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Abstract. Nutrient data from catchments discharging to re-
ceiving waters are monitored for catchment management.
However, nutrient data are often sparse in time and space
and have non-linear responses to environmental factors, mak-
ing it difficult to systematically analyse long- and short-term
trends and undertake nutrient budgets. To address these chal-
lenges, we developed a hybrid machine learning (ML) frame-
work that first separated baseflow and quickflow from total
flow, generated data for missing nutrient species, and then
utilised the pre-generated nutrient data as additional vari-
ables in a final simulation of tributary water quality. Hybrid
random forest (RF) and gradient boosting machine (GBM)
models were employed and their performance compared with
a linear model, a multivariate weighted regression model, and
stand-alone RF and GBM models that did not pre-generate
nutrient data. The six models were used to predict six dif-
ferent nutrients discharged from two study sites in Western
Australia: Ellen Brook (small and ephemeral) and the Mur-
ray River (large and perennial). Our results showed that the
hybrid RF and GBM models had significantly higher accu-
racy and lower prediction uncertainty for almost all nutri-
ent species across the two sites. The pre-generated nutri-
ent and hydrological data were highlighted as the most im-
portant components of the hybrid model. The model results
also indicated different hydrological transport pathways for
total nitrogen (TN) export from two tributary catchments.
We demonstrated that the hybrid model provides a flexible
method to combine data of varied resolution and quality and

is accurate for the prediction of responses of surface water
nutrient concentrations to hydrologic variability.

1 Introduction

Surface water nutrient concentrations have been significantly
increased by human activities (Forio et al., 2015) due to ur-
banisation, waste discharges and agricultural intensification
(Liu et al., 2012; Kaiser et al., 2013; Li et al., 2013). In-
creased nutrient concentrations and loads in streams alter
the biogeochemical functioning and biological community
structure in receiving estuaries (Jickells et al., 2014; Staehr
et al., 2017), leading to an increased incidence of harmful al-
gal blooms (Domingues et al., 2011), anoxia and hypoxia (Li
et al., 2016; Testa et al., 2017) and reduced water availability
(Heathwaite, 2010). Analysis of tributary water quality data
over time is therefore essential to compute incoming nutrient
loads, support policy and plan remediation measures.

Water quality data, however, often have constraints that
make it challenging to analyse long- and short-term trends.
Firstly, water quality data often have non-linear responses
to environmental factors and show high-order interaction ef-
fects between different environmental variables. Moreover,
nutrients can derive from different sources (point or non-
point) in the landscape and are transported to receiving
waters through different water pathways subject to varied
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catchment hydrological conditions and human intervention
(Hirsch et al., 2010; Lloyd et al., 2014). Additionally, tribu-
tary nutrient datasets often are sparse in both space and time,
due to the high cost of fieldwork and chemical analysis (Lam-
sal et al., 2006; Forio et al., 2015). Historical and current wa-
ter quality monitoring programmes often use low-frequency
sampling regimes on a weekly to monthly basis (Halliday et
al., 2012). When monthly averaged concentrations are used,
calculated nutrient loads to receiving environments such as
lakes or estuaries may be poorly estimated (Cozzi and Giani,
2011), with high variability in the estimated loads (Jordan
and Cassidy, 2011). It is also common to have patchy avail-
ability of nutrient species data across a study area, and com-
bining datasets from different projects and analytical labo-
ratories makes the analysis of long-term trends fraught with
uncertainty. For instance, total nitrogen (TN) and total phos-
phorus (TP) concentrations within catchment outflows may
have been monitored for decades, while dissolved organic ni-
trogen (DON) and dissolved organic carbon (DOC) concen-
trations may have only been monitored recently, with the in-
creasing recognition of their ecological importance (Górniak
et al., 2002; Petrone et al., 2009; Erlandsson et al., 2011).
Given the hydrochemical correlation between different nu-
trient species and high analytical cost, there are benefits in
extracting maximum information from all available nutrient
data, particularly relating to changes in water quality over
time (Hirsch et al., 2010). In summary, while high-quality
nutrient data from tributaries are typically required as input
to water quality modelling of receiving waters, the reliability
and accuracy of the trend analysis of tributary data are fre-
quently restricted by data non-linearity, limited sample size
and variable nutrient availability.

Various models for constructing tributary water quality
data have been developed. For example, linear models (LMs)
and generalised linear models (GLMs) that use correlations
between concentration (C) and flow (Q) have long played
a central role in stream water quality analysis (Cohn et al.,
1989; Chanat et al., 2002). Some multivariate regression
models have been applied to analyse the long-term trend (Li
et al., 2007; Tao et al., 2010; Greening et al., 2014) and
seasonal patterns (Giblin et al., 2010; Chen et al., 2012) of
surface water nutrients. For example, a weighted regression
on time, discharge and season (WRTDS) was introduced by
Hirsch et al. (2010) and has been applied to a number of dif-
ferent water quality studies (Green et al., 2014; Zhang et al.,
2016a, b, c).

Meanwhile, data-driven machine learning (ML) methods
are increasingly being applied to quantify relationships be-
tween soil, water and environmental landscape attributes
(Lintern et al., 2018; Wang et al., 2018; Guo et al., 2019). For
instance, random forest (RF), a widely used ML method, was
used to model the spatial and seasonal variability of nitrate
concentrations in streams (Álvarez-Cabria et al., 2016). Gra-
dient boosting machines (GBMs) were used to quantify re-
lationships between land-use gradients and the structure and

function of stream ecology (Clapcott et al., 2012). In con-
trast to process-based conceptual models, ML methods sim-
ulate relationships purely from the data (Maier et al., 2014)
and have the ability to incorporate different types of variables
(e.g. numerical or categorised variables); this is particularly
suitable for systems with complex variable interactions and
non-linear response functions (Povak et al., 2014).

While both process-based and ML models can manage
non-linear interactions and be used to explore long-term
trends, they both have difficulty in fully extracting important
hydrochemical information embedded in nutrient data. Hy-
brid methods have been proposed for flow forecasting, to en-
hance the performance of ML models by first using interme-
diate models to generate additional variables, which are then
used for subsequent modelling. For instance, a neural net-
work model is first applied to reconstruct surface ocean par-
tial pressure of carbon dioxide (pCO2) climatology, which is
used as an input into another neural network to predict pCO2
anomalies with other features (Denvil-Sommer et al., 2019).
Similarly, Noori and Kalin (2016) used the soil and water as-
sessment tool (SWAT) to generate baseflow and stormflow,
which were then used as inputs to an artificial neural net-
work (ANN) model to improve daily flow prediction. Both
studies used hybrid models to demonstrate that pre-generated
variables provided additional information that was crucial to
achieving higher prediction accuracy, compared with stand-
alone ANN models.

