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Abstract. Simulating global and regional climate at high res-
olution is essential to study the effects of climate change
and capture extreme events affecting human populations. To
achieve this goal, the scalability of climate models and effi-
ciency of individual model components are both important.
Radiative transfer is among the most computationally expen-
sive components in a typical climate model. Here we attempt
to model this component using a neural network. We aim to
study the feasibility of replacing an explicit, physics-based
computation of longwave radiative transfer by a neural net-
work emulator and assessing the resultant performance gains.
We compare multiple neural-network architectures, includ-
ing a convolutional neural network, and our results suggest
that the performance loss from the use of conventional con-
volutional networks is not offset by gains in accuracy. We
train the networks with and without noise added to the in-
put profiles and find that adding noise improves the ability
of the networks to generalise beyond the training set. Pre-
diction of radiative heating rates using our neural network
models achieve up to 370× speedup on a GTX 1080 GPU
setup and 11× speedup on a Xeon CPU setup compared to
the a state-of-the-art radiative transfer library running on the
same Xeon CPU. Furthermore, our neural network models
yield less than 0.1 K d−1 mean squared error across all pres-
sure levels. Upon introducing this component into a single-
column model, we find that the time evolution of the temper-
ature and humidity profiles is physically reasonable, though
the model is conservative in its prediction of heating rates
in regions where the optical depth changes quickly. Differ-
ences exist in the equilibrium climate simulated when using
the neural network, which are attributed to small systematic
errors that accumulate over time. Thus, we find that the ac-

curacy of the neural network in the “offline” mode does not
reflect its performance when coupled with other components.

1 Introduction

Computational models of Earth’s climate are essential tools
to advance our understanding of the climate system and our
ability to predict its response to perturbations such as in-
creased levels of greenhouse gases. Climate models contain
algorithmic representations of the various components of the
climate system like the atmosphere, ocean, sea ice, and land
surface. Our ability to predict future changes in climate de-
pends crucially on the accuracy of these models and the ex-
tent to which interactions between various components of the
climate system are represented.

A basic requirement for increased model fidelity, partic-
ularly at the regional scale, is increased spatial resolution.
However, the computational burden increases roughly as the
fourth power of spatial resolution (since resolution must in-
crease along all three spatial dimensions and the time step
reduced to ensure numerical stability). To address this prob-
lem, various approaches have been used including improved
model scalability (Dennis and Loft, 2011) and the use of low-
precision floating point operations (Palmer, 2014).

Long simulations using high-resolution climate models
are needed to explore key questions in climate research, par-
ticularly changes in the statistics of weather extremes such as
windstorms and precipitation events. Radiative transfer (RT)
in the atmosphere is among the most computationally bur-
densome components of such simulations. While the basic
equations for calculating RT are straightforward, the com-
plex nature of the absorption bands of greenhouse gases such
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as carbon dioxide and water vapour requires separate calcu-
lation over a very large number of small spectral intervals to
obtain accurate results. Since such a line-by-line calculation
is extremely computationally intensive and not feasible in a
realistic climate model integration, it is necessary to group
individual absorption lines into bands or clusters with similar
properties as in the correlated-k method (Fu and Liou, 1992).
Such methods can dramatically improve the computational
performance while retaining adequate accuracy in the com-
putation. Many state-of-the-art climate models use the Rapid
Radiative Transfer Model for General circulation models
(RRTMG). RRTMG is based on the single-column corre-
lated k-distribution reference model RRTM (Iacono et al.,
2008b). RRTMG tries to strike a balance between compu-
tational complexity and accuracy by reducing the number of
calculations per band while ensuring fidelity with the RRTM
code (Iacono et al., 2008a). Nonetheless, even when employ-
ing such simplified schemes, RT remains amongst the most
numerically expensive components of climate models, and a
variety of strategies have been developed to reduce this cost
(see for example Pincus and Stevens, 2013, and references
therein).

In this paper, we explore the potential performance gains
achievable by using a neural network (NN) to calculate ra-
diative transfer. Specifically, we train a variety of alternative
NN architectures on a set of radiative heating rate profiles
computed using a state-of-the-art RT code (see Sect. 2) and
compare the computational performance of the NN with that
of the RT code itself. Note that this comparison only serves
to assess the performance of RT calculation in stand-alone
form. We expect a suitably trained neural network to be a
drop-in replacement for the RT code in a full climate model
and expect that other computational costs – such as data
transfer within and between computational nodes – will not
change, but we do not explicitly address this issue in this ex-
ploratory study. Instead, our focus here is on identifying the
most suitable NN architecture in terms of accuracy and com-
putational performance. We also explore the behaviour of the
NN in a time-evolving, single-column radiative-convective
model (Sect. 4).

