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Abstract. Explicit consideration of microbial physiology in
soil biogeochemical models that represent coupled carbon—
nitrogen dynamics presents opportunities to deepen under-
standing of ecosystem responses to environmental change.
The MilIcrobial-MlIneral Carbon Stabilization (MIMICS)
model explicitly represents microbial physiology and physic-
ochemical stabilization of soil carbon (C) on regional and
global scales. Here we present a new version of MIMICS
with coupled C and nitrogen (N) cycling through litter, mi-
crobial, and soil organic matter (SOM) pools. The model
was parameterized and validated against C and N data from
the Long-Term Inter-site Decomposition Experiment Team
(LIDET; six litter types, 10 years of observations, and 13
sites across North America). The model simulates C and N
losses from litterbags in the LIDET study with reasonable ac-
curacy (C: R? =0.63; N: R? = 0.29), which is comparable
with simulations from the DAYCENT model that implicitly
represents microbial activity (C: R? = 0.67; N: R? = 0.30).
Subsequently, we evaluated equilibrium values of stocks (to-
tal soil C and N, microbial biomass C and N, inorganic
N) and microbial process rates (soil heterotrophic respira-
tion, N mineralization) simulated by MIMICS-CN across
the 13 simulated LIDET sites against published observations
from other continent-wide datasets. We found that MIMICS-
CN produces equilibrium values in line with measured val-
ues, showing that the model generates plausible estimates of
ecosystem soil biogeochemical dynamics across continental-
scale gradients. MIMICS-CN provides a platform for cou-
pling C and N projections in a microbially explicit model, but
experiments still need to identify the physiological and stoi-

chiometric characteristics of soil microbes, especially under
environmental change scenarios.

1 Introduction

Soils contain the largest actively cycling terrestrial carbon
(C) stocks on earth and also serve as the dominant source of
nutrients, like nitrogen (N), that are critical for maintaining
ecosystem productivity (Gruber and Galloway, 2008; Job-
bagy and Jackson, 2000). Soil C cycle projections and their
response to global change factors remain highly uncertain
(Bradford et al., 2016; Todd-Brown et al., 2013), but recent
empirical insights into microbial processing of soil C provide
opportunities to update models and reduce this uncertainty
(Cotrufo et al., 2013; Kallenbach et al., 2016; Lehmann and
Kleber, 2015; Schmidt et al., 2011; Six et al., 2006). Several
models have been developed recently with explicit represen-
tation of nonlinear microbial C processing dynamics, includ-
ing the Mlcrobial-MIneral Carbon Stabilization (MIMICS)
model (Sulman et al., 2018; Wieder et al., 2014, 2015b) and
others (Abramoff et al., 2017; Allison, 2014; Fatichi et al.,
2019; Hararuk et al., 2015; Robertson et al., 2019; Sulman
et al., 2014; Wang et al., 2013, 2014a, 2017). While these
models serve different purposes, some can be as good as or
better than models without explicit microbial pools at simu-
lating global soil C stocks and the response of soil C to en-
vironmental perturbations (Wieder et al., 2013, 2015b), and
they also predict very different long-term responses of soil
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C to global change (Wieder et al., 2013, 2018). Microbially
explicit models have thus furthered our understanding of C
cycling in the terrestrial system, but they also provide new
opportunities to explore couplings between C and nutrient
cycles, especially N.

Terrestrial models that couple C and N cycles reveal im-
portant ecosystem feedbacks that are absent from C-only
models. For example, across ecosystems, experimental ma-
nipulations consistently indicate that N availability limits
plant productivity (LeBauer and Treseder, 2008). C-only
model configurations in models typically predict that CO»
fertilization will result in a large increase in both plant pro-
ductivity and the land C sink in coming decades, but nutri-
ent limitation may constrain the magnitude of this terres-
trial ecosystem C uptake (Wieder et al., 2015a; Zaehle et al.,
2015; Zaehle and Dalmonech, 2011). As terrestrial models
increasingly represent coupled C-N biogeochemistry, accu-
rate model estimates of N release from soil organic matter
(SOM) will become important to reducing uncertainty in the
CO;, fertilization response of the terrestrial C cycle.

Currently, most biogeochemical models that couple C and
N cycles have an implicit representation of microbial activ-
ity. These conventional models represent SOM decomposi-
tion with the assumption that chemical recalcitrance of or-
ganic matter dictates the turnover of litter and SOM pools
(Luo et al., 2016). Carbon and N fluxes represented in these
models are directly proportional to donor pool sizes, with-
out any explicit representation of the microbes that medi-
ate these fluxes (Schimel, 2001, 2013). Linear decay con-
stants and transfer coefficients determine the flow of C and
N through a decomposition cascade, and rates of N immo-
bilization and mineralization emerge from the interaction of
fixed respiration fractions and the stoichiometry of donor and
receiver SOM pools. The lack of plant-microbe—soil feed-
backs in these models may limit their predictive capacity, es-
pecially in the face of environmental change. For example, in
these models increased plant inputs to soil only build soil C
and N stocks, and plants have no way to stimulate the micro-
bial community to mine existing SOM for N without model
modifications (Guenet et al., 2016; Wutzler and Reichstein,
2013). This “N mining” or “priming” effect, where increased
plant inputs result in increased microbial activity and decom-
position rates, has been demonstrated in experimental studies
(Cheng and Kuzyakov, 2005; Dijkstra et al., 2013; Phillips et
al., 2012) and may be a critical pathway for plants to obtain
more N and support increased plant productivity under ele-
vated CO; (Thomas et al., 2015; Zaehle et al., 2014).

Microbes are critical mediators of soil C—N couplings and
the release of plant-available N. As such, models that explic-
itly consider microbial activity provide an opportunity to ex-
plore potential microbial control over soil C—N biogeochem-
ical cycling and improve simulations of patterns in ecosys-
tem C and N. Towards this end, multiple models have been
introduced that explicitly consider the role of microbial ac-
tivity in ecosystem C-N interactions (Averill and Waring,
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2017, Fatichi et al., 2019; Huang et al., 2018; Schimel and
Weintraub, 2003; Sistla et al., 2014; Sulman et al., 2014,
2017, 2018, 2019; Wang et al., 2014a, 2017, 2013). To date,
the majority of these microbially explicit C—-N models have
been developed to explore soil biogeochemical interactions
and microbial community dynamics, while only one has been
validated for N dynamics across a continental-scale gradient
(Fatichi et al., 2019).

Although there is great value in exploring diverse ap-
proaches to explicitly representing microbes in purely theo-
retical or site-specific applications, implementing these con-
ceptual developments within larger-scale models requires
convincing evidence that adding them improves model per-
formance against large-scale data. Recent soil model com-
parisons report divergent responses to simulated global
change experiments among microbially explicit model for-
mulations, highlighting the large uncertainty in their under-
lying process-level representation and parameterization (Sul-
man et al., 2018; Wieder et al., 2018). The addition of ex-
plicit microbial pools may improve the predictive ability of
landscape-scale models in the long run, but microbial models
must be validated against landscape-scale datasets of a vari-
ety of pools and process rates before they can reasonably be
expected to improve model performance and reduce uncer-
tainty.

