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Abstract. Automated detection of atmospheric rivers (ARs)
has been heavily relying on magnitude thresholding on ei-
ther the integrated water vapor (IWV) or integrated vapor
transport (IVT). Magnitude-thresholding approaches can be-
come problematic when detecting ARs in a warming climate,
because of the increasing atmospheric moisture. A new AR
detection method derived from an image-processing algo-
rithm is proposed in this work. Different from conventional
thresholding methods, the new algorithm applies threshold
to the spatiotemporal scale of ARs to achieve the detection,
thus making it magnitude independent and applicable to both
IWV- and IVT-based AR detection. Compared with conven-
tional thresholding methods, it displays lower sensitivity to
parameters and a greater tolerance towards a wider range of
water vapor flux intensities. A new method of tracking ARs is
also proposed, based on a new AR axis identification method
and a modified Hausdorff distance that gives a measure of
the geographical distances of AR axes pairs.

1 Introduction

Many previous studies have demonstrated the dual hydro-
logical roles played by atmospheric rivers (ARs), both as a
freshwater source for certain water-stressed areas (Dettinger,
2011, 2013; Rutz and Steenburgh, 2012) and a potential trig-
ger for floods (Lavers et al., 2012; Lavers and Villarini, 2013;
Neiman et al., 2008; Moore et al., 2012). Increasing attention

towards ARs is seen not only among the research community
but also within water resource management agencies, risk
mitigation managers and policy makers (Ralph et al., 2019).
Some of the pressing research questions that challenge the re-
search community are how ARs will respond to global warm-
ing and how changes in ARs will affect future hydroclimate
projections. Answers to these questions will require a set of
robust AR detection methods that consider the nonstationary
nature of the atmospheric responses to global warming.

The increased attention to AR research has led to the de-
velopment of an array of AR detection and/or tracking meth-
ods with considerable variability in their design, complic-
ity and targeted scientific questions. The Atmospheric River
Tracking Method Intercomparison Project (ARTMIP) (Ralph
et al., 2018; Shields et al., 2018) was initiated as a com-
munity effort to systematically estimate the methodologi-
cal uncertainties in AR detection. In the 1-month “proof-of-
concept” analysis (Shields et al., 2018), 15 different detection
methods were included to quantify various AR-related statis-
tics from the North American and European landfalling ARs.
And the early start comparison work (Ralph et al., 2018) in-
cluded eight methods, some of which also came with sub-
catalogues with different parameter choices. All of these AR
detection methods are based on either integrated water vapor
(IWV) or integrated vapor transport (IVT), or a combination
of both. For most of the algorithms compiled by ARTMIP,
a pre-determined value is used as the magnitude threshold
for the initial selection before subsequent geometrical con-
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siderations. For instance, Ralph et al. (2004), Neiman et al.
(2008), Hagos et al. (2015) and Dettinger (2011) identified
ARs as contiguous regions, where IWV ≥ 20 mm, at least
2000 km in length and no more than 1000 km in width. A
250 kg m−1 s−1 IVT threshold was used by Rutz et al. (2014,
2015) in detecting landfalling ARs onto the North American
continent. These AR magnitude-thresholding methods have
the advantage of being easy to use and straightforward to in-
terpret.

An implicit assumption with this magnitude-thresholding
approach is that the atmospheric moisture level stays un-
changed throughout the analysis period, or the temporal
power spectrum remains constant across decadal or larger
timescales. As the threshold value used in the analysis is
based on the historical observations, a question arises of
whether the constant threshold value can be reliably used
for AR detection under future warming climate as the at-
mospheric moisture level is expected to increase. For the es-
timate of present-day ARs, different choices of magnitude
threshold may also cause considerable uncertainties (Ralph
et al., 2018; Shields et al., 2018). For instance, when estimat-
ing the number of landfalling AR events at Bodega Bay using
the Modern-Era Retrospective analysis for Research and Ap-
plications version 2 (MERRA-2), raising the IVT magnitude
threshold from 250 to 500 kg m−1 s−1 was found to reduce
the total number of AR events during water years of 2005–
2016 from 185 (termed as “baseline ARs”) to 14 (termed as
“stronger ARs”), with the same detection method by Wick
et al. (2013a, b) (Ralph et al., 2018).

An alternative to the absolute magnitude threshold is the
use of a chosen percentile of IVT or IWV at a given location
as a threshold, such as the 85th percentile of local climatol-
ogy used in some studies (e.g., Lavers et al., 2012; Nayak
et al., 2014; Guan and Waliser, 2015). Such an approach
grants the IVT or IWV threshold the sensitivity to the possi-
ble basin, seasonal or latitudinal differences. However, a pre-
scribed percentile value may not have the flexibility to adopt
to the fast-changing synoptic conditions where ARs are em-
bedded. Furthermore, an additional 100 kg m−1 s−1 constant
IVT threshold was found to be necessary to complement de-
tection in the polar regions (Guan and Waliser, 2015).

The prescribed threshold approach also requires different
thresholds for IWV-based and IVT-based applications (for
instance, 2 cm for IWV and 250 kg m−1 s−1 for IVT), and in
both cases, it is likely that different threshold values are re-
quired for midlatitude systems and polar systems. As demon-
strated in Gorodetskaya et al. (2014), lower air temperature
and the reduced water holding capacity demand a separate
set of threshold catered to the polar climate.

A possible solution to the problems is to avoid the usage
of magnitude threshold and instead apply the filtering pro-
cess to moisture filamentary structures. Instead of threshold-
ing the IVT or IWV magnitudes which show greater sensitiv-
ity to a cut-off value, we propose a method that performs the
filtering on the spatiotemporal “spikiness” of IVT or IWV

fields which are found to have lower sensitivity to parame-
ter choices. This reduced parameter sensitivity makes it less
prone to the problem of the nonstationary nature of the atmo-
spheric moisture level under the warming climate.

A reasonable AR axis definition is a necessary prerequisite
to accurate AR length estimate and a useful metrics for sub-
sequent tracking. The accuracy of axis estimation has not re-
ceived enough attention in literature, although sensitivities in
geometrical constraints have been highlighted (Ralph et al.,
2018). The AR axis is typically defined as a simple curve
that follows the orientation of the AR, providing a summary
of its geographical location and extent. Wick et al. (2013a)
used the image-processing skeletonization algorithm to find
AR axes. This method has the advantage of being able to han-
dle complex shapes and the resultant axis never goes out of
the AR boundary. However, it lacks physical correspondence
and the identified axes do not always follow the maximum
intensities of the ARs.

Another method to identify the AR axis is to perform a
curve fitting on the coordinates of the AR region. For in-
stance, Mundhenk et al. (2016) fitted a third-degree polyno-
mial to the latitudes and longitudes of AR coordinates. For
simple shapes, this gives a satisfactory result, but for com-
plex, curvy shapes, polynomial fitting suffers from the in-
ability to handle multiple outputs (e.g., one longitude corre-
sponds to more than one latitude) and difficulties in finding a
balance between overfitting and underfitting.

Guan and Waliser (2015) defined the AR axis by perform-
ing a perpendicular line scan along the great circle between
the furthest apart pair of AR region coordinates and assigning
axis points to the largest IVT value along the scanning line.
For complex shapes, the identified axis is not guaranteed to
be a continuous curve. More recently, Pan and Lu (2019) in-
troduced another axis identification method which uses a k-
nearest neighbor method in the forward/backward searches
for a sequence of local centroids as the AR axis. As will be
shown later, this method is similar to our method in that the
IVT direction information is encoded into the identified axis;
therefore, the axis reflects not only the AR’s location but its
major flow direction as well.

Along with the new AR detection algorithm, we propose
a new method to identify AR axis. By building a topological
graph from AR region coordinates and the horizontal mois-
ture flux vectors, the axis-finding problem is transformed into
a path-searching problem. With moisture flux information
encoded into the formulation, the found AR axis has close
physical correspondence, follows the major orientation of the
flows, stays close to the maximum flux values and never ex-
tends out of AR boundary. It is also capable of handling very
complex shapes.

Many previous studies performing AR detection are solely
concerned with determining AR presence at any given
time/location. Only a few recent studies (e.g., Sellars et al.,
2017; Zhou et al., 2018; Guan and Waliser, 2019) attempted
to track ARs as unique entities through their life cycle.
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In contrast, tracking of tropical cyclones and extratropical
storms has been a common practice. This is largely because
the circular symmetry in these systems permits their loca-
tions being represented by a single coordinate pair, and inter-
center vicinity being measured by either the distance between
coordinate pairs (e.g., Camargo and Zebiak, 2002; Murakami
et al., 2015) or an areal overlap ratio with the help of radii es-
timates (e.g., Kew et al., 2010). The complex shapes of ARs
and the absence of circular symmetry deny such a conve-
nience. In this work, we also propose an AR tracking algo-
rithm in which a modified Hausdorff distance, which gives
an effective measure of the geographical proximity of two
ARs, is used as an inter-AR distance estimate.

