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Abstract. We analyse 400 perturbed-parameter simulations
for two configurations of an optimality-based plankton–
ecosystem model (OPEM), implemented in the University of
Victoria Earth System Climate Model (UVic-ESCM), using
a Latin hypercube sampling method for setting up the pa-
rameter ensemble. A likelihood-based metric is introduced
for model assessment and selection of the model solutions
closest to observed distributions of NO−3 , PO3−

4 , O2, and sur-
face chlorophyll a concentrations. The simulations closest to
the data with respect to our metric exhibit very low rates of
global N2 fixation and denitrification, indicating that in order
to achieve rates consistent with independent estimates, addi-
tional constraints have to be applied in the calibration pro-
cess. For identifying the reference parameter sets, we there-
fore also consider the model’s ability to represent current es-
timates of water-column denitrification. We employ our en-
semble of model solutions in a sensitivity analysis to gain
insights into the importance and role of individual model
parameters as well as correlations between various biogeo-
chemical processes and tracers, such as POC export and the
NO−3 inventory. Global O2 varies by a factor of 2 and NO−3
by more than a factor of 6 among all simulations. Reminer-
alisation rate is the most important parameter for O2, which
is also affected by the subsistence N quota of ordinary phy-
toplankton (QN

0,phy) and zooplankton maximum specific in-
gestion rate. QN

0,phy is revealed as a major determinant of the
oceanic NO−3 pool. This indicates that unravelling the driv-
ing forces of variations in phytoplankton physiology and ele-
mental stoichiometry, which are tightly linked via QN

0,phy, is
a prerequisite for understanding the marine nitrogen inven-
tory.

1 Introduction

Earth system climate models (ESCMs) are powerful tools
for analysing variations in climate, while resolving inter-
dependencies between changes in the atmosphere, on land,
and in the ocean (Flato, 2011; Prinn, 2013). In this regard,
the dynamics of marine ecosystems is a critical link. On
long timescales, it regulates atmospheric CO2 on the basis
of biotic uptake of carbon dioxide (CO2) over vast oceanic
regions and due to the export of photosynthetically fixed
carbon into the deep ocean, which affects the Earth’s cli-
mate (Reid et al., 2009; Sigman and Boyle, 2000). Plankton–
ecosystem models are widely applied to understand marine
biogeochemical cycles, by estimating fluxes of major ele-
ments, e.g. nitrogen, phosphorus, and carbon, as well as the
sources and sinks of marine oxygen (Maier-Reimer et al.,
1995; Six and Maier-Reimer, 1996; Schmittner et al., 2005;
Bopp et al., 2013; Vallina et al., 2017; Everett et al., 2017;
Ward et al., 2018).

The basic structure of most marine ecosystem models has
been designed for resolving mass fluxes between nutrients,
phytoplankton, zooplankton, and detritus, typically referred
to as NPZD models. Mathematical formulations that describe
growth and fate of marine phytoplankton and zooplankton
biomass have been successfully applied over a range of
scales, from local 0-D ecosystem models (e.g. Fasham et al.,
1990; Edwards, 2001) to global 3-D models (Sarmiento et al.,
1993; Keller et al., 2012; Nickelsen et al., 2015). However,
most of these NPZD models lack a sound mechanistic foun-
dation, preventing them from explicitly accounting for the
organisms’ regulation of their internal physiological state.
For example, N2 fixation by algae is often diagnosed from
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the availability of dissolved nutrients, so that it only occurs
when the ratio of nitrate to phosphate concentrations falls be-
low the Redfield ratio of 16 : 1 (Deutsch et al., 2007; Ilyina
et al., 2013). As these assumptions neglect a number of en-
vironmental and ecological controls (e.g. grazing, often also
temperature), they do not adequately describe the behaviour
of plankton organisms and their sensitivity to changes in their
environment. With the introduction of refined mechanistic
(physiological) descriptions, we aim here at alleviating this
deficiency. In this study, we introduce a new marine ecosys-
tem model coupled to the University of Victoria Earth Sys-
tem Climate Model (UVic-ESCM, based on the configura-
tions of Keller et al., 2012; Getzlaff and Dietze, 2013; Nick-
elsen et al., 2015). Doing so, we anticipate the model not only
to provide improved mass flux estimates but also to exhibit
more realistic sensitivities of these fluxes to varying climate
conditions, e.g. in simulations of the Last Glacial Maximum
or in future projections.

In order to better represent plankton physiology, the new
ecosystem model relies on optimality-based considerations
for phytoplankton growth, including N2 fixation (Pahlow
et al., 2013; Pahlow and Oschlies, 2013), as well as zoo-
plankton behaviour (Pahlow and Prowe, 2010). These two
optimality-based models have been shown to be superior
to traditional model approaches in reproducing phytoplank-
ton and zooplankton growth and grazing under various en-
vironmental conditions (e.g. Fernández-Castro et al., 2016).
Our new ecosystem model, the optimality-based plankton–
ecosystem model (OPEM v1.1) coupled to the UVic-ESCM,
offers new features and it improves the representation of
some biogeochemical properties on the global scale (e.g.
net community production (NCP) and particulate C : N : P
in the surface water; see Part 1; Pahlow et al., 2020). One
of the novel features is the representation of variable quo-
tas of carbon (C), nitrogen (N), and phosphorus (P) in or-
dinary phytoplankton, diazotrophs, and particulate organic
matter (detritus) exported to the deep ocean. This model
approach yields mass flux estimates with spatial and tem-
poral variations in the elemental C : N : P stoichiometry of
both inorganic nutrients and organic matter as observed in
situ (Loh and Bauer, 2000; Martiny et al., 2013b). PELA-
GOS (Vichi et al., 2007), the only ocean model with variable
C : N : P in phytoplankton in CMIP5 (Bopp et al., 2013) and
CMIP6 (Arora et al., 2020), has no diazotrophs; others ei-
ther have only variable N : P (TOPAZ2, Dunne et al., 2013)
or variable C : P (MARBL; Danabasoglu et al., 2020). While
some of the existing models have a variable C : N : P based
on the optimality-based model for phytoplankton growth
(Kwiatkowski et al., 2018, 2019), optimality-based N2 fix-
ation or zooplankton behaviour are not included.

Here, we analyse the new model’s performance and eval-
uate model-ensemble results against observations. Since the
model is based on plankton–organism physiology, it includes
new parameters whose values have not been estimated for
global model applications. Also, we set up two configura-

tions, OPEM and OPEM-H, with different temperature de-
pendencies for diazotrophs, to investigate the effects of dif-
ferent empirical temperature functions on distributions of di-
azotrophs and N2 fixation. Our analysis relies on ensembles
of solutions of the two different model configurations, where
every single simulation within each ensemble is subject to
a different combination of parameter values. The ensembles
allow for assessing the sensitivity of biogeochemical tracer
distributions and budgets to variations of the model’s pa-
rameters. We introduce a likelihood-based metric that quan-
tifies the global misfit between model results and observa-
tions. Amongst the ensemble simulations, we regard those
model solutions as the best that yield low misfits according
to the metric and are also close to current estimates of water-
column denitrification. The specific objectives of the present
paper are (1) to identify and compare those model solutions
that correspond to the best representation of observed tracer
concentrations and (2) to specify the sensitivity of simula-
tions to variations of the model’s parameter values. We make
inferences about the model’s overall behaviour, especially
focusing on data constraints, limitations, and advantages of
resolving variable C : N : P stoichiometry for estimations of
global net primary production (NPP), NCP, biogenic C ex-
port, and the global O2, N, and C inventories.

2 Materials and methods

2.1 The non-Redfield, optimality-based
plankton–ecosystem model in the UVic-ESCM

OPEM has been implemented into the UVic-ESCM (Weaver
et al., 2001; Eby et al., 2013), version 2.9, in the config-
uration of Nickelsen et al. (2015) with the isopycnal dif-
fusivity modifications by Getzlaff and Dietze (2013), verti-
cally increasing sinking velocity of detritus (Kriest, 2017),
and several bug fixes (some of which were already intro-
duced by Kvale et al., 2017). The UVic-ESCM comprises
three components including a simple one-layer atmospheric
energy–moisture balance model (Weaver et al., 2001), a ter-
restrial model and a three-dimensional general ocean circu-
lation model. The horizontal resolution of the land and ocean
model components is 1.8◦ latitude× 3.6◦ longitude, and the
ocean has 19 vertical levels with a thickness ranging from
50 m in the surface layer to 590 m in the deep ocean.