Recent advances in NNs have led to rapid progress in
the accuracy of pattern and image recognition tasks. In par-
ticular, convolutional neural networks (CNNs) (Krizhevsky
et al., 2012a) have achieved impressive results for image
classification (Krizhevsky et al., 2012b), while recurrent neu-
ral networks (RNNs) have made breakthroughs in sequence-
to-sequence learning tasks such as machine translation (Wu
et al., 2016). Efforts to use machine learning techniques to
model actual physical processes in a climate model have in-
creased recently (Schneider et al., 2017; Gentine et al., 2018;
Rasp et al., 2018; O’Gorman and Dwyer, 2018; Scher, 2018;
Brenowitz and Bretherton, 2018, 2019; San and Maulik,
2018; Yuval and O’Gorman, 2020). In particular, it is now
being recognised that physical processes whose represen-
tation in climate models has usually been inexact and pa-

rameterised could potentially be improved by using machine
learning techniques. RT, on the other hand, has always been
an attractive candidate to optimise in climate models be-
cause of the large computational cost, as discussed above.
Optimisation has been attempted using traditional optimisa-
tion, porting to new architectures such as GPUs (Price et al.,
2014; Mielikainen et al., 2016; Malik et al., 2017), and using
NNs to approximate RT. Initial attempts to retrieve radiative
heating profiles used shallow (one hidden layer) networks
(Chevallier et al., 1998), and similar NN architectures were
successfully used to replace RT in decadal simulations us-
ing conventional climate models (Krasnopolsky et al., 2005,
2008, 2009). Recently, a deep NN was used to replace RT in
a high-resolution general circulation model (GCM) and was
successfully used to run the GCM for 1 year (Pal et al., 2019).
These studies show the capability of NNs to accurately ap-
proximate radiative heating profiles in a particular climate
regime, while raising questions about how generalisable this
learning actually is in terms of handling perturbed climate
states. Studying the effect of perturbations (in sea-surface
temperature, greenhouse gases, aerosols, or cloud properties)
on the climate of a model is a very typical use case in climate
science, and the performance of NNs in such scenarios has
yet to be studied carefully.

In the context of machine learning for climate modelling
applications, the following questions are still not well under-
stood (Dueben and Bauer, 2018):

– What NN architectures are most suitable?

– What is the accuracy–efficiency tradeoff between differ-
ent NN architectures?

– What accuracy loss can we expect when the NN is pro-
vided with “non-typical” input values, i.e. values very
different from those in the training sample, such as
would occur in a perturbed climate experiment?

– What is the speedup we can expect by replacing a tradi-
tional RT scheme with a NN?

Our aim here is to address these four questions. To limit
the scope of this exploratory study, we focus on longwave
radiative transfer under clear-sky conditions (henceforth, RT
thus refers to clear-sky longwave radiative transfer). We use
the RRTMG library available within the climt modelling
toolkit (Monteiro et al., 2018) to generate radiative cooling
profiles to train the NN models. In particular, we compare the
accuracy–computational complexity tradeoff between five
kinds of NN architectures on both CPU and GPU. We also
study the loss in accuracy if perturbations are added to the
input. The question of accuracy loss is all the more relevant
in RT due to its mathematical structure – since RT is mod-
elled as an integral equation, localised perturbations have
global impacts on the profile of radiative heating or cooling
obtained.
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The paper is organised as follows. The preparation of data
for training and validation of the NNs is presented in Sect. 2.
Section 3 presents the NN structures and parameters we have
used. Evaluation results are presented in Sect. 4. Finally, we
present a brief discussion along with concluding remarks in
Sect. 5.

2 Data and methods

While radiative transfer is inherently three dimensional, in-
creasing its complexity and computationally cost, it is com-
mon to assume horizontal homogeneity (independent col-
umn assumption) and retain only a single (vertical) dimen-
sion (Meador and Weaver, 1980). This independent column
assumption underlies almost all radiative transfer codes used
in weather and climate models and reduces radiative transfer
calculation to an “embarrassingly parallel” one-dimensional
problem in each vertical column of the atmosphere. For a
given longitude–latitude point, RT can be represented by a
vector whose length is the number of vertical levels into
which the column is discretised. The calculation of RT un-
der clear-sky (cloud-free) conditions is based on a number
of inputs, including vectors of atmospheric pressure, air tem-
perature, and specific humidity at each level, while surface
temperature and carbon dioxide mixing ratio are represented
as scalars. While the clear-sky RT in the atmosphere is af-
fected by other greenhouse gases like methane and aerosols
like sulfates, we restrict ourselves to using the above quanti-
ties in this exploratory study.

2.1 The ERA-Interim dataset

We use the ERA-Interim dataset (Dee et al., 2011) to provide
temperature and humidity profiles for training the neural net-
work. The horizontal resolution of the data is 0.75◦

× 0.75◦

in the horizontal. We use 6-hourly model-level data, which
has a higher resolution in the vertical as compared with
the pressure level data. The vertical grid is a nonuniform
η-coordinate grid with 60 mid-levels from the surface to
0.2 hPa and 61 interface levels from the surface up to 0.1 hPa.
This implies that pressure is not a constant and is therefore
an additional input to the neural network.

