SIC (Bader et al., 2011).
In fact, this cluster dominates between 1990 and 1996, when
the winter NAO was persistently positive (Hurrell and Deser,
2010). Overall, the first and third clusters alternate until 2004
approximately, after which the second cluster dominates. In
the last decade, the root-mean-square distance between the
clusters and the anomaly fields (indicated by the symbol size
in Fig. 5) increases to its largest values over the whole period
in OSI SAF – but not in NSIDC and HadISST. These results
suggest that the winter SIC variability might fundamentally
have changed after 2004, in agreement with the observed ac-
celeration in the SIC melting trend (e.g., Comiso et al., 2008;
Serreze and Stroeve, 2015).

In the Arctic summer, both the cluster patterns and rela-
tive occurrences reflect a long-term melting trend (Fig. 5).
The first and third clusters are very similar: both exhibit
widespread positive and negative anomalies in the central
Arctic and dominate over the initial period (ca. 1979–1988)
and last one (ca. 2005–2014), respectively. The second clus-
ter, by contrast, dominates in the middle decades (ca. 1989–
2005) and presents a dipole of positive and negative anoma-
lies between the central Arctic and the surroundings. Such
partitioning in decades of alternating dominance suggests
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Figure 3. (a, b) Arctic and (c, d) Antarctic sea ice extent (SIE; in km2) in (a, d) JFM and (b, c) ASO in the S1, S2, and S3 discretizations
(in light red, green, and blue, respectively, with the single-category case, S1.01, in gray) in HadISST, NSIDC, and OSI SAF (in black, blue,
and red, respectively). SIE is calculated as the total area of grid cells with concentration larger than 15 %.

that the long-term melting trend in sea ice (as seen in the
SIE; Fig. 3b) controls the clustering; previously detrending
the data might therefore be necessary for a more robust char-
acterization of the interannual variability (see below).

In the Antarctic summer (JFM), the three clusters exhibit
poles of dominant variability close to the continental coast,
especially in the Weddell and Ross seas (Fig. 6). The first
and second clusters show similar patterns but of opposite
sign, with an overall decrease or increase, respectively, but
in the Amundsen and Bellinghausen seas. The third cluster
shows a dipole with negative anomalies in the Weddell Sea
and positive ones in the Amundsen Sea. Summer SIC vari-
ability is dominated by the first cluster (58 %), especially dur-
ing the first decades. Although the second and especially the
third clusters are much less frequent (31 % and 11 %, respec-
tively), the second one tends to dominate in the last decade
(ca. 2005–2014). This might be due to a slight positive trend,
as seen in the SIE (Fig. 3d).

In the Antarctica ASO (winter), the first and second clus-
ters show opposite-sign poles in the Weddell, Bellinghausen,
and Amundsen seas, with smaller contributions from the oth-
ers (Fig. 6). These two modes resemble SIC variability driven
by Rossby wave activity across the Drake Passage described
in previous literature (e.g., Yuan and Li, 2008; Hobbs and
Raphael, 2010; Renwick et al., 2012; Kohyama and Hart-
mann, 2016). In fact, the first cluster resembles the pattern
of Antarctic SIC response to an El Niño (e.g., Ding et al.,
2011) and dominates in strong El Niño years, such as 1984,
1998, and 2010. The third cluster shows negative SIC anoma-

lies along all the Antarctic coast but in the Bellingshausen
and Amundsen seas, where anomalies are positive; this is
however the least persistent cluster (11 %), and SIC variabil-
ity is clearly dominated by the first two (47 % and 42 %,
respectively). Cluster occurrences and patterns in NSIDC
are slightly different from those in OSI SAF and HadISTT
(Figs. S2 and S3 in the Supplement), suggesting that observa-
tional uncertainty impacts the dominant Antarctic SIC modes
of variability.