The OPEM and its implementation into the UVic-ESCM
are described in Part 1 (Pahlow et al., 2020). Briefly, the ma-
jor new features of the new model include (1) an optimality-
based model of phytoplankton growth and diazotrophy with
variable C : N : P stoichiometry (Pahlow et al., 2013), (2) the
optimal current-feeding model for zooplankton (Pahlow and
Prowe, 2010), and (3) variable stoichiometry in detritus. The
focus on physiology in the construction of the OPEM en-
ables us to study how biogeochemical tracer distributions and
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fluxes respond to different assumptions about plankton phys-
iology.

Simulation setup

Our setup comprises ensembles of 400 simulations for each
of two model configurations that differ in how temperature
affects diazotrophy. The original temperature dependence of
diazotrophs (fdia(T )) in the UVic-ESCM (and other mod-
els, e.g. Aumont et al., 2015), which we also employ for the
OPEM configuration, limits both growth and N2 fixation of
diazotrophs to above 15 ◦C:

fdia(T )_OPEM=max(1.066T − 2.6,0)/2, (1)

where T is seawater temperature. In the OPEM-H configu-
ration, the temperature dependence of nitrogenase activity in
terrestrial systems by Houlton et al. (2008) is implemented
as affecting only N2 fixation:

fdia(T )_OPEM-H= 0.0266 · (1.066T )
[
4.22−1.3166·ln(1.066T )

]
,

(2)

while growth and nutrient uptake of diazotrophs follow the
same temperature dependence as ordinary phytoplankton
(see Part 1; Pahlow et al., 2020). Both of these equations
are empirical functions directly simulating expected or ob-
served temperature dependencies of N2 fixation. We consider
Eq. (2) more realistic and hence analyse its effect on model
behaviour. However, since the parameters in these two equa-
tions have no clearly identifiable physiological meaning, we
consider a sensitivity analysis of the parameters in Eqs. (1)
and (2) beyond the scope of the present study. Note that some
models do not enforce any temperature limitation on nitrogen
fixation (e.g. Dunne et al., 2013; Ilyina et al., 2013; Jickells
et al., 2017). In the present ocean, waters colder than about
15 ◦C are generally replete with fixed inorganic nitrogen. For
existing parameterisations of N2 fixation, which are func-
tions of the nitrate deficit with respect to phosphate, there
has been little indication of substantial impacts of the for-
mulation of temperature control at low temperatures on the
distribution of nitrogen fixation (Somes and Oschlies, 2015;
Landolfi et al., 2017). Such differences in formulation may,
however, gain importance in environmental conditions dif-
ferent from today’s.

For all simulations, we impose pre-industrial (AD 1850)
boundary conditions with a CO2 concentration of 284 ppm.
The models have been integrated over a period of at least
10 000 years, until they reached steady state.

The 400-parameter combinations are obtained via Latin
hypercube sampling (LHS) (McKay et al., 1979). We vary
15 parameters in total, within the variational ranges shown
in Table 1, which are based on reference ranges according
to literature values. In order to reduce the number of possi-
ble parameter combinations, we vary nutrient affinities for
macronutrient uptake and half-saturation concentration for

iron uptake for ordinary phytoplankton and diazotrophs in
constant proportions (A0 : A0,D = 4 : 3,KFe :KFe,D = 1 : 2),
so that diazotrophs have a lower nutrient affinity (Pahlow
et al., 2013) and higher Fe half-saturation concentration
(Dutkiewicz et al., 2012; McGillicuddy, 2014; Ward et al.,
2013) than ordinary phytoplankton. Since our parameter sets
are independent of each other, the simulations can be carried
out in parallel. Apart from the computational time, the paral-
lel setup with different parameter combinations has some ad-
vantages compared to iterative model calibration approaches,
e.g. parameter optimisation: (i) individual model simulations
do not depend on any other (i.e. previous) combinations of
parameter values, (ii) the ensemble results can always be re-
evaluated with different metrics, perhaps with substantial dif-
ferences between selected “best” solutions, depending on the
error model applied, and (iii) the ensembles provide insight
on the sensitivities and thus on uncertainties of particular
model results with respect to parameter variations.

2.2 Sensitivity analysis and model calibration

2.2.1 Sensitivity analysis

The sensitivity (SensitivityT ) of a tracer T to a parameter P
is defined here as

SensitivityT =
1T

1P
×
P

T
, (3)

where the1 indicates the change and the overbar the ensem-
ble mean of P or T . If SensitivityT < 0, the tracer and the
parameter vary in opposite directions. We evaluate the sen-
sitivities of globally and annually averaged NPP, NCP, nitro-
gen fixation by diazotrophs (N2 fixation), and the concen-
trations of oxygen (O2), nitrate (NO−3 ), dissolved inorganic
carbon (DIC), dissolved and particulate iron (DFe and PFe),
Chl, ordinary phytoplankton, diazotrophs, particles (combi-
nations of ordinary phytoplankton, diazotrophs, zooplank-
ton, and detritus), and their elemental stoichiometry to the
parameters listed in Table 1. We also evaluate the sensitivi-
ties of surface particulate elemental ratios (C : N, C : P, and
N : P), as well as nitrate to phosphate ratios for different lat-
itude bands (40◦ S to 40◦ N; 60◦ S to 70◦ S; and globally).
This is because dissolved and particulate elemental ratios in
general show very different behaviour between lower and
higher latitudes (Martiny et al., 2013a). We keep all 400 sim-
ulations because we want to obtain the sensitivity informa-
tion for the full parameter ranges.

2.2.2 Likelihood-based metric assessing global
biogeochemical model results

We consider four different types of observations for quan-
titatively assessing the model simulations. The first three
are the objectively analysed monthly (upper 550 m) and
annual (below 550 m) concentrations of nitrate, phosphate,
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Table 1. Parameter names, reference and variational ranges, identified “best” values for the trade-off simulations (OPEM and OPEM-H),
units, and definitions. Note that the trade-off simulations share the same parameter combination.

Symbol Reference Variational OPEM/ Units Definition
range range OPEM-H

A0,phy 70–1000a 120–280 229 m3 (mol C)−1 d−1 phytoplankton potential nutrient affinity
QN

0,phy 0.038–0.086a 0.04–0.06 0.04128 mol (mol C)−1 phytoplankton subsistence N quota

QN
0,dia 0.13a 0.06–0.12 0.067 mol (mol C)−1 diazotroph subsistence N quota

QP
0,phy 0.0008–0.002a 0.0013–0.0023 0.0022 mol (mol C)−1 phytoplankton subsistence P quota

QP
0,dia 0.0027a 0.0025–0.0035 0.00271 mol (mol C)−1 diazotroph subsistence P quota

kFe,phy 0.035–0.12c−g 0.04–0.08 0.066 µmolm−3 phytoplankton half-saturation constant for Fe
gmax 0.49–5a 1–2 1.75 d−1 zooplankton maximum specific ingestion rate
φphy 174–765h 100–200 118 m3 (mol C)−1 capture coefficient of phytoplankton
φdia 1.05 ·φphy

i 150–250 232 m3 (mol C)−1 capture coefficient of diazotrophs
φdet φphy

c−f 20–100 94 m3 (mol C)−1 capture coefficient of detritus
φzoo 0–3230h 100–200 118 m3 (mol C)−1 capture coefficient of zooplankton
λ0,phy =M0,dia 0.001–0.015c−f 0.01–0.03 0.018 d−1 specific mortality rate
νdet 0.05–0.07c−g 0.04–0.09 0.087 d−1 remineralisation rate

a Pahlow (2005), Pahlow et al. (2013). b Pahlow and Prowe (2010). c Keller et al. (2012). d Somes and Oschlies (2015). e Somes et al. (2017).
f Landolfi et al. (2017). g Landolfi et al. (2015). h Su et al. (2018). i Wang et al. (2019).

and oxygen of the World Ocean Atlas 2013 (WOA 2013;
Garcia et al., 2013a, b). The fourth is the monthly mean
chlorophyll concentration derived from remote sensing data
(MODIS Aqua level 3), based on monthly climatologies for
10 years from 2008 to 2017, provided by the ocean biology
processing group (Ocean Biology Processing Group, 2014).
The satellite-derived chlorophyll (Chl) concentrations are
used for data–model comparison only for the UVic model’s
top layer, i.e. the upper 50 m.