This work is mostly focused on the description and in-
troduction of the new detection and tracking methods, col-
lectively named the Image-Processing-based Atmospheric
River Tracking method (IPART), using the application on
Northern Hemisphere IVT data as an illustration. A more de-
tailed comparison between ARs detected by this new method
and other conventional methods are reported in a separate
study. This paper is organized as follows: Sect. 2 gives a de-
scription of the methods. Section 3 examines the parameter
sensitives of the proposed method by comparing the AR de-
tection results against those by two conventional detection
methods. This is followed by an analysis of the tracking of
ARs in Sect. 4 and an illustration of applying the proposed
method on IWV-based detection in Sect. 5. Lastly, Sect. 6
summarizes the results and discusses some limitations of
these methods.

2 The Image-Processing-based Atmospheric River
Tracking (IPART) method

2.1 AR detection using the top hat by reconstruction
(THR) algorithm

The AR detection method is inspired by the image-
processing “top hat by reconstruction” (THR) technique
(Vincent, 1993), which consists of subtracting from the orig-
inal image a “greyscale reconstruction by dilation” image.
In the context of AR detection, the greyscale image in ques-
tion is the non-negative IVT distribution. The THR process
starts by defining a “marker” image, which in this case is
obtained by applying a greyscale erosion on the IVT data.
Greyscale erosion (also known as minimum filtering, e.g.,
Dougherty, 1992) can be understood by analogy with a mov-
ing average. Instead of the average within a neighborhood,
erosion replaces the central value with the neighborhood
minimum. Similarly, dilation replaces with the maximum.
And the neighborhood is defined by the structuring element
E, which is an important parameter in the entire THR pro-
cess.

Then lateral spread (dilation) starts from the “marker” im-
age. The dilation is capped in pixel intensity by the origi-

nal IVT distribution, giving the greyscale reconstruction by
dilation component (hereafter reconstruction), which corre-
sponds to the background IVT component. Finally, the differ-
ence between IVT and the reconstruction gives the anoma-
lous IVT, from which AR candidates are searched. Intu-
itively, the THR algorithm consists of a search for a “base-
line” intensity level within a given neighborhood (the erosion
process), a creation of plateaus at this level (reconstruction)
and a final segmentation of baseline and anomalies. Non-zero
regions in this anomaly component are then selected, giving
a collection of marked out regions in the data domain denot-
ing the boundaries of potential ARs. More details of the THR
algorithm are given in Sect. A1 in the Appendix, and Fig. 1
gives some illustrations of this filtering process applied on
1-D and 2-D data.

Figure 1a shows a snapshot of the IVT field at an arbitrary
time point, and a horizontal line denotes the position of a
zonal cross-section, whose profile is shown in Fig. 1b. The
blue curve in Fig. 1b shows the two prominent peaks with
IVT values above 1000 kg m−1 s−1. The dashed green curve
shows the result of 1-D erosion applied on this cross-section,
where the structuring element E used is a line segment with
length 13: E = [1, · · ·,1]︸ ︷︷ ︸

13

.

The result of the 1-D erosion is used as the “marker” im-
age, from which lateral spread (dilation) starts. The dilation
is capped by the original IVT profile, giving the reconstruc-
tion plotted as dashed red curve. Finally, the difference be-
tween IVT and the reconstruction is defined as the anoma-
lous IVT, plotted as the dashed black curve. The lateral ex-
tent of these horizontal plateaus across the local peaks is,
by design, 13 pixels wide. Given that the data used in this
case have a horizontal resolution of 0.75◦, this is equivalent
to ∼ 1040 km, which is also the upper bound of typical AR
width (see later sections).

However, this is too strict a cut that the prominent Atlantic
AR is largely gone in the filtered curve. This is because this
AR is zonally well oriented so that only the very tip of the
IVT profile can fit into this zonal lateral extent. The other
AR in Pacific has a much narrower zonal extent; therefore,
a larger portion of its peak is retained. For shallower peaks
like the one around 170◦ E, the filtering still gives a non-zero
anomaly but with a much smaller magnitude, properly re-
flecting their shallowness.

To address the missing Atlantic AR, the erosion and re-
construction processes are extended into 2-D (x and y di-
mensions), using a 2-D disk-like structuring element (a 2-D
mesh satisfying

√
x2+ y2 ≤ 6 pixels, 6 being chosen as it

gives a diameter of 13 after adding a central pixel). The pro-
files of the results are plotted as solid curves in Fig. 1b. This
time, about half the two prominent IVT peaks are attributed
to the reconstruction component and the other half to anoma-
lies. The shallow peaks stay about the same.
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Figure 1c and d show the maps of 2-D reconstruction and
anomalies, respectively. Again, plateaus are created in the re-
construction field, above which are the anomalies. Exactly
where in height a peak is cut depends on how wide the peak’s
shape is, and it is the direction with the greatest gradient that
matters. For AR-like features, this corresponds to the cross-
sectional direction along which the 6-pixel radius takes ef-
fect. This allows us to properly isolate plumes that are narrow
in one direction but elongated in the other. Shallow peaks can
also be retained, largely regardless of their smaller absolute
magnitudes, as long as the peaks stand out at the given spatial
extent.

We then extend the processes of erosion and reconstruc-
tion to 3-D (i.e., time, x and y dimensions), measuring “spa-
tiotemporal spikiness”. The added temporal dimension helps
detect plumes that are transient at a given temporal extent.
The structuring element used for 3-D erosion is a 3-D ellip-
soid:

E =
{
(z,x,y) ∈ Z3

| (z/t)2+ (x/s)2+ (y/s)2 ≤ 1
}
, (1)

with the axis length along the time dimension being t , and
the axes for the x and y dimensions sharing the same length
s. Both t and s are measured in pixels/grids. Note that the
axis length of an ellipsoid is half the size of the ellipsoid in
that dimension. For relatively large-sized E, the difference
resulted from using an ellipsoid structuring element and a 3-
D cube with size (2t + 1,2s+ 1,2s+ 1) is fairly small.

Considering the close physical correspondence between
ARs and extratropical storm systems (Wernli, 1997; Gimeno
et al., 2014), the “correct” parameter choices of t and s

should be centered around the spatiotemporal scale of AR.
Suppose the IVT data have a horizontal resolution of 0.75◦

and a temporal resolution of 6 h. The typical width of an AR
is within 1000 km (e.g., Guan and Waliser, 2015, and results
below); therefore, s = 6 grids is chosen. The typical synoptic
timescale is about a week, giving t = 4 d (recall that t is only
half the size of the time dimension). An extra grid is added
to ensure an odd numbered length: the number of time steps
is 4 steps d−1

×4 d ×2+ 1 step = 33 steps.
Lastly, a candidate AR is defined as a continuous region

where THR anomalies are above zero; however, the IVT ac-
counted by this candidate is the total IVT (i.e., the sum of
reconstruction and anomaly, as shown in Fig. 1a). Thus, de-
tected candidates are then subject to some geometrical filter-
ing, as introduced next.

2.2 Geometric considerations

The identified AR candidates are then subject to some geo-
metric filtering to remove non-AR-like systems such as trop-
ical cyclones. The geometric requirements include the fol-
lowing:

1. Minimum length and minimum area. The length of an
AR is defined as the line integral of the AR axis, defined

in the following section. A typical 2000 km minimum
length requirement is adopted to be consistent with pre-
vious studies; however, a relaxed 800 km threshold is
also applied when we track ARs across time. This al-
lows for weaker systems, many of which occur during
the genesis stage (the first time point of the track of an
AR) of strong ARs, to be included and helps depict a
more complete picture of AR life cycle. However, it is
required that the same AR reaches 2000 km or above at
least one time step during its lifetime. A 500× 103 km2

minimum area requirement is used to filter out some
miniature features.

2. Maximum length and maximum area. When setting too
low a standard in detecting AR candidates, the resultant
region may cover too large an area that no longer con-
forms to the definition of an AR. A maximum length
of 11 000 km and a maximum area of 10× 106 km2

are imposed to screen out such cases. Some examples
are given in Sect. A6.1 in the Appendix justifying the
choices of maximum length/area.