3.3.1 Impact of ITD discretization on the SIC clusters

For each cluster of SIC variability, observations and simula-
tions are compared mainly through their spatial correlation
(Fig. 7). Statistical significance of the difference between
correlation coefficients is tested using Fisher’s z transform,
assuming a two-tailed significance level of 0.05 (Storch and
Zwiers, 1999). Given the large number of coefficient pairs
whose differences can potentially be tested, we simplify the
test by comparing only the median values between an ITD
discretization and the one immediately below within the
same discretization type. For example, S1.50 is compared
with S1.30, the latter with S1.10, and so on; S2.15 is com-
pared with S2.11 and so on; and S1.03, S2.03, and S3.05 are
all compared with S1.01. As a measure of the observational
uncertainty, we also calculate the spatial correlation coeffi-
cients between the three observational datasets. We further
calculate the root mean square error (RMSE) across observed
and simulated clusters to provide an additional assessment.
Results of the RMSE analysis are shown in the Arctic only
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Figure 4. Integrated ice edge error (IIEE; in km2) between the
Antarctic sea ice in JFM in the (a) S1 (with the case with a sin-
gle category, S1.01, in gray), (b) S2, and (c) S3 ITD discretizations
and in HadISST (dotted lines), NSIDC (dashed lines), and OSISAF
(solid lines). Also, IIEE is shown between OSI SAF and NSIDC
SIC (gray crosses), NSIDC and HadISST SIC (gray pluses), and
HadISST and OSI SAF SIC (gray asterisks). The IIEE is calculated
as the integrated area where simulations and observations disagree
on SIC above 15 % (Goessling et al., 2016). The darker the color
of the line is, the more categories that ITD discretization has. The
color scheme matches that in Fig. 1

(Fig. S4 in the Supplement ) and are commented when they
complement or disagree with results from the spatial correla-
tion coefficients.

In the Arctic winter, correlation coefficients between ob-
served and simulated clusters slightly decrease as the num-
ber of categories increases in the three discretization types,
and only very few pairs show coefficients that are signifi-
cantly different (Fig. 7). By contrast, including more cate-
gories slightly reduces the RMSE (which suggests a slightly
better agreement with the observations) in the third cluster in
the S1 and S3 cases and increases it in the S2 one (Fig. S4
in the Supplement ). Overall, nonetheless, changing the ITD
discretization has a small impact on model–data agreement,

Figure 5. (a–f) Cluster patterns of Arctic SIC anomalies (shading;
in JFM: a, c, e; and ASO: b, d, f ). Stippling masks statistically non-
significant anomalies at the 5 % level; p-values at each grid point
are computed through a t test that accounts for serial autocorrela-
tion (Manubens et al., 2018). Each cluster’s percentage occurrence
and the associated number of years whose anomaly pattern explains
over the period 1979–2014 is indicated in each case. The shading
color scale is adapted for a better view of the anomalies in the range
±15. The area is zoomed in ASO (b, d, f) for a better view of the
central Arctic. (g, h) Time series of cluster occurrence in HadISST
(black crosses), NSIDC (red diamonds), and OSISAF (blue pluses).
The larger the symbol size, the larger the Euclidean distance (root-
mean-square difference) between a pattern of anomalies and the as-
sociated cluster in a particular year (the maximum symbol size is
shown in the legend). Clusters are calculated from the full SIC field
without detrending (in contrast to detrended data shown in Fig. 9).

and no discretization or number of categories appears to be
consistently the best.

In the Arctic summer, spread in model–data agreement is
much larger than in winter (Figs. 7 and S4). The RMSE is
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Figure 6. As in Fig. 5 but in Antarctica.

barely impacted by the ITD discretization (Fig. S4 in the
Supplement ) and shows similar changes to the correlation
coefficients. The lowest model–data correlation coefficients
are for the second cluster across all discretizations. This is
likely because of its characteristic spatial pattern of small,
mostly statistically nonsignificant anomalies (Fig. 5). Such
noisy features are indeed difficult to accurately capture with
the model, thus resulting in comparatively small spatial cor-
relation coefficients. By contrast, anomalies in the first and
second clusters take larger values over a larger area and are
successfully reproduced by the simulations. Model–data spa-
tial correlation coefficients are little influenced by the ITD
discretization for the first and third clusters but show a sta-
tistically significant decrease with a number of thin ice cat-
egories beyond 30 for the second cluster in the S1 and S3
cases. Although increasing the number of thick categories in
the S2 discretization has no major impact on model–data cor-
relation coefficients, the S2.07 case shows a statistically sig-
nificant drop in correlation values in all the clusters. This sug-