We define our metric in terms of spatial averages of 17
distinct biogeochemical biomes, as derived and described
by Fay and McKinley (2014). The individual biomes are
regarded as regions of common biogeochemistry and thus
account for spatial differences between ocean regions on
the largest possible (global) scale. Using 56 biogeochemi-
cal provinces, as defined by Longhurst (2007), might have
hampered our data–model comparison, because a higher res-
olution of individual regions can accentuate spatial pattern
errors in tracer concentrations, resulting from model errors
in advection and mixing. In our view, the biomes of Fay and
McKinley (2014) are coarse enough for avoiding this prob-
lem but still sufficiently informative for identifying represen-
tative parameter values.

The underlying error model of the likelihood-based met-
ric assumes a Gaussian (normal) distribution, which is
well represented by using the first two moments of log-
transformed tracer concentrations, in particular for the upper
ocean layers (Schartau et al., 2017). For every depth level
of the UVic model (k ∈ {1, 2, 3, . . ., 19}), average log10-
transformed tracer concentrations (log10x) of type x are de-
termined as spatial arithmetic means for our 17 biomes (in-

dexed as j in Eq. 4) for the observations and model results:

(
log10x

)
jk
=

1
Njk

Njk∑
n=1

(
log10

[
max(x(n),x(0))

x(0)

])
,

x ∈ {Chl,O2,NO−3 ,PO3−
4 }, (4)

where Njk is the number of available data points within
biome j in depth level k. Prior to the log10 transformation, all
tracer concentrations have been normalised to lower detec-
tion (uncertainty) thresholds (x(0)), respectively. Measured
or derived concentrations below these thresholds are treated
as noise and therefore remain unresolved. Thus, the log10-
transformed normalised concentrations are non-negative.
The threshold values are Chl(0) = 0.1 mg m−3, O2(0) =

1 mmol m−3, NO−3 (0) = 0.05 mmol m−3, and PO3−
4 (0) =

0.01 mmol m−3.
Our metric is derived from a likelihood, assuming a Gaus-

sian error distribution for the residuals, which describes the
discrepancy between mean values derived from observations
(log10x

(obs)) and model simulations (log10x
(mod)). Hereafter,

we refer to this metric as our cost function (J ). Our cost func-
tion is split up into two major parts:

J =

5∑
k=1

J
(u)
k +

19∑
k=6

J
(l)
k (5)

J
(u)
k =

12∑
i=1

17∑
j=1

[
dT R−1 d

]
ijk
+

(
v(obs)

− v(mod)
)T
ijk

·V−1
ijk

(
v(obs)

− v(mod)
)
ijk

(6)
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J
(l)
k =

17∑
j=1

[
dT R−1 d

]
jk
+

(
v(obs)

− v(mod)
)T
jk

·V−1
jk

(
v(obs)

− v(mod)
)
jk
, (7)

where d is the residual vector (see Eq. 8 below), R the co-
variance matrix (Eq. 9), v(obs) and v(mod) are the spatial vari-
ance estimates of the log10-transformed observed and mod-
elled tracers, and V−1 are diagonal matrices with the vari-
ances (uncertainties) of v(obs). The first part (J (u)k ) of the
cost function resolves seasonal changes between the surface
and 550 m depth, corresponding to the upper five depth lev-
els of the model. The second part (J (l)k ) represents the lower
depth range below 550 m and does not account for seasonal
changes, as only annual mean data are available.

The residual vector (d) (whose components represent the
tracer types x) used for J describes the differences between
the log10-transformed observations and their model counter-
parts:

d ijk =

(
log10x

(obs)
ijk − log10x

(mod)
ijk

)
, (8)

where i and j are the month and biome indices, respec-
tively. We recall that d has four components only for the
UVic model’s top layer (k = 1) where chlorophyll data are
regarded as well. For k > 1, the residual vector contains three
components: O2, NO−3 , and PO3−

4 . Both parts of the cost
function (J (u)k and J (l)k ) in turn contain two terms, one with
respect to the residuals, as defined in Eq. (8), and another that
accounts for the differences between the spatial variances
(vectors v(obs)

ijk and v(mod)
ijk ) within each biome (and month for

J
(u)
k ) at each depth level. The covariance matrices Rijk ac-

count for temporal correlations (Cjk) between different vari-
ables (x(obs)), that are specified for every biome and depth
level separately:

Rijk = Sijk ·Cjk ·Sijk, (9)

where the elements of the diagonal matrices Sijk are the stan-
dard errors of the mean log10-transformed tracer concentra-

tions (log10x
(obs)
ijk ) calculated in Eq. (4) for every month i,

biome j , and depth level k. For J (l)k , the Rjk contain only
the squared standard errors of the annual data as diagonal
elements (Rjk = S2

jk).
With the consideration of standard errors instead of stan-

dard deviations, we implicitly impose weights to differences
in the spatial expansion (i.e. number of data points of the
gridded product used) of individual biomes. Overall, the final
cost function J resolves spatial differences between regions
(biomes) as well as temporal differences for those depth lev-
els where monthly data are available. It is thus a combination
of time-varying and spatial information for the assessment of
our biogeochemical model results on a global scale.

Table 2. Ranges of global averages of major tracer concentrations or
fluxes in the OPEM and OPEM-H configurations. Chl concentration
is for the upper 50 m (surface layer of the UVic grid) and NCP is
for the upper 100 m. Observations and reference model simulations
are listed in the Reference column.

Tracer OPEM OPEM-H Reference Units

Oxygen 99.6–219 103–215 176a mmol m−3

Nitrate 10.2–66.2 13.0–55.0 31b mmol m−3

DIC 2.239–2.439 2.250–2.430 2.317c mol m−3

DFe 0.47–0.71 0.47–0.69 0.57d µmolm−3

PFe 0.44–0.75 0.44–0.70 1.17d nmol m−3

Chl 0.109–0.329 0.105–0.324 0.309e mg m−3

NPP 27.9–88.0 27.2–88.0 52f Pg C yr−1

NCP 8.0–16.4 7.8–16.3 13.5g Pg C yr−1

N2 fixation 0–488 0–515 140h Tg N yr−1

a WOA 2013 (Garcia et al., 2013a).
b WOA 2013 (Garcia et al., 2013b).
c GLODAPv2 (Olsen et al., 2016).
d Nickelsen et al. (2015).
e MODIS Aqua level 3, 2008–2017 (Ocean Biology Processing Group, 2014).
f Westberry et al. (2008).
g Li and Cassar (2016).
h Luo et al. (2012).

In order to estimate uncertainty ranges for selected model
results (globally averaged N2 fixation, NO−3 , O2, DIC con-
centrations, NPP, NCP), we apply a bootstrap method to ob-
tain an uncertainty quantification for our simulated values
based on the 400 available ensemble model simulations. We
collect the best solutions (lowest cost-function value) of 1000
randomly selected subsets of 100 out of our 400 ensemble
members. The mean and 95 % confidence interval of these
subsets provide an uncertainty range in the vicinity of the
value of the full ensemble.

3 Results

Table 2 lists the ranges of selected simulated tracers and
processes for the full ensemble of parameter values gener-
ated by the Latin hypercube sampling for the OPEM and
OPEM-H configurations. Our results exhibit wide ranges of
tracer concentrations and fluxes in these two configurations.
In particular, globally averaged NO−3 concentrations range
from 10.2 to 66.2 mmol m−3 and integrated N2 fixation from
0 to 515 Tg N yr−1. Tracers in OPEM and OPEM-H show
similar ranges, except for globally averaged NO−3 , which
ranges from 10.2 to 66.2 mmol m−3 in OPEM and 13.0 to
55.0 mmol m−3 in OPEM-H.

3.1 Sensitivity to model parameters

3.1.1 Biogeochemical tracer inventories and governing
processes

The sensitivities of globally averaged biogeochemical prop-
erties to the variations of each of the 13 parameters in Table 2
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are comparable for OPEM and OPEM-H (Fig. 1). Global
mean oxygen concentration is most sensitive to νdet (rem-
ineralisation rate). Higher νdet increases oxygen consump-
tion in shallow water, where oxygen resupply from the at-
mosphere is stronger. Less oxygen is consumed below the
surface ocean; hence, the total oxygen inventory increases.
Maximum ingestion rate (gmax) and grazing rate on ordinary
phytoplankton (φphy) also correlate positively with oxygen.
Higher gmax or φphy means more ordinary phytoplankton are
grazed and less particles are formed, which then decreases
oxygen consumption through remineralisation. Oxygen is
less sensitive to φdia, because the biomass of diazotrophs is
much smaller than that of ordinary phytoplankton.