We developed a coupled C-N version of MIMICS
(MIMICS-CN) to fill the need at the intersection of micro-
bially explicit models, coupled C-N models, models that
work well enough to be considered for use in ESMs, and
models that can be validated against currently available
large-scale data. The C-only iteration of MIMICS considers
tradeoffs involved with microbial functional traits as well as
both physicochemical (i.e., mineral associations) and chemi-
cal (i.e., recalcitrance) mechanisms of C stabilization in soil.
Wieder et al. (2014, 2015b) and Sulman et al. (2018) evalu-
ated this C-only version of MIMICS across site, continental,
and global scales. Here we expand on this work, introducing
MIMICS-CN, which incorporates stoichiometrically coupled
C and N cycling of all microbial, litter, and SOM pools and
stoichiometric constraints on microbial growth. Our core ob-
jectives were to (1) formulate a framework and parameteri-
zation for coupled C and N cycling in MIMICS; (2) validate
MIMICS-CN against a continental-scale litter decomposition
dataset (LIDET) and compare MIMICS-CN to a microbially-
implicit, linear model (DAY CENT); and (3) evaluate equilib-
rium soil and microbial stocks and fluxes (and their param-
eter sensitivities) that are simulated by MIMICS-CN with
data synthesized across published landscape-scale data. Our
overarching goal was to create a microbially explicit cou-
pled C—N model of soil that balances ecological realism with
the practical considerations of large-scale simulation and to
demonstrate the abilities of this model through parameteriza-
tion, validation, and evaluation exercises using both dynamic
and equilibrium data.
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Figure 1. Overview of the pools and fluxes of C and N in MIMICS-
CN. Black outlines indicate pools that contain C; green outlines in-
dicate pools that contain N. Litter inputs (/) are determined based
on site-specific net primary productivity and partitioned between
metabolic and structural litter pools (LITy, and LITg) using a site-
specific litter quality metric (fmet) calculated using litter lignin and
N content. Temperature-sensitive forward Michaelis—Menten kinet-
ics (Vmax and Kpy; red lines) determine the flux of litter pool C
and N and available SOM C and N (SOM,) into microbial biomass
(MIC; and MICk). Fluxes of C into microbial pools result in res-
piration losses according to a defined carbon use efficiency (CUE).
Microbes maintain biomass stoichiometry by spilling excess C as
overflow respiration or excess N into the dissolved inorganic ni-
trogen pool (DIN) based on a prescribed biomass C: N. Microbial
biomass turnover (t, blue) varies by functional type (MIC; and
MICk) and is proportional to the square of microbial biomass. Mi-
crobial biomass turns over into available (SOM,), physicochemi-
cally stabilized (SOMp), and chemically stabilized (SOM¢) soil or-
ganic matter pools. Inorganic N (DIN) leaks from the model at a
first-order rate. Numbers in parentheses indicate the equations in
Appendix A that correspond to each depicted flux. Parameter val-
ues, units, and descriptions are given in Table 1.

2 Methods
2.1 Model formulation

MIMICS-CN builds upon the previous C-only version of
MIMICS, described in Wieder et al. (2014, 2015b), using
the same pool structure for N as for C plus an additional
pool for dissolved inorganic nitrogen (DIN; Fig. 1). In-depth
discussion of the reasoning behind the development of the
C-only version of the model is available in these previ-
ous publications, but the general intent behind the devel-
opment of MIMICS was to incorporate a simplified repre-
sentation of the important aspects of microbial communi-
ties (biomass-dependent control of process rates, diversity in
life history strategies, and physiological parameters) into a
soil model that stabilizes organic matter through both physi-
cal (mineral-associated, protected from microbial decompo-
sition) and chemical (recalcitrance-based, vulnerable to mi-
crobial decomposition) means. The C-only version of the
model represents C flows through seven pools (Fig. 1): two
litter pools, two microbial pools, and three SOM pools. Litter
inputs to the model are partitioned into structural litter (LIT;)
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and metabolic litter (LITy,) pools based on estimates of litter
quality for different biomes (Brovkin et al., 2012).

Temperature-sensitive forward Michaelis—Menten kinet-
ics determine the flux of litter and SOM through microbial
biomass pools that determine rates of organic matter decom-
position, SOM formation, soil respiration, and nitrogen min-
eralization fluxes. The microbial functional groups are in-
tended to broadly capture tradeoffs in microbial growth rates
and growth efficiency, with rapidly growing microbial de-
composers — low efficiency, r strategist (MIC;) — and slower-
growing microbial decomposers — higher efficiency, K strate-
gist (MICxk; Wieder et al., 2015b). In MIMICS-CN we ex-
tend these microbial physiological traits to include microbial
stoichiometry and assume that the higher metabolic capacity
of MIC; also requires more nitrogen and, thus a lower micro-
bial biomass C : N ratio. Fluxes of C into microbial pools re-
sult in respiration losses according to a defined carbon use ef-
ficiency (CUE) that varies by microbial functional group and
substrate quality (e.g., structural or metabolic litter). Micro-
bial pool sizes are moderated by inputs, CUE, and biomass-
specific turnover rates. We implemented density-dependent
microbial turnover (sensu Georgiou et al., 2017; see Ap-
pendix A) for this iteration of the model to make microbial
pools behave realistically in response to small changes in C
inputs (Wang et al., 2014b, 2016). The density-dependent
turnover of microbial biomass dampens the oscillatory re-
sponse of microbial biomass to perturbations.

Microbial biomass turns over into physicochemically sta-
bilized (SOM,), chemically stabilized (SOM,), and a pool
that is “available” for microbial decomposition (SOM,). We
consider the SOM,, pool to mostly consist of low C:N or-
ganic matter that is primarily composed of microbial prod-
ucts that are adsorbed onto mineral surfaces (e.g., mineral-
associated organic matter, MAOM; Grandy and Neff, 2008).
By contrast, the low-quality SOM, pool consists of decom-
posed or partially decomposed litter that has more structural
C compounds, such as lignin, and a higher C: N ratio (e.g.,
particulate organic matter, POM). Finally, SOM, is the only
SOM pool that is available for microbial decomposition; it
contains a mixture of fresh microbial residues, products that
are desorbed from the SOM;, pool (e.g., Jilling et al., 2018),
as well as depolymerized organic matter from the SOM,
pool. We do not specifically consider soil aggregates, but we
recognize that in some soils they are an important component
of accruing and maintaining persistent organic matter.

The current representation of N cycling in MIMICS-CN is
based on the threshold element ratio idea described in Sins-
abaugh et al. (2009) and Mooshammer et al. (2014) whereby
organisms maintain biomass stoichiometry by spilling excess
C or N on either side of a threshold ratio. We modified the C-
only iteration of MIMICS to include N by adding a parallel
set of pools and fluxes for N, as well as a pool for inorganic
N (Fig. 1). The C cycle drives decomposition with fluxes
from litter and SOM pools to microbes based on biomass-C-
based forward Michaelis—Menten kinetics. Parallel N fluxes
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are determined by the C: N ratio of the donor pools, which
is a fixed parameter for the metabolic litter pool, varies with
litter input chemistry for the structural litter pool, and de-
pends on inputs for SOM pools. We use a fixed C:N of 15
for metabolic litter inputs, while the C: N of structural litter
was allowed to vary to ensure conservation of total N inputs
from litterfall (Table 1).

The coupling between C and N cycles in MIMICS-CN oc-
curs in the microbial biomass: at each hourly time step, the
total C and N in incoming fluxes available to microbes is
summed and adjusted based on the C use efficiency (CUE,;
varies with microbial functional group and substrate) and N
use efficiency (NUE; set to 0.85 for all fluxes entering mi-
crobial biomass pools in this model iteration). If the C: N of
substrates being assimilated by microbial functional groups
is greater or less than the C : N of the microbial biomass (de-
fined as 6 and 10 for r and K strategists, respectively; Ta-
ble 1), the microbes will spill excess C or N to maintain
their biomass stoichiometry through overflow respiration or
excess N mineralization. In MIMICS-CN the C: N ratio of
SOM pools is flexible and determined by the inputs from mi-
crobial residues and direct inputs from litterfall fluxes (f;;
Fig. 1). All N fluxes into microbial pools leak a small quan-
tity of N into a dissolved inorganic N pool (DIN) based on the
model-defined NUE. At each time step, each microbial func-
tional group can access a fraction of the inorganic N pool pro-
portional to their fraction of total microbial biomass. Plant N
uptake and ecosystem losses (both hydraulic and gaseous) of
inorganic N are handled implicitly at this stage, with a fixed
fraction (20 %) of DIN leaving the soil component model ev-
ery time step.

2.2 Model parameterization and validation: cross-site
litter decomposition

We parameterized and validated MIMICS-CN using C and
N dynamics observed across multiple sites participating in
the 10-year Long-Term Intersite Decomposition Experiment
Team (LIDET) experiment (Adair et al., 2008; Harmon et al.,
2009; Parton et al., 2007). The LIDET study selected stan-
dardized plant litter types with a range of litter quality (lignin
and N concentration), placed litterbags containing 100 g of
each litter type at sites across a continental-scale gradient of
climatic conditions, and measured changes in the C and N
in litterbags on an approximately annual basis for 10 years.
Although the original dataset included 27 sites across North
America, we utilized data from 14 sites ranging from Alaska
to Puerto Rico based on the data available at those sites to
drive MIMICS (see Wieder et al., 2015b, for site informa-
tion). We focus our analysis on six leaf litters that were sim-
ulated across all sites that have been used previously to eval-
uate litter decomposition dynamics in terrestrial models (Bo-
nan et al., 2013; Parton et al., 2007; Wieder et al., 2015b).
Root litter types included in the original LIDET experiment
were not included. The LIDET dataset is a robust appraisal
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of the impacts of climate and litter chemistry on litter de-
composition and has been used as a dataset for comparing
models of soil and litter decomposition in the past (Bonan et
al., 2013). MIMICS has been used previously to simulate C
losses in the LIDET study (Wieder et al., 2014, 2015b).