3. Isoperimetric quotient and length/width ratio. Isoperi-
metric quotient is defined as the ratio of the area en-
closed by an AR candidate’s boundary and that of
the circle having the same perimeter of the AR: Q=
4πA/L2, with A being area in km2 and L being
perimeter in km. This serves the same purpose as the
length /width ratio typically used in previous studies,
and more circular regions (such as tropical cyclones)
having isoperimetric quotients greater than 0.7 are fil-
tered out. Note that when a tropical cyclone occupies a
small partition of the AR candidate (the concurrence of
tropical cyclone and AR), the tropical cyclone cannot
be discarded by this criterion. The reason for the prefer-
ence over length /width ratio is that length calculation
is based on finding an AR’s axis, which in turn involves
solving an array of optimal path-finding problems (see
Sect. 2.3). Therefore, the easier solvable isoperimetric
quotient can help bypass some unnecessary computa-
tions. After isoperimetric quotient filtering, passing can-
didates are further filtered by a minimal length /width
ratio of 2.

4. An arbitrary latitudinal range of 23–80◦. This is im-
posed on the centroid of an candidate AR to select only
midlatitude systems. The use of centroid as the metrics
implies that some systems may have a tropical portion
in their geographical region but are primarily midlati-
tude as a whole.

Section A6 in the Appendix gives further discussions on
the choices and related sensitivity tests on these geometri-
cal criteria. Passing candidates from the geometrical filtering
are regarded as ARs, their spatial regions are termed “AR
regions”, and the appearance at an instantaneous time point
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Figure 1. Illustration of 1-D and 2-D THR processes. (a) Snapshot of IVT in kg m−1 s−1 on 23 January 1984 at 00:00 UTC. The horizontal
line denotes a zonal cross-section. (b) IVT profile along the zonal cross-section defined in panel (a) as a blue curve. Green curves are profiles
of erosion, red ones the reconstructions, and black ones the anomalies. Dashed lines show results obtained via 1-D erosion/reconstruction
and solid lines are results from 2-D versions. (c) A 2-D reconstruction of IVT, in kg m−1 s−1. (d) IVT anomaly defined as the difference
between IVT and 2-D reconstruction, in kg m−1 s−1.

constitutes an “AR occurrence”, which is equivalent to the
term “AR object” in Zhou et al. (2018). The contiguous oc-
currences through time of a single AR entity constitute an
“AR track”.

2.3 Finding the AR axis

Identifying an axis of an AR is important for tracking the
movement of the AR. Here, we describe a new procedure
to identify the axis. The axis of an AR is sought from the
binary mask (Ik) representing the spatial region of the AR.
A solution in a planar graph framework is proposed here.
The process of defining the nodes and edges of the graph is
given in Sect. A2 in the Appendix, and an example of the
axis-finding algorithm is given in Fig. 2.

The boundary pixels of the AR region are first found,
labeled Lk . The transboundary moisture fluxes are com-
puted as the dot product of the gradients of Ik and (uk,vk):
∇Ik · (uk,vk), where uk and vk are the vertically inte-
grated moisture fluxes in the zonal and meridional direc-
tions, respectively. Then the boundary pixels with net in-
put moisture fluxes can be defined as Lk,in = {p ∈ Lk |

(∇Ik · (uk,vk))(p) > 0}; similarly, boundary pixels with net
output moisture fluxes are the set Lk,out = {p ∈ Lk | (∇Ik ·

(uk,vk))(p) < 0}. These boundary pixels are colored in
green and black, respectively, in Fig. 2.

For each pair of boundary nodes {(ni,nj ) | ni ∈ Lk,in,
nj ∈ Lk,out}, a simple path (a path with no repeated nodes)
is sought that, among all possible paths that connect the en-
try node ni and the exit node nj , is the “shortest” in the sense
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that its path integral of weights is the lowest. The weight for
edge eij is defined as

wij = e
−fij /A, (2)

where fi,j is the projected moisture flux along edge ei,j
(see Sect. A2 in the Appendix for more details), and A=
100 kg m−1 s−1 is a scaling factor. This formulation ensures
a non-negative weight for each edge and penalizes the inclu-
sion of weak edges when a weighted shortest path search is
performed.

The Dijkstra path-finding algorithm (Dijkstra, 1959) is
used to find this shortest path p∗ij . Then among all p∗ij paths
that connect all entry–exit pairs, the one with the largest path
integral of along-edge fluxes is chosen as the AR axis, as
highlighted in yellow in Fig. 2. Note that, unlike the skele-
tonization method, the axis does not necessarily follow the
center of the AR shape all the time. Three more axis-finding
examples are given in the Supplement.

It could be seen that various aspects of the physical pro-
cesses of ARs are encoded. The shortest path design gives
a natural looking axis that is free of discontinuities and re-
dundant curvatures and never shoots out of the AR bound-
ary. The weight formulation assigns smaller weights to edges
with larger moisture fluxes, “urging” the shortest path to pass
through nodes with greater flux intensity. The found axis is
by design directed, which in certain applications can provide
the necessary information to orient the AR with respect to its
ambiance, such as the horizontal temperature gradient, which
relates to the low-level jet by the thermal wind relation.

2.4 Tracking ARs across time steps

For each AR, we take seven (roughly) evenly spaced points
along the AR axis as “anchors” that collectively describe the
approximate location of the AR. To measure the inter-AR
distances, we borrow the Hausdorff distance that is com-
monly used in compute vision to measure the geometrical
similarity between 2-D or 3-D objects (e.g., Huttenlocher
et al., 1993; Vergeest et al., 2003) and modify it as follows.

Denote the anchor points of an AR at time t as A=
{a1,a2, · · ·,a7} and those of an AR at time t + 1 as B =
{b1,b2, · · ·,b7}. The forward Hausdorff distance is defined as

hf(A,B)≡max
a∈A
{min
b∈B
{dg(a,b)}}, (3)

namely, the largest great circle distance (dg) of all distances
from a point in A to the closest point in B. And the backward
Hausdorff distance is

hb(A,B)≡max
b∈B
{min
a∈A
{dg(a,b)}}. (4)

Note that in general hf 6= hb. Unlike the standard defini-
tion of Hausdorff distance that takes the maximum of hf and
hb, we take the minimum of the two:

H(A,B)≡min{hf(A,B),hb(A,B)}. (5)

Figure 2. Application of the axis-finding algorithm on the AR in the
North Pacific on 1 December 2007 at 00:00 UTC. IVT within the
AR is shown as colors, in kg m−1 s−1. The region of the AR (Ik) is
shown as a collection of grey dots, which constitute nodes of the di-
rected graph. Edges among neighboring nodes are created. A square
marker is drawn at each boundary node and is filled with green if the
boundary node has net input moisture fluxes (ni ∈ Lk,in) and with
black if it has net output moisture fluxes (ni ∈ Lk,out). The found
axis is highlighted in yellow. The inset image shows the IVT dis-
tribution over the North Pacific with the selected AR highlighted in
black contour.

The rationale behind this modification is that merg-
ing/splitting of ARs mostly happens in an end-to-end man-
ner, during which a sudden increase/decrease in the length
of the AR induces misalignment among the anchor points.
Specifically, merging (splitting) tends to induce large back-
ward (forward) Hausdorff distance. Therefore, min{hf,hb}

offers a more faithful description of the spatial closeness of
ARs. For merging/splitting events in a side-to-side manner,
this definition works just as well.

This formulation effectively summarizes inter-AR close-
ness into a single distance measure; therefore, tracking of
ARs across time steps can be achieved using similar tech-
niques as in the tracking of tropical cyclones or storms.

There are two possible manners in which such feature
tracking can performed: (i) in a “simple path scheme” where
the track of a feature across time forms a topological simple
path, i.e., no merging nor splitting is allowed, and a system
can only appear at one location at any given time; and (ii) in a
“network scheme” where features are allowed to merge/split
for arbitrary number of times, and their combined tracks form
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a directed network. The former scheme is simple to imple-
ment and suitable for occurrence statistics, as each occur-
rence is counted only once. In the later scheme, an occur-
rence may be included in more than one track if it is involved
in a merging or splitting. Therefore, the latter scheme is more
suitable for case studies where the full lifetime of a system
or interactions between systems are of interest.

In this study, we focus on the simple path-tracking scheme.
To achieve that, a nearest neighbor method is used that the
two AR axes found in consecutive time steps with a Haus-
dorff distance ≤ 1200 km are linked, with an exclusive pref-
erence for the smallest Hausdorff distance. The full algorithm
is given in Sect. A3 in the Appendix. Two selected cases us-
ing the network tracking scheme are given as an illustration.

3 Parameter sensitivity tests in the detection of ARs

3.1 Sensitivity of AR occurrence numbers to
parameters

With the geometric metrics kept constant, the parameters that
affect the detection performance of the THR algorithm are
the temporal (t) and spatial (s) sizes of the structuring el-
ement. ARs found with a given parameter combination are
labeled as “THR-tx-sy”, where x (y) denotes the value of t
(s), in units of days (number of grid cells).