The ERA-Interim dataset consists of 38 years of data span-
ning the period 1979 to 2016, which amounts to around
6.5 billion sample profiles. We employ the first 7 years of
ERA-Interim historical data as the training dataset, i.e. data
from 1979 to 1985, and the last 2 years of the ERA-Interim
historical data as the validation dataset, i.e. data from 2015
to 2016. Considering the model training time, we have ap-
plied random sampling of 1 % with respect to each year in
the training and validation datasets. This gives around 12 mil-
lion training samples and 3.5 million validation samples. Af-
ter sampling, we name the training dataset as Dataset1 and
the validation dataset as Dataset1.val. The reason for using

Figure 1. (a, b) ERA-Interim air temperature (K) and humidity
(g kg−1) statistics. (c) Longwave radiative rates (K d−1) calculated
using RRTMG. Vertical axis is pressure in pascals (Pa).

this data separation schema is because that we would like to
examine whether our radiation prediction model is able to
generalise to unseen/future data inputs while being trained
on the oldest data.

2.2 Perturbed dataset

Figure 1 shows the mean and variance in ERA-Interim air
temperature, humidity, and radiative heating rates calculated
using RRTMG from 1979 to 2016. Using the above statistics,
we have augmented our training data by created a perturbed
dataset as follows:

1. Pick an original profile from the historical samples.
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2. Generate a random air temperature profile assuming
Gaussian distribution at each vertical level using the
statistics from Fig. 1.

3. Generate a random weight (between −0.2 and 0.2) for
the generated air temperature profile.

4. Generate an augmented air temperature profile by
adding together the original profile with the weighted
random profile vertical-level-wise.

5. Calculate the maximum humidity given the air temper-
ature and pressure at each vertical level.

6. Calculate the original relative humidity ratio using hu-
midity divided by the maximum humidity at each verti-
cal level.

7. Calculate the new maximum humidity given the gener-
ated air temperature and pressure at each vertical level.

8. Generate the corresponding humidity by multiplying
the new maximum humidity and the original relative hu-
midity ratio at each vertical level.

9. We keep the surface temperature and the carbon dioxide
mixing ratio the same as the original profile.

The motivation for adding random, vertically uncorrelated
perturbations is that the optical properties of the atmosphere
(which determine the radiative heating profiles) can be quite
noisy in the vertical. This noisiness is due to the presence of
clouds, hydrometeors, aerosols, and horizontal advection of
water vapour at different levels in the atmosphere. Changes
in optical depth due to the above factors need not have a
strong vertical correlation either. The kind of perturbations
we have added represent an extreme case of this physically
motivated reasoning.

Augmented datasets are generated using Dataset1 and
Dataset1.val. Then, the augmented datasets are 50–50 mixed
with Dataset1 and Dataset1.val respectively to create Dataset2
and Dataset2.val. The purpose of generating Dataset2 and
Dataset2.val is that we would like to use it to investigate the
generality of our RT prediction model. The specific evalua-
tion procedures are described in the evaluation section.

2.3 The RT dataset

The calculation of the radiative fields for the historical and
perturbed datasets are calculated using the RRTMG compo-
nent available in the climt modelling toolkit (Monteiro and
Caballero, 2016; Monteiro et al., 2018). This component is
a Python wrapper over the RRTMG Fortran library and pro-
vides convenient access to the radiation fields. The statistics
of the generated radiative heating profiles are also shown in
Fig. 1.

3 Neural network models

3.1 Neural network basics

A neural network is composed of multiple neurons – or even
multiple layers of neurons – in order to model complex sce-
narios. A simple neural network is a feedforward network
where information flows only in one direction from input to
output. Multilayer perceptron (Gardner and Dorling, 1998)
is the most common feedforward NN. It consists of an in-
put layer that passes the input vector to the network, one
or more hidden layers, and an output layer. There are usu-
ally activation functions applied in each layer. An activation
function usually introduces nonlinearity in order to allow a
NN to tackle with complicated problems and learn complex
representations.

Convolutional NN is another type of NN designed for
image-focused tasks. It is widely used in many fields such
as image classification, object detection, and image segmen-
tation (Krizhevsky et al., 2017). CNNs usually consist of
three types of layers, convolutional layers, pooling layers,
and fully connected layers. A convolutional layer is com-
posed of learnable kernels or filters. The kernel usually con-
siders a small region of input at one time but covers the en-
tirety of the input. Specifically, it slides over the input spa-
tially and computes dot products between the kernel and the
area of input covered by the kernel. With each kernel, a con-
volutional layer produces an activation map, whose size de-
pends on whether there is a stride or padding. All the activa-
tion maps will be stacked together along the depth dimension
and passed on to the next layer (O’Shea and Nash, 2015).
Neurons in a layer are connected to only a small region of the
previous layer instead of everything, which is different from
feedforward neural networks. In this way, convolutional lay-
ers are better at extracting locality-dependent features, such
as shapes and patterns in images.

In the context of RT, we use CNNs to evaluate whether
the sensitivity to localised features improves the prediction
performance of deep neural networks. In particular, strong
local changes in the optical properties of the atmosphere are
fairly common due to the presence of clouds or horizontal
advection of water vapour. While this work focuses on clear-
sky radiation, we study the ability of CNNs to recognise and
respond to such local features in the single-column simula-
tions.