Figure 7. Spatial correlation coefficients between the simulated and
observed clusters and across the three satellite observational prod-
ucts (marked as Obs) of Arctic SIC in (a) JFM and (b) ASO. For
each case, the vertical line spans the maximum and minimum val-
ues, and the horizontal line marks the median values; green, blue,
and orange lines are for the first, second, and third clusters, re-
spectively. Gray shading masks statistically nonsignificant coef-
ficients below 0.39 value, which corresponds with the minimum
value across all the computations that is statistically significant at
the 5 % level, accounting for effective degrees of freedom and spa-
tial autocorrelation. A dot is plotted when the difference between
the median correlation coefficient values in one discretization and
the one immediately below within the same discretization type is
statistically significant, based on Fisher’s z transform assuming a
two-tailed 5 % level. Dashed vertical lines separate between results
in the simulation with one single category (S1.01), the different ITD
discretizations (S1, S2, and S3), and the observations. Note the dis-
cretizations S2.09 and S3.09 are the same (Fig. 1).

gests that variability is slightly differently distributed across
the clusters. The discretization with a single category, S1.01,
shows the lowest correlation coefficients (Fig. 7; with sta-
tistically significant differences with the coefficients of the
S1.03, S2.03, and S3.05 discretizations) and highest RMSE
values (Fig. S4 in the Supplement). These results suggest
that an ITD with one category or a large number of thin
categories hamper representation of SIC variability in the
Arctic. This contrasts with and complements results in Mas-
sonnet et al. (2019), where the single-category discretization
was found performing as good as or even better than multi-
category ones in terms of sea ice mean state. Comparison
of mass budget across discretizations showed that the single-
category case compensates basal ice growth deficit (relative
to multi-category cases) through a larger dynamic ice pro-
duction from fall to winter (and, thus, right for the wrong
reasons) (Massonnet et al., 2019).

In the Antarctic summer, model–data agreement is lower
than in the Arctic in terms of both the spatial correlation
(Fig. 8) and RMSE (not shown). Almost all the correlation
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Figure 8. As in Fig. 7 but for clusters in Antarctica.

coefficients are statistically nonsignificant for the second and
third cluster (Fig. 8), with only some ITD discretizations with
three or five categories showing significant correlations for
all clusters. For the first cluster, however, more than five cat-
egories show a statistically significant improvement in the
agreement with observations, in particular for the S1 cases.

In the Antarctic winter, model–data agreement increases
with respect to summer, and correlation coefficients tend to
be statistically significant for the first and especially the sec-
ond cluster (Fig. 8). However, the impact of the ITD distri-
bution is small, and there is no robust response to any dis-
cretization.

3.3.2 Arctic SIC clusters after detrending

For a sound characterization of the modes of interannual vari-
ability over the period 1979–2014, the long-term, accelerat-
ing melting trend in the Arctic SIC is now filtered out. This
trend is well captured by both the SIE (Fig. 3) and clus-
ters (Fig. 5). Arctic SIC clusters are now calculated after
detrending by removing a spatially varying second-degree
polynomial fit with respect to time (see Sect. 2). Clusters cal-
culated after detrending with a first-degree polynomial (lin-
ear detrend) are still affected by the melting trend and are
not discussed here further. We do not consider higher-degree
polynomials either, since they have shown no improvement
to characterize clusters of sea ice thickness over the period
1958–2013 (Fučkar et al., 2016). No similar analysis has
been performed for Antarctic SIC as the clusters suggest a
rather weak positive trend in summer (Fig. 6).

In OSI SAF, detrended SIC variability in winter is evenly
distributed into the three clusters (Fig. 9; 36 %, 33 %, and
31 % of occurrence frequency). The first cluster shows a
dominant pole of negative anomalies in the Labrador Sea
(Fig. 9). The second and third clusters show a similar
quadrupole pattern with opposite signs. The second clus-

Figure 9. As in Fig. 5 but after detrending with a second-degree
polynomial.

ter shows two poles of variability in positive and negative
anomalies in the Labrador and Nordic seas, respectively. This
cluster is very similar to the third one in non-detrended data,
and both dominate in similar years with a positive NAO
phase. This suggests that they capture the fingerprint of a
positive winter NAO on the Arctic SIC. The third cluster
is instead similar to the first cluster in the raw data, and
both dominate in similar years. They both further resemble
the quadrupole pattern analyzed in Close et al. (2017). Clus-
ters in HadISST and NSIDC are very similar and shown in
Figs. S4 and S5, respectively, in the Supplement.