Shown in Fig. 3 are the IVT anomalies from the THR pro-
cess on 23 January 1984 at 00:00 UTC, obtained using 30
different combinations of t and s. The IVT data are com-
puted as IVT =

√
u2+ v2, where u and v are the vertically

integrated horizontal moisture flux components, with a 0.75◦

horizontal resolution and a 6-hourly temporal resolution. u
and v data are obtained from ECMWF’s ERA-I reanalysis
product (Dee et al., 2011). It has been demonstrated that the
choice of reanalysis dataset contributes little to the resultant
detection statistics (Ralph et al., 2018; Shields et al., 2018).
It can be seen that the filtering process is rather insensitive
to the size/shape of the structuring element. All three ma-
jor ARs and the moderate one at the center of the map are
isolated in each combination, and notable differences only
appear in the tropical reservoir and around the edges of the
isolated ARs. In particular, a larger structuring element re-
tains more tropical signals and gives larger AR regions. This
is because the spatiotemporal size of an enlarged structuring
element starts to deviate away from the transient nature of
ARs and would tend to include larger systems.

As a comparison, we also applied two conventional de-
tection methods on the same ERA-I data. For the constant
IVT anomaly threshold approach, IVT anomalies are first
obtained by subtracting from the 6-hourly IVT data a low-
frequency component, which is the mean annual cycle (dur-
ing January 2004 to December 2010) smoothed by a 3-month
moving average. The use of anomalous IVT instead of abso-
lute values helps remove slow-varying features and makes a

fixed threshold more applicable across basins, seasons and
years (Mundhenk et al., 2016). The only parameter used in
this method is the cut-off IVT value; therefore, ARs found by
an IVT anomaly threshold of, for instance, 250 kg m−1 s−1,
are labeled as “IVT250ano”.

To detect ARs using a percentile-based threshold, we first
computed the 85th IVT percentile for each of the 12 months
within all 6-hourly time steps during the 3-month period cen-
tered on that month, within a 9-year moving time window.
For instance, the months of June–July–August (JJA) during
1996–2004 are used to find the 85th percentiles for the month
of July 2000. Then the threshold used to detect AR candi-
dates is the 85th IVT percentile, or a fixed 100 kg m−1 s−1,
whichever is larger, as in Guan and Waliser (2015). ARs
found by this method are labeled as “IVT85%”.

As the parameters of THR and constant-IVT methods are
of different natures (spatiotemporal scales versus horizontal
vapor flux), it is not obvious how to design directly compa-
rable perturbation ranges. Therefore, the perturbation range
of constant IVT threshold is arbitrarily chosen to be 200–
300 kg m−1 s−1 – a 20 % perturbation around the standard
250 kg m−1 s−1 value. The perturbation of the t parameter is
set to 1–8 d, and s to 3–10 grids, about 50 %–75 % pertur-
bation around the standard values of t = 4 d and s = 6 grids.
The percentile value serves the same role in affecting detec-
tion results as the constant IVT threshold; therefore, only the
85th percentile result is presented as a reference.

The same set of geometric filtering is applied to results
from the THR, constant IVT thresholding and the IVT85%
methods. The minimal length requirement is set to 2000 km.
It is important to keep in mind that much of the sensitiv-
ity in the number of detected ARs comes from the interplay
between initial detection and subsequent geometric filtering
(Ralph et al., 2018).

Figure 4 shows the mean annual number of AR occur-
rences over the North Pacific during 2004–2010 from dif-
ferent methods. The numbers are the AR occurrences within
all 6-hourly time steps, evenly divided into calendar years. It
could be seen that the annual mean detection number dis-
plays lower sensitivity to the THR t parameter at fixed s
(Fig. 4a) and similarly to the s parameter at fixed t (Fig. 4b),
compared with the sensitivity to IVT thresholds (Fig. 4d).
Detection number varies more when both t and s change si-
multaneously, as shown in Fig. 4c, from 2208 at the small-
est (t = 1 d, s = 3 grids) scale to 2730 at the (t = 6 d, s =
8 grids) scale. The tendency of increasing AR numbers with
enlarging scales is due to the interplay between initial detec-
tion and geometric screening. However, as long as the pa-
rameters are set around the typical synoptic spatiotemporal
scales, the resultant AR occurrence numbers are more or less
the same.

In comparison, the constant IVT threshold method pro-
duces fewer ARs as one raises the threshold, creating a drop
of 848 from the IVT200ano to the IVT300ano setup. The ef-
fect from varying IVT thresholds is intuitive: as one raises the
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Figure 3. IVT anomalies (in kg m−1 s−1) from the THR process on 23 January 1984 at 00:00 UTC. Subplots are results obtained using
different combinations of the time (t) and space (s) parameters of the 3-D structuring element in the THR process, and the subplots are
labeled in a format of (td, sp), with d being short for “days” and p for “pixels”. From row 1 to row 6, t increases from t = 1 to t = 9 d. From
column 1 to column 5, s increases from s = 4 pixels to s = 12 pixels, with a step of 2. Axes’ information has been omitted for brevity, and
the domain is the same as in Fig. 1a.

threshold, smaller regions are retained. When coupled with a
minimal size requirement, more get filtered out.

Also note that the IVT85% method reports more than dou-
ble the number of ARs of the highest THR method (Fig. 4d).
As will be shown in later sections, this method tends to pro-
duce ARs with notably different features compared to the
other two and is likely because the geometric metrics listed
in Sect. 2.2 are insufficient in effectively filtering some weak
plumes. Specifically, it is likely that the requirement of a min-
imal mean poleward IVT component and mean IVT direction
being within 45◦ of the AR shape orientation that are applied
by Guan and Waliser (2015) but absent in this study is mak-
ing the greatest difference.

Results in Fig. 4 suggest that the THR-t4-s6 method re-
ports 760 more AR occurrences per year than the IVT250ano

method. By applying a matching method based on areal over-
lap ratio, we are able to look closer at the degree of agreement
between these two methods in terms of AR occurrences and
their accounted IVTs. Besides occurrence numbers, there are
also some differences in the geographical locations of the de-
tected ARs by different methods, with different implications
in the seasonally accumulated meridional moisture transport
related to ARs. Details of this are beyond the scope of this
study and are discussed further in Xu et al. (2020b).

3.2 Comparison of selected cases

Figure 5 shows some selected cases where an AR occurrence
is detected by the THR-t4-s6 method but not by IVT250ano.
ARs found by the former are drawn in solid green contours
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Figure 4. Average annual number of AR occurrences over the North Pacific during 2004–2010. (a) AR occurrence numbers by the THR
method with various time (t) parameters and a fixed space parameter (s = 6). (b) Similar to panel (a) but for fixed time (t = 4) and varying
space (s) parameters. (c) Results from the THR method with time (t) and space (s) varying simultaneously from the lower bound of t = 1 d,
s = 3 grids to the upper bound of t = 8 d, s = 10 grids. (d) AR occurrences from the constant IVT thresholding method with the threshold
value ranging from 200 to 300 kg m−1 s−1 and the result from the IVT85% method as in the last column.

and the latter in solid black contours. On 11 January 2006
at 06:00 UTC (Fig. 5a), both methods detect the stronger
AR over the northeastern Pacific; however, the weaker one
at ∼ 160◦ E is missed by IVT250ano. This is because the
region where IVT anomalies are above the 250 kg m−1 s−1

threshold is too small, as indicated by the hatching. This
AR is not detected by IVT250ano until 12 January 2006 at
12:00 UTC, at which time it has migrated to∼ 180◦ E. Then,
4 d later (16 January 2006 at 12:00 UTC), it makes landfall
onto the North American continent. Figure S1 in the Supple-
ment shows the entire life cycle sequence of this AR.

Similarly, the northwestern Pacific AR on 13 January 2007
at 00:00 UTC is missed by the IVT250ano method (Fig. 5b).
The THR method identifies this AR occurrence as one
with a length of 3186 km and an average absolute IVT of
283 kg m−1 s−1. Then, 30 h later, IVT250ano detects this AR
until 18 January 2007 at 06:00 UTC, at which time it is just
about to make landfall in North America (Fig. S2). Mean-
while, THR traces this particular AR throughout this pe-
riod until 1 d after it is last seen in the IVT250ano detection
(Fig. S2). Also shown in Fig. 5b is another AR occurrence
at ∼ 155◦W that is solely detected by THR. This AR is not
detected by IVT250ano until 15 January 2007 at 06:00 UTC
(Fig. S2).