We parameterized MIMICS-CN using observations from
Harvard Forest in Petersham, MA, USA. Observations in-
cluded both litterbag C loss and N data from the LIDET
study as well as measurements of soil C and N stocks and
microbial C and N from other studies at Harvard Forest
(Colman and Schimel, 2013). Multiple combinations of pa-
rameters produced equally good fits to litter decomposition
data; thus ancillary data on soil and microbial C stocks were
used to inform the parameter values presented here (Ta-
ble 1). These ancillary data were not reported in LIDET and
were not measured on identical plots to those used for the
LIDET study (Harvard Forest encompasses multiple exper-
iments and ecotypes), but these general targets were useful
in distinguishing among model parameterizations. Our gen-
eral targets for stocks at Harvard Forest included soil C and
N (0-5cm mineral soils, coniferous stand): 61 mchm_3
and 2.9 mgN cm™3; soil C: N of 21; and microbial biomass:
0.61 mg Ccm ™ (estimated as 1% of soil C based on Xu et
al., 2013).

After parameterizing the model to match observations at
Harvard Forest, the model was validated using data from the
remaining LIDET sites. To represent litterbags in MIMICS-
CN, we first spun up the underlying model to simulate
steady-state soil C and N pools and fluxes across sites in the
LIDET study using site-level measurements of mean annual
temperature, clay content, and litter input quantity and litter
chemistry (Wieder et al., 2015b). Then, we added a pulse of
metabolic and structural litter based on the type of litter in the
simulated litterbag. We tracked the C and N across all model
pools for 10 years and calculated the C and N in litterbags
as the difference between total model C and N in the simula-
tions and total model C and N at steady state. In both the sim-
ulated and real litterbags, microbes immobilized N from the
soil DIN pool, resulting in litterbag N contents for some time
points in excess of the initial values. For each site, the model
was sampled at time points equivalent to the real data collec-
tion dates in LIDET (approximately annually). Observed and
modeled values of C and N in litterbags were compared by
calculating RZ, root mean square error (RMSE), and bias.

To contextualize our results and better understand how
our model functions compared to a widely used microbial-
implicit model, we compared MIMICS-CN simulations of
LIDET data against DAYCENT (Bonan et al., 2013) simu-
lations of the same data. Bonan et al. (2013) used the full
complement of 27 LIDET sites in their analysis, but here we
subset those results for the 13 sites used in the MIMICS-CN
validation. We calculated R2, RMSE, and bias in the same
way for each model and compared results across models,
grouping results by biome.

https://doi.org/10.5194/gmd-13-4413-2020
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Table 1. Parameters used in MIMICS-CN for both LIDET and equilibrium simulations.

Parameter Description Value Units
Jmet Partitioning of inputs to metabolic litter pool 0.85-0.013 (lignin/N) -
fi Fraction of litter inputs transferred to SOM 0.05,0.3 -
Vslope Regression coefficient 0.063 In(mg C (mg MIC)~!
(Met-r, Met-K, h~hec!
Struc-r)
Vslope Regression coefficient 0.043 In(mg C (mg MIC)~!
(Struc-K, Avail-r, h~hec!
Avail-K)
Vint Regression intercept 5.47 In(mg C (mg MIC)~ ! h—1)
ay Tuning coefficient 4.8x 1077 -
Vinod Modifies Vimax 10, 1.5, 10, 3,2.25,2 -
Vimax Temperature-sensitive maximum reaction velocity e(Vstope X T+Vin) ¢ ay X Vinod mg C (mg MIC)~!

(T is mean annual soil temperature)
Kilope Regression coefficient 0.017 In(mg C em~3)°c!
(Met-r, Met-K,
Avail-r, Avail-K)
Kilope Regression coefficient 0.027 In(mg C em—3)°ec!
(Struc-r, Struc-K)
Kint Regression intercept 3.19 In(mg C cm™3)
ag Tuning coefficient 0.5 -
Pgcalar Physical protection scalar used in K04 2x eV (fcluy))*] -
Kmod Modifies Km 0.125, 0.5, 0.25 x Pycalars -

0.5,0.25,0.167 x Pycylar

KO Further modifies Ky, for oxidation of SOM¢ 6,6 -
Km Half-saturation constant e KIPEXT+Vin) 5 aj % Kmod mg Ccm™3

(T is mean annual soil temperature)
T Microbial biomass turnover rate 2.4 x 1074 x 030/ :me‘) X Tmodl X Tmod2» h—!

1.1 x 10™4 x 0-1(/met) 5 Tmodl X Tmod2

Tmodl Modifies microbial turnover rate 0.6 < ./(NPP/100) < 1.3 -
Tmod?2 Modifies microbial turnover rate T x 0.55/(.45 x Inputs) -
B Exponent that modifies turnover rate 2 -
CUE Microbial carbon use efficiency 0.55, 0.25,0.75,0.35 mg mg_l
NUE Proportion of mineralized N captured by microbes  0.85 mg mgf1
CNg C: N of structural litter (Measured CN — CNpyy X fimet)/(1 — fmet)  mg mg_l
CNp C: N of metabolic litter 15 mg mgf1
CN; C: N of copiotrophic microbial pool 6 mg mg_]
CNy C: N of oligotrophic microbial pool 10 mg mg*1
f Fraction of 7 partitioned to SOM, 0.015 x e!-3(etay) 10,01 x ¢0-8(/etay) -
fe Fraction of t partitioned to SOM, 0.3 x ¢ 3Ume) 0.9 x ¢=3(/met) -
fa Fraction of t partitioned to SOM, I—=(fp+fo) -
D Desorption rate from SOMp, to SOM, 1076 x ¢~ (feray) h-!
Nieak Rate of loss of inorganic N pool 0.2 h~!
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2.3 Model evaluation: equilibrium C and N cycling

Building on the LIDET simulations, we independently syn-
thesized observations to evaluate the patterns of C and N
pools and fluxes across a variety of sites. Although direct,
site-specific comparisons of modeled and observed values
like microbial biomass would have been ideal, MIMICS-
CN represents many variables that were not measured in the
LIDET study and have not been synthesized across these
Long-Term Ecological Research sites. Instead, we compared
the range and distribution of pools (soil organic C and N, mi-
crobial biomass C and N, and total inorganic N) and fluxes
(heterotrophic respiration and N mineralization) using the
modeled LIDET simulations and published syntheses of ob-
servations from other sites (Cleveland and Liptzin, 2007,
Colman and Schimel, 2013; Xu et al., 2013; Zak et al., 1994).
To more directly compare measurements with model results,
stock measurements were converted to units of percent of
soil mass, and fluxes (heterotrophic respiration and net N
mineralization rates) were converted to units of micrograms
per cubic centimeter per hour (ugcm™3h~!). MIMICS re-
ports pool values in units of grams per square centimeter
(g cm~2) (0=30cm); to compare MIMICS against observa-
tions we converted MIMICS values to percent by mass as-
suming a bulk density of 1.5 gcm™2. Soil depth simulated by
MIMICS (30 cm) is deeper than most of the observations in
the compiled dataset, but the purpose of this exercise was to
evaluate whether MIMICS produces realistic values for soil
biogeochemical stocks and fluxes across continental-scale
ecoclimatological and edaphic gradients, rather than mak-
ing a direct site-specific comparison. The distribution of val-
ues produced by MIMICS across the LIDET sites was super-
imposed on the distributions of observed values to illustrate
data—model agreement and to visualize the median and range
of measurements across studies.