Stream flow integrates water from multiple pathways re-
sulting in a distribution of residence times. Stream nutri-
ents are the product of overlapping historical inputs and re-
action rates, which are spatially distributed and temporally
weighted within the catchment (Abbott et al., 2016). There-
fore, it is beneficial to understand nutrient transport pathways
from the source to receiving waters, to analyse the long-
and short-term trends of stream nutrient data; this knowl-
edge will improve management strategies to reduce nutrient
transport (Tesoriero et al., 2009; Mellander et al., 2012). In
the analysis of the streamflow hydrograph, separating base-
flow (the long-term delayed flow from storage) and quick-
flow (the short-term response to a rainfall event) from total
flow is a well-established strategy to better understand trans-
port pathways (Tesoriero et al., 2009). To utilise all available
nutrient data and assess the impact of different transport path-
ways on stream nutrient concentrations, we developed a hy-
brid machine learning framework for surface water nutrient
concentrations (ML-SWAN) that first separated baseflow and
quickflow from total flow and then built intermediate models
to generate missing nutrient species within the total nutrient
pool, using relationships with baseflow, quickflow, rainfall
and seasonal components. The generated nutrient data were
included as additional variables for a final ML prediction. RF
and GBM were employed and their performance compared in
stand-alone mode and as a hybrid method.

This study aimed to compare model performance for nu-
trient concentration prediction, to generate accurate daily nu-
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trient data, to assess the impacts of different water trans-
port pathways on surface water nutrient concentrations and
to present a feasible framework for the application of the
hybrid method for surface water nutrient prediction. It was
hypothesised that the hybrid RF and hybrid GBM, which
used pre-generated daily nutrient concentrations and the sep-
arated baseflow and quickflow as additional auxiliary inputs,
would take advantage of the complementary strengths of hy-
drochemical and hydrological relationships to provide the
most accurate and reliable nutrient predictions. To test this
hypothesis, the hybrid RF and hybrid GBM were compared
to a linear model, a multivariate weighted regression model
(WRTDS), and stand-alone RF and GBM models, for the
prediction of TN, TP, NH4, DOC, DON, and filterable reac-
tive phosphorus (FRP) concentrations, at two different sites
under varied hydrological conditions.

2 Model overview

Our modelling goal in this study was to minimise the sum
of the overall loss function between the predicted nutrient
concentrations and measured nutrient concentrations.∑
i

L(yi,F (Xi)), (1)

where L is a loss function (e.g. squared error), yi are mea-
sured values, Xi are relevant variables, F is any approxima-
tion model, and F(Xi) or ŷi is the model-predicted value at
Xi . The descriptions of different approximation models are
described in the following sections.

2.1 Linear model and WRTDS model

LMs are the most commonly used tool to describe
concentration–discharge (C–Q) relationships (Hirsch et al.,
2010). Typically, a log transformation is often applied to C
and Q data (Crowder et al., 2007; Meybeck and Moatar,
2012; Herndon et al., 2015), with the linear model then de-
scribed as

log(C)= β0+β1 log(Q), (2)

where C is nutrient concentration and Q is total flow. In this
study, the linear model was used as a benchmark for other
models. The fitted slope β0 can represent the base nutrient
concentration in a stream, while β1 can describe relation-
ships between hydrological and biogeochemical data. The
WRTDS model was also used (Hirsch et al., 2010) and can
be described as

log(C)=β0+β1 log(Q)+β2JD+β3 sin(JD)
+β4 cos(JD)+ ε, (3)

where JD is the Julian day and ε is unexplained variation.
β2JD is used to represent the long-term trend from year to

year, while β3 cos(JD) and β4 sin(JD) are used to describe
the seasonal variation in stream nutrient concentrations. To
calculate the Julian Day for use in Eq. (3), the days since
1 January 1970 were first calculated and then multiplied by
2π . WRTDS advances the simpler linear model in two as-
pects. Firstly, the additional components in the equation al-
low a consideration of seasonal and long-term patterns and
make the WRTDS model more able to describe stream nutri-
ent concentrations across the year. Secondly, unlike the linear
model, whose parameters are constant in time, WRTDS ad-
justs the parameters in a gradual manner throughout Q, JD
space. This is accomplished by applying a weighted regres-
sion for the estimation of log(C), where the weights on each
observation are based on three distances between the obser-
vation (Qo, JDo) and the estimation point (Qi , JDi), which
are (1) the time distance between JDo and JDi , (2) the sea-
sonal distance between the time of year at JDo and the time of
year at JDi , and (3) the discharge distance between log(Qo)

and log(Qi) (Hirsch et al., 2010; Green et al., 2014). Thus,
log(C) is considered to be locally linearly related to log(Q),
JD, sin(JD) and cos(JD).

2.2 Random forest and gradient boosting machines

RF and GBMs are ensemble models that combine multiple
base learners inside the model to improve the prediction per-
formance (Ishwaran and Kogalur, 2010; Singh et al., 2014).
The ensemble methods are the main difference between RF
and GBM. In RF, bootstrap aggregating is used to resample
the original dataset with replacement. Hence, datasets with
partial data are generated and then used to build individual
base learners. Unlike bootstrap aggregating, GBM iteratively
generates a sequence of base learners, where each successive
base learner is built for the residual prediction of the pre-
ceding base learner (Friedman, 2001, 2002). The probability
with which data points are selected for the next training set is
not constant and equal for all data points. The selection prob-
ability increases for data points that have been misestimated
in the previous iteration; data points that are difficult to clas-
sify would receive higher selection probabilities than easily
classified data points (Yang et al., 2010; Erdal and Karakurt,
2013).

For RF and GBM, the most commonly used base learner is
a classification and regression tree (CART). A CART model
is built to split the dataset into different nodes (Breiman et al.,
1984):

{
X1,x

a
i < v

}
and

{
X2,x

a
j ≥ v

}
for numeric variables

or
{
X1,x

d
i = c

}
and

{
X2,x

d
j 6= c

}
for categorised variables,

where i and j are the sample indices, a is a numerical vari-
able, v is one of the values of a variable, d is a categorised
variable, and c is one of the values of d variable. To split the
dataset at a or d , the sum of least-square error of the two
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nodes is calculated for a regression task as

error=
L∑
l=0
(yl − yL)

2
+

R∑
r=0
(yr − yR)

2, (4)

where yl and yr are observations in two split nodes and yL
and yR are the average y in that node. The split is chosen
among all candidate variables and values to minimise this
error. This splitting process is applied from the root to the
terminal node, which creates a tree structure for the model
(Erdal and Karakurt, 2013). A CART can be used both for
classification and regression problems due to this tree struc-
ture (Coops et al., 2011). However, a single CART can some-
times oversimplify variable interactions and may lead to low
prediction performance (McBratney et al., 2000; Cutler et al.,
2007; Coopersmith et al., 2010). This drawback can be over-
come by the ensemble method that generates many resam-
pled datasets and creates various CARTs to achieve higher
accuracy (Breiman, 2001) and more stable results when fac-
ing slight variations in input data (Martínez-Rojas et al.,
2015). New data input is thus evaluated against all trees cre-
ated in the ensemble model, and each tree votes using the
main class or the averaged values in the terminal node. The
class with the maximum votes will be used for a classifica-
tion model, and the averaged predicted value from all trees
is used for a regression model (Singh et al., 2014; Belgiu
and Drăgu, 2016). It is found that ensemble methods in RF
and GBM can significantly improve the prediction accuracy
of CART (Ismail and Mutanga, 2010; Erdal and Karakurt,
2013).