Figure 5c shows another case in the North Atlantic. The
AR in question is propagating over the eastern North Amer-
ica at the time of 7 February 2009 at 06:00 UTC. The life cy-
cle sequence in Fig. S3 indicates that this AR never appears

in the IVT250ano detection until its dissipation on 13 Febru-
ary 2009 at 12:00 UTC just south of Iceland. Figure 5c also
shows another AR occurrence over the northeastern Atlantic
that is missed by the IVT250ano method but detected by
THR.

It could be seen that the exclusive THR AR detection tends
to correspond to the genesis or dissipating stages of some
well-defined AR tracks (Fig. 5a, b) or in other cases the en-
tire life cycle of some weak systems as in Fig. 5c. Ralph et al.
(2018) also suggested that discrepancies among methods are
smaller in cold seasons than in warm seasons, in more ac-
tive years than in quieter years and during time steps with
higher observed IVT than those with lower IVT. In summary,
sensitivity to detection methods is much greater for weaker
systems.

It was also observed that methods with more restrictive ge-
ometrical criteria tend to report less detection compared with
those with comparable magnitude thresholds but are more
permissive in the geometrical requirements (Ralph et al.,
2018). In most of the existing detection methods, geometri-
cal filtering is applied as an extra step after the initial region
detection. However, these two steps are inherently closely
coupled: once the candidate region is determined, so is its
geometry, and with the help of a sensible length estimate,
its length as well. Therefore, for a magnitude-thresholding
detection method, the choice of the threshold to some ex-
tent already determines the expected geometrical extent of
the passing candidates, with largely predictable behavior as
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Figure 5. Snapshots of IVT distributions on (a) 11 January 2006 at 06:00 UTC over the North Pacific, (b) 13 January 2007 at 00:00 UTC
over the North Pacific and (c) 7 February 2009 at 06:00 UTC over the North Atlantic. ARs found by the THR-t4-s6 method are drawn in
solid green contours, those by the IVT250ano method in solid black contours and those by IVT85% in dotted black contours. Length (in
km) and area-averaged IVT (in kg m−1 s−1) for the THR-t4-s6 (IVT250ano) ARs are labeled out in green (black) boxes. Hatching indicates
areas where the IVT anomalies are above the 250 kg m−1 s−1 threshold.

one adjusts the threshold: raising the threshold level restricts
the sizes of the detected ARs, and vice versa. However, what
is less predictable is the resultant AR statistics when apply-
ing the same threshold to data across multiple decades when
low-frequency drifts may be present or to climate projections
where different model biases are to be expected.

The sensitivity and uncertainty embedded in geometrical
constraints still exist in the THR method but to a much lesser
extent. Weaker systems as shown in Fig. 5 are more likely to
be detected together with the most intensive ones. It also im-
plies that the geometrical filtering is more of an independent
criterion rather than closely coupled with the initial region
detection process. This allows for the inclusion of systems
that are weaker (note that in climate scale, or with differ-
ent model biases, it is less obvious how weak is weak) in
intensity but sizable in geometry. As shown above and will
be discussed later, this often leads to the captured AR tracks
having a fuller life cycle. As the strength and size criteria are
decoupled, the user can still apply a subsequent magnitude
filtering on the maximum and/or average IVT to obtain the
subset of a certain intensity level. Therefore, it offers greater
control power without completely breaking the compatibility
with existing methods.

As a reference, Fig. 5 also shows as dotted black contours
the ARs detected by the IVT85% method. This method dis-
plays improved sensitivity to weaker IVT signals, as in the
case of the landfalling AR in Fig. 5a and the one over the
eastern North America in Fig. 5c. However, it still misses
the three ARs in Fig. 5a and b. Also note that the THR ARs
on the eastern side of the map in Fig. 5a and Fig. 5c en-
close more than one local IVT maxima in their region con-
tours. This can happen when merging or splitting creates two
nearby transient plumes and can subsequently contribute to
the geometry-related uncertainties. A method has been de-
veloped to separate such “multi-core systems” into “single-
dome” ARs and will be introduced in a future update of the
algorithm.

3.3 Sensitivity of AR shapes and IVT intensities to
parameters

Some geometrical features and IVT intensities of the ARs
identified by the three methods are summarized in Fig. 6.
Considering the low sensitivity to either t or s parameters
with the other one fixed in the THR method, only the param-
eter combinations when both t and s vary simultaneously are
included.
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Figure 6. Distributions of (a) AR length (in km), (b) width (in km), (c) area (in 106 km2), (d) length /width ratio, (e) mean IVT averaged
over AR region (in kg m−1 s−1) and (f) maximum IVT within the AR region (in kg m−1 s−1) of ARs identified by different methods, during
the period of 2004–2010. Box ends denote the interquartile range of the distribution, with the median as the line in the middle. Box whiskers
denote the 5th and 95th percentiles.

Figure 6 shows that enlarging the THR structuring element
tends to produce ARs with larger sizes, and this can be seen
in the length (Fig. 6a), width (Fig. 6b) and area (Fig. 6c) dis-
tributions. (Note that width is defined as the effective width,
i.e., the ratio of area over length.) However, the length /width
ratio remains about constant (Fig. 6d). Raising the constant
IVT threshold has the opposite effect, where the resultant
ARs are progressively shorter (Fig. 6a), narrower (Fig. 6b)
and smaller in size (Fig. 6c).

Figure 6e suggests that larger-sized ARs tend to have
lower mean IVT values, and this is true among THR and con-
stant IVT threshold methods. Although the maximum IVT
follows a similar trend (Fig. 6f), the differences are much
smaller. This is because when taking the average over the
region of larger-sized ARs, the mean values get “diluted”
more during the spatial averaging process, yet the maximum
values are largely immune to this “dilution”. Therefore, the
lower mean IVT values of THR ARs are primarily due to
their larger sizes than due to the inclusion of weaker systems.
The variation among constant IVT threshold methods is also
consistent with Shields et al. (2018) in that higher threshold
on IVT produces higher average IVT intensities.

Results of the IVT85% ARs are also displayed as a refer-
ence. ARs found by this method display comparable size dis-
tributions as that by THR-t2-s4 method (Fig. 6a–d) but with

notably weaker mean (Fig. 6e) as well as maximum IVT dis-
tributions (Fig. 6f). Combined with the high number of ARs
found by IVT85% as shown in Fig. 4d, it could be inferred
that a good number of these are fairly weak systems that get
ignored by the other two.

The sizes of ARs constitute an important source of un-
certainty in many AR-related estimates (Ralph et al., 2018;
Shields et al., 2018). For instance, Rutz et al. (2014)
showed that by lowering the IVT threshold from 300 to
200 kg m−1 s−1, the resultant landfalling AR frequency onto
the North American coast rises by ∼ 50 % (see their Fig. 5).
A similar concern was also raised in Mundhenk et al. (2016)
when quantifying North Pacific AR frequencies. Currently,
no metrics have been developed to objectively quantify the
appropriateness of the AR boundary definition. We offer
some brief discussions on this topic from a segmentation cost
perspective in Sect. A5 in the Appendix.
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Figure 7. (a) Tracking of ARs across 2 December 2007 at 00:00
and 06:00 UTC using the nearest neighbor algorithm. ARs on 2 De-
cember 2007 at 00:00 UTC are represented by their anchor points
joint by dashed lines and are drawn in blue, and ARs on 2 Decem-
ber 2007 at 06:00 UTC are drawn in red. Blue (red) arrows indicate
the forward (backward) Hausdorff distance among paired ARs, and
the distances (in km) are labeled nearby. (b) Tracks of three selected
ARs represented by their axes. The life cycle of an AR is repre-
sented as the black–yellow transition in the coloring. Other ARs
during the same period are omitted for brevity.

4 Tracking ARs across time

Besides the quantification of AR occurrences, prediction
of ARs also requires tracking ARs across time steps. Fig-
ure 7a shows an example of the tracking algorithm applied
on THR-t4-s6 ARs found on 2 December 2007 at 00:00 and
06:00 UTC, drawn with dashed blue and red lines, respec-
tively. A blue (red) arrow indicates the forward (backward)
Hausdorff distance between a pair of ARs that get linked. It
could be seen that for pairs that are well separated or rel-
atively clustered, the Hausdorff distance correctly measures
the inter-AR closeness and enables the nearest neighbor algo-
rithm to make the correct associations. Note that the minimal
length requirement is relaxed to 800 km, but it is required
that the same AR reaches ≥ 2000 km for at least one time
step during its lifetime.