In summer, detrending the data leads to clusters with more
marked regional contrasts (compare Figs. 5 and 9). The first
cluster in OSI SAF, which dominates in two-thirds of the
years, shows a dipole of positive SIC anomalies in the Kara,
Barents, and Greenland seas and negative ones in the East
Siberian and Laptev seas (Fig. 9). The second cluster mir-
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rors the first one but with opposite-sign and larger anomalies
(Fig. 9). These two clusters, respectively, resemble the fin-
gerprint of a positive (in 1995, 1999, 2002, and 2005) and
negative (in 1996 and 2004) Arctic dipole on the summer
SIC (Wang et al., 2009). Occurrence of these two clusters,
however, does not systematically coincide with strong Arc-
tic dipole anomalies (for example, in 1998 or 2003; Wang et
al., 2009). The Arctic oscillation has also been proposed as a
driver of similar SIC anomaly patterns (Rigor et al., 2002;
Rigor and Wallace, 2004; Wang et al., 2009). Lastly, the
third cluster shows a monopole of strong negative anomalies
confined to the Beaufort Gyre. This pattern dominates only
in 4 years, including 2007, when the Arctic sea ice extent
was the lowest over the period 1979–2014. Extreme melt-
ing events such that have been associated with exceptional
episodes of atmospheric (Graversen et al., 2011) and oceanic
(Woodgate et al., 2010) warm flow into polar latitudes and
summer storm activity (Screen et al., 2011). Note that cluster
repartitioning of detrended data is not exactly the same as in
HadISST and NSIDC in summer (Fig. S5 in the Supplement
); their first clusters are similar to the first one in OSI SAF but
with different local expressions; their third clusters resemble
the second one in OSI SAF but with weaker anomalies near
the Alaskan coast.

With respect to the sensitivity of the model clusters to the
ITD discretization, we find that the winter clusters rather
consistently agree with the observed ones both in terms of
the spatial correlation coefficients (Fig. 10) and RMSE (not
shown) and are little impacted by the discretization. In sum-
mer, increasing the number of categories beyond 30 leads to
a statistically significant improvement in model–data corre-
lation coefficients (Fig. 10), while reducing the RMSE (not
shown) for all the clusters in the S1 and S3 discretizations.
This implies that, overall, a large number of thin categories
help improve the representation of SIC interannual variabil-
ity in summer. In contrast to what happens in non-detrended
data, the single-category discretization agrees with the obser-
vations as well as any other. This suggests that one category
poorly captures the forced variability (this is, the long-term
melting trend) but is as good as any other discretization at
capturing interannual variability.

3.4 Anomaly-based analyses

Two extra analyses are discussed in the following to com-
plement previous ones and explore their robustness. In the
first analysis, spatial correlation coefficients are computed di-
rectly, in each year, between the simulated and observed SIC
anomalies in both seasons and hemispheres. In each case, a
distribution of correlation coefficients is generated by com-
bining the values in all the years and in the three observa-
tional products. This analysis suggests only marginal sensi-
tivity to the number of sea ice categories or its discretization
in the Arctic before (Fig. S6 in the Supplement) and after
detrending (not shown) and in Antarctica (not shown).

Figure 10. As in Fig. 7 but after detrending with a second-degree
polynomial.

The second analysis provides a spatial perspective on the
impacts of the ITD discretizations on SIC. For this, temporal
correlation coefficients at the grid point level are first com-
puted between simulated and observed SIC anomalies in both
seasons. A linear fit of such correlation coefficients with re-
spect to the number of categories is then calculated across
simulations of a given discretization. The result is a map
which provides a measure of the regions where changing the
number of categories most impacts agreement with observa-
tions. Since results are similar across the observational prod-
ucts, an average between the three cases is computed for the
Arctic (Fig. 11) and Antarctica (Fig. S7 in the Supplement).