Table 1 illustrates the structures and parameters of our
neural networks. Specifically, we have designed five neural
networks, including two feedforward neural networks and
three convolutional neural networks (CNN). The input data
to the CNNs are prepared by concatenating different vari-
ables along the second dimension instead of using differ-
ent variables as “channels”. Therefore, the CNNs use two-
dimensional convolutional filters instead of one-dimensional
filters. Model A and Model B are implementations of feed-
forward neural networks with different numbers of layers and
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of neurons in each layer. Model C is a simplified CNN im-
plementation based on previous work (Simonyan and Zisser-
man, 2014). The stride of convolutional filters is set to 1 so
that the convolutional filters go through the input array with
one element each step. We have not applied any padding to
the input. We have not used pooling layers in between con-
volutional layers, and the convolutional filters are the classic
3 × 3 filters. Model D is a variant of Model C with one more
convolutional layer. Model E has the same neural network
structure as Model C. The only difference is that Model E
has padded the input with an edge of zeros to emphasise on
edges of the input. We have used TensorFlow 1.8.0 library
for the neural network implementation.

In addition to the above models, we also evaluate a vari-
ant of Model E denoted as Model F. Model F is based on
Model E but with a fixed pressure grid. This means that
Model F does not take pressure values as input and inter-
polates air temperature and humidity from model levels onto
a fixed, time-invariant pressure grid. While this configuration
reduces the dimensionality of the input, it requires extrapola-
tion of the ERA-Interim data or the calculated/predicted RT
to the fixed grid. Specifically, the inputs of a sample profile
are B-spline extrapolated according to a fixed pressure grid.
We extrapolate the air temperature and humidity values onto
the fixed pressure grid based on the profile’s pressure range.
The inputs corresponding to the rest of the pressure levels are
set to 0. After running through Model F, the RTs on the static
pressure grid are B-spline interpolated back to the original
pressure levels, which are the final results. It is important to
mention that we constructed the static grid using 15 equally
spaced pressure levels from 1 to 500 Pa, another 15 equally
spaced pressure levels from 550 to 50 000 Pa, and 30 equally
spaced pressure levels from 50 300 to 103 000 Pa. We made
this design choice by observing the distribution of the ERA-
Interim data to ensure that our fixed grid encompasses most
common pressure profiles in order to achieve a better accu-
racy on the extrapolation and interpolation. We used Model F
to run the single-column model simulation presented below,
which employs a fixed pressure grid.

3.2 Model training

We trained our five NNs with two datasets, resulting 10 dif-
ferent models. The first dataset is the aforementioned ERA-
Interim dataset, namely, Dataset1. The second dataset is the
augmented dataset, i.e. Dataset2, in order to generalise the
model to a wider operational region beyond Dataset1. Each
neural network is trained using the training dataset of either
Dataset1 or Dataset2 and validated against either Dataset1.val
or Dataset2.val.

Each model was trained with 30 epochs under a batch size
of 128 starting with a learning rate of 0.001, which then expo-
nentially decays every 10 epochs with base 0.96. This setup
was empirically obtained, while we observe that all models
have converged after the training. Mean squared error is used

as the loss function in all models. Parametric rectified linear
units (PReLUs) (He et al., 2015a) are used as activation func-
tions in all models since PReLUs is able to resolve the prob-
lem of vanishing gradient during model training. The Adam
optimiser (Kingma and Ba, 2014) is employed to compute
the gradients.

We present the evaluation results regarding the perfor-
mance of these models in the next section.

4 Evaluation

4.1 Evaluation setup

We prepared two datasets, i.e. Dataset1.val and Dataset2.val,
to evaluate our neural network models. Dataset1.val is used
to evaluate the accuracy of the trained models with realistic
future data. Dataset2.val is used to evaluate the generality of
the trained models as it contains profiles that are perturbed
versions of the ERA-Interim data.

4.2 Prediction accuracy

We use vertical level-wise root-mean-squared errors (RMSE)
to compare our NN-generated radiative cooling rates with
those generated by the RRTMG algorithm. Figures 2–5
present results for the different NN models. The RMSE
is calculated by taking the difference between NN- and
RRTMG-calculated radiative cooling profiles.

Figure 2 presents the RMSE when the NN models are
trained using Dataset1 and validated against Dataset1.val.
These experiments are performed to evaluate the capabil-
ity of different NN models to predict RT when the atmo-
spheric profiles are sampled from the ERA-Interim dataset
itself. We see that a simple three-layer feedforward neural
network (Model A) is able to predict heating rates with a
median RMSE of less than 0.01 K d−1 across all pressure
ranges. The performance does not improve when more lay-
ers of directly connected neurons are added, as shown by
Model B. We observe significant RMSE improvement while
using CNNs (Models C, D, E). However, the performance
differences among these three CNN models are not substan-
tial except the RMSEs near the surface, which tend to have
higher variability as shown in the statistics in Fig. 1. Since
surface radiation is particularly important to the climate, ef-
forts have been made to minimise its prediction error. The
input matrix of Model C is padded with zeros in order to al-
low convolutional filters to put equal emphasis on the edges
values as the middle ones (Innamorati et al., 2018). This cre-
ates Model E, which shows much better prediction accuracy
on the bottom and top pressure levels.