Figure 7b shows the tracks of three selected ARs in
November–December 2007 obtained using the simple path
scheme. The axes of the ARs are drawn with a black–yellow
color scheme, with the transition representing the stages of
their life cycle. The two ARs originating from Pacific (AR1,
AR2) have experienced the association process as shown in

Figure 8. Tracks of two ARs obtained using the network scheme.
Each of the two ARs (AR1 and AR2) has two branches (branch a
and branch b) in their tracks, shown in panels (a) and (b), respec-
tively. The same color scheme as in Fig. 7 is used to represent their
life cycles. The different branches of a single AR track are high-
lighted in red ellipses.

Fig. 7a. AR1 reaches a length of ∼ 4700 km shortly before
its landfall onto the western coast of the North America on
4 December 2007 at 06:00 UTC. AR2 starts as an eastern Pa-
cific system on 1 December 2007 at 00:00 UTC and survives
the cross-continent and cross-basin travel before its European
arrival on 7 December 2007 at 06:00 UTC, at which point the
AR has shrunk to a fairly short 960 km. AR3 is initially fu-
eled by a tropical cyclone in the Caribbean Sea and is joined
by another plume (not shown in this figure) coming from
the eastern Pacific during its eastward travel and dissipates
halfway through its North Atlantic propagation.

Figure 8 shows two selected AR tracks obtained using the
network scheme, where merging and splitting are captured.
To achieve this, three consecutive applications of the near-
est neighbor algorithm are performed, with different input
arguments each time. More details are given in Sect. A4 in
the Appendix. The first selected case (AR-1) starts from the
northwest Pacific on 21 December 2007 at 12:00 UTC and
splits into a southern branch (AR-1a, shown in Fig. 8a) and
a northern branch (AR-1b, Fig. 8b) during its eastward prop-
agation. The two branches then merge into one shortly be-
fore the North American arrival on 29 December 2007 at
12:00 UTC. In fact, the life cycle of this AR is further com-
plicated by the joining of a third branch originating from
another tropical system. We have omitted the third branch
for the sake of clarity. AR-2 demonstrates a merging case in
which a system from the Gulf of Mexico (AR-2a; Fig. 8a)
is joined by an eastern Pacific one (AR-2b; Fig. 8b), and the
combined track then makes European landfall. It has been es-
timated that about 25 % of wintertime extratropical cyclone
tracks experience at least one merging and/or splitting during
their lifetime (Hanley and Caballero, 2012). The proposed
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Figure 9. Distribution of track durations (in hours) of AR tracks in
the North Pacific (cyan) and North Atlantic (orange). The “inf” label
is used to form the right bin edge for the last bin which includes all
tracks lasting longer than 150 h.

method enables similar analysis on AR tracks and their pos-
sible links with merging or splitting cyclones.

The simple path scheme is then applied to all Northern
Hemisphere ARs found by the THR-t4-s6 method during the
November–April seasons of November 2004 to April 2010.
Depending on the AR centroid at genesis time, those ly-
ing within 120◦ E–100◦W are labeled “Pacific”, and those
within 100◦W–20◦ E are labeled “Atlantic”. After removing
tracks lasting shorter than 24 h, it is found that, on average,
both the North Pacific and North Atlantic have about 80 AR
tracks during the November–April season. More notable dif-
ference is observed in track durations, as shown in Fig. 9. The
median of the Pacific track durations is 78 h; that of the At-
lantic is 66 h. Such a difference is largely attributed to those
tracks lasting for 150 h or beyond and is consistent with the
greater longitudinal span of the Pacific basin. Note that the
duration is defined as the lifetime of individual AR tracks
and is distinct from a per grid, Eulerian definition as in, for
instance, Guan and Waliser (2015), Rutz et al. (2014, 2015)
and Sellars et al. (2017), who measured the contiguous time
spans when a grid cell experiences AR occurrences.

Figure 10 displays the movements of all Northern Hemi-
sphere AR tracks during the November–April seasons of
November 2004 to April 2010. The geometrical centroid of
the AR region is used as a proxy to location, and coloring
represents the maximum IVT within the AR region at each
time step. It could be seen that distributions of AR tracks
overlap well with the storm track regions of the North Pa-
cific and North Atlantic basins, with a southwest–northeast
orientation (Hodges, 1994). ARs of both ocean basins can be
traced back to the western boundary warm current regions
– the Kuroshio Current for the Pacific and the Gulf Stream
for Atlantic. For the Atlantic, a considerable number of ARs
also originate from the Gulf of Mexico. Keep in mind that an
arbitrary 23◦ N latitude requirement has been applied during

the detection stage which to some extent prevents the gene-
sis locations to be traced back to the main moisture reservoir
within the tropics.

Note that Fig. 10 also shows an additional hot spot in the
Middle East around the Red Sea, one across north Africa–
Mediterranean–eastern Europe and another even weaker one
over west Siberia. We would refrain from naming them ARs,
as they conflict with the conventional AR definition in that
they are weaker in strength, not ocean-originated and likely
driven by different physical mechanisms. However, these are
well organized (above 2000 km in length) and relatively per-
sistent (can be tracked over 24 h) water plumes. The identi-
fication of such systems speaks to the greater adaptability of
the THR method and its ability to encompass a wider range
of transient water vapor plumes in a single framework.

5 Application on IWV in polar regions

To support our claim that the proposed THR method can
be extended to IWV-based applications, we show only a se-
lected case of IWV-based AR detection here because of the
length limitation of the paper. Unlike IVT where the transi-
tion from tropical trades to extratropical westerlies creates a
natural separation in the tropical and extratropical IVT distri-
bution, ARs represented by IWV are usually well connected
with the tropical reservoir. Therefore, some modification of
the THR process is needed. The detailed procedure is given
in Sect. A7 in the Appendix. A selected case is shown in
Fig. 11.

The IWV data from ERA-I are first projected onto the po-
lar Lambert azimuthal projection before carrying out the two-
step THR process, which uses the same structuring element
of size t = 4 d, s = 6 pixels. Shown in Fig. 11a and b are
the IWV and IWV anomalies, respectively, on 19 May 2009
at 00:00 UTC. The AR located at 60◦ E is moving towards
Antarctica. This particular case has been documented by
Gorodetskaya et al. (2014), in which the conventional 2 cm
threshold value for IWV has been corrected by an empirical
formula to cater to the decreased saturation capacity of the
polar region. Note that although IVT is more than 2 orders of
magnitude larger than the values of IWV, the THR method
does not require a separate threshold for the IWV applica-
tions, and no polar adjustment is needed.

6 Conclusions

In this work, we propose a new set of automated AR detec-
tion and tracking methods. The THR algorithm exploits the
transient nature of ARs to segment IVT signals. Compared
with the intensities of AR-related vapor fluxes, the inherent
spatiotemporal scale of AR is a more stable attribute. This
makes the method less prone to the potential difficulties in re-
liably detecting ARs in a warming climate, and results from
different models are more directly comparable when model
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Figure 10. Movement of Northern Hemisphere AR tracks as indicated by the geometrical centroids during the November–April seasons of
November 2004 to April 2010. Color represents the maximum IVT within the AR region.

Figure 11. (a) IWV in the Southern Hemisphere on 19 May 2009 at 00:00 UTC, in cm. (b) IWV anomalies in cm, obtained using a two-step
THR, which uses a structuring element E with size t = 4 d, s = 6 pixels.

biases may be present. It also demonstrates reduced sensi-
tivity to parameter choices and greater tolerance towards a
wider range of transient water vapor plumes and therefore
has the potential of encompassing water plumes with various
strengths into a unified framework. Furthermore, as strength
is decoupled from the initial selection process, it is subject to
the user to later select only those that meet a given strength
standard, giving finer control power for different applica-
tions.

An intensity scale like those used to rank tropical cyclones
has just been established for the landfalling ARs (Ralph et al.,
2019). In the proposed scale, five intensity categories were
devised, covering the lowest “weak” category, with observed
IVT being 250–500 kg m−1 s−1, to the highest “exceptional”
category, whose IVT level is 1250 kg m−1 s−1 or above, with
extra duration factors taken into account in all categories. The
difference in categories can mean the difference from a mild,
beneficial atmospheric freshwater delivery to a hazardous ex-
treme event that can cause damages measured in billions of
dollars (Ralph et al., 2019). Therefore, it is advantageous for

a detection method to have a wider detection spectrum rather
than solely focusing on the most intensive events.

Besides the mostly commonly used magnitude-
thresholding methods, new AR detection techniques
are continually being developed. For instance, the ARTMIP
project reported one machine-learning-based detection
method that is also threshold-free (Shields et al., 2018). As
the AR research matures, more inspirations from other disci-
plines like machine learning, image processing or computer
vision are brought into the view of the AR community. Such
inputs can offer some new perspectives of looking at various
AR-related questions and can often lead to new discoveries
that would have been obscured using conventional methods.