A surprising finding is that oxygen is sensitive to, and pos-
itively correlated with, the subsistence nitrogen quota of or-
dinary phytoplankton (QN

0,phy). From a classic point of view,
oxygen levels in the ocean are dominated by physical supply
processes as well as biogeochemical consumption processes
such as remineralisation (Feely et al., 2004). Nevertheless,
in our simulations, the sensitivity to QN

0,phy is more than half
(58 %) of that to νdet in OPEM and 48 % in OPEM-H (Fig. 1).
In our model, QN

0,phy has no effect on the spatial distribution
of cellular C : N ratios in phytoplankton, which is determined
by ambient light and nutrient conditions. However,QN

0,phy af-
fects the average phytoplankton C : N ratio. The average phy-
toplankton C : N ratio decreases whenQN

0,phy increases, with
less carbon being fixed for the same NO−3 supply. Oxygen
consumption (due to remineralisation) per mole of nitrogen
thus decreases in consequence. QN

0,phy in turn affects NO−3 :
a higher QN

0,phy yields a higher oxygen level and hence less
denitrification in oxygen-deficient zones (ODZs) and there-
fore leads to more NO−3 . In fact, we identify this as a major
process that controls the NO−3 inventory in our simulations
(Fig. 1). While NO−3 is also sensitive to other parameters, its
sensitivity to QN

0,phy is more than twice the sensitivity to any
other parameter (Fig. 1).

The sensitivity of DIC is generally low, because of the rel-
atively large DIC pool compared to the variations in fluxes
among the different parameter sets. Similar to oxygen, DIC
is most sensitive to νdet, QN

0,phy, gmax, and φphy. Faster car-
bon recycling in the surface layer due to higher νdet gen-
erates a higher surface DIC concentration and hence more
outgassing, which decreases the DIC inventory. A somewhat
lower DIC inventory is also induced by a larger QN

0,phy, as
less carbon is fixed and exported per unit nitrogen in phyto-
plankton, and by enhanced zooplankton grazing with larger
gmax.

Dissolved iron (DFe) is most sensitive to the remineral-
isation rate (νdet). Unlike NO−3 , which has dynamic source
(N2 fixation) and sink (denitrification) processes, iron has
a fixed source from atmospheric deposition and a sink in
the sediment, and the size of the DFe pool is mainly deter-
mined by its internal cycle. A higher remineralisation rate
prolongs the residence time and thus increases the DFe pool.

The parameter νdet also indirectly affects the internal DFe
cycle via its effect on O2. While the detritus remineralisa-
tion rate drops when O2 falls below 5 mmol m−3 (Nickelsen
et al., 2015), scavenging of DFe stops below the same oxygen
threshold. Detritus remineralisation rate dominates variations
in DFe when globally averaged O2 is above 135 mmol m−3,
in which case DFe is positively correlated with νdet and
O2. When globally averaged O2 is below 135 mmol m−3,
the widespread ODZs (below 5 mmol m−3) inhibit the scav-
enging of DFe and this effect dominates. As a result, DFe
becomes anti-correlated with O2. Particulate iron (PFe) is
also positively correlated with νdet when globally averaged
O2 is above 135 mmol m−3, but below that PFe shows no
correlation with νdet. When globally averaged O2 is below
135 mmol m−3, inhibition of scavenging of DFe in ODZs
decreases PFe there but a higher DFe increases PFe else-
where, because PFe is coupled to DFe through scavenging
and remineralisation. As mentioned above, QN

0,phy controls
the average nitrogen quota in phytoplankton and thus in par-
ticles. Since PFe is proportional to the amount of nitrogen in
particles, QN

0,phy also affects PFe. This (positive) sensitivity
is much stronger than the indirect (negative) effect via DFe
leading to opposite sensitivities of DFe and PFe to QN

0,phy.
Other than νdet and QN

0,phy, PFe is also sensitive to φdia be-
cause dead diazotrophs enter the particulate pool (detritus)
and diazotrophs are very sensitive to φdia (Fig. 2).

The simulated global N2-fixation rate is sensitive to many
parameters, apart from A0,phy and QP

0,dia. Similar relative
changes in most parameters introduce changes to the global
N2-fixation rate that are of similar magnitude. Interestingly,
N2 fixation is sensitive also to zooplankton parameters, indi-
cating that zooplankton grazing on diazotrophs is an impor-
tant factor controlling not just diazotroph biomass but also
N2 fixation.

Of particular interest are the sensitivities of global NPP
and NCP. Particle fluxes in marine biogeochemical models
tend to agree most closely with sediment trap data for depths
of about 1000 m or below (Kriest et al., 2012). Therefore,
different from Table 2, showing NCP for the upper 100 m for
comparison with observations and other (reference) model
simulations, here we integrate NCP from 0 to 980 m (7th
layer of the ocean in the UVic-ESCM), which in steady state
is equivalent to POC export flux at 980 m. NPP is sensitive to
νdet andQN

0,phy. A higher νdet causes faster nutrient recycling
in surface waters, which increases NPP and reduces particle
export and hence NCP. Increasing QN

0,phy lowers both NPP
and NCP, and hence also the fixed-carbon inventory. A higher
ingestion rate of zooplankton (gmax) removes more particles
and thus is negatively correlated with NCP. Chl is the prin-
cipal agent of C fixation in the OPEM, and hence Chl has a
similar sensitivity pattern to NPP except for gmax and φphy.
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Figure 1. Sensitivities of globally averaged O2, NO−3 , dissolved inorganic carbon, dissolved iron, particulate iron, N2 fixation, NPP, chloro-
phyll, and NCP integrated from 0 to 980 m to individual model parameters, computed according to Eq. (3). Note the different y-axis ranges
in the different panels.

3.1.2 Ordinary phytoplankton, diazotrophs, particles,
export, and their elemental stoichiometry

First, we discuss the proportions of carbon, nitrogen, and
phosphorus in ordinary phytoplankton and diazotrophs, since
variations in elemental stoichiometry in autotrophs originate
in differential uptake of nutrients under different environ-
mental conditions.

Globally averaged C, N, and P concentrations and ratios
of globally averaged N and P of ordinary phytoplankton
and diazotrophs are sensitive to νdet, QN

0,phy, φphy, and φdia
(Fig. 2). As expected, C, N, and P of ordinary phytoplank-

ton and diazotrophs increase for higher νdet, which generates
higher nutrient concentrations in the surface ocean. They are
also sensitive to zooplankton grazing, especially to φphy and
φdia. QN

0,phy and QP
0,phy are negatively correlated with ordi-

nary phytoplankton C, indicating that the negative effect of
higher subsistence quotas on competitive ability dominates
their effect on biomass. A similar behaviour is found in dia-
zotrophs except that QN

0,dia is also negatively correlated with
diazotroph N and hence also nitrogen fixation (Fig. 1). Al-
though an increase in QN

0,phy makes ordinary phytoplankton
less competitive, it also raises the oceanic NO−3 inventory,
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which eventually leads to more phytoplankton N (Fig. 2) and
less nitrogen fixation (Fig. 1).

Diazotroph C, N, and P are generally more sensitive to
parameter variations than phytoplankton due to the much
smaller total biomass of diazotrophs, which is also the reason
why diazotrophs are less sensitive in OPEM-H, the model
configuration in which their biomass is generally larger be-
cause of the growth of diazotrophs at high latitudes (see
Fig. 15 in Part 1; Pahlow et al., 2020). Since ordinary phy-
toplankton dominate autotrophic biomass, it tends to con-
trol nutrient distributions. This explains why ordinary phy-
toplankton parameters such as QN

0,phy and φphy have strong
effects on diazotrophs but not vice versa. The zooplankton
grazing preferences φphy and φdia drive the competition be-
tween ordinary phytoplankton and diazotrophs and hence
have strong and opposing effects on their biomass. Due to the
relatively small total biomass, diazotroph C is more sensitive
to changes in φphy and φdia than ordinary phytoplankton C.