Compared to LM and WRTDS models, one drawback of
RF and GBM, as well as many ML methods in general, is
that there is no specific equation in GBM or RF to directly
demonstrate model structures. However, GBM and RF do
provide the relative importance of each variable, which is
based on the empirical improvement in the loss function due
to the split on the specific variable in a tree (Povak et al.,
2014; Puissant et al., 2014). The improvement of a certain
variable was averaged over all trees and used as the relative
importance of that variable for the final model. This relative
importance serves as the key index to understand the model
structure of RF and GBM (Makler-Pick et al., 2011).

2.3 Baseflow separation

Total flow is commonly conceptualised as including baseflow
and quickflow components (Meshgi et al., 2015). Baseflow
separation techniques use the time-series record of stream-
flow to extract the baseflow and quickflow signatures from
the total flow. This can be done by using graphical methods
to identify the intersection between baseflow and the rising
and falling limbs of the quickflow response (Szilagyi and
Parlange, 1998) or by filtered methods which process the
entire stream hydrograph to derive a baseflow hydrograph
(Furey and Gupta, 2001). In this study, the three-pass filtered

method was applied for baseflow separation; the quickflow
was first estimated as described below (Lyne and Hollick,
1979; Nathan and McMahon, 1990), and then baseflow was
calculated:

QFi = αQFi−1+ (Qi −Qi−1)
1+α

2
, (5)

where QFi is the filtered quickflow for the ith sampling in-
stant, QFi−1 is the filtered quickflow for the previous sam-
pling instant to i and α is the filter parameter with a value of
0.925 for daily flow as recommended by Nathan and McMa-
hon (1990). Baseflow is then calculated as BF=Q−QF.

2.4 Performance evaluation metrics

In this study, the root mean squared error (RMSE) and
the Nash–Sutcliffe model efficiency coefficient (MEF) were
used to compare model performance. The RMSE is a mea-
sure of overall error between the predicted and measured data
and returns an error value with the same units as the data,
which is given by the following equation:

RMSE=

√∑
(yi − ŷi)

2

n
, (6)

where n is the number of data samples. RMSE varies from 0
to +∞, and a perfect model would have RMSE of 0. The
MEF is a dimensionless “goodness-of-fit” measure which
can vary from −∞ to 1, with a value of 1 indicating a per-
fect fit and 0 indicating that the mean of the measured values
performs as well as the model. The MEF can be calculated
as

MEF= 1−
∑
(yi − ŷi)

2∑
(yi − yi)

2 , (7)

where yi is the mean of the measured values. Note that the
predicted and measured nutrient values were normalised to
[0, 1] in this study to compare model performance across dif-
ferent nutrient species.

2.5 Overview of modelling processes

The main aims of this research is to test the hybrid model,
rebuild the historical nutrient data, and explore the short-
and long-term nutrient changes. The first step is verifying the
model performance. In this case, the data were randomly di-
vided into 80 : 20. Different models were built and tuned on
the training dataset (80 %) and tested on the testing dataset
(20 %). To further test model uncertainty and stability, the di-
vided and tested processes were repeated 30 times except for
WRTDS. After this, all data points including the testing data
were then used to rebuild the historical nutrient data. Five-
fold cross validation (CV) was done on the training dataset
to tune the model parameters. Leave-one-out cross validation
(LOOCV) was used in WRTDS to predict daily nutrient con-
centrations; LOOCV is the default cross-validation method
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in the EGRET (Exploration and Graphics for RivEr Trends)
package. In that method, one data point was excluded at a
time from the whole dataset, all other data points were used
to build the model, and the excluded point was used for test-
ing the model performance. This process was repeated for
all data points. The performance of all six methods (LM,
WRTDS, RF, GBM, hybrid RF and hybrid GBM) was eval-
uated on the testing dataset. WRTDS was run through the
EGRET package (Hirsch and De Cicco, 2015) in R to pro-
duce daily concentrations for six nutrient species (TP, TN,
DON, DOC, NH4 and FRP). The default settings specified
by the user guide (Hirsch and De Cicco, 2015) were used.
RF and GBM models were built through the H2O package in
R.

The overall processes of ML-SWAN can be divided into
three stages (Fig. 1). The first stage was baseflow separation
using the EcoHydRology package (Fuka et al., 2018). The
generated baseflow, quickflow, total flow and rainfall were
further transformed into lagged data (the averaged values
over the previous 3, 7 and 15 days) to capture any short-term
impacts of different water pathways and rainfall on stream
nutrients. JD, cos(JD) and sin(JD) were also calculated for
RF and GBM to include seasonal and long-term impacts. A
description of all the variables used is given in Table 1.

The second stage of ML-SWAN was to build intermediate
RF and GBM models that generated daily nutrient concentra-
tions. For the intermediate RF and GBM models, only lagged
hydrological data (including total flow, baseflow and quick-
flow), lagged rainfall and seasonal components on the train-
ing dataset were used. Nutrients were not used as a predictor
in the intermediate model. Note that, in this study TP, TN,
DOC and DON were selected to be generated in the second
step. If one nutrient was considered as the final target, the
other three nutrients were used to generate daily data. For
instance, daily TP, DOC and DON were generated as addi-
tional variables to predict TN. In that case, the missing TP,
DOC and DON were generated by the intermediate model
for the training dataset and the testing dataset. Daily TN, TP,
DOC and DON data were generated and used for the final
predictions. These nutrients were selected since they may
be generated from similar sources or are important compo-
nents of the total nutrient load. For instance, DOC and DON
may both be generated from dissolved organic matter (DOM)
(Seitzinger et al., 2002; Bernal et al., 2005; Filep and Rékási,
2011). In the catchments studied here, DON can be a dom-
inant component of TN (Nice et al., 2009; Petrone, 2010;
Bourke et al., 2015). The selection of DOC and DON for
pre-generation may not necessarily be appropriate for other
catchments. The selection of nutrients for pre-generation de-
pends on data availability in the dataset. The use of different
species of the same nutrients (N or P) can generally improve
model performance.

The third stage of ML-SWAN built an additional hybrid
model using the training data, which has generated nutrient
data by the intermediate models, lagged hydrological data,

lagged rainfall data and seasonal components. Note that at
this stage, the only difference between stand-alone ML and
hybrid ML methods was that stand-alone ML did not use pre-
generated daily nutrient data.

3 Site overview

To test the generalisability of the hybrid framework, two
sites in Western Australia (Ellen Brook and Murray River)
were selected as study areas. Ellen Brook and Murray River
are key tributaries for the Swan–Canning Estuary and Peel–
Harvey Estuary (Fig. 2), respectively, and have different hy-
drological conditions. The Swan–Canning Estuary is located
adjacent to the Perth metropolitan area, with an area of
approximately 40 km2. The catchment comprises 30 catch-
ments, which drain approximately 2090 km2 (Kelsey et al.,
2010). Ellen Brook is the largest sub-catchment in the Swan–
Canning catchment, comprising 34 % (716 km2) of the total
catchment area. Ellen Brook is an ephemeral river with no
flow recorded during summer and the early autumn months
(Table 2). The dominant land use in Ellen Brook is agri-
cultural and grazing land. Ellen Brook is one of the high-
est contributors of TN and TP to the Swan–Canning Estu-
ary (Swan River Trust, 2009). Bassendean sands and duplex
Yanga (sand over clay) soils dominate the Ellen Brook catch-
ment. Bassendean sands have very low phosphorus retention
indices (PRIs), while Yanga soils have low PRIs in their up-
per horizon and become waterlogged in winter, promoting
the release of retained nutrients to the stream (Kelsey et al.,
2010).