Finally, we documented relationships between model in-
put variables (mean annual temperature, productivity, clay
content, and litter quality) and the distribution of SOM pools
that were simulated at the LIDET sites. Our aim with these
analyses was to illustrate the underlying assumptions in the
model and how they influence the size and distribution of C
across SOM pools. Specifically, we wanted to explore how
assumptions made in the model structure and parameteriza-
tion of MIMICS determine the quantity and distribution of
SOM pools and how they change among sites with varia-
tion in climatic, biological, and edaphic properties. To do this
we looked at the absolute and relative contributions of each
SOM pool simulated by MIMICS across the LIDET sites and
conducted linear regressions to determine how environmen-
tal factors control their distributions. We also conducted lin-
ear regressions between soil C:N and both litter chemistry
and environmental factors to assess the drivers of soil C: N
in the model.
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Figure 2. Litter decomposition time series simulated by MIMICS-
CN (lines with shaded area) compared to observations (points and
error bars) of (a) percent mass remaining and (b) percent of initial
N remaining over 10 years for six different litter types at the Har-
vard Forest LTER. Litter decomposition data came from the LIDET
study (Parton et al., 2007; Bonan et al., 2013; mean =1 SD). Spread
in the observations and model is largely generated by the effects of
initial litter quality on decomposition rates and N dynamics. Model
parameters were calibrated to fit MIMICS-CN to observations from
Harvard Forest (Table 1).

3 Results

3.1 Model parameterization and validation: cross-site
litter decomposition

We parameterized MIMICS-CN to replicate litter C decay
rates and N dynamics of six litter types observed in the
LIDET study at the Harvard Forest Long-Term Ecological
Research (LTER) site (Fig. 2). In its current parameteriza-
tion, MIMICS slightly overestimates litter C loss at later
stages of decay, but most time points are within uncertainty
estimates of the observations (Fig. 2a). Similarly, for N,
MIMICS-CN overestimates N accumulation in early stages
of decay and underestimates N remaining at later stages, but
most time points follow a reasonable trajectory given ob-
servations. MIMICS-CN also captures the effects of litter
quality on both rates of litter decay (Fig. 2a) and litterbag
N accumulation (Fig. 2b). The parameters we used to fit
MIMICS-CN to Harvard Forest data also produce reason-
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able estimates of soil N stocks (2.0 vs. 2.9mgNcm™—> for
model and observations, respectively) and microbial biomass
(0.65 vs. 0.61 mg C cm™?), although estimates of soil C (21
vs. 61 mchm_3) and soil C:N (11 vs. 21) are both lower
than observations.

Parameter values used for this and subsequent simula-
tions across all LIDET sites are shown in Table 1. Relative
to the previous C-only version of the model (Wieder et al.,
2014, 2015b), kinetic parameters and microbial turnover val-
ues were adjusted to account for density-dependent turnover
(Georgiou et al., 2017). In addition, the fraction of structural
litter that bypasses microbial biomass to enter the chemi-
cally protected pool (f;) was increased from 5 % to 30 % as
a means to produce reasonable values for total soil C: N. Fi-
nally, we adjusted the partitioning of microbial turnover to
stable soil pools in order to more closely match distributions
at Harvard Forest.

Applying this parameterization across all six litter types
at 13 LIDET sites, MIMICS-CN simulates C losses and N
dynamics from litterbags with an R? of 0.63 and 0.29, re-
spectively (Fig. 3). MIMICS-CN captures effects of litter
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quality on decay rates, with faster rates of C loss and more
rapid N mineralization simulated with more N-rich Drypetes
glauca litter and slower rates of C loss and greater N immo-
bilization simulated by low-quality Triticum aestivum litter
(Fig. 3a, ¢c). MIMICS-CN is best at capturing C loss rates in
high- and intermediate-quality litters (Drypetes glauca, Pi-
nus elliottii, Thuja plicata, and Acer saccharinum) but tends
to underestimate litter C loss rates from the lowest-quality lit-
ter (7. aestivum). For N immobilization and loss, the model
performs well especially for high-quality litters but under-
estimates N accumulation slightly in the lowest-quality litter.
The model also captures broad climate effects on litter C loss,
with slower decay rates in tundra and boreal forest sites and
faster decay in tropical and deciduous forests (Fig. 3b).
MIMICS-CN and DAYCENT simulations of LIDET de-
composition data are compared in Table 2. Across a broad
range of biomes, MIMICS-CN and DAYCENT both show
good agreement with LIDET observations. Across sites
MIMICS-CN has similar R> and RMSE values but lower
bias compared to DAYCENT for mass loss (MIMICS-CN:
R? =0.63, RMSE = 16.0, bias = —0.12; DAYCENT: R? =

Geosci. Model Dev., 13, 4413-4434, 2020
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Table 2. Goodness-of-fit statistics comparing MIMICS-CN and DAYCENT simulations to observations of C and N in decomposing litterbags
in the LIDET study, aggregated by biome. DAYCENT results are subset from simulations in Bonan et al. (2013) to match the sites included
in MIMICS-CN simulations. The values shown are the number of observations (n), Pearson’s correlation coefficient squared (R2), root mean
square error (RMSE), and bias calculated between observed and simulated percent C and N remaining. For more details on the sites grouped
into each biome, see Wieder et al. (2015).

MIMICS-CN carbon ‘ DAYCENT carbon ‘ MIMICS-CN nitrogen ‘ DAYCENT nitrogen
Biome n  R? RMSE bias | R> RMSE  bias | R> RMSE  bias | R> RMSE  bias
Tundra 114  0.74 12.56 949 | 0.78 8.32 3.21 | 0.33 0.32 0.09 | 0.41 0.31 0.00
Boreal 60 0.61 14.30 9.32 | 0.73 9.06 —0.55 | 0.64 0.28 0.07 | 0.72 027 —0.14
Conifer 60 0.79 18.61 —16.42 | 0.89 9.09 593 | 0.73 0.20 0.05 | 0.79 0.26 0.13
Deciduous 94  0.59 16.40 —8.92 | 0.80 12.36 9.20 | 0.51 0.31 —=0.13 | 0.63 0.33 0.18
Humid 151 0.50 17.24 —3.23 | 0.61 15.18 —4.22 | 0.14 044 —0.13 | 0.24 045 —0.04
Arid 113 0.61 16.67 2.09 | 0.68 19.90 11.63 | 0.32 0.29 0.16 | 0.01 0.49 0.20
Tropical 46  0.57 15.29 7.75 | 0.64 20.81 17.04 | 0.46 0.45 0.36 | 0.20 0.55 0.35
All 638 0.63 16.00 —-0.12 | 0.67 14.36 4.73 | 0.29 0.34 0.03 | 0.30 0.40 0.08

0.67, RMSE = 14.4, bias =4.73) and percent N remaining
(MIMICS-CN: R? = 0.29, RMSE = 0.34, bias = 0.03; DAY-
CENT: R?=0.30, RMSE =0.40, bias=0.08). Broadly,
MIMICS-CN outperformed DAYCENT in the warmest
biomes, while DAYCENT excelled for colder sites for both
C and N (Table 2), but the differences in model fit to data
were slight and would be difficult to attribute to any particu-
lar differences in model structure. DAYCENT simulates de-
composition based on initial litter chemistry and showed no
site-specific effects on the maximum N immobilized or the
relationship between C and N during decomposition for a
given litter type (Figs. S1 and S2). By contrast, the amount
of N that can be immobilized by a litterbag in MIMICS-CN is
driven by the availability of N and the stocks and flows of N
in the simulated steady-state soil, and MIMICS-CN showed
site-specific variability in the shape of N immobilization and
loss curves (Figs. 3 and 4).

Litter quality determines the timing of N immobilization
vs. mineralization in observations. This produces a func-
tional relationship between initial litter chemistry, C loss,
and N immobilization or mineralization that is fairly consis-
tent across sites (colored dots; Fig. 4). MIMICS-CN broadly
captured litter quality effects on the timing and magnitude
of N immobilization and mineralization dynamics across all
biomes (red triangles; Fig. 4). For example, litters with high
initial chemical quality consistently mineralize N throughout
all stages of litter decay, and MIMIC-CN adequately cap-
tures this functional C-N relationship (Fig. 4a, b). By con-
trast, litters with lower initial chemical quality immobilize
N during early stages of litter decay but subsequently min-
eralize N as decomposition proceeds. MIMICS-CN broadly
captures these patterns but without as much variation as the
observations (Fig. 4c—f). The lowest-quality litter (Zriticum
aestivum) immobilizes N until only 40% of C remains
in litterbags. Although MIMICS-CN potentially underesti-
mates total N immobilization in Triticum aestivum litter, it
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does capture the point at which net N mineralization begins
(Fig. 4f).