Particulate C : N and N : P ratios are most sensitive to
QN

0,phy (Fig. 3). This sensitivity is related to biomass, as we
see from the OPEM-H configuration, where (non-N2-fixing)
diazotrophs are abundant at high latitudes (see Fig. 15 in
Part 1; Pahlow et al., 2020) and consequently the sensitiv-
ity of high-latitude C : N to QN

0,dia is high, even higher than
to QN

0,phy (Fig. 3). We do not find this behaviour for high-
latitude regions in the OPEM configuration, as well as low-
latitude regions, where diazotrophs are not as abundant. The
parameter QP

0,phy was expected to be the most important pa-
rameter for particulate C : P ratios, just like QN

0,phy is for the
C : N ratio. However, this is only true for the OPEM at high
latitudes.

At low latitudes, particulate C : P ratios are most sensitive
to QN

0,phy (Fig. 3). The supply of nitrate and phosphate at
different latitudes is the major reason for this pattern. At low
latitudes, the effects ofQP

0,phy are suppressed by variations in
phytoplankton C, which is affected by QN

0,phy and the conse-
quent change in nitrate concentration. Nitrate and phosphate
are not limiting in the high-latitude Southern Ocean, where,
under N- and P-replete conditions, cellular C : P is mainly
determined by QP

0,phy and a higher QP
0,phy would result in a

higher cellular P : C (lower C : P). Therefore, the global C : P
of total particulate matter, which is dominated by ordinary
phytoplankton, is negatively correlated with QP

0,phy.
The sensitivities of dissolved N : P ratio to parameters in

the three geographical settings (low latitudes, high latitudes,
and global) follow similar patterns. However, we find sensi-
tivities to be generally higher in the low latitudes, especially
to variations of the phytoplankton parameters. Again, this is
because NO−3 is often limiting in lower latitudes, particularly
in the oligotrophic gyres, where the dissolved nitrogen pool
is more sensitive to changes in phytoplankton as well as N2
fixation. This is also why grazing pressure on diazotrophs
(φdia) has a much stronger effect at low than at high latitudes.

3.2 Cost-function values of the ensemble simulations

3.2.1 Constraining global rate estimates and
inventories

The cost function (introduced in Sect. 2.2.2) was devised for
identifying the best solutions among the ensemble runs. For
the model’s upper layers (0–550 m), observational monthly
mean concentrations of nitrate and phosphate enter the cost
function, thereby reflecting regional and seasonal variations
in the N : P uptake ratio of ordinary phytoplankton and di-
azotrophs. Variations in nitrate and phosphate availability
affect the growth of diazotrophs and thus determine global
N2 fixation in both OPEM and OPEM-H. In our UVic con-
figurations, water-column denitrification is the only fixed-
N loss term. Therefore, the simulated N2 fixation is ex-
pected to match water-column denitrification under a steady-
state nitrogen cycle. Nevertheless, the simulation with the
lowest cost yields a global N2-fixation rate estimate of
40.3 Tg N yr−1 (Fig. 4a), much lower than recent estimates of
water-column denitrification (55.8–72.9 Tg N yr−1; Somes
et al., 2017; Wang et al., 2019).

The cost function penalises solutions that yield N2-fixation
rates greater than 90 Tg N yr−1 but shows no clear relation
to N2 fixation at lower rates (Fig. 4A). For example, among
the simulations with the five lowest cost-function values in
the OPEM configuration, the global ocean N2-fixation rate
varies between 8 and 40 Tg N yr−1. These model solutions
also differ with respect to their O2 inventories. The tendency
of the cost function to favour very low global N2 fixation is
caused by a compensatory effect, whereby improving NO−3
deteriorates O2, and vice versa (see also Part 1; Pahlow et al.,
2020, and the discussion section below). Thus, instead of se-
lecting the reference parameter sets based only on the cost
function, we also take the ability to yield reasonable N2-
fixation rates into account, whereby we ignore simulations
with rates below 60 Tg N yr−1, since this is the lower bound-
ary of current data-based estimates of water-column denitri-
fication (DeVries et al., 2012). As these solutions represent a
somewhat subjective trade-off between low cost and reason-
able N2 fixation, we refer to them as trade-off solutions and
details of their behaviour are shown and discussed in Part 1
(reference simulations in Pahlow et al., 2020). For OPEM,
the trade-off solution corresponds to the seventh-lowest cost-
function value and the fourth lowest for OPEM-H.

In the following, we will describe the lowest-cost solu-
tions together with the trade-off solutions, as well as respec-
tive uncertainty ranges obtained from the bootstrap method
described in the materials and methods section. The width
of the uncertainty ranges (95 % confidence intervals) in
Fig. 4 indicates the metric’s ability to constrain the inventory
or rate under consideration. Globally averaged N2-fixation
rates of our trade-off solutions of OPEM and OPEM-H are
just outside and within this uncertainty range, respectively
(Fig. 4a). The global NO−3 inventory turns out to be remark-
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Figure 2. Sensitivities of globally averaged concentrations of ordinary and diazotrophic phytoplankton C, N, and P, and ratios of globally
averaged N and P to model parameters. Black and grey shading denotes OPEM and OPEM-H configurations, respectively. Note the different
y-axis ranges in the different panels.

ably well constrained (Fig. 4b). The mean global estimates
are 30.7 and 31.3 mmol N m−3 for OPEM and OPEM-H, re-
spectively. Ensemble solutions that deviate from these esti-
mates have high costs, and therefore the uncertainty ranges
remain narrow. The trade-off and minimum-cost solutions
are hardly distinguishable. The uncertainty of the simu-
lated global O2 is comparable to that of the NO−3 inven-
tory. Global mean O2 concentrations of OPEM and OPEM-H
are 186 and 188 mmol O2 m−3. Our metric effectively con-
strains global DIC estimates, 2.290 mol C m−3 for OPEM
and 2.286 mol C m−3 for OPEM-H (Fig. 4d), although DIC
data have not been explicitly considered in the cost function.

While the trade-off solutions exhibit NO−3 , O2, and DIC
inventories well within their respective uncertainty ranges,
we find somewhat larger deviations for the predicted global
mean NPP (Fig. 4e). For OPEM and OPEM-H, the trade-
off solutions produce, respectively, 30 % and 14 % higher
NPP than the minimum-cost solutions. The NCP (here inte-
grated over the depth range of 0–980 m) estimates in Fig. 4F
are better constrained than NPP for both configurations. The
trade-off solution of OPEM corresponds to a global NCP of

1.05 Tg C yr−1, which is close to the trade-off estimate of
OPEM-H, where NCP is 1.074 Tg C yr−1.

Figure 5 shows globally averaged concentrations of O2
versus NO−3 of all ensemble members. The spread of the
ensembles differs between the two tracers (by a factor of 2
for O2 and by a factor of 6 for NO−3 ). Most solutions over-
estimate the global average NO−3 concentration obtained
from WOA 2013 (Garcia et al., 2013a, b) and underesti-
mate O2. Solutions where both tracers strongly underesti-
mate the WOA 2013 data are penalised by the cost func-
tion (Fig. 5). The minimum-cost and trade-off solutions of
OPEM and OPEM-H are close to the WOA 2013 estimates.
The respective optimal solutions have slightly higher global
mean O2 concentrations than WOA 2013 and are in good
agreement with respect to NO−3 . In spite of larger costs, the
trade-off solutions of both OPEM and OPEM-H are closer
to the WOA 2013 estimate than the minimum-cost solutions
(Fig. 5). The ensemble solutions are unevenly spread around
the WOA 2013 data-based estimates. This highlights that our
trade-off solutions could not have been identified had we
only considered the ensemble means.
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Figure 3. Parameter sensitivities of averaged surface (0–130 m) particulate elemental C : N, C : P, and N : P ratios for different latitude bands
(40◦ S to 40◦ N; 60◦ S to 70◦ S, and the global ocean). Asterisks indicate sensitivities that are very different between OPEM and OPEM-H.
Note the different y-axis ranges in the different panels.