The Peel–Harvey Estuary is located approximately 75 km
south of the Swan–Canning Estuary, and the Serpentine,
Murray and Harvey Rivers drain into the estuary (Fig. 2).
The total catchment area of the estuary is approximately
11 930 km2. The Murray River catchment is dominated by
deep grey sands, loams clay and peats (Ruibal-Conti et al.,
2013), agricultural land use, and natural reserves, and it con-
tributes about 40 % of annual TN loads and 7 % of annual TP
loads to the estuary (Kelsey et al., 2011).

Both Swan–Canning Estuary and Peel–Harvey Estuary
experience a Mediterranean climate with cool, wet winters
(June–August) and hot, dry summers (December–March).
The long-term average annual rainfall varies from 1300 mm
on the coast to 800 mm in the south-east of the catchment
area (1975–2009, Bureau of Meteorology station), and about
90 % of the rain falls between April and October. Sample
size and the first measurement year of six nutrients species
are listed for the two study sites in Table 3. TN, TP, NH4
and FRP have been monitored for decades, while DOC and
DON have only been measured in recent years, with limited
sample size. Several historical nutrient datasets were com-
bined but significant changes occurred in water sampling de-
vices and analytical instrumentation over the past decades.
These changes can increase the complexity of nutrient data.
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Table 1. Variable list and descriptions.

Variable type Variable name Abbreviation Unit Data source (last access: 9 September 2020)

Hydrological data Total discharge Q m3 s−1 http://wir.water.wa.gov.au
Average total discharge in last x days Qx m3 s−1 Lagged average
Quickflow QF m3 s−1 Equation (5)
Average quickflow in last x days QFx m3 s−1 Lagged average
Baseflow BF m3 s−1 Equation (5)
Average quickflow in last x days BFx m3 s−1 Lagged average

Seasonal components Julian day JD Recorded
Cos (Julian day) cos(JD) Calculated
Sin (Julian day) sin(JD) Calculated

Metrological data rainfall P mm http://www.bom.gov.au

Cumulated rainfall in last x days
X∑
1
P mm Lagged sum

Nutrient data Total nitrogen TN mgL−1 http://wir.water.wa.gov.au
Total phosphorus TP mgL−1 http://wir.water.wa.gov.au
Dissolved organic carbon DOC mgL−1 http://wir.water.wa.gov.au
Dissolved organic nitrogen DON mgL−1 http://wir.water.wa.gov.au
Ammonia NH4 mgL−1 http://wir.water.wa.gov.au
Filterable reactive phosphorus FRP mgL−1 http://wir.water.wa.gov.au
Generated dissolved organic nitrogen DONgenerated mgL−1 Generated by the intermediate model
Generated total phosphorus TPgenerated mgL−1 Generated by the intermediate model
Generated dissolved organic carbon DOCgenerated mgL−1 Generated by the intermediate model

Table 2. Hydrological characteristics of the two tributaries.

Site Hydrological type Annual flow (GL) Area (km2) Land use

Ellen Brook Ephemeral 26.7 716 Rural, agricultural and grazing
Murray River Perennial 360 7855 Agricultural and natural reserves

Table 3. Nutrient sampling time and sample size in Ellen Brook and
Murray River.

Site Nutrient First measurement Sample size

Ellen Brook TN 1990 1057
TP 1990 1022
DOC 1995 297
DON 2006 129
FRP 1990 404
NH4 1990 356

Murray River TN 1983 1648
TP 1983 1662
DOC 2006 209
DON 2006 207
FRP 1990 300
NH4 1983 570

For instance, auto-samplers sampled any time regardless of
weather conditions (e.g. during the rainfall), while grab sam-
ples were typically collected under fine weather conditions
due to safety concerns.

4 Results

4.1 Comparison of prediction accuracy between six
methods

Overall, the scaled RMSE reduced from LM, WRTDS,
stand-alone ML and hybrid ML for all nutrients except NH4,
and the same pattern was found for MEF in both Ellen Brook
and Murray River (Fig. 3). The linear model had the worst
performance: the scaled RMSE was significantly higher and
MEF was significantly lower than the other models, for all
six nutrients and across both sites. WRTDS generally had
higher RMSE and lower MEF than the stand-alone ML, al-
though it achieved similar results to stand-alone ML for FRP
and NH4 at both sites. LOOCV was used in WRTDS, and
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Figure 1. Overall modelling processes of ML-SWAN.

only one set of results was generated, compared to 30 RMSE
and MEF values for other methods. This results in a short-
ened line for WRTDS in Fig. 3, instead of the interquartile
ranges (IQR= 75th percentile− 25th percentile) presented
for the other methods. LOOCV can sometimes overestimate
the model performance as only one sample was tested at a
time; in contrast, 20 % of the independent testing data were
tested in the other five models. LOOCV can also have a
higher variance than other CV methods (Li, 2016). As such,
the WRTDS results are not directly comparable to the other
methods.

Stand-alone ML achieved results that placed it between
WRTDS and hybrid ML. Stand-alone GBM achieved the
highest accuracy for NH4 prediction in Murray River. Hy-
brid RF and hybrid GBM had the lowest RSME and highest
MEF for all nutrients except NH4, in Ellen Brook and Murray
River (Fig. 3). Compared to the stand-alone ML, the hybrid
ML also had much lower prediction uncertainty, in that the
RMSE and MEF had narrower IQR than that of the stand-
alone ML, especially for DON and FRP prediction in Ellen
Brook and DOC prediction in Murray River. The use of pre-
generated daily nutrient data was the only difference between
hybrid ML and stand-alone ML. This means that the gener-
ated nutrients provided additional information for the hybrid

model that allowed more stable results. Interestingly, while
the hybrid ML had better performance than the stand-alone
ML, there was no significant difference in performance be-
tween the hybrid RF and hybrid GBM, though they showed
differences between different nutrient species. For instance,
hybrid RF achieved slightly better performance for DOC in
Ellen Brook, while hybrid GBM had lower RMSE for DOC
in Murray River. There was no significant performance dif-
ference between stand-alone RF and GBM.

In summary, the hybrid ML had the best performance
amongst the six methods, followed by stand-alone RF and
GBM. WRTDS was better than the linear model but could
only achieve results similar to stand-alone RF and GBM for
NH4 prediction in Ellen Brook and for NH4 and FRP predic-
tion in Murray River.