3.2 Model evaluation: equilibrium C and N cycling

Across all sites and litter types in the LIDET simulations,
the ranges of underlying pool sizes and process rates in
MIMICS-CN were compared against published ranges from
similarly diverse sets of sites (Cleveland and Liptzin, 2007;
Colman and Schimel, 2013; Xu et al., 2013; Zak et al., 1994).
MIMICS-CN simulations produced reasonable equilibrium
values for most pools and fluxes (Table 3 and Fig. 5). In
general, the range of values across the 13 sites simulated by
MIMICS was smaller than the ranges across the thousands
of sites included in the compiled dataset of observations. For
example, total soil C ranged from 7.0 to 50mgCcm™3 in
MIMICS simulations but ranged from 2.7 to 610 mg C cm™3
in observations. Despite this discrepancy, the median values
of the simulations and observations were generally within
reason (Fig. 5). The distributions of measured and modeled
values for microbial biomass C and N as a percent of total
soil C and N overlapped, providing evidence that the model
reasonably represents microbial stoichiometry, microbial ac-
tivity as a function of biomass, and microbial biomass as a
function of SOM. For soil C:N, the model tended to pro-
duce low values with a relatively narrow range, relative to
observed values.

Finally, we explored the environmental controls on the dis-
tribution of SOM across physicochemically protected, chem-
ically protected, and available pools in MIMICS-CN by ex-
amining the correlations between pool sizes and salient in-
put variables (mean annual temperature, productivity, clay
content, and litter lignin content). The results are shown
in Fig. 6. The absolute concentration of SOM simulated
across the LIDET sites was most strongly correlated with an-
nual net primary productivity (ANPP; R = 0.52), but it also
tended to increase with MAT, albeit inconsistently (Fig. 6a;
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R? = 0.15). The distribution of SOM across stabilized pools
strongly favored chemically protected SOM at sites with
lower temperatures, while the relative proportion of physic-
ochemically protected SOM increased with increasing tem-
perature (Fig. 6b). The relative proportion of SOM in the
available pool remained fairly consistent across simulated
sites. Physicochemically protected SOM was tightly posi-
tively correlated with the product of ANPP and clay content
(R* = 0.96; Fig. 6¢), while chemically protected and avail-
able SOM were negatively correlated with MAT (Fig. 6d;
R? =0.40 and 0.47, respectively) and positively correlated
with litter lignin content (Fig. 6e; R% =0.68 and 0.32, re-
spectively). The C:N of individual pools was fairly con-
sistent across sites and tended to be higher for chemically
protected SOM (~ 15) than available (~ 8) or physicochem-
ically protected SOM (~ 10). As a result, soil C:N was
largely driven across sites by the distribution of SOM across
pools, especially the absolute size of the SOM,, pool (Fig. 6f;
R? =0.79). Given that clay content was an important driver
of physicochemically protected SOM in the model, clay
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content was tightly correlated with soil C:N (R? = 0.88).
Other litter characteristics and environmental factors were
not strong drivers of soil C:N (R2 for MAT: 0.42; litter
lignin: 0.03; litter C : N: 0.005).

4 Discussion

Terrestrial models are increasingly representing coupled C—
N biogeochemistry, and MIMICS-CN is among the first at-
tempts to do so with a microbially explicit soil biogeochem-
ical model that can be used to project C and N dynamics
across continental-scale gradients. Our formulation and pa-
rameterization of MIMICS-CN captures site level observa-
tions of litter C loss and N immobilization at the Harvard
Forest LTER site (Fig. 2). Cross-site validation of the model
demonstrates that it broadly captures climate and litter qual-
ity effects on rates of C and N transformations from the
LIDET observations (Figs. 3—4). Notably, the results simu-
lated by MIMICS-CN represent N dynamics during litter de-
composition about as well as a first-order model that implic-

Geosci. Model Dev., 13, 4413-4434, 2020
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Table 3. Ranges of MIMICS-CN estimates of steady-state values for a variety of soil pools and fluxes, compared against observed ranges
from several continent-wide data synthesis studies. The ranges of values included for MIMICS-CN are derived from simulations of sites

included in the LIDET study.

MIMICS-CN range  Published range  Reference

Total C (mg cm™3)*

7.0-50 3.9-89 Zaketal. (1994)

2.7-360  Xuetal. (2013)

5.2-610  Cleveland and Liptzin (2007)

Total N (mg cm3)* 0.60-5.1 0.38-5.1 Zaketal. (1994)

0.66-22  Xu, Thornton and Post (2013)
0.39-24  Cleveland and Liptzin (2007)

Soil C: N 9.6-12 4.0-40 Colman and Schimel (2013)
10-28 Zaket al. (1994)
11-31 Xuetal. (2013)
2.0-82  Cleveland and Liptzin (2007)
Inorganic nitrogen (ug cm—3) 0.01-0.06 0.12-8.1  Zak et al. (1994)
Respiration (ug C em3h~ 1) 0.02-0.28 0.01-0.70  Colman and Schimel (2013)

0.21-0.91 Zak et al. (1994)

Net N mineralization (ug N em~3 hrl)

0-0.01 0-0.10  Colman and Schimel (2013)

0.004-0.058 Zak et al. (1994)

Microbial biomass C (mg cm_3) 0.15-1.3 0.03-1.3 Zaketal. (1994)

0.01-5.3 Xuetal. (2013)

0.08-39  Cleveland and Liptzin (2007)

Microbial biomass N (mg cm_3) 0.02-0.16 0.006-0.33  Zak et al. (1994)

0.042-0.64 Xuetal. (2013)
0.018-4.9  Cleveland and Liptzin (2007)

Microbial biomass C as percent of soil C 0.95-4.8 0.18-3.3  Zaket al. (1994)

0.99-5.0 Xuetal. (2013)

0.27-93  Cleveland and Liptzin (2007)

Microbial biomass N as percent of soil N

1.2-5.9 1.1-15  Zak et al. (1994)

2.3-57 Xuetal. (2013)
0.48-64  Cleveland and Liptzin (2007)

* Depths simulated by MIMICS-CN are for the top 30 cm of soil, whereas published ranges represent measurements ranging from the top 5 to top 30 cm.

itly represents microbial activity (Table 2). It also generates
steady-state pools and fluxes of C and N that seem reasonable
compared to published syntheses (Table 3; Fig. 5). Below we
discuss these dynamic and equilibrium model simulations in
greater detail, as well as some of the limitations of MIMICS-
CN that will be addressed in future work.

Geosci. Model Dev., 13, 4413-4434, 2020

4.1 Model parameterization and validation: cross-site
litter decomposition

We first parameterized and validated MIMICS-CN using
the cross-site litter decomposition study, LIDET. Previous
LIDET simulations using MIMICS have successfully repli-
cated observed C loss patterns, and adding coupled N cycling
to MIMICS neither improved nor degraded simulations of

https://doi.org/10.5194/gmd-13-4413-2020
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LIDET litter C losses relative to the C-only model (Figs. 2—
3; Wieder et al., 2015b report global RMSE for the C-only
model is 14.6 vs. 16.0 in this study). Our results show higher-
than-observed rates of litter C mass loss in deciduous and
coniferous forest (Figs. 2a, 3b; Table 2). This suggests that
the partitioning of plant detrital inputs into litter pools that
are chemically defined works well for initial stages of litter
decay but may not consider the changes in substrate chem-
istry or microbial community succession that occur in later
stages of decomposition that slow rates of mass loss (Berg,
2000; Melillo et al., 1989). Models that implicitly represent
microbial activity capture this phenomena by using a three
pool structure (Adair et al., 2008), and future studies can con-
sider how to more mechanistically understand interactions
between initial litter quality, decomposer communities, cli-
mate, nutrient availability, and late-stage litter decay rates
(e.g., Craine et al., 2007; Hobbie et al., 2012; Wickings et
al., 2012) in models like MIMICS-CN. In MIMICS-CN, car-
bon and nitrogen move together through model pools, but
model dynamics are primarily driven by C, with N dynam-
ics following suit based on pool stoichiometry. The N dy-
namics do, however, constrain C cycling in the model if mi-
crobes are N limited, in which case microbes lose excess C
through overflow respiration. At equilibrium, microbes in our
MIMICS-CN simulations primarily obtained N through re-
cycling of SOM pools with favorably low C: N ratios, with
the result that modeled microbes were almost always C lim-
ited at equilibrium and rarely exhibited overflow respiration.
Large pulses of low-quality litter can perturb this equilib-
rium and induce N limitation, but in the absence of losses
of or plant competition for inorganic and dissolved organic
N, C cycling in MIMICS proceeds in essentially the same
way with or without accounting for N.