Figures 6 and 7 show zonally averaged NO−3 and O2 in
simulations with the lowest and highest NO−3 and the trade-
off simulation in the OPEM configuration. The high-NO−3
simulation has similar NO−3 and O2 patterns to the trade-off
simulation, despite the very different mean NO−3 and O2 con-
centrations. The patterns are different in the low-NO−3 simu-
lation because of stronger deoxygenation and denitrification,
which occur mostly in North Pacific deep water. The greater
similarity of global mean O2 than NO−3 reflects the influence
of atmospheric O2 but also indicates that NO−3 is more sen-
sitive to changes in the physiology of the diazotrophs.

3.2.2 How well can model parameters be constrained?

Cost is conspicuously correlated only with νdet, QN
0,phy, and

φdia (Fig. 8). O2 and NO−3 are sensitive to νdet andQN
0,phy but

not to φdia (Fig. 1), which indicates that φdia becomes more
important at lower-cost simulations. The minimum-cost and
trade-off simulations in OPEM and OPEM-H are usually
closer to each other when parameters show strong correla-
tions with costs (Fig. 8).

Figure 9 shows how different biomes contribute to the
misfit and variance parts of the total cost. For simula-
tions with high cost-function values (J > 1010), we find
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Figure 4. Costs vs. tracer concentrations and fluxes for annual N2 fixation (a), globally averaged NO−3 (b), O2 (c), and DIC (d) concen-
trations, as well as annual NPP (e) and NCP (here integrated over the depth range 0 to 980 m) (f). Red and blue symbols and lines are for
OPEM (triangles) and OPEM-H (circles), respectively. Solid and open symbols represent minimum-cost and trade-off simulations, respec-
tively. Vertical solid and dashed lines represent mean and 95 % confidence interval of best solutions of 1000 randomly selected subsets of
100 ensemble members. Red parabolas fit the lowest costs at different rates or tracer concentrations.

the variance term to be dominant in the deep ocean (be-
low 550 m). Among the 17 biomes, this is well expressed in
the NP.SPSS (North Pacific subpolar seasonally stratified),
NP.STSS (North Pacific subtropical seasonally stratified),
NP.STPS (North Pacific subtropical permanently stratified),
Pac.EQU.E (eastern Pacific equatorial), Pac.EQU.W (west-
ern Pacific equatorial), and IND.STPS (Indian Ocean sub-
tropical permanently stratified) biomes, overwhelming con-
tributions from all other parts of the cost function and all
other biomes for the 100 simulations with the highest total

costs. These high-cost simulations tend to have low NO−3
and O2 concentrations (Fig. 5). Low NO−3 concentrations are
coupled to low O2 because of intense denitrification in the
ODZs. Accordingly, simulations with very low NO−3 inven-
tories suffer from widespread ODZs, occupying much of the
deep water in the northern and equatorial Pacific as well as
the Indian Ocean (Fig. S1 in the Supplement). This is the
main reason for the high variance in the deep water of these
biomes (Fig. 9).
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Figure 5. Globally averaged oxygen vs. nitrate in OPEM and
OPEM-H. Colour represents cost value. Solid red triangle and blue
circle annotate the simulations with minimum cost in OPEM and
OPEM-H, respectively, and open red triangle and blue circle are
the trade-off simulations. The green square, horizontal and vertical
lines indicate mean oxygen and nitrate concentrations of 0.176 and
0.031 mol m−3, respectively, in WOA 2013. Solid black triangles
highlight the lowest and highest NO−3 simulations used in Figs. 6
and 7.

4 Discussion

4.1 Parameter sensitivities

4.1.1 Remineralisation rate νdet and phytoplankton
subsistence nitrogen quota QN

0,phy

Remineralisation rate (νdet) and phytoplankton subsistence
nitrogen quota (QN

0,phy) are the two parameters with the
strongest correlations for most tracers as well as particu-
late elemental stoichiometry. The importance of νdet was
expected, because it is an important driver of nutrient re-
cycling in the surface ocean (Thomas, 2002; Anderson
and Sarmiento, 1994; Eppley and Peterson, 1979), which
strongly affects NPP, NCP, Chl, DIC, DFe, and N2 fixa-
tion (Kriest et al., 2012). νdet also determines the rate of O2
consumption, hence also the NO−3 level, due to denitrifica-
tion in ODZs (Cavan et al., 2017). The strong influence of
QN

0,phy, however, was unexpected. The subsistence quota was
first introduced by Droop (1968) in phytoplankton growth
models. While it has been applied in Earth system models
(Kwiatkowski et al., 2018; Wang et al., 2019), a sensitivity
analysis similar to the present study has not been done be-
fore. A higher QN

0,phy implies that more nitrogen is required
for phytoplankton growth, but it also can be interpreted as a
lessening of carbon fixation for a given nitrogen supply. Our
results demonstrate a strong effect of QN

0,phy on NPP, Chl,
and POC export (NCP, here integrated over the depth range

0 to 980 m), and consequently oxygen consumption and den-
itrification.

These results also put forward a new point of view on the
relation between NO−3 inventory and carbon export. In clas-
sic biogeochemistry, a larger NO−3 inventory in the ocean
stimulates primary production and POC export. This feed-
back is intuitive and easy to understand, as for a given C : N
in phytoplankton, carbon is proportional to the nitrogen pool.
This feedback is well recognised and has been widely applied
in marine sciences, especially since it forms the foundation
of one of the hypotheses explaining the lower atmospheric
pCO2 during the Last Glacial Maximum (LGM) (McElroy,
1983; Falkowski, 1997). However, our analysis of the model
ensemble with different parameter combinations suggests an-
other, very different, point of view. NO−3 concentration is
positively correlated with QN

0,phy but negatively with NPP
and POC export (NCP; Fig. 1), which means that an in-
creased NO−3 inventory can be related to a lower POC ex-
port if caused by a change in QN

0,phy. The dynamic C : N ra-
tio in our model explains part of this negative correlation.
When the NO−3 inventory increases due to an increase in
QN

0,phy, the nitrogen demand in phytoplankton also increases,
which yields a lower C : N ratio in phytoplankton, and hence
changes in carbon fixation due to increases in NO−3 inven-
tory remain relatively small. The increase inQN

0,phy increases
nitrogen in phytoplankton structure and decreases the C:N
ratio in phytoplankton as well as detritus. The two effects
together both lower POC production and raise the NO−3 in-
ventory. Changes in νdet also contribute to the negative cor-
relation between NO−3 and POC export (NCP) in our simu-
lations: a more intense remineralisation in the surface ocean
reduces POC export and thus decreases oxygen consumption
and denitrification, resulting in a larger nitrate inventory.

The strong impact of QN
0,phy on the NO−3 inventory and

globally averaged phytoplankton C : N causes a higher sensi-
tivity of globally averaged C : N than C : P (Fig. 3). A higher
QN

0,phy results in a higher NO−3 inventory and a lower phyto-
plankton C : N, both tending to lower particulate C : N, and
vice versa. On the other hand, C : P is not as sensitive be-
cause we have a constant PO3−

4 inventory in the UVic model.
Surface particulate matter C : N is less variable compared to
C : P and N : P in field observations along regional gradients
(Galbraith and Martiny, 2015; Geider and Roche, 2002; Mar-
tiny et al., 2013a; Sterner and Elser, 2002), which is an ap-
parent contrast to our results, where the sensitivity of C : N
to QN

0,phy is the highest among the particulate elemental ra-
tios. However, our sensitivities are with respect to parame-
ter variations among many simulations, rather than spatial or
temporal gradients in the one real ocean.

4.1.2 Zooplankton parameters

While in many global biogeochemical models zooplank-
ton are described by non-mechanistic formulations, such
as Holling-type functions (Holling and Buckingham, 1976),
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Figure 6. Zonally averaged NO−3 in WOA 2013 (a), the simulations with the lowest and highest NO−3 inventory (b, d), and the trade-off
simulation (c) in the OPEM configuration. Globally averaged NO−3 concentrations are shown in each panel. Simulations shown here are
marked with solid black and open red triangles in Fig. 5. Note that the outputs from OPEM and OPEM-H are very similar and only OPEM
results are shown here.

in this study we apply a more realistic zooplankton model
(Pahlow and Prowe, 2010). Among the five zooplankton pa-
rameters, the maximum specific ingestion rate (gmax) and the
capture coefficients of phytoplankton (φphy) and diazotrophs
(φdia) are the most important, whereas the preference for de-
tritus (φdet) is generally less important. Grazing on zooplank-
ton itself (φzoo) counters the effect of gmax because it low-
ers zooplankton biomass and thus total ingestion. These pa-
rameters together dominate controls on N2 fixation and Chl
(Fig. 1), and C, N, and P of ordinary phytoplankton and di-
azotrophs (Fig. 2). It is interesting that zooplankton param-
eters also exert some control on particulate N : P as well as
the dissolved nutrient pools (Fig. 3). This can be understood
via their controls on N2 fixation and the ensuing changes in
N : P in the dissolved and particulate pools.