4.2 Generated daily TN in Ellen Brook

Model performance for six nutrients was compared in the last
section. To make this section more concise, these six models
were then compared in their ability to generate daily TN in
Ellen Brook from 1 January 1989 to 16 July 2018 (Fig. 4).
The daily TN in Murray River and daily TP in both sites were
also generated (see results in the Supplement). TN was se-
lected because TN is the most important and most frequently
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Figure 2. The location of Ellen Brook and Murray River.

measured nutrient in many places. This hybrid method can
also be used for other nutrients. Note that all data points (not
just the 80 % training dataset) were used to generate daily
TN.

The LM performed very poorly for TN prediction; low-
concentration samples (TN< 1.9mgL−1) were all underes-
timated, and some extremely high concentrations were in-
correctly generated due to the high flow (Fig. 4a). There were
some seasonal patterns in the generated TN which come from
the flow data. LM only used total flow to predict nutrient
concentrations, while other important hydrological processes
were ignored. Thus the oversimplified LM had high errors
in nutrient prediction (Fig. 4), and this method might be
more suitable for solutes that are not substantially bioactive
(e.g. SiO2, Ca2+, Mg2+, Cl−) (Stallard and Murphy, 2014).
The WRTDS captured some seasonal patterns of TN (from
2008 to 2018) but still had problems predicting TN between
1989 and 1996; some extremely high values were generated,
and TN< 1.0mgL−1 were overestimated. Some high val-
ues (e.g. TN in 2008) were underestimated (Fig. 4b). Stand-
alone ML and hybrid ML generated similar daily TN data but

varied in the detail. These models successfully captured the
low-concentration data and the seasonal pattern of TN. Un-
like results by WRTDS, the generated TN by stand-alone ML
and hybrid ML have a more consistent seasonal pattern from
1989 to 2018. The RF and hybrid RF both underestimated
a few high-concentration data (TN< 4.0mgL−1), compared
to GBM and hybrid GBM, although hybrid RF still showed
better performance than RF. For instance, high-concentration
data in 2007 and again from 2014 to 2017 were successfully
predicted by hybrid RF but underestimated by RF. Compared
to stand-alone GBM, the hybrid GBM achieved lower errors
for high-concentration data.

Apart from the better performance for high-concentration
data, another difference between stand-alone ML and hybrid
ML was that the long-term trend in TN was consistent in
stand-alone ML, but this trend fluctuated in hybrid ML. For
instance, hybrid GBM results fluctuated from 1989 to 1999
and then showed an increasing long-term trend from 2005
to 2018, in addition to the seasonal fluctuation. The pre-
generated nutrient is the only difference between stand-alone
model and hybrid model. If there are long-term trends in nu-
trient concentrations (e.g. TN), similar trends should also ex-
ist in the components of TN (either DON or dissolved inor-
ganic nitrogen). The pre-generated nutrients emphasise this
impact on the hybrid model. This suggests that the gener-
ated nutrient data could provide additional information that
allowed the hybrid ML to capture long-term trends; this in-
formation was not included in the seasonal components but
existed in the generated nutrient data.

The distribution of the TN data generated by the six mod-
els was compared to the distribution of the measured TN
data (Fig. 5). Similar to the results shown in Fig. 4, hy-
brid GBM had the most similar distribution to the measured
TN data. Only a few low- and high-concentration data were
incorrectly predicted by the hybrid GBM. Hybrid RF also
achieved a distribution similar to the measured data, but more
extreme-value data were underestimated compared to the hy-
brid GBM. Stand-alone GBM and RF showed a similar dis-
tribution to the hybrid GBM and RF with less accuracy in
the extreme data. Overall, GBM (either stand-alone model
or hybrid model) could have a better distribution than RF.
WRTDS generated some extremely high data and underes-
timated many low-concentration data, which is also seen in
Fig. 4b. The linear model incorrectly predicted most of the
TN data. The results in both Figs. 4 and 5 showed that hybrid
GBM achieved the best simulated daily TN data, followed
by hybrid RF, stand-alone GBM and RF. WRTDS and LM
generated large biases in TN prediction.

The hybrid ML models predicted most of the extreme con-
centrations (Figs. 4 and 5), and only a few points were under-
predicted. The limited number of extreme data and the model
structure that tried to balance the overall trend prediction
with extreme data prediction can cause under-prediction. For
example, higher weights can be set up for extreme data dur-
ing the model training process to force model to over-predict
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Figure 3. Model performance across six nutrients and the two sites: (a) RMSE and (b) MEF for Ellen Brook; (c) RMSE and (d) MEF results
for Murray River.

the value for extreme concentrations, which may reduce the
accuracy for overall trend prediction. In this study, our target
is to understand the long-term nutrient trend. Therefore, we
did not use this technique during the model training process.

4.3 Comparison of variable importance in hybrid
GBM for TN prediction

The daily data generated by the hybrid GBM showed a lower
RMSE and better distribution than stand-alone ML, WRTDS
and LM (Figs. 4 and 5). Compared to LM, WRTDS and sim-
ple CART models, one drawback of RF and GBM, as well
as many ML methods in general, is that there is no specific
equation in GBM or RF to directly demonstrate model struc-
tures. However, GBM and RF do provide the relative impor-
tance of each variable, which is based on the empirical im-
provement in the loss function due to the split on the specific
variable in a tree (Povak et al., 2014; Puissant et al., 2014).

The improvement of a certain variable was averaged over all
trees as the relative importance for the final model. This rela-
tive importance serves as the key index to understanding the
model structure of RF and GBM (Makler-Pick et al., 2011).

The variable importance for TN prediction by hybrid
GBM in Ellen Brook and Murray River is presented in Fig. 6.
The variable importance in the intermediate models is also
included, and the length of coloured sections represents the
importance of those variables in the hybrid GBM or interme-
diate GBM. The importance was scaled according to the most
important variable. The generated DON and TP ranked as the
first two critical variables in Ellen Brook, while all three gen-
erated nutrients were listed as the most important variables in
Murray River. This suggests that the generated nutrients do
provide critical information to the model and improve model
performance. The quickflow was most important for the gen-
erated DON and TP, as well as the TN itself in Ellen Brook.
The impacts of quickflow decreased, and baseflow, seasonal
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Figure 4. Daily TN generated by the six models for Ellen Brook.

components and rainfall data become more important for TN
prediction in Murray River. This difference in variable im-
portance reflects different catchment characteristics across
the two sites and therefore different hydrological and hydro-
chemical processes controlling TN concentrations. The total
flow was not of high importance at either site, which suggests
that baseflow or quickflow had more impact on surface wa-
ter TN. Moreover, TN concentrations were affected by more
variables in Murray River than in Ellen Brook.

5 Discussion

5.1 Different sources of TN in Ellen Brook and Murray
River

Hydrological conditions, specific sub-catchment character-
istics and the chemical properties of nutrients can all im-
pact surface water nutrient concentrations (Barron et al.,
2009; Moatar et al., 2016), nutrient partitioning (Ruibal-
Conti et al., 2013) and nutrient transport (Burt and Pinay,
2005; Tesoriero et al., 2009). TN prediction in Murray River
was impacted by more variables than in Ellen Brook (Fig. 6),
suggesting more complex relationships in Murray River.
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Figure 5. The distribution of the daily TN generated by the six mod-
els and that of the measured TN data in Ellen Brook.