Figure 3 presents the RMSE when the NN models are
trained using Dataset2 and validated against Dataset1.val. In
this experiment, we examine whether it is possible to expand
the operational region of the NN models without compromis-
ing on their performance on the ERA-Interim dataset. Com-
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Table 1. Neural network models used for predicting RTs. “fc-X” represents a fully connected layer with X number of neurons.“1conv-YxY-
X” represents a convolutional layer with X number of YxY filters.

Model Number of
name Model structure parameters

Model A input-60x4 fc-512 fc-1024 fc-512 output-60 1 202 176
Model B input-60x4 fc-512 fc-1024 fc-2048 fc-1024 fc-512 output-60 5 396 480
Model C input-60x4 conv-3x3-128 conv-3x3-256 fc-512 output-60 7 666 816
Model D input-60x4 conv-3x3-128 conv-3x3-256 conv-3x3-256 fc-512 output-60 7 994 496
Model E input-62x6 conv-3x3-128 conv-3x3-256 fc-512 output-60 15 531 136
Model F input-62x5 conv-3x3-128 conv-3x3-256 fc-512 output-60 7 928 960

paring to Fig. 2, we see that the increased generality comes
at the cost of roughly doubled RMSE across all models.

The improvement on generality is suggested by the re-
sults shown in Figs. 4 and 5 when the NN models are
trained using Dataset1 or Dataset2 and validated against
Dataset2.val. The RMSE increases by almost 100 times
across all models trained with Dataset1 and validated against
Dataset2.val (Fig. 4) when compared to their validation
against Dataset1.val (Fig. 2). This suggests that models
trained with Dataset1 cannot really generalise to predict heat-
ing profiles from Dataset2.val. On the other hand, the RMSE
increases 10 times when the models are trained using a wider
range of data, i.e. Dataset2, as shown in Fig. 5. This is mainly
because that the model needs to cover a larger operational re-
gion.

When trained on Dataset1 and validated against
Dataset2.val (Fig. 4), the RMSE in Model B is signifi-
cantly higher. This observation leads us to believe that
Model B is more likely to overfit the training dataset.
Given that Dataset2 is more perturbed than Dataset1 and
more parameters and layers in Model B, the nature of
feedforward NN (Goodfellow et al., 2016) makes Model B
more deeply coupled with patterns observed in the training
data (Dataset1), which leads to larger errors while evaluating
against Dataset2.val.

Model F displays significant errors on both edges of the
pressure levels. This is due to extrapolation errors. Specifi-
cally, if the lowest pressure level in an atmospheric profile is
lower than the lowest pressure level of the fixed grid, the pro-
files need to be extrapolated. The same issue arises with the
highest pressure levels as well. Thus, the errors in Model F
are mainly due to these extrapolation-based artefacts rather
than an issue with the training itself. In fact, this model pro-
vides the most stable time integration of the single-column
model.

In the above evaluations, we have shown that CNN-based
models achieve much lower prediction RMSE than feedfor-
ward NN models. However, in the next section, we show
that CNN-based models tend to have much slower prediction
speed, i.e. less speedup as compared with the feedforward
models.

4.3 Prediction speed

In this section we compare the computation time of RRTMG
and NN models using GPUs and CPUs. These performance
evaluations have been performed using Intel Xeon CPU E3-
1230 v5 @ 3.40 GHz, Nvidia GTX 1060 GPU with 6 GB of
onboard memory, and Nvidia GTX 1080 GPU with 8 GB of
onboard memory. Both GPUs we use are commodity hard-
ware and are easily available in the market. RRTMG was run
in a single-threaded mode for the purposes of this evaluation.

Table 2 summarises the speedups using NN models to
predict RT as compared to RRTMG. The calculation time
of NN code and RRTMG code is profiled using the Python
line_profiler based on cProfile. The execution time results are
averaged from 10 measurements with execution of 100 000
predictions per measurement. Since RT calculations are em-
barrassingly parallel, we are able to use batch predictions in
our NN models while using a single GPU. The overall results
show that the larger the batch size, the larger the speedup ob-
served as long as the CPU or GPU memory is sufficient. In
other words, the calculation of M radiative heating profiles
is faster thanM times the time taken to predict one such pro-
file. This is because of the efficiency of matrix multiplica-
tions in NNs while conducting NN forward pass in batches.
We note that such a speedup is not possible in a physics-
based RT scheme since the calculation of RT for an arbitrary
atmospheric profile cannot be expressed as a simple matrix
multiplication.

The results show that by using only the Xeon CPU, NN
Models A and B are able to achieve speedups up to 10.88×

and 2.82× respectively using a batch size of 1024. When us-
ing GTX 1060, we are able to achieve speedups of 123×

in Model A, 61× in Model B, and 2.8× to 4.5× in CNN-
based models (C, D, E). With GTX 1080, which has a larger
memory and a faster clock speed, we observe speedups up to
370× in Model A, 123× in Model B, and 4.4× to 7.7× in
CNN-based models (C, D, E).