More physical information is encoded into the axis-finding
method based on a directed graph model, creating an effec-
tive summary of an AR in the sense of geometry and physics.
Problems of discontinuity, spurious branches, weak physical
correspondence and difficulties in handling complex shapes
are overcome in this method.
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Lastly, tracking of ARs across time steps in a similar
manner to the tracking of tropical cyclones and storms is
achieved using a modified Hausdorff distance as the inter-
AR proximity measure. Long-lived ARs spanning multiple
days, having cross-continent or cross-basin tracks can be reli-
ably traced through their tropical/subtropical origins to high-
latitude landfall.

However, these methods come with their own limita-
tions. Firstly, the THR method is considerably more com-
plex than the constant thresholding method. Although it has
been shown to have lower parameter sensitivity, sensitivities
in other aspects still exist, particularly in the interplay be-
tween candidate region detection and the subsequent geo-
metric filtering. Some ARs may fail the detection for their
being just shy of a 2000 km length requirement or in other
cases being too long because two nearby water plumes are
merged together. Ambiguity in the shape of ARs still consti-
tutes an important source of uncertainty in many AR-related
statistics. A more accurate and controllable depiction of the
AR shape is still in demand.
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Appendix A

This appendix provides more technical details on AR detec-
tion using the THR algorithm, AR axis definition, inter-AR
distance measure and tracking algorithms. A discussion on
the AR sizes from a segmentation cost perspective is also
given. Some select AR life cycle sequences are shown at the
end.

A1 Top-hat reconstruction by dilation algorithm

Greyscale reconstruction by dilation can be defined as itera-
tive applications of elementary geodesic dilations of a marker
image M “under” a mask image I until convergence (Vin-
cent, 1993). An elementary geodesic dilation is defined as

δ
(1)
I (M)= (M ⊕B)∧ I, (A1)

where M ⊕B is the dilation of M by a flat structuring el-
ement B, and ∧ is the pointwise minimum operator. Intu-
itively, geodesic dilation spreads a local high-intensity value
in the marker image M to its neighbors so long as it does not
exceed values in the “mask” image I . The spread starts from
the given “marker” and stops until no change can be made:

δ
(n)
I (M)= δ

(1)
I ◦ δ

(1)
I ◦ · · · ◦ δ

(1)
I (M)︸ ︷︷ ︸

n times

,such that

δ
(n)
I (M)= δ

(n+1)
I (M), (A2)

where δ(n)I (M) is the reconstruction by dilation.
The “marker” image used is the greyscale erosion of the

image I by a structuring element E:

M ≡ εE(I )= I 	E. (A3)

The erosion and reconstruction by dilation computa-
tions are performed using the scikit-image software package
(van der Walt et al., 2014) designed for imaging processing
in the Python programming language.

A2 Define the directed planar graph for axis finding

A directed planar graph is built from Ik , which is the bi-
nary mask defining the AR region, using the coordinate pairs
(λk,φk) as nodes (see Fig. A1 for an illustration). At each
node, directed edges to its eight neighbors are created, so
long as the moisture flux component along the direction of
the edge exceeds a user-defined fraction (ε) to the total flux.
The along-edge flux is defined as

fij = ui sin(α)+ vi cos(α), (A4)

where fij is the flux along the edge eij that points from node
ni to node nj , and α is the azimuth angle of eij .

Therefore, an edge can be created if fij/
√
u2
i + v

2
i ≥ ε.

Here, a relatively small ε = 0.4 is used, as the orientation

Figure A1. Schematic diagram illustrating the planar graph built
from the AR pixels and horizontal moisture fluxes. Nodes are taken
from pixels within region Ik and are represented as circles. Red
vectors denote IVT vectors. The one at node ni forms an angle θ
with the x axis and has components (u, v). Black arrows denote di-
rected edges between nodes, using an 8-connectivity neighborhood
scheme. The edge between node ni and nj is eij and forms an az-
imuth angle α with the y axis. wij is the weight attribute assigned
to edge eij , and fij is the along-edge moisture flux.

of an AR can deviate considerably from its moisture fluxes,
and denser edges in the graph allow the axis to capture the
full extent of the AR.

A3 Tracking ARs using the simple path scheme

To make an association between two ARs at consecutive time
steps, a “nearest neighbor” approach is used. Formally, sup-
pose n tracks have been found at t = t : A= {a1,a2, · · ·,an},
and t = t + 1 has m new records: B = {b1,b2, · · ·,bm}. The
Hausdorff distances between all pairs of possible associa-
tions form a distance matrix:

M=


H(a1,b1) H(a1,b2) · · · H(a1,bm)

H(a2,b1) H(a2,b2) · · · H(a2,bm)
...

...
...

...

H(an,b1) H(an,b2) · · · H(an,bm).

 (A5)

Then Algorithm A2 is called with these arguments: (A=
A,B = B,M =M,H ∗ = 1200 km, R− = [],C− = []). The
algorithm iteratively links two AR records with the small-
est distance, so long as the distance does not exceed a given
threshold H ∗. It ensures that no existing track connects to
more than one new record, and no new record connects to
more than one existing track. After this, any left-over records
in B form a new track on their own. Then the same procedure
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Figure A2. Nearest neighbor algorithm.

repeats with updated time t := t + 1. Tracks that do not get
any new record can be removed from the stack list, which
only maintains a few active tracks at any given time. There-
fore, the complexity does not scale with time.

A4 Tracking ARs using the network scheme

Merging and splitting are allowed in this scheme, and the
process consists of three consecutive applications of the near-
est neighbor algorithm described above. Specifically, the pro-
cess works as follows:

1. Make a copy A′ of the existing tracks A at time t = t ,
and a copy M′ of the distance matrix M.

2. Apply the nearest neighbor algorithm as in Algo-
rithm A2:

A,R+1 ,C
+

1 = Algorithm A2 (A= A,B = B,

M =M,H ∗ =H ∗,R− = [],C− = []), (A6)

where R+1 (C+1 ) contains the indices of tracks (records)
that are linked in this process.

3. Merging is handled by repeating the nearest neighbor
process as follows:

A,R+2 ,C
+

2 = Algorithm A2 (A= A,B = B,

M =M′,H ∗ =H ∗,R− = R+1 ,C
−
= []). (A7)

Note that the backed-up distance matrix M′ is used as
it contains no infinities, and the argument R− = R+1
masks out tracks that have been linked in the previous
step, giving other tracks a chance to merge to the same
new record.

4. Splitting is handled by repeating the nearest neighbor
process as follows:

A,R+3 ,C
+

3 = Algorithm A2 (A= A,B = B,M =M′,

H ∗ =H ∗,R− = [],C− = C+1 ∪C
+

2 ). (A8)

This time, new records that have been allocated in
the previous steps are masked, giving other records a
chance to split an existing track. Note that when split-
ting, the new record is appended to a back-up copy of
the track from A′, and a new track is added to A after
the split, as described in lines 7–9 of Algorithm A2.

5. Any left-over records in B form a new track on their
own. Then, return back to step 1 with updated time t :=
t + 1.

It should be noted that this is not equivalent to a “link-all-
neighbors” strategy, which will deny the preference to the
nearest neighbor and create redundant links before (after) a
merge (split). After a merge, merging tracks will have identi-
cal tracks thereafter; and for every split, a new track is created
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with its history retained. Therefore, there would be many du-
plicated records in this scheme.

A5 Segmentation cost estimates

The AR detection task can be viewed as a segmentation prob-
lem in the image-processing framework that a segment of the
image (AR) is identified as the foreground image and thus
getting separated from its background (the IVT distribution).
In this formulation, a cost function can be defined to quan-
tify the total intra-segment variances, as an evaluation of the
effectiveness of the AR detection method in isolating high
AR-related IVT values from its background:

C ≡
1

IVTmax(Nf+Nb)[∑
Nf

(If,i − If)
2
+

∑
Nb

(Ib,i − Ib)
2

]
, (A9)

where Nf, Nb are the number of grids in the foreground
and background segments, respectively. If,i (Ib,i) denotes the
pixel value of the foreground (background) image at loca-
tion i, and the average across the segment is denoted If (Ib).
The summations in square brackets quantify the total intra-
segment variances. This is the same definition as used by
Otsu (1979) in determining the optimal segmentation thresh-
old. Either too small or too large an AR boundary definition
would raise the cost function and result in a less effective sep-
aration of high-intensity values from the background. This
is also equivalent to the cost function used in the k-means
clustering algorithm (e.g., Dreyfus, 2005, chap. 7); in this
case, the number of clusters is k = 2, where the minimiza-
tion of the cost converges to the solution. The normalization
by maximum IVT (IVTmax) and the total image domain size
(Nf +Nb) enables intercomparisons among different ARs.
The total image domain is chosen as the bounding box of
the AR boundary expanded out in four directions by five grid
cells.