4.1.3 Other parameters and the OPEM-H
configuration

Other parameters in the sensitivity analysis appear less im-
portant for the tracer distributions, but this does not neces-
sarily mean that they are negligible. Specific mortality rate
(λ0,phy) and the phytoplankton half-saturation constant for

Fe (kFe,phy) do contribute to some variations of most of the
tracers (Fig. 1), and particulate C : P is somewhat sensitive
to potential nutrient affinity (A0). Phytoplankton subsistence
P quota (QP

0,phy) affects major tracers much less than phyto-
plankton subsistence N quota (QN

0,phy), but it is still impor-
tant for particulate C : P and particulate N : P ratios, particu-
larly at high latitudes and globally (Fig. 3). Diazotroph sub-
sistence N and P quotas (QN

0,dia and QP
0,dia) in general have

much less influence on particulate stoichiometry than QN
0,phy

and QP
0,phy because diazotrophs are much less abundant than

ordinary phytoplankton. However, diazotroph biomass (car-
bon) itself is more sensitive to QN

0,dia than QN
0,phy, which

shows that the diazotroph subsistence quotas are still im-
portant for both their elemental stoichiometry and ability to
compete with ordinary phytoplankton. While elemental sto-
ichiometry has been suggested to be an important factor for
determining the outcome of the competition between dia-
zotrophs and non-diazotrophs, and consequently N2 fixation
(Deutsch and Weber, 2012; Weber and Deutsch, 2012), we
find that N2 fixation is no more sensitive toQN

0,dia than to the
remineralisation rate (νdet), QN

0,phy, or zooplankton grazing
parameters (gmax, φphy, and φdia). Nevertheless, our analysis
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Figure 7. Same simulations as in Fig. 6 but showing the results for O2.

agrees with the argument that global N2 fixation is mainly de-
termined by rates of fixed-N loss (Weber and Deutsch, 2014),
which in our model is largely affected by νdet and QN

0,phy.
In general, tracer sensitivities to parameters in OPEM-

H configuration are similar to those in OPEM. O2 and
NO−3 levels are slightly less sensitive to the remineralisation
rate, QN

0,phy, and gmax in OPEM-H because this configura-
tion allows (facultative) diazotrophs to grow in high-latitude
cold waters; hence, the overall biomass of diazotrophs is
greater (Part 1; Pahlow et al., 2020). This is also the rea-
son why QN

0,dia and QP
0,dia exert a stronger effect on surface-

particle elemental stoichiometry at high latitudes in OPEM-
H (Fig. 3).

Several studies have revealed that N2 fixation occurs in
high-latitude regions (Sipler et al., 2017; Harding et al.,
2018; Shiozaki et al., 2018; Mulholland et al., 2019), which
supports a wider temperature range of N2 fixation, similar
to what we have in OPEM-H. In the trade-off simulation for
OPEM-H, we do find some N2 fixation in the eastern North
Pacific and the Arctic Ocean (Part 1; Pahlow et al., 2020).
The different temperature function for diazotrophy is also the
reason for the differences in the sensitivities of particulate
C : N : P to diazotroph subsistence quotas in high-latitude re-
gions (Fig. 3).

4.2 Model limitations

The strong correlation between O2 and NO−3 (Fig. 5) indi-
cates that O2 and denitrification are tightly coupled. Lack of
benthic denitrification leaves water-column denitrification as
the only loss of NO−3 and O2 becomes the primary factor con-
trolling the NO−3 inventory. This implies that sensitivities of
NO−3 to the model parameters could be different when ben-
thic denitrification is incorporated in our model. Also, this
means that global N2 fixation (same as global denitrification
in our spun-up steady-state simulations) is underestimated,
and since it occurs mostly at 40◦ S to 40◦ N (see Fig. 13 in
Part 1; Pahlow et al., 2020), particulate carbon to nitrogen
(C : N) ratios could be overestimated due to a missing in-
put of nitrogen to the surface ocean. This could explain the
overestimated surface particulate C : N at low latitudes (see
Table 3 and Fig. 16 in Part 1; Pahlow et al., 2020).

To evaluate how water-column denitrification affects our
cost function, we arrange our simulations in the order of their
cost values and plot the volume of ODZs against cost for
both the OPEM and OPEM-H configurations in Fig. 10a–c.
Several of our simulations, mostly among those with the 200
lowest cost values (Fig. 10a), have a relatively small misfit
in O2 and NO−3 compared to the WOA 2013 estimate, and
high N2-fixation rates, comparable to those estimated in pre-
vious model studies (e.g. Somes et al., 2017; Wang et al.,
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Figure 8. Lower parts (cost< 108.2) of cost–value distributions for the parameter ranges in Table 1. Solid red triangles and blue circles
represent the minimum-cost simulations in OPEM and OPEM-H, respectively, and open red triangles and blue circles are the trade-off
simulations. Note that the trade-off simulations share the same parameter combination but have slightly different cost–value distributions.

2019). For these simulations, low O2 is connected with high
rates of water-column denitrification in the eastern equatorial
Pacific Ocean (Pac.EQU.E), causing a depression of NO−3
concentration and a rather high variance in NO−3 concen-
tration, both of which conflict with the observations. Hence,
cost in this biome is very high, especially in the upper 550 m
(Fig. 9), where denitrification is strongest. On the other hand,
although the volume of ODZs in the minimum-cost simula-
tions in OPEM and OPEM-H is greater than in WOA 2013
(Fig. 10c), they yield rather low N2-fixation rates (40.3 and
35.0 Tg N yr−1 for OPEM and OPEM-H, respectively). ODZ
volumes in the trade-off simulations are more than twice
that in WOA 2013 (Fig. 10) and yield global N2-fixation
rates close to current estimates of water-column denitrifica-
tion (about 70 Tg N yr−1; Somes et al., 2017; Wang et al.,

2019). The mismatch between ODZ volume and N2-fixation
rate indicates that a refined description of water-column den-
itrification may be needed (Sauerland et al., 2019). While the
physical component (ocean circulation) of the UVic model
is also very important for the global distribution of oxygen
and nitrate, our results suggest that, clearly, only by consider-
ing all major nitrogen sources and sinks, such as atmospheric
deposition and benthic denitrification, a better representation
of N2 fixation and the global marine nitrogen cycle can be
achieved.
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Figure 9. (a) Cost–value distributions in the 17 biomes in OPEM. The order of the simulations is based on the total cost from low to high in
OPEM. The upper layer and deep layer in the legend represent upper (0–550 m) and lower (below 550 m) components of the cost function
(Eq. 5). Misfit and variance are calculated by the first and second parts of the cost-function components (Eqs. 6 and 7), respectively. (b) Map
of biome locations.

4.3 Likelihood-based metric

4.3.1 Applicability of the cost function and usefulness
of introducing variance information

The cost function introduced above is a metric that quanti-
fies the discrepancy between objectively analysed observa-
tional data and simulation results. Our cost function proves
useful for exploring the 400 ensemble model solutions and
identifies model solutions that reproduce deep ocean gra-
dients in the NO−3 : PO3−

4 ratio better than a classic fixed-

stoichiometry model (Part 1; Pahlow et al., 2020). In addi-
tion, the optimal model solutions yield improved NCP rate
estimates integrated over the top 100 m (Part 1; Pahlow et al.,
2020). In particular, the trade-off solutions of OPEM and
OPEM-H can resolve observed latitudinal patterns in dis-
solved and particulate C : N : P within the upper productive
ocean layers (0–130 m; see Part 1; Pahlow et al., 2020). The
consideration of monthly mean O2, NO−3 , PO3−

4 data for the
upper 550 m and surface Chl remote sensing data introduces
important constraints on the representation of the relation be-
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Figure 10. Cost values across all parameter sensitivity simulations
ordered from low to high for the two model configurations. Cost
values in both misfit and variance (a) and the contributions of vari-
ance (b). Black and red lines are for OPEM and OPEM-H, respec-
tively. Total cost versus volume of ODZ (ODZ < 5 mmol O2 m−3)
in the simulations with ODZ volume larger than 1014 m3 (c); colour
represents the simulation order as shown in panels (a) and (b). The
red vertical line indicates ODZ volume in WOA 2013 (7.945×
1014 m3), the solid red triangle and blue circle represent the sim-
ulations with minimum cost in OPEM and OPEM-H, respectively,
and open red triangle and blue circle are the trade-off simulations.

tween light and nutrient limitation, thereby also specifying
the degrees of N and P limitation.