The results indicate that if the prediction accuracy of
Model A is sufficient for a climate simulation, it will pro-
vide the greatest calculation speedup using either CPU or
GPU. Since NNs with comparable or worse accuracy have
been used for simulations ranging from months to years
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Figure 2. Models are trained with Dataset1 and evaluated against Dataset1.val. The plots have 30 linearly spaced levels between 0 and
101 300 Pa. The errors from each model are binned to these equally spaced intervals for easier reading. The boxes in the plots present the
boxplot of the RT RMSE at every level. Specifically, the boxes describe the 25th (Q1), 50th (Q2), and 75th (Q3) percentile of the RMSEs,
while the two whiskers extend from the edges of box to 1.5 times the interquartile range (Q3 − Q1).

(Krasnopolsky et al., 2008; Pal et al., 2019), Model A is a
promising candidate for modelling applications since similar
performance gains using a full RT code seems to require a
complete rewrite for GPUs (Price et al., 2014; Mielikainen
et al., 2016; Wang et al., 2020). For simulations requiring a
higher accuracy, Model C provides significant speedups even
if a normal GPU is available on the platform.

4.4 Single-column model simulation

To explore the ability of the NN model to generalise to
new situations, we compare the climate of a single-column
model when RRTMG is replaced by the NN Model F (see
previous section for a description of Model F). The single-
column model uses a diffusive boundary layer (Reed and
Jablonowski, 2012), a slab surface of 50 m thickness which
behaves like an oceanic mixed layer, the RRTMG shortwave
component, and the Emanuel convection scheme (Emanuel
and Zivkovic-Rothman, 1999). The model has no seasonal
or diurnal cycle. Carbon dioxide concentration is fixed at
300 ppm, and a fixed ozone concentration is prescribed using
an observed tropical profile. The model uses pressure as the
vertical coordinate and has 60 equally spaced vertical levels
between 1013.2 hPa and the model top value at 0 hPa. The

model time step is 10 min. The tendencies from the various
components are stepped forward in time using a third-order
explicit Adams–Bashforth scheme.

The model is initialised with a dry, isothermal state. We
use RRTMG’s longwave component to drive the model until
the RMSE between the RRTMG-calculated longwave heat-
ing rates and those predicted by Model F falls below a
threshold of 0.5 K d−1. Once the errors fall below this value,
Model F takes over and RRTMG’s longwave component is
never used again for the rest of the simulation (shortwave ra-
diation is computed using RRTMG throughout). The switch
from RRTMG to Model F happens after around 14 d of sim-
ulation. This simulation is denoted as “RadNet” in Fig. 6.
Another simulation continues to use RRTMG longwave ra-
diation until the end of the simulation and is denoted as
“RRTMG” in Fig. 6. As discussed subsequently, the RadNet
simulation has a bias in the stratosphere, and the temperature
profile of the top three levels is constrained to the RRTMG
simulation to prevent the simulation from blowing up. Both
simulations are run for 2100 d, and equilibrium is reached
around 1600 d, with constant temperature and humidity pro-
files afterwards.

Within the troposphere, both simulations show a realis-
tic moist-adiabatic temperature profile and are in reasonable

https://doi.org/10.5194/gmd-13-4399-2020 Geosci. Model Dev., 13, 4399–4412, 2020



4406 Y. Liu et al.: Deep learning for LW radiative transfer

Figure 3. Models are trained with Dataset2 and evaluated against Dataset1.val

Figure 4. Models are trained with Dataset1 and evaluated against Dataset2.val
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Figure 5. Models are trained with Dataset2 and evaluated against Dataset2.val

Table 2. Speedups when using NN models to predict RTs comparing to calculating RTs using RRTMG. The result for RRTMG is shown for
the calculation of a sample in units of milliseconds. Results for NN models are shown as speedups for different batch sizes as compared to
the RRTMG calculation on the Xeon CPU.

Baseline RRTMG 0.37 ms

NN model name/hardware Xeon CPU E3-1230 GTX 1060 GTX 1080

NN batch size 64 256 1024 64 256 1024 64 256 1024 4096

Model A 5.87 10.28 10.88 18.50 61.67 123.33 16.08 61.67 123.33 370.00
Model B 1.87 2.74 2.82 13.70 37.00 61.67 14.80 46.25 74.00 123.33
Model C 0.14 0.14 0.14 3.19 4.11 4.57 4.25 5.52 7.40 7.71
Model D 0.11 0.11 0.11 2.52 3.03 3.33 3.52 4.25 5.44 5.52
Model E 0.09 0.09 0.09 2.16 2.59 2.82 2.98 3.67 4.63 4.40

quantitative agreement. However, there are substantial differ-
ences in the stratosphere, and the equilibrium position of the
tropopause seen in Fig. 6c in the RadNet simulation is higher
by around 50 hPa as compared to the RRTMG simulation.
This is because Model F has a cooling bias in the upper at-
mosphere as seen in Fig. 6d, which makes it convectively un-
stable, and therefore the tropopause shifts upward. The tro-
pospheric temperature profiles are identical since they are set
by the convective parameterisation in such convectively un-
stable situations.