Quick flow is composed of runoff, interflow and direct pre-
cipitation (Brodie and Hostetler, 2005) and was shown to be
important for TN prediction in Ellen Brook. Direct precipita-
tion, however, did not have a large impact on TN (the green
bars in Fig. 6); this suggests that runoff and interflow were
important for TN concentrations. Baseflow can account for
(on average) 53 % of annual stream discharge in Ellen Brook,
but baseflow was not of high importance for TN prediction in
this study. This may occur due to low TN concentrations in
the baseflow (Barron et al., 2009), large areas of low nutrient-
retaining sandy soils in the Ellen Brook catchment, and high
nutrient transport efficiency in quickflow and first flush. Mel-
lander et al. (2012) quantified nutrient transport pathways in
agricultural catchments and found that quickflow was only
2 %–8 % of total flow, but it can transport up to 50 % of TP.
Gunaratne et al. (2017) found that the seasonal first flush was
only 30 % of runoff volume but contained 40 %–70 % of the
nutrient load.

Note that the median TN in Ellen Brook (2.1 mgL−1) is
significantly higher than that in Murray River (0.67 mgL−1)
which can be explained to some extent by the large area
of grazing lands in Ellen Brook. Previous investigations in
south-eastern Australia (Adams et al., 2014), New Zealand
(Davies-Colley et al., 2004) and north-western Europe (Con-
roy et al., 2016) all suggested that livestock can increase TN
discharge to the receiving water bodies. Most of the piggeries
and poultry farms in the Swan–Canning catchment are lo-
cated in Ellen Brook catchment (Kelsey et al., 2010), which
has the highest TN and TP discharge loads. Thus the large
grazing areas, piggeries and poultry farms and low nutrient-
retaining sandy soils may explain the importance of quick-
flow for TN prediction and high TN concentrations in Ellen
Brook.

Baseflow is derived from groundwater discharge to
streams and the slow drainage of water stored in local wet-
lands (Kelsey et al., 2010). Baseflow is highlighted as an

important variable for TN prediction in Murray River. The
Murray River catchment has large areas with high nutrient-
retaining soils (high PRI) (Kelsey et al., 2011) and rela-
tively low TN concentrations, and it is likely that ground-
water makes significant contributions to TN in Murray River.
Ruibal-Conti et al. (2013) previously found that variability in
TN is strongly associated with variability in flows in Murray
River. Our results extend this finding, in that both baseflow
and quickflow likely impact TN in the river.

It is noted that seasonal components including sin(JD),
and cos(JD) showed significantly higher importance in Mur-
ray River. This may because seasonal information is captured
in other inputs in Ellen Brook (e.g. quickflow and baseflow).
But the main reason is the stronger seasonal TN signals in
Murray River compared to Ellen Brook. This finding is sup-
ported by the generated daily TN data for Murray River (see
results in Supplement S2). Natural reserves occupy large ar-
eas of the Murray River catchment, and this may increase
seasonal signals. Additionally, the lagged quickflow, base-
flow and rainfall were generated (for the previous 3, 7 and
15 days), but only the lagged 15 d baseflow and quickflow
were ranked as important variables for both Ellen Brook and
Murray River. This suggests a timescale of nutrient trans-
port in the sub-catchments and likely reflects soil permeabil-
ity and geology; long hydrochemical recessions from storm
events may prolong their impact on the ecological status of
receiving rivers (Mellander et al., 2012).

Six models were compared for nutrient predictions and the
hybrid GBM model achieved the highest accuracy (Figs. 3
and 5). The long-term changes in TN have been discussed
in previous sections. To understand the long-term changes in
other nitrogen species across the year, the hybrid GBM was
then applied to generate daily DON, NH4 and NOx in Ellen
Brook from 1 January 1989 to 16 July 2018 (Fig. 7). The gen-
erated DON has much higher concentration than NH4 and
NOx. This is consistent with previous investigations in this
study area that DON was the dominant form of TN in both
surface water and groundwater (Nice et al., 2009; Petrone,
2010; Bourke et al., 2015). There is no clear long-term pat-
terns in generated NH4 and NOx; however, an increasing
long-term trend in generated DON can be found from 2006
to 2018. There is also an increasing trend in TN from 2005
(Fig. 4), suggesting DON was the main reason for the in-
creasing TN concentrations. DON is often assumed to be rel-
atively slow to react, but depending on the source of DON, it
can turnover rapidly, thereby constituting an active contrib-
utor to the eutrophication of surface waters (Petrone et al.,
2009).

5.2 Can we improve our understanding of historical
nutrient conditions using a contemporary data?

The generated nutrient data provided additional information
to enhance the hybrid model performance (Figs. 3 and 5). To
assess the individual impact of a generated nutrient, we did
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Figure 6. Variable importance in the hybrid GBM for TN prediction in (a) Ellen Brook and (b) Murray River.

a simple test that sequentially added generated TP, DOC and
DON data to the base GBM (only seasonal components and
lagged hydrological data) and evaluated RMSE and MEF for
TN prediction. This process was repeated 30 times and the
results are presented in Fig. 8.

The RMSE significantly decreased when generated TP
was added as an additional variable. DOC and DON only
have 297 and 129 data, respectively, and were only measured
in recent years, while TP has more than 1000 data and has
been measured since 1990 (Table 3). However, DOC and
DON could still improve model performance (Fig. 8), and
the generated DON was ranked as the most important vari-
able across both sites (Fig. 6). The medium RMSE slightly
decreased when both generated DOC and DON were added.
Moreover, the generated DOC and DON also reduced the
model uncertainty, such that the IQRs became narrower than
model results without the generated nutrients.

Our results suggest that the recent DON and DOC data
improved understanding of historical TN. It is not uncom-
mon to have a similar data structure when several datasets
are combined or new measurements are added to a project.
While there were no DON data prior to 2006 in Ellen Brook,
daily DON can be generated back to 1990 with the help of
generated TN, DOC and TP data; DON had the highest MEF
among the six nutrients (Fig. 3). This hybrid method pro-
vides a feasible process to fully utilise all available nutrient
data to accurately fill gaps in either historical or recent nutri-
ent datasets.

5.3 A comprehensive comparison of six models

Monitoring, modelling and forecasting water quality inputs
are essential to support the management of the quality of
receiving waters while responding to current anthropogenic
stressors (Holguin-Gonzalez et al., 2013; Schnoor, 2014).

Geosci. Model Dev., 13, 4253–4270, 2020 https://doi.org/10.5194/gmd-13-4253-2020



B. Wang et al.: ML-SWAN-v1 4265

Figure 7. Generated daily DON, NOx and NH4 by the hybrid GBM for Ellen Brook.

Figure 8. Model performance for TN prediction across different input variables for Ellen Brook.
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The performances of six models were comprehensively com-
pared, in an exploration of historical and contemporary nu-
trient data across two study sites. LM had the highest error
while stand-alone RF and GBM had similar error. This agrees
with previous findings by Erdal and Karakurt (2013) that RF
and GBM models achieved similar correlation coefficients
(R) for streamflow forecasting. Ismail and Mutanga (2010)
also reported that RF and GBM increased the R of a single
CART by 10.01 % and 9.59 %, respectively.