Increasing the number of categories tends to decrease
model–data agreement (blue colors in Fig. 11) in the S1 and
S3 discretizations in both seasons (but most clearly in the S3
one in summer) in the central Arctic, near the region where
the largest increase in sea ice thickness is simulated for an in-
crease in the number of categories (Massonnet et al., 2019).
In this region, a larger bottom growth rate increases the sea
ice volume for finer ITD resolutions. This is because conduc-
tive heat flux through ice, which is inversely proportional to
ice thickness, increases (facilitates ice growth) on average on
a grid cell when the thickest ice accumulates on a few cate-
gories and thereby leaves more grid space for faster-growing
thin ice (Massonnet et al., 2019). In the central Arctic, there-
fore, higher sea ice volume makes the simulated sea ice less
realistic. In the S2 discretizations, model–data agreement
particularly improves with the number of categories in win-
ter north off Greenland and the Queen Elizabeth Islands, re-
gions where the thickest ice is simulated (Fig. 11, contours).
Although the overall Arctic sea ice volume increases with the
number of categories (Massonnet et al., 2019), the improve-
ment in that particular region suggests that a discretization
including more thick categories helps capture variability in
thick ice. In summer, a decrease in model–data agreement
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Figure 11. Trend relative to the number of sea ice categories in
pointwise temporal correlation coefficients between simulated and
observed Arctic SIC anomalies (in [number of categories]−1) in the
(a, b) S1, (c, d) S2, and (e, f) S3 discretizations in (a, c, e) JFM
and (b, d, f) ASO. An average between results in OSI SAF, NSIDC,
and HadISST is shown. Values are multiplied by 100 to ease the
interpretation and the color shading is adapted for a better view of
the values between −1 and 1. A value of 0.5, for example, indicates
that the model–data correlation coefficient increases 0.5 when the
number of categories increases by 100 (or 0.25 for an increase of
50 categories). Stippling masks trend values which are statistically
nonsignificant at the 5 % level based on a two-tailed Student’s t

test. Contours are the simulated climatological ice thickness (every
1.5 m) in the standard LIM3 discretization of five categories (S1.05)
for the period 1979–2014.

occurs in the same region, although there are improvements
elsewhere in the central Arctic that might compensate for this
decrease (Fig. 11). In Antarctica, only the S2 discretization in
summer (JFM) shows some clear trends in model–data agree-
ment near the Ross Sea (Fig. S7 in the Supplement). How-
ever, these results appear spurious as sea ice is very thin and
presents a concentration below 15 % in the area (contours in
Fig. S7 in the Supplement).

4 Discussion and conclusions

This article explores the impact of different ITD discretiza-
tions on the simulated SIC variability in the Arctic and
Antarctica. Using ocean–sea ice stand-alone simulations
with the NEMO3.6—LIM3 model, we assess three different
ITD discretizations in which both the number and boundaries
of the sea ice thickness categories are changed. SIC variabil-
ity is characterized via K-means clustering analysis over the
period 1979–2014; the simulated clusters are compared with
those from three satellite observational products, OSI SAF,
NSIDC, and HadISST v2.2. We focus on two seasons, JFM
(winter) and ASO (summer), across which monthly clus-
ters are found most spatially coherent. In the Arctic, clus-
ter comparison is done by including and excluding the long-
term trend, the latter by detrending with a spatially varying
second-degree polynomial. We complement the cluster anal-
ysis by comparing sea ice extent and anomaly fields between
model and observations.

Overall, winter clusters reflect the imprint of atmospheric
variability such as the NAO and Siberian High on the Arctic
SIC and that of ENSO on the Antarctic SIC. Summer clus-
ters reflect the dominant trends in SIC, slightly positive in
Antarctica and prominently negative in the Arctic. After de-
trending, Arctic summer clusters allow isolation of the SIC
response to atmospheric variability associated with the Arc-
tic Dipole and Arctic Oscillation, as well as identifying out-
standing events such as the 2007 sea ice extent minimum.

Although the results of all the model–data comparisons
present mixed conclusions, depending on the analysis, we
extract a few take-home messages:

i. The single-category discretization shows the worst re-
sults overall, particularly in the Arctic summer with-
out detrending due to a misrepresentation of the long-
term melting trend. This result reinforces the recom-
mendation of using multi-category sea ice models. In
the companion study, Massonnet et al. (2019), the
single-category discretization is found producing real-
istic mean states of sea ice extent; it was however hy-
pothesized that this might be for the wrong reasons,
thanks to error compensation in the simulated mass bal-
ance terms. The finding of the present study, focusing on
variability, supports that the single-category framework
is in fact not appropriate for investigating the cause of
large-scale sea ice changes.

ii. Discretizations with more than 10 sea ice thickness cat-
egories can degrade model ability to simulate realistic
Arctic SIC variability. In particular, better resolving thin
ice in the Arctic hampers SIC representation, likely re-
lated to an unrealistic sea ice volume increase in the cen-
tral Arctic (Massonnet et al., 2019) and a poorer repre-
sentation of the long-term melting trend in summer (this
study). In contrast, a finer resolution in thin sea ice in-
creases realism of the simulated SIC in Antarctica; this
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improvement, nonetheless, most clearly arises for more
than 30 thin categories, for which computational costs
increase substantially (from 30 min per simulated year
for the standard five-category discretization to 60 min
for the 30-category one; Massonnet et al., 2019). With
respect to including more thick categories, our analysis
shows that it improves variability in very thick sea ice
north of Greenland in winter without noticeably com-
promising the performance in other regions or in sum-
mer.