As the boundary layer fluxes water vapour into the column
from the surface, the atmosphere becomes opaque to long-

wave radiation in the lower levels, and therefore the long-
wave cooling is strongest in the level just above the moist,
opaque part of the atmosphere. Figure 6d shows that the cool-
ing peak predicted by Model F has a smaller magnitude and
is located lower in the atmosphere. The lower cooling rate
peak predicted by the NN results in the slower evolution of
the RadNet simulation as compared to the RRTMG simu-
lation, resulting in the difference in height between the two
simulations (the cooling peak rises over time as the convec-
tion tries to eliminate the instability produced by radiative
cooling). The cooling peak in the RadNet simulation is sit-
uated close to the location of the strongest gradient in water
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Figure 6. Comparison of the vertical profiles of (a–c) temperature, (d–f) longwave heating rates, and (g–i) specific humidity for the RadNet
and RRTMG simulations at three different times.

vapour (where the atmosphere transitions from being opaque
to transparent to longwave radiation), which is physically ac-
curate. The differences in magnitude are larger slightly ear-
lier in the simulation, where the atmospheric profiles are
quite unlike the profiles in the training dataset. It seems un-
likely that neural nets can predict such “spiky” profiles cor-
rectly since the predicted results tend to be smooth in gen-
eral. However, the RadNet-predicted profiles provide suffi-
cient cooling to make the atmosphere convectively unstable
and eventually mix the entire troposphere of the model.

The NN has a systematic warm bias in the lowest layer
of the model, which may be linked to the interpolation errors
discussed previously for Model F. This warm bias results in a
slightly warmer surface temperature (∼ 0.5 K) in the RadNet
simulation as seen in Fig. 6c. The warmer profile supports
a larger amount of water vapour, and the RadNet simulation
has a moist bias in the lower troposphere as well.

We see that small systematic errors in the predicted heating
rates can have a nontrivial effect on the simulated climate

in a single-column model, especially in the upper layers of
the atmosphere. In particular, errors in radiative heating near
the tropopause can dramatically change the structure of this
part of the atmosphere. The neural network tends to cool the
upper atmosphere a little more, making it more convectively
unstable and pushing the convection and tropopause higher.

To verify the accuracy of the predicted heating profiles,
we use the atmospheric profiles from the RadNet simula-
tion to drive the RRTMG longwave component. The NN and
RRTMG heating profiles generated are presented in Fig. 7.
The heating profiles predicted by the NN are fairly accurate,
especially in the later parts of the simulation when the at-
mospheric profiles are similar to those in the training sample
space. The NN predicts the location of the cooling peak accu-
rately even when the atmospheric profiles are unlike those in
the training sample space, though it underestimates the mag-
nitude. RRTMG produces fairly noisy heating profiles in the
stratosphere, reflecting the noisy temperature profile simu-
lated by the NN. The noisy stratospheric temperature profile
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appears to be a result of the fact that the training data for
Model F were generated using atmospheric profiles that had
additional noise added to them, which results in noisy heat-
ing profiles used for training.

5 Discussion and Conclusions

Radiative transfer was probably among the first climate
model components that neural network models aimed to re-
place in climate simulations. The evolution of NN models
has paralleled the evolution of NN architectures themselves,
with initial attempts using shallow networks, while recent at-
tempts (including our own) use deep networks. Since both
shallow and deep networks seem to perform reasonably well
in model simulations (Krasnopolsky et al., 2008; Pal et al.,
2019), the question of which type of architecture is more suit-
able inevitably arises.

In this paper, we have employed two elementary but
widely used classes of neural networks, namely feedforward
and convolutional neural networks. We believe that the range
of model architectures we have presented in this paper is rep-
resentative within these classes of networks. Our experiments
not only explore differences between these two network ar-
chitectures but also propose a validation workflow:

– traditional validation using metrics such a mean-
squared error;

– validation against a perturbed dataset, which helps eval-
uate generalisability of the networks directly;

– validation using a hierarchical climate modelling frame-
work such as climt – simple climate models such as
the single-column model help climate scientists not fa-
miliar with neural networks evaluate the physical con-
sequences of network architecture choices; the neural
network could then be deployed in a more complicated
setup such as a general circulation model and evaluated
again.

We believe that different methods of validating a neural net-
work are essential to compare different network architectures
in a scientifically relevant manner.

Our experiments show the following:

– A larger number of parameters in a neural network lead
to slower prediction, as could be expected intuitively.

– More parameters do not always lead to a better predic-
tion accuracy.