MIMICS-CN accurately captured the stoichiometric re-
lationships between C and N during litter decomposition
(Fig. 4). This stoichiometric relationship has been well de-
fined in the past using theoretical microbial stoichiome-
try and CUE (Parton et al., 2007), but comparable soil
models without explicit microbial physiology have tended
to overpredict N accumulation in litterbags (Bonan et al.,
2013). Moreover, models without microbially explicit phys-
iology also show N immobilization mineralization dynam-
ics that are completely determined by initial litter quality,
whereas MIMICS simulations show greater site-level vari-
ation (Figs. 4, S2). In MIMICS-CN, stoichiometric relation-
ships drive litterbags to accumulate soil N until they reach a
threshold C: N, after which litterbags become net sources of
N. This threshold, representing the balance between micro-
bial N requirements and availability, is a function of changes
in litter stoichiometry during decomposition, as well as of
the stoichiometry of microbes and their nutrient use efficien-
cies. By explicitly considering these dynamics, MIMICS-CN
has a similar or lower RMSE for N remaining in litter bags
than a model that implicitly represents microbes, DAYCENT
(Table 2).
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MIMICS-CN and DAYCENT capture N dynamics during
decomposition with similar overall degrees of fit but for dif-
ferent reasons. In DAYCENT, N immobilization and loss dy-
namics are driven by initial litter chemistry, and good model
fit to data is achieved by capturing the average N immobi-
lized for a given litter type regardless of biome and climate
conditions (see Figs. S1 and S2). By contrast, litterbag N
immobilization in MIMICS-CN is driven by the availabil-
ity of N in the underlying modeled soil and by site-specific
effects (e.g., climate, clay content) on the simulated stocks
and fluxes of N. As a result, MIMICS-CN generates greater
variation in the amount N immobilized for a given litter type
across sites (Figs. 3 and 4). Site-specific variability in N im-
mobilization patterns is also clearly visible in LIDET obser-
vations (colored dots; Fig. 4), but the introduction of site-
specific variability in MIMICS-CN does not substantially
improve model fit to data relative to DAYCENT. Spatial vari-
ability in ecosystem processes, like N mineralization rates,
may be linked to factors like local-scale microbial commu-
nity composition, soil moisture, or mineralogy (Graham et
al., 2016; Smithwick et al., 2005; Soranno et al., 2019; Doet-
terl et al., 2015). While more work needs to be done to under-
stand the factors controlling within and among site variation
in soil C—N dynamics (Bradford et al., 2017), these results
highlight that the explicit representation of microbial activity
in MIMICS-CN may present opportunities to explore factors
responsible for biogeochemical heterogeneity across scales.

Although MIMICS-CN broadly captures appropriate cli-
mate and litter quality effects on leaf litter decomposition
patterns, the model underestimates N accumulation in the
highest C:N ratio litter (Zriticum aestivum; Fig. 4f). Mi-
crobes in MIMICS-CN recycle nitrogen from necromass and
necromass-derived SOM, which might allow microbes to
scavenge the N required to decompose high C: N litter with-
out having to accumulate it from the inorganic soil pool.
In a real litterbag, necromass might be lost through leach-
ing, and microbial access to recycled biomass might be lim-
ited, and some microbial-derived compounds may require
extensive depolymerization and proteolysis before the N is
available for recycling (Schulten and Schnitzer, 1997), thus
favoring N uptake from the soil pool. Alternatively, N in-
puts to real litterbags in the LIDET study may have come
from atmospheric deposition or other unintended sources that
MIMICS-CN does not address. Nonetheless, the high C: N
ratio of Triticum aestivum is not typical of the majority of lit-
ter inputs across diverse biomes (Brovkin et al., 2012), which
are well within the range that MIMICS-CN can simulate.

4.2 Model evaluation: equilibrium C and N cycling

We conducted additional model evaluation by comparing
model pools and fluxes at equilibrium to published observa-
tions. The parameter values used in the LIDET simulations
produced reasonable estimates of equilibrium pools (soil or-
ganic C and N, microbial biomass C and N, and total inor-
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value of MIMICS-CN simulations.

ganic N) and fluxes (heterotrophic respiration and N mineral-
ization) (Table 3; Fig. 5). In combination with the LIDET re-
sults, these results indicate that MIMICS-CN can produce re-
alistic simulations of both the short-term dynamic processes
involved in litter decomposition and the soil-forming pro-
cesses that produce equilibrium pools and fluxes over much
longer timescales. In addition, MIMICS-CN simulates mi-
crobial stoichiometry, microbial growth and turnover, and
microbially mediated decomposition, rather than using pre-
scribed values as in models that lack explicit representation
of microbes. This increases the power of MIMICS-CN to ex-
plore the microbial and biogeochemical processes underpin-
ning model predictions.

Continent-wide observations of soil pools and fluxes range
over several orders of magnitude (Table 3), but MIMICS sim-
ulations agreed well with the median of those ranges. Ob-
servations tended to be spread over a much larger range of
values than the MIMICS-CN simulations, but these simula-
tions only included information from 13 sites, while the ob-
servations included thousands of locations. The median val-
ues of observed and simulated values were within a factor of

Geosci. Model Dev., 13, 4413-4434, 2020

2.5 for all pools (Fig. 5). Differences in measurement depth
or error in estimated bulk density values could account for
some of the differences between measurements and simula-
tions and for the spread across observed values. This is less
of a concern for three of the variables used here (soil C: N,
microbial biomass C as a percent of total soil C, and micro-
bial biomass N as a percent of total soil N), which are ratios
that are comparable across sites. Microbial biomass C as a
percent of total soil C and microbial biomass N as a percent
of total soil N were highly conserved across sites, relative
to soil stocks or microbial C or N, and may be particularly
useful metrics for evaluating microbially explicit soil bio-
geochemical models since the size of the microbial biomass
pool directly controls rates of SOM turnover and formation
in models like MIMICS-CN. For these ratios, MIMICS-CN
reproduced distributions and median values that overlapped
well with observations. In future work, direct comparisons of
modeled and measured values for these ratios at specific sites
may shed light on the limitations of the model and the origins
of data—model disagreement. However, even the simple range
comparisons included here provide evidence that the mecha-
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SOMc, SOM; pools, respectively) arranged by the site mean annual temperature (MAT) or the (b) relative fraction of each SOM pool
arranged in the same way. Upper-right and bottom panels show the correlations between C in each SOM pool and environmental drivers
including: (¢) SOMp, vs. the product of annual net primary productivity (ANPP) and clay content, (d) SOM; and SOM, vs. MAT, and
(e) SOM. and SOMj, vs. lignin content of litter inputs at each site. Finally, (f) soil stoichiometry is largely determined by the fraction of total

SOM pools that are considered physicochemically protected.

nistic representation of soil biogeochemistry in MIMICS-CN
is ecologically realistic. Examinations of model realism like
this are a crucial step in transitioning from theory and small-
scale model tests to applications in ESMs or at larger scales
where evaluation data are more sparse.

Besides representing appropriate soil biogeochemical
stocks, fluxes simulated by the models also agree well with
observations. Specifically, MIMICS-CN simulations of het-
erotrophic respiration and net N mineralization rates fell
within observed bounds, although the variation in observa-
tions was much greater than the variation in simulated val-
ues. Our simulations calculated rates at equilibrium assum-
ing constant temperature and other factors, while real rates
of these processes are driven by seasonally and diurnally
variable temperature, soil moisture, and other factors, so
predictably, our simulations produced smaller-than-observed
variability in rates. MIMICS-CN produced total soil C: N
values that fall within observed ranges, although observa-
tions again show greater variation in soil C:N ratios and
have maximum values that are much higher than the max-
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imum C:N ratios simulated by MIMICS-CN. SOM pools
in MIMICS-CN are mostly comprised of microbial necro-
mass, in addition to a small proportion of litter that enters
SOM pools directly without first passing through microbial
biomass. Increasing this proportion in the model is one way
to increase the C:N of SOM pools and the overall system
at equilibrium. At some sites, litter may contribute more di-
rectly to SOM pools than microbial necromass (Jilling et al.,
2018). For example, forests often have a higher proportion
of total soil C in the light fraction, which is almost entirely
made up of plant residues, compared to agroecosystems and
many grasslands (Grandy and Robertson, 2007). For those
sites with large, direct contributions of plant matter to SOM,
increasing the fraction of litter that passes directly into SOM
in MIMICS may be appropriate.