The performance of WRTDS, as well as many conceptual
models, is often reliant on a prescribed set of input infor-
mation, which can account for variance in nutrient concen-
trations but may miss some important processes for certain
rivers (e.g. baseflow in this study). This can compromise the
performance of WRTDS for nutrient prediction. Moreover,
hydrological and chemical processes within the systems are
typically ignored by many conceptual models, which may
exclude important hydrochemical information. By contrast,
some complex conceptual models may include these hydro-
chemical processes but are often constrained by insufficient
nutrient data to calibrate and validate the models. Some sim-
plifications may be made to account for lack of data, but the
simplifications may often weaken model performance. The
hybrid framework presented in this study has overcome the
challenge caused by data paucity by building intermediate
models to generate missing nutrient data and then using this
additional hydrochemical information to improve final model
performance.

The hybrid models developed in this study were able to
take advantage of the complementary strengths of both hy-
drochemical (additionally generated nutrient data) and hy-
drological (lagged data) information. This was particularly
the case for the prediction of high nutrient concentrations,
where the hybrid models were shown to outperform the
stand-alone RF and GBM, in terms of accuracy, reliabil-
ity and value distribution. Improved accuracy in the hybrid
model was achieved by using intermediate models, although
these intermediate models may also have a relatively high
error (similar to stand-alone RF and GBM). However, if
the improved model performance is higher than the intro-
duced error, the results are manageable. Similar results were
also found in Hunter et al. (2018), who compared a hybrid
process-driven and ANN model with the stand-alone ANN
model and the process-driven model. In their study, the hy-
brid also achieved the best performance followed by stand-
alone ANN. The process-driven benchmark model had a sig-
nificantly lower accuracy than the other two models.

A limitation of the hybrid modelling approach, however, is
that it requires the time and expertise to develop intermediate
models for generating additional nutrient data. Prior knowl-
edge also plays an important role in identifying the variables
for pre-generation. Some statistical methods (e.g. the corre-
lation test, simple linear model) can be helpful to identify
these variables if there is no clear theoretical or conceptual

understanding on which to base the selection of the impor-
tant variables.

In this study, we tested the generalised performance of the
hybrid model across six nutrient species and two tributaries.
We also note that nutrients may not always be the critical
variables targeted for pre-generation; the pre-generated DOC
was ranked as having low importance for Ellen Brook and
produced only a slight improvement in the performance of
the hybrid model for NH4.

5.4 The application of ML methods for hydrological
modelling

There were constraints in the nutrient datasets in this re-
search, and similar constraints commonly exist in other study
areas. Many nutrient datasets contain important information,
but sometimes it can be challenging to directly combine or
utilise them. ML methods provide a feasible approach to
preprocess these datasets or combine them. In this study,
the concentrations of missing nutrient species were first pre-
dicted by the intermediate ML method and then used as in-
puts for another ML method for final predictions. The pre-
generation of missing data and pre-modelling hydrological
analysis were critical components of the hybrid model and
allowed the identification of the impact of different hydrolog-
ical transport pathways for TN export from the two tributary
catchments. The hybrid ML methods were further applied to
generate nutrient data for eight tributaries, and the generated
data have since been used as inputs to an estuary prediction
model, which simulates and forecasts nutrient concentrations
in the previous and next 5 d in the Swan–Canning Estuary
(Huang et al., 2019). The modelling methods and strategies
developed in the work presented here can be easily applied
to other study areas. Overall, ML methods provide a flexible
and feasible solution to explore the underlying relationships,
reconstruct spatial and temporal datasets, and combine dif-
ferent models.

6 Summary and conclusion

A hybrid machine learning model was developed, and its per-
formance tested on six nutrients and two estuary tributaries
and compared with alternative modelling approaches. The
hybrid ML model exhibited higher prediction accuracy and
lower prediction uncertainty than stand-alone ML, WRTDS
and LM for almost all nutrients. The pre-generation of miss-
ing data and pre-modelling hydrological analysis were criti-
cal components of the hybrid model and allowed the iden-
tification of the impact of different hydrological transport
pathways for TN export from the two tributary catchments.
The results of this study demonstrate the advantages of using
hybrid models for high temporal resolution nutrient predic-
tion; the results also demonstrate the use of the hybrid model
for re-analysis of historical data in the light of contemporary
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data. Modelling strategies for different modelling targets and
dataset structures have also been discussed. The modelling
framework presented here can aid others to fully use all avail-
able nutrient data to generate accurate nutrient predictions.
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Belgiu, M. and Drăgu, L.: Random forest in remote sens-
ing: A review of applications and future directions,
ISPRS J. Photogramm. Remote Sens., 114, 24–31,
https://doi.org/10.1016/j.isprsjprs.2016.01.011, 2016.

Bernal, S., Butturini, A., and Sabater, F.: Seasonal variations
of dissolved nitrogen and DOC : DON ratios in an inter-
mittent Mediterranean stream, Biogeochemistry, 75, 351–372,
https://doi.org/10.1007/s10533-005-1246-7, 2005.

Bourke, S., Hammond, M., and Clohessy, S.: Perth Shallow
Groundwater Systems Investigation: North Lake, available at:
https://www.water.wa.gov.au/__data/assets/pdf_file/0016/7432/
108960.pdf (last access: 9 September 2020), 2015.

Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001.
Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A.: Classifi-

cation and regression trees, CRC Press, Boca Raton, 1984.
Brodie, R. and Hostetler, S.: A review of techniques for analysing

baseflow from stream hydrographs, in: Proceedings of the
NZHS-IAHNZSSS 2005 Conference, Auckland, New Zealand,
2005.

Burt, T. P. and Pinay, G.: Linking hydrology and
biogeochemistry, Prog. Phys. Geogr., 3, 297–316,
https://doi.org/10.1067/mva.2002.123763, 2005.

Chanat, J. G., Rice, K. C., and Hornberger, G. M.: Consistency of
patterns in concentration-discharge plots, Water Resour. Res., 38,
10–22, https://doi.org/10.1029/2001WR000971, 2002.

Chen, Y., Liu, R., Sun, C., Zhang, P., Feng, C., and Shen, Z.: Spatial
and temporal variations in nitrogen and phosphorous nutrients
in the Yangtze River Estuary, Mar. Pollut. Bull., 64, 2083–2089,
https://doi.org/10.1016/j.marpolbul.2012.07.020, 2012.

Clapcott, J. E., Collier, K. J., Death, R. G., Goodwin, E. O.,
Harding, J. S., Kelly, D., Leathwick, J. R., and Young, R.
G.: Quantifying relationships between land-use gradients and
structural and functional indicators of stream ecological in-
tegrity, Freshw. Biol., 57, 74–90, https://doi.org/10.1111/j.1365-
2427.2011.02696.x, 2012.

Cohn, T. A., Delong, L. L., Gilroy, E. J., Hirsch, R. M., and Wells,
D. K.: Estimating constituent loads, Water Resour. Res., 25, 937–
942, https://doi.org/10.1029/WR025i005p00937, 1989.