Figure A3 compares the segmentation costs of an AR mu-
tually detected by three THR methods, three constant IVT
threshold methods and the IVT85% method, on 30 June 2004
at 06:00 UTC over the northeastern Pacific. Consistent with
discussions in the main text, shrinking the THR structur-
ing element has a similar effect to raising the constant IVT
threshold that a smaller proportion of the transient IVT
anomalies is segmented from the background. This partic-
ular time step is chosen because the segmentation cost com-
parison as shown in Fig. A3i is qualitatively consistent with
the long-term 2004–2010 average (not shown). Although not
specifically designed to minimize the segmentation cost, the
THR-t4-s6 method that reflects the typical spatiotemporal
scale of ARs gives the lowest cost.

A6 Explanations for the choices of the geometrical
filtering criteria

The geometrical filtering criteria, including the maximum
length/area, the minimum length, the maximum isoperimet-
ric quotient, the minimum centroid latitude and the maxi-
mum Hausdorff distance in the nearest neighbor linkage pro-
cess, are all determined from the physical natures of ARs
as well as trial-and-error processes. The proposed method is
mostly concerned with relaxing the hard and sensitive IVT
strength threshold; therefore, the geometrical considerations
are largely treated as controlled variables. Some further de-
tails regarding the choices of these criteria are given here.

A6.1 Maximum length/area

The maximum area/length requirements are set to fairly large
values. The maximum length is set to 11 000 km, which is
longer than the great circle distance (across the Pacific, ∼
10 400 km) from Hong Kong (∼ 22.3◦ N, 114.2◦ E) to Seat-
tle (∼ 47.6◦ N, −122.3◦W). Assuming an average width of
700 km (which is on the larger side for typical ARs), this
multiplies to an area of ∼ 7.3× 106 km2, which is smaller
than the maximum area requirement set here (10×106 km2).
These requirements are far larger than what could be ex-
pected from real-world AR sizes; therefore, they would only
filter out erroneous detection.

Regions with such large sizes only happen when two or
more ARs are grouped together in one contour, or some of
the ARs are connected with the large and continuous mois-
ture plumes in the tropics to form a large continuous region.
This happens more frequently when the structuring element
E is set too large, as explained in Sect. 3.1. Figure A4 gives
one such example. In Fig. A4a, the structuring element is set
to t7-s8. This merges the Pacific ARs with tropical plumes
to form a big connected region that later gets filtered out.
Figure A4b is using the recommended t4-s6 parameters; this
time the midlatitude signals are better separated from tropi-
cal ones so the Pacific AR is correctly retained. Those small
noisy contours will be filtered by the minimum area require-
ment.

A method is being developed to separate ARs that have
been mistakenly grouped together; once the new algorithm is
fully ready, such maximum length/area criteria are no longer
needed.

A6.2 Minimum length and maximum isoperimetric
quotient

Some results regarding the sensitivities of AR numbers to the
minimum length and maximum isoperimetric quotient crite-
ria are given in Fig. A5.

For minimum length (Fig. A5a), sensitivity around the
800–1400 km range is fairly small. Also keep in mind that
the 800 km threshold is used as a relaxed criterion to form a
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Figure A3. IVT distribution on 30 June 2004 at 06:00 UTC over the northeastern Pacific (in kg m−1 s−1). Boundaries of ARs detected by
(a) THR-t1-s3, (b) THR-t4-s6, (c) THR-t7-s9, (d) IVT200ano, (e) IVT250ano, (f) IVT300ano and (g) IVT85% methods are drawn with
black curves. (i) The segmentation costs in all seven methods, in kg m−1 s−1.

Figure A4. Northern Hemisphere IVT distribution on 13 August 2004 at 18:00 UTC. Black contours denote connected regions where the
THR anomalies are greater than zero. Panel (a) shows the result using THR-t7-s8 parameters; (b) shows the THR-t4-s6 parameters.
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Figure A5. (a) Average seasonal (November–April) AR numbers in the Northern Hemisphere during November 2004 to April 2010 when
different minimum length criteria are applied. (b) Average seasonal AR numbers in the same time period when different maximum isoperi-
metric quotient criteria are applied.

hysteresis thresholding couple with the standard 2000 km cri-
terion, so it does not work quite the same as a single length
threshold like in many other studies. This is an attempt to
introduce some fuzziness into the geometric criteria, and it
allows for a weaker feature (above 800 km in length) to be
retained if and only if it is associated with a strong feature
(longer than 2000 km).

For maximum isoperimetric, sensitivity around the 0.7
threshold used in this study is also fairly low (Fig. A5b).

A6.3 Minimum centroid latitude

Figure A6 gives some sensitivity tests regarding the choice of
the lower latitudinal bound imposed on AR region’s centroid.
After detecting all ARs north of 10◦ N during 2004–2008,
they are separated into two groups depending on their cen-
troid being north or south of a given lower latitudinal bound.
Values of this bound range from 11 to 31◦ N with an incre-
ment of 2◦. Detection north of this bound is represented in
blue color in Fig. A6; detection south of this bound (but north
of 10◦ N) is colored in orange.

It can be seen that ∼ 19–23◦ N is the range where the de-
tection number shows reduced sensitivity to the latitudinal
bound (Fig. A6a). The same is also true for the centroid
latitude (Fig. A6b) and the latitude of the north-most axis
point (Fig. A6c). This low-latitude detection has comparable
or even larger lengths than the midlatitude ones (Fig. A6d)
but with notably smaller latitudinal span (Fig. A6e). Fur-
thermore, such low-latitude detection has primarily westward
moisture fluxes, in contrast to the midlatitude counterparts
(Fig. A6f). Therefore, they are mostly zonally oriented, large
continuous vapor plumes carried by the tropical trades and
incompatible with the midlatitude, storm-related AR defini-
tion taken in this study. This is also the primary reason for
imposing a lower latitudinal bound.

A6.4 Maximum Hausdorff distance

The choice of 1200 km as the maximum Hausdorff distance
during the track stage is based on references to similar max-
imum distance requirements used in extratropical cyclone
tracking practices (Neu et al., 2013) and trial-and-error pro-
cesses. Choices of 600, 800 and 1000 km (for 6-hourly inter-
vals) are included in the Supplement Table A of Neu et al.
(2013). We chose the largest one and gave it an extra margin
to make it 1200 km, because in addition to movement, length
variations also contribute to Hausdorff distance. The choice
of this length has very low sensitivity and can be easily ad-
justed for data with different temporal resolution (e.g., scaled
to 600 km for 3-hourly data or 2400 km for 12-hourly data).

A7 Two-step THR for IWV polar application

The 3-D erosion process is the same as for IVT, but instead
of performing the reconstruction in three dimensions simul-
taneously, reconstruction on IWV is split into two consecu-
tive steps. The first one uses a structuring element B that has
only non-zero values along the time dimension. This con-
strains the geodesic dilation to the time dimension. Formally,
this step involves{
δ(IWV)t = δ

(n)
IWV(IWV	E)

1(IWV)t = IWV− δ(IWV)t .
(A10)

The second step takes 1(IWV)t as input and performs a
THR process in which geodesic dilation only expands in x
and y dimensions.{
δ(IWV)s = δ

(n)
1(IWV)t (1(IWV)t 	E)

1(IWV)= 1(IWV)t − δ(IWV)s .
(A11)

Recall that the THR algorithm achieves segmentation ac-
cording to the spatiotemporal “spikiness” of the data. As ARs
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Figure A6. Sensitivity tests on the lower latitudinal bound set to an AR’s centroid. (a) Average annual AR numbers in the Northern Hemi-
sphere during 2004 to 2008 when different lower latitude bounds are applied. Cyan (orange) bars show the number of ARs whose centroids
are north (south) of the given lower latitude bound. The dotted black line is the sum of the two. (b) Distribution of the AR latitudinal cen-
troids for ARs north (in blue) or south (in orange) of the given lower latitude bound. (c) Similar to panel (b) but for the distribution of the
north-most axis point in ARs. (d) Similar to panel (b) but for the AR lengths. (e) Similar to panel (b) but for the latitudinal span of the ARs.
(f) Similar to panel (b) but for the average zonal component of vertically integrated moisture flux (<UQ>, in kg m−1 s−1).

in IWV are only spatially connected to the tropical reservoir
which is temporally much more persistent, they can be sep-
arated in the time dimension THR. Then the second THR is
concerned with spatial dimensions and helps retain spatially
transient features. As an alternative to the two-step THR ap-
proach, a temporal filtering can be used to suppress the trop-
ical signals. Then a similar 3-D THR process can be applied
on the high-pass component of IWV.
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