4.3 Exploring emergent SOM dynamics

The distribution of SOM across simulated pools in MIMICS-
CN (Fig. 6) illustrates how model-defined assumptions about

Geosci. Model Dev., 13, 4413-4434, 2020
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pool stabilization mechanisms drive potential responses to
environmental variables. The wide variation in SOM pool
distributions among contrasting environments in our simu-
lations provides support for experimental efforts aimed at
distinguishing between SOM pools to understand SOM re-
sponses to environmental changes and potential ecosystem
feedbacks. For example, global change factors like warming
can cause a range of different responses among SOM pools
(Conant et al., 2008; Li et al., 2013; von Liitzow and Kogel-
Knabner, 2009; Plante et al., 2010). Experimental studies
also show that increases in SOM resulting from increased in-
puts are not typically evenly distributed across different SOM
pools (Lajtha et al., 2017; Stewart et al., 2009), which can in-
fluence feedbacks to productivity as well as the persistence of
soil C gains in response to shifts in climate. Thus, while our
broad-scale projections of how and why SOM differs among
pools need to be evaluated with experiments and data syn-
thesis across environments, they can provide a starting point
for understanding SOM responses to global change factors
across environments.

In MIMICS, the turnover of chemically protected and
available SOM pools is based on temperature-sensitive
Michaelis—Menten kinetics and litter chemistry (the latter
controlling allocation of litter pools to the different micro-
bial functional groups). This results in SOMc pools (analo-
gous to light fraction or POM pools) that are negatively cor-
related with MAT and positively correlated with litter lignin
content (Fig. 6d, e). Turnover of the physicochemically pro-
tected SOM pool, on the other hand, occurs via first-order
kinetics with a rate constant modified by clay content, and
the equilibrium values of this pool are determined by in-
puts that largely come from microbial biomass and biomass
turnover rates (Fig. 1). Therefore, the equilibrium values of
SOM;, (analogous to heavy fraction or MAOM pools) were
strongly positively correlated with the product of ANPP and
clay content (Fig. 6¢). This relationship broadly reflects the
expected importance of total soil C inputs and their poten-
tial to be preserved after microbial processing by association
with clays (Kleber et al., 2015). However, these two variables
are also likely to covary with others, especially MAT, high-
lighting the difficulty of isolating individual mechanisms that
regulate SOM.

Across the sites included in these simulations, chemically
protected SOM formed a higher proportion of total SOM at
lower MAT, while physicochemically protected SOM was fa-
vored at warmer sites (Fig. 6b). In global simulations with the
carbon-only version of MIMICS, these assumptions result in
MIMICS projecting longer soil C turnover times in soil C
pools and larger soil C pools in the tropics than other models
(Koven et al., 2017; Wieder et al., 2018) and a higher vulner-
ability of high-latitude soil C stocks (Wieder et al., 2015b,
2019). Evaluating the accuracy of our model assumptions
and the resulting patterns in soil C and N cycling requires
coupling process-level studies of the fate of decomposing lit-
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ter (e.g., using isotope tracers) to broad-scale evaluation of
SOM pool distributions across environmental gradients.

Soil C:N ratios simulated by MIMICS-CN across sites
were highly correlated with soil clay content (R? = 0.88),
suggesting that, in the model, soil stoichiometry emerges
from the relative contributions of SOM across physicochem-
ically and chemically protected pools (Fig. 6). Although the
spread of C : N values across the sites simulated by MIMICS-
CN was small (Fig. 6f), C : N tended to decrease with increas-
ing temperature, and simulated soil C:N was more corre-
lated with site temperature (R? = 0.42) than any of the litter
characteristics used to drive the model, such as litter lignin
(R? =0.03) or litter C: N (R? = 0.005). This result directly
contradicts a recent study using a first-order linear model
which presumed that litter quality and soil quality at equi-
librium were directly proportional (Menichetti et al., 2019).
Although many soil biogeochemical models prescribe soil
C : N ratios for individual pools, the stoichiometry of SOM
in MIMICS-CN is an emergent property of the model.

The lack of correlation between simulated soil C: N and
litter C: N in MIMICS-CN simulations suggests an intrigu-
ing followup question: in the field, is SOM stoichiometry
correlated with litter quality, or is it better explained by cli-
mate, edaphic, and mineralogical gradients that impact soil
microbial community composition, microbial activity, and
mineral-mediated mechanisms of SOM persistence? Vari-
ous regional studies provide limited support for the rela-
tionships generated by MIMICS-CN between soil C: N and
MAT (Miller et al., 2004) or clay content (Hassink et al.,
1993; Homann et al., 2007; Jenny, 1941), though a large-
scale synthesis of measurements across all of these variables
is still needed. Presently, MIMICS-CN assumes that micro-
bial biomass stoichiometry largely controls the C: N ratios of
stable SOM, with relatively minor contributions from litter
quality. However, a small proportion of litter inputs become
stabilized in MIMICS-CN without first passing through the
stoichiometric filter of microbial biomass, and increasing this
fraction in the model is a means to increase the C : N of simu-
lated stable SOM. The strength of the mineral sink for micro-
bial necromass in the model also impacts the relative balance
of microbe- or plant-derived stable SOM, which in turn im-
pacts modeled soil C: N. This result implies that in the field,
C: N stoichiometry might be used as a means to differenti-
ate the degree to which a given soil fraction is derived from
direct plant inputs or microbial biomass, and mineralogical
variables might be useful for explaining differences in frac-
tion distributions across soils that impact C: N. Studies like
Mikutta et al. (2019) illustrate the way that C : N can be used
to assess the relative contributions of plant matter or micro-
bial residues to stable SOM. Future work will use measured
C: N of soils and soil fractions and isotopic insights into the
plant or microbial origins of stable SOM to improve the pa-
rameterization of this aspect of the model and better under-
stand the relationship between mechanisms of SOM stabi-
lization and soil stoichiometry.
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4.4 Limitations and future work

MIMICS-CN combines reasonable biogeochemical simula-
tions with the option to explore underlying microbial pro-
cesses, but limitations remain. For example, MIMICS only
represents two microbial groups with different stoichiomet-
ric and physiological parameters, but real soils contain a
much more diverse array of microbial functional groups with
different responses to environmental conditions and differ-
ent couplings between C and N cycles. CUE and NUE are
critical microbial parameters in MIMICS-CN, but the rela-
tionships between CUE and microbial community compo-
sition (Maynard et al., 2017), microbial growth rate (Mole-
naar et al., 2009; Pfeiffer et al., 2001), temperature (Alli-
son, 2014; Dijkstra et al., 2011; Frey et al., 2013; Steinweg
et al., 2008), substrate quality (Blagodatskaya et al., 2014;
Frey et al., 2013; Sinsabaugh et al., 2013), or any number
of other aspects of microbial metabolism are complex, dif-
ficult to quantify, and challenging to represent at the scale
of a whole soil community (Geyer et al., 2016). In its cur-
rent configuration, MIMICS-CN also simplifies a number of
ecosystem biogeochemical processes, and there are several
important pathways of N cycling currently absent from the
model. For example, MIMICS-CN does not currently repre-
sent free living biological N fixation, direct mycorrhizal ex-
changes for plant C for microbial N, dissolved organic C or
N losses, denitrification/nitrification/other inorganic N trans-
formation and loss pathways, plant uptake of N, or inorganic
N leaching beyond a simple linear decay rate. Some of these
shortcomings may be remedied by integrating MIMICS with
a full ecosystem biogeochemical model that represents the
greater complexity of the plant—soil continuum.
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MIMICS-CN provides a pathway to reconcile mechanis-
tic explanations for phenomena like priming and plant—soil
feedbacks with emergent patterns in terrestrial biogeochem-
istry across landscapes. MIMICS-CN and microbial models
like it are a good first step towards representing the com-
plex ecological factors that drive the coupling of soil C
and N biogeochemistry, including the distribution of SOM
among functionally relevant pools and SOM C: N ratios. Fu-
ture work could compare model formulations that take dif-
ferent approaches to microbial community and stoichiomet-
ric parameters (e.g., flexible microbial parameters like C: N
or CUE, additional microbial groups, partitioning microbial
metabolism into a greater number of pathways) and refine-
ment of mechanisms that confer SOM persistence. These ef-
forts should also assess the ramifications of different choices
for simulating existing data and predicting the long-term re-
sponse of soil C and N cycles to global change. Our work
demonstrates that MIMICS-CN can reproduce site and litter
quality effects on litter decomposition C and N dynamics at a
landscape scale, while also pointing to the importance of un-
derlying, interacting microbial and biogeochemical factors in
regulating SOM dynamics. Future work coupling MIMICS-
CN to experiments and syntheses relating the distribution of
SOM across pools to their underlying controls across gradi-
ents will improve our confidence in our ability to understand
and project SOM dynamics.
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Appendix A: Model equations