Even within the 5 % of the simulations with the lowest
costs, the estimates of global N2-fixation rate vary consid-
erably. The mean global estimates± standard deviation in
OPEM and OPEM-H are 32± 20 and 39± 18 Tg N yr−1, re-
spectively. We initially expected that the NO−3 and PO3−

4 data
in the cost function would effectually constrain N2 fixation.
This is clearly not the case and additional information has
to be considered. One explanation may be that considerable
N2 fixation can occur during short periods and may also be

confined to regions smaller than the biomes. Regional differ-
ences with respect to N2 fixation remain unresolved if only
biome-specific monthly mean NO−3 and PO3−

4 data are con-
sidered for the upper layers in the cost function.

Also, the minimum-cost solution yields very low global
N2-fixation rates. Thus, for the identification of the trade-off
solutions, we had to consider prior information about global
water-column denitrification, whose rate is balanced by N2
fixation according to our models. Incorporating N2 fixation
as a single global rate estimate into our Likelihood-based
cost function as a single additional term would, without
some difficult-to-define regularisation, become overwhelmed
by the many tracer and variance terms defined in Eqs. (6)
and (7). Rather, the additional information is treated as a
second objective, namely that global N2 fixation should be
greater than 60 Tg N yr−1 (see above), which is similar to ap-
plying a multi-objective approach for model calibration (e.g.
Sauerland et al., 2019), where a trade-off between two or
more objectives (cost functions) is resolved. A refined cost
function may incorporate monthly mean N : P ratios or N*
values based on WOA 2013 data (e.g. for the upper 130 m)
for clustered subregions of some biomes. Such addition to
the cost function would require some careful preprocessing,
e.g. cluster analysis of the spatial N : P or N* patterns but
may suffice to constrain simulated N2-fixation rates.

A peculiarity of our cost function is that it complements
the data–model misfit, i.e. the residuals of spatial mean log10-
transformed values, with an additional term that resolves dif-
ferences in spatial variances. How the neglect of this term
affects the global mean tracer concentrations and flux es-
timates is depicted in Fig. S2–S7 in the Supplement. The
cost function’s variance term introduces a strong penalty to
approximately 30 % of all ensemble model solutions. The
highest cost-function values (J > 109) are associated with
discrepancies in spatial variances that exceed the misfits in
the log10-transformed tracer concentrations. For large parts
of the ensemble solutions, the variance term contributes be-
tween 15 % and 20 % to the total costs. Interestingly, for
those model solutions that yield low cost-function values
(J < 4× 107), the relative contribution rises again when the
misfit in the log10-transformed tracer concentrations gradu-
ally decreases (Fig. 10b).

4.3.2 Contributions of biomes

The 17 biomes derived by Fay and McKinley (2014) rep-
resent a scale similar to that addressed in global efforts to
establish surface–ocean air–sea carbon-flux estimates (Wan-
ninkhof et al., 2013; Rödenbeck et al., 2015). Accordingly,
our cost function can be easily extended by incorporating air–
sea CO2 flux estimates in the future. Further improvements
may be possible by introducing subregions in some biomes,
e.g. for constraining N2-fixation rate estimates, as discussed
above.
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For low cost-function values, the contribution of the vari-
ance term is generally small in most biomes for the deep lay-
ers (Fig. 9), where variances of the log10-transformed tracer
concentrations compare very well between the simulations
and the WOA 2013 estimate. For high costs, this term can
become dominant, e.g. for some biomes in the North Pacific
as well as the Indian Ocean. A remarkable exception is the
North Pacific Arctic biome (NP-ICE), where the deep layer’s
variance term remains dominant for most of the ensemble so-
lutions. This is somewhat different in the Arctic biome of the
North Atlantic (NA-ICE) and the Southern Ocean (SO-ICE),
where the variance term remains low throughout almost the
entire ensemble. For SO-ICE, the cost function is mainly
affected by the misfit in log10-transformed tracer concen-
trations. The misfit is associated mainly with discrepancies
between observed and simulated NO−3 within the SO-ICE
biome. Interestingly, these misfits in both upper and deeper
layers drop again after around the 280th simulation. Simu-
lations with high NO−3 do not result in total cost values as
high as in simulations with very low NO−3 (Fig. 5), but they
have larger misfits for NO−3 in SO-ICE. A similar behaviour
can be seen in the other Southern Ocean biome (SO-SPSS)
as well as in NA-ICE.

The upper layer’s variance term contributes strongly to low
costs in North Atlantic biomes. This is particularly striking
for the equatorial Atlantic biome (Atl.EQU). The main rea-
son is water-column denitrification that results in a high vari-
ance in NO−3 . Likewise the eastern equatorial Pacific biome
(Pac.EQU.E) reveals major model limitations in the upper
layers. Overall, the unfolding of biome-specific contributions
to the cost function clearly points to those regions where im-
proving model performance appears most worthwhile. Our
present cost function may then be reapplied to quantify and
highlight specific model improvements.

5 Conclusions

We demonstrate sensitivities of various tracers and processes
to parameters in two configurations of a new optimality-
based plankton–ecosystem model (OPEM) in the UVic-
ESCM. While OPEM-H predicts a wider geographical range
for N2 fixation (Part 1; Pahlow et al., 2020) and shows some
differences in the sensitivities of diazotroph C, N, and P to
parameters when compared to OPEM, the tracer sensitivity
to model parameters is very similar in both configurations.
The trade-off simulations in the OPEM and OPEM-H hap-
pen to have the same parameter set. Among our model sim-
ulations, varying model parameters within reasonable ranges
results in variations in O2 by a factor of 2 and in NO−3 con-
centration by a factor of 6. The sensitivity analysis provides
important information regarding the new models’ behaviour.
The O2 inventory is mainly influenced by the remineralisa-
tion rate (νdet) as well as phytoplankton subsistence nitrogen
quota (QN

0,phy) and zooplankton maximum specific ingestion

rate (gmax). Changes in QN
0,phy strongly impact the NO−3 in-

ventory, as well as the elemental stoichiometry of ordinary
phytoplankton, diazotrophs, and detritus. QN

0,phy also affects
N2 fixation, Chl, DIC, and iron levels. Furthermore, our sen-
sitivity analysis resolves correlations between various bio-
geochemical tracers. For example, POC export is negatively
correlated with the NO−3 inventory. We would like to point
out that these changes in model behaviour are solely caused
by variations in parameters. Thus, the correlations between
tracers and rates might not stand when tracer variations are
caused by other factors. For example, an increase in the NO−3
inventory due to anthropogenic emissions may be accompa-
nied by an increase in POC export (Fernández-Castro et al.,
2016). Also, although we did evaluate sensitivities of particu-
late elemental stoichiometry at different latitudes, most tracer
sensitivities and correlations should be considered valid only
for global but not regional scales.

We introduce a new likelihood-based metric for model cal-
ibration. The metric appears capable of constraining glob-
ally averaged O2, NO−3 , and DIC concentrations as well as
NCP. In particular, the minimum-cost and trade-off model
solutions resolve observed latitudinal patterns in particulate
C : N : P within the surface layers (0–130 m). However, the
metric does not effectually constrain the models’ global N2-
fixation rate estimates. Individual contributions of the biomes
to the cost function provide details of how tracer distributions
in each biome respond differently under different ecosys-
tem settings. The consideration of spatiotemporal variations
in the stoichiometry of NO−3 , PO3−

4 , and O2 in our metric
favours model solutions with low N2-fixation rates that are
solely balanced by low rates of water-column denitrification.
From our findings, we conclude that an explicit consider-
ation of benthic denitrification and atmospheric deposition
seems critical for improving the representation of the com-
plete global nitrogen cycle in our model.

Code availability. The University of Victoria Earth Sys-
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able at http://www.climate.uvic.ca/model/ (last access:
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