Classic convolutional networks provide high accuracy at
a higher computational cost. The number of parameters in
CNNs can be reduced in multiple ways. For instance, using
a one-dimensional convolutional filter could provide perfor-
mance gains at the expense of losing the correlation infor-
mation between different input fields like temperature and

specific humidity. Similarly, using a larger stride in convolu-
tional layers, using pooling layers in between convolutional
layers, and reducing model layers are all ways in which the
performance of the classical CNN could be improved. Go-
ing beyond the classic architectures we have explored, a
variety of architectures have been recently proposed which
might increase both accuracy and/or speedup. These archi-
tectures include the residual blocks proposed in ResNet (He
et al., 2015b) and the depth-wise separable convolution used
in MobileNets (Howard et al., 2017) and Xception (Chollet,
2016), among others. Furthermore, EfficientNet (Tan and Le,
2019) has shown that an efficient balancing of network depth,
width, and resolution can lead to better performance in terms
of prediction accuracy and speed. However, any such reduc-
tion of model parameters in CNNs or exploring newer ar-
chitectures must be accompanied with a rigorous validation
procedure, which could be similar to the workflow proposed
above.

Recent work in NN theory suggests that the mathemati-
cal structure of deep neural networks (a series of linear and
nonlinear operators applied sequentially) is especially suited
to capture functions which can be expressed as the compo-
sition of other functions (Mhaskar and Poggio, 2016; Lin
et al., 2017). Radiative transfer conforms to this structure
very well; the total radiative heating rate is the sum of heat-
ing rates in each spectral band, and the heating rate in each
spectral band requires the calculation of absorption coeffi-
cients at each model level, each independent of the other.
The two-stream approximation and the independent column
assumptions introduce additional locality and symmetry re-
quirements, constraining the problem further. This mathe-
matical structure suggests that deep neural networks are a
natural choice to approximate RT. Furthermore, the presence
of highly localised scattering and absorbing substances such
as clouds and water vapour suggests that RT might benefit
from a NN structure which is sensitive to localised patterns.
This suggests that convolutional NNs might be a better model
for RT, and our results confirm this. However, our results also
show that using convolutional NNs reduces performance by
50–100 times as compared to feedforward NNs with only a
marginal increase in accuracy. Thus, within our evaluation
setup, deep feedforward NNs present the best compromise
between accuracy and performance. We note that the per-
formance losses we have observed for CNNs could be re-
duced using a variety of techniques noted in the previous
paragraph. The performance–accuracy tradeoff for each of
these techniques needs to be evaluated rigorously and pro-
vides a promising avenue for future research.

The ability of NNs to generalise to unfamiliar atmospheric
profiles seems to be limited as suggested by the cases in
which the NNs were validated on the perturbed dataset and
the single-column model comparisons. These results bring
to question the applicability of NN-based radiative transfer
in research configurations where perturbations to the model
state or evolution to a wholly new climate state is routinely
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Figure 7. Comparison of the vertical profiles of longwave heating rates predicted by the NN and RRTMG for atmospheric profiles from the
RadNet simulation.

performed. Thus, NNs seem to work best in an “operational
mode” where the state of the climate or weather prediction
model is not expected to change dramatically as compared
to the training set. The approach of adding of noise to im-
prove NNs’ ability to generalise beyond the training sample
has a long history (Sietsma and Dow, 1991). However, our
results show that adding noise to the training dataset results
in noisy temperature profiles in simulations, especially in the
stratosphere where the temperature profile is closer to pure
radiative equilibrium.

The dramatic performance gains when using commodity
GPUs makes the use of NNs all the more attractive given
that most future high-performance computing configurations
will include both GPUs and CPUs. NNs allow batching of
multiple atmospheric profiles during matrix multiplications,
which allows large performance gains. Such batching is not
feasible for an actual RT calculation, and each atmospheric
profile has to be handled individually. This may be the rea-
son why rewrites of RRTMG for GPUs (Price et al., 2014;
Mielikainen et al., 2016; Wang et al., 2020) give similar per-
formance gains to what we have achieved in our setup us-
ing NNs. We note that the comparison between RadNet and
rewrites of RRTMG for GPUs does not take into considera-
tion differences in GPU architectures and batch sizes, which
could change the exact numbers obtained. However, our re-
sults highlight the difference that GPUs make in accelerating
RadNet.

Another method to assess the ability of NNs to generalise
is to actually build a climate model which includes the NN
as a component. Since single-column models have no dif-
fusion built in and cannot transport energy horizontally, we
believe that they constitute a tougher test case for NNs as

compared to GCMs. The lack of dynamics also makes the
results easier to interpret. In our test case, we see that the
errors in prediction by the NN have a larger impact in the
stratosphere than the troposphere due to the tight control of
the tropospheric lapse rate by moist convection. The initial
atmospheric profile – dry and isothermal – is quite different
from the profiles in the training sample space. While the er-
rors in the initial part of the simulation are larger, the NN
predicts physically realistic heating profiles with slight dif-
ferences in location and magnitude. Such physically plausi-
ble behaviour in situations quite different from those the NN
was trained on gives us confidence that NNs can indeed be
used as climate model components in the future. However, it
is clear that better strategies for data preparation, selection of
NN architecture, and testing trained NNs are required to im-
prove NN performance and enable scientists to interpret their
impact on climate model simulations.

Code availability. The code used for training RadNet and the
Jupyter notebook which simulates the single-column model is avail-
able at https://doi.org/10.5281/zenodo.3884964 (Liu et al., 2019).

The ERA-Interim data can be downloaded from https:
//apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/ (last
access: December 2019, Dee et al., 2011).
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