The structure and assumptions in the C-only version of MIM-
ICS have been described previously (Wieder et al., 2014,
2015Db), and the structure and assumptions in MIMIC-CN are
described in Sect. 2.1 (Model formulation) of the methods
section of this paper. The C fluxes (mgCcm™>h~!) from
donor to receiver pools in MIMICS-CN, numbered in Fig. 1,
are defined by the following:

MICI—,C X Vmax[rl] X LITm,C

LIT,, c_MIC, ¢ = : (A1)
" ! (K1) +LITm,c)
MIC Vin: LIT
LITS’C_MICLC _ r,C X Vmax[r2] X s,C ’ (A2)
(Km[rZJ + LITs,C)
MIC Vine SOM,
SOMa,C_MICr’C _ r,C X Vmax[r3] X a,C ’ (A3)
(Km[rS] + SOMa,C)
MIC; c_SOMc = MICL ¢ x 1), (A4)
MIC Vine LIT
LITm’C_MICK,C _ K,C X Vmax[K1] X m,C ’ (A5)
(Kmk1] + LITm,c)
MIC Vi LIT,
LITS’C_MICK,C _ K,C X Vmax[K2] X s,C ’ (A6)
(Km[k2) + LITs,c)
MIC Vin SOM,
SOM, c_MICk ¢ = K€ X TmaxiK3] X 5F7.C = (57
(Kmik3] + SOM,,¢)
MICk c_SOMc = MIC}, ¢ X 7k, (A8)
SOM,.c_SOM, ¢ = SOM, ¢ x D, (A9)
MIC Vi SOM,
SOMC’C_SOMa,C _ ( r,C X Vmax[r2] X C,C)
(KOp x Kmr2] +SOM¢, )
(MICK,C X Vmax(k2] X SOMC,C)
(KOrk7 x Kmik2; +SOMc c) ’
(A10)

where pools and parameters are described in Sect. 2.1 and
Table 1, respectively. The N fluxes (mgNcm™>h~!) from
donor to receiver pools in MIMICS-CN are calculated based
on the C fluxes between pools and the C: N ratio of donor
pools. These fluxes are numbered in Fig. 1 and defined by
the following:
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LITy N _MIC; Ny = Al x LITy N/LITh c, (A11)
LITs n_MIC; n = A2 x LIT n/LIT; c, (A12)
SOM, N_MIC; N = A3 x SOM, Nn/SOM, ¢, (A13)
MIC; n_SOM, N = A4 x MIC; n/MIC; ¢, (A14)
LITy N _MICkg N = A5 x LITy, N/LITy c, (A15)
LITs N_MICk N = A6 x LIT, n/LIT; ¢, (A16)
SOM, N_MICkg N = A7 x SOMy n/SOM, ¢, (A17)
MICk n_SOM, N = A8 x MICk n/MICk c, (A18)
SOM, N_SOM; N = A9 x SOM,, N/SOM, ¢, (A19)
SOM¢ N_SOM, N = A10 x SOM, n/SOMc c. (A20)

Each time step, the microbial pools in MIMICS-CN take
up inorganic N from the DIN pool proportional to the
biomass in each pool. Subsequently, the C: N ratio of all the
inputs to each microbial pool is calculated, and the microbial
pools spill either excess C or excess N to maintain a model-
defined C: N ratio of microbial biomass. The algorithm that
determines the release of excess C or N is determined using
the following equations:

(1 — Nieak) x DIN x MIC; ¢

DIN =
P (MIC;.c + MICk ¢)

. (A2D)

(1 — Njeax) x DIN x MICk ¢

DINupy, =
Pk (MIC;.c + MICk ¢)

, (A22)

upMIC, ¢ = CUE(;; x (Al + A3) + CUEpy x (A2), (A23)

upMIC, y = NUE x (A1l +Al13+ Al12) + A21, (A24)
CN A23 (A25)
up, = ——,
Pr= 04
Overflow; = A23 — (A24 x min(CN;, A25)), (A26)
. A23
Nspill, = A24 — [ —————— ], (A27)
max(CN;, A25)

upMICK,C = CUE3) x (A5 4+ A7) 4+ CUE[4 x (A6), (A28)

upMICy y = NUE x (A15+ Al17 + Al6) + A22, (A29)
CN _ Az (A30)
Pk = \og°
Overflowg = A28 — (A29 x min(CNk, A30)), (A31)
. A28
Nspillg =A29 — | ————— |- (A32)
max(CNg, A30)

Inorganic N leaches slowly from the model according to a
model-defined rate:

LeachinglLoss = Njeax x DIN. (A33)

https://doi.org/10.5194/gmd-13-4413-2020



E. Kyker-Snowman et al.: MIMICS-CN v1.0

Given the fluxes defined above, the changes in C and N
pools in each hourly time step (mgC or Ncm™3) are de-

scribed by the following:

dLIT
dtmﬂc = I, e X (1 = fimer) — Al — AS,
dLIT
dts,C = ILITSYC X (1 - fi,struc) — A2 - A6,
dMIC; ¢
T’ = CUE[1] x (A1 + A3) + CUEJ[2]
X (A2) — A4 — Overflowy,
dMICk ¢
—q =CUEI3] x (A5 + A7) + CUE[4]
X (A6) — A8 — Overflowg,
dSOM, c
T = ILle,C X 1 met + (fp,r x A4)
+ (fp x x A8) — A9,
dSOM
TC’C = ILITS_C X fi,struc + (fc,r x Ad)
+ (fox x A8) — A0,
dSOM
T&C = (far x A4) + (f,x x A8)

+A9+A10— A3 —-A7,
dLITm,N _ ILITm,C X (1 - fi,met)

— All —AlS,
dr CNp,
LIT, Ir. . x (1= f
d s,N _ LIT, ¢ ( fl,struc) —Al2—Al6,
dr CN;
dMIC; N
o =NUEx (A1l +AI3+A12) — Al4
-+ DINup, — Nspill,
dMIC
TK’N — NUE x (A15+ Al17 + A16)

— A18 4 DINupyg — Nspilly,

dSOM, N _ I, ¢ X (fi,met)
i CNp,

+ (fpr x Ald) + (fp,x x Al8) — Al9,

dSOM. N _ ILITS,C X (fi,struc)
. CN;

+ (fer X Al4) + (fe,k x Al8) — A20,

dSOM, N

Ta = (far X Al4) + (fak X Al8)
+A194+A20— A13 — Al7,

dDIN

— = (1-NUE) x (Al + A12+ AI3 4 AlS

+A16 + A17) + Nspill, 4 Nspillg — DINup,

— DINupg — LeachingLoss.
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Code and data availability. MIMICS-CN (v1.0) is written in R us-
ing packages rootSolve (Soetaert and Herman, 2009) and hydro-
GOF (Zambrano-Bigiarini, 2017). Figures were generated using
packages ggplot2 (Wickham, 2016), reshape2 (Wickham, 2007),
scales (Wickham, 2018), gridextra (Auguie, 2017), and cowplot
(Wilke, 2016). The R scripts and datasets used to generate model
results are available at https://doi.org/10.5281/zenodo.3534562
(Kyker-Snowman, 2019). See Appendix A for equations.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-13-4413-2020-supplement.
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