That multiple-category discretizations can degrade model
realism appears counterintuitive, since a finer resolution
should allow the sea ice model to reproduce actual subgrid-
scale variability in sea ice better. We note, however, that
NEMO3.6–LIM3 uses parametrizations and parameter val-
ues which are adjusted for the five-category discretization.
Adjustments in the ITD may therefore need retuning those
parametrizations and parameter values, which in LIM3 in-
clude, among others, the snow thermal conductivity, the bare
sea-ice albedo, and the compressive ice strength, P ∗. Such
model retuning is however beyond our scope, as improve-
ments in SIC variability would hence result from the new
model setup and not from each different ITD discretization.

Since no robust conclusion about the optimal number of
sea ice categories can be drawn based on our analyses,
we recommend using the standard (S1.05) or a similar dis-
cretization in NEMO3.6–LIM3, which is, in addition, com-
putationally more efficient than others with more categories.
This is in line with previous studies finding that discretiza-
tions with five to seven categories represent sea ice character-
istics realistically enough (Bitz et al., 2001; Lipscomb, 2001;
Massonnet et al., 2019). As noted by Hunke (2014), however,
in the Los Alamos Sea Ice Model CICE “5 ice thickness cate-
gories are not enough to accurately represent observed thick-
ness data nor to properly model mechanical sea ice processes
that control ice volume”.

A growing number of climate models now include a sea
ice model with an ITD, such as LIM3, the Los Alamos Sea
Ice Model CICE (Hunke et al., 2013), and the GFDL’s SIS2.0
(Adcroft et al., 2019), and the prospect is that more will do so
in the future. Although including an ITD has been proven to
be beneficial for simulating more realistic sea ice character-
istics (e.g., Bitz et al., 2001; Holland et al., 2006; Massonnet
et al., 2011; Ungermann et al., 2017; Uotila et al., 2017), it
introduces potential new tuning options, such as the number
of categories, their boundaries, and the assumed shape func-
tion, which might need further validation against observa-
tions. A very fine ITD also makes simulation computation-
ally very expensive, a factor that is particularly limiting in
fully coupled models. Similar analyses to the one presented
here would therefore be necessary to assess the impact of
using a specific ITD discretization in a particular climate
model. The extent to which our particular recommendation
for NEMO3.6–LIM3 can be extended to other sea ice mod-

els is difficult to assess, however, considering that new tuning
might be necessary for each ITD discretization, and that dif-
ferent sea ice models might have different tuning parameters
and sensitivity to their values.

A potential caveat of our study is the use of ocean stand-
alone simulations. These are aimed to reduce potential un-
certainty sources in SIC variability associated with stochastic
atmospheric noise, which might mask comparison with ob-
servations and the search for improvements in model realism.
An open question for future studies is then whether our con-
clusions would hold in coupled model configurations, where
ice–atmosphere feedbacks might modulate the influence of
ITD discretization. We propose an analysis focused on the
impacts on sea ice and surface energy flux seasonal cycles,
variability modes, and long-term trends, similar to this study
and its companion paper, Massonnet et al. (2019). The cost
and benefits of such an analysis in coupled setups should
however be weighted carefully beforehand, considering the
limited impacts we find in ocean stand-alone simulations and
the increase in computational costs for ITD discretizations
with large numbers of categories.

This study and its companion, Massonnet et al. (2019),
present an advance with respect to previous efforts since they
jointly address the response of the mean climatological state
and variability in sea ice to changes in a model parametriza-
tion. This approach sets an example for future assessments
of the impact of model parametrizations on the representa-
tion of the sea ice or other climatic variables. Unfortunately,
observational data are still too short for many climate com-
ponents, making this sort of analysis particularly challenging
at best.

Code and data availability. The model source code is available at
https://doi.org/10.5281/zenodo.3345604 (Massonnet, 2019). Data
and code to reproduce the authors’ work can be obtained from
https://doi.org/10.5281/zenodo.3540756 (Moreno-Chamarro et al.,
2019).
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