Conroy, E., Turner, J. N., Rymszewicz, A., O’Sullivan, J. J., Bruen,
M., Lawler, D., Lally, H., and Kelly-Quinn, M.: The impact of
cattle access on ecological water quality in streams: Examples
from agricultural catchments within Ireland, Sci. Total Environ.,
547, 17–29, https://doi.org/10.1016/j.scitotenv.2015.12.120,
2016.

Coopersmith, E. J., Minsker, B., and Montagna, P.: Un-
derstanding and forecasting hypoxia using machine

https://doi.org/10.5194/gmd-13-4253-2020 Geosci. Model Dev., 13, 4253–4270, 2020

https://github.com/benyawang-uwa/daily-nutrient-prediction
https://github.com/benyawang-uwa/daily-nutrient-prediction
https://doi.org/10.5281/zenodo.3739611
https://doi.org/10.5194/gmd-13-4253-2020-supplement
https://doi.org/10.1016/j.earscirev.2016.06.014
https://doi.org/10.1016/j.jhydrol.2014.04.034
https://doi.org/10.1016/j.scitotenv.2015.12.109
http://www.clw.csiro.au/publications/waterforahealthycountry/2009/wfhc-groundwater-Ellen-Brook-catchment.pdf
http://www.clw.csiro.au/publications/waterforahealthycountry/2009/wfhc-groundwater-Ellen-Brook-catchment.pdf
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1007/s10533-005-1246-7
https://www.water.wa.gov.au/__data/assets/pdf_file/0016/7432/108960.pdf
https://www.water.wa.gov.au/__data/assets/pdf_file/0016/7432/108960.pdf
https://doi.org/10.1067/mva.2002.123763
https://doi.org/10.1029/2001WR000971
https://doi.org/10.1016/j.marpolbul.2012.07.020
https://doi.org/10.1111/j.1365-2427.2011.02696.x
https://doi.org/10.1111/j.1365-2427.2011.02696.x
https://doi.org/10.1029/WR025i005p00937
https://doi.org/10.1016/j.scitotenv.2015.12.120


4268 B. Wang et al.: ML-SWAN-v1

learning algorithms, J. Hydroinformatics, 13, 64,
https://doi.org/10.2166/hydro.2010.015, 2010.

Coops, N. C., Waring, R. H., Beier, C., Roy-Jauvin, R., and
Wang, T.: Modeling the occurrence of 15 coniferous tree
species throughout the Pacific Northwest of North America
using a hybrid approach of a generic process-based growth
model and decision tree analysis, Appl. Veg. Sci., 14, 402–414,
https://doi.org/10.1111/j.1654-109X.2011.01125.x, 2011.

Cozzi, S. and Giani, M.: River water and nutrient dis-
charges in the Northern Adriatic Sea: Current importance
and long term changes, Cont. Shelf Res., 31, 1881–1893,
https://doi.org/10.1016/j.csr.2011.08.010, 2011.

Crowder, D. W., Demissie, M., and Markus, M.: The accuracy of
sediment loads when log-transformation produces nonlinear sed-
iment load-discharge relationships, J. Hydrol., 336, 250–268,
https://doi.org/10.1016/j.jhydrol.2006.12.024, 2007.

Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T.,
Gibson, J., and Lawler, J. J.: Random forests for classification
in ecology, Ecology, 88, 2783–2792, https://doi.org/10.1890/07-
0539.1, 2007.

Davies-Colley, R. J., Nagels, J. W., Smith, R. A., Young, R. G.,
and Phillips, C. J.: Water quality impact of a dairy cow herd
crossing a stream, New Zeal. J. Mar. Freshw. Res., 38, 569–576,
https://doi.org/10.1080/00288330.2004.9517262, 2004.

Denvil-Sommer, A., Gehlen, M., Vrac, M., and Mejia, C.: LSCE-
FFNN-v1: a two-step neural network model for the reconstruc-
tion of surface ocean pCO2 over the global ocean, Geosci.
Model Dev., 12, 2091–2105, https://doi.org/10.5194/gmd-12-
2091-2019, 2019.

Domingues, R. B., Anselmo, T. P., Barbosa, A. B., Som-
mer, U., and Galvão, H. M.: Nutrient limitation of phyto-
plankton growth in the freshwater tidal zone of a turbid,
Mediterranean estuary, Estuar. Coast. Shelf Sci., 91, 282–297,
https://doi.org/10.1016/j.ecss.2010.10.033, 2011.

Erdal, H. I. and Karakurt, O.: Advancing monthly stream-
flow prediction accuracy of CART models using en-
semble learning paradigms, J. Hydrol., 477, 119–128,
https://doi.org/10.1016/j.jhydrol.2012.11.015, 2013.

Erlandsson, M., Cory, N., Fölster, J., Köhler, S., Laudon, H., Wey-
henmeyer, G. A., and Bishop, K.: Increasing Dissolved Organic
Carbon Redefines the Extent of Surface Water Acidification and
Helps Resolve a Classic Controversy, Bioscience, 61, 614–618,
https://doi.org/10.1525/bio.2011.61.8.7, 2011.

Filep, T. and Rékási, M.: Factors controlling dissolved organic car-
bon (DOC), dissolved organic nitrogen (DON) and DOC/DON
ratio in arable soils based on a dataset from Hungary, Geoderma,
162, 312–318, https://doi.org/10.1016/j.geoderma.2011.03.002,
2011.

Forio, M. A. E., Landuyt, D., Bennetsen, E., Lock, K., Nguyen,
T. H. T., Ambarita, M. N. D., Musonge, P. L. S., Boets, P.,
Everaert, G., Dominguez-Granda, L., and Goethals, P. L. M.:
Bayesian belief network models to analyse and predict eco-
logical water quality in rivers, Ecol. Modell., 312, 222–238,
https://doi.org/10.1016/j.ecolmodel.2015.05.025, 2015.

Friedman, J.: Greedy Function Approximation: A Gra-
dient Boosting Machine, Ann. Stat., 29, 1189–1232,
https://doi.org/10.1214/009053606000000795, 2001.

Friedman, J. H.: Stochastic gradient boosting, Comput. Stat.
Data Anal., 38, 367–378, https://doi.org/10.1016/S0167-
9473(01)00065-2, 2002.

Fuka, D., Walter, T., Archibald, J., Tammo, S., and Easton, Z.:
EcoHydRology: A Community Modeling Foundation for Eco-
Hydrology, R package version 0.4.12.1, available at: https:
//cran.r-project.org/web/packages/EcoHydRology (last access:
9 September 2020), 2018.

Furey, P. R. and Gupta, V. K.: A physically based filter for separat-
ing base flow from streamflow time series, Water Resour. Res.,
37, 2709–2722, https://doi.org/10.1029/2001WR000243, 2001.

Giblin, A. E., Weston, N. B., Banta, G. T., Tucker, J., and Hopkin-
son, C. S.: The Effects of Salinity on Nitrogen Losses from an
Oligohaline Estuarine Sediment, Estuar. Coast., 33, 1054–1068,
https://doi.org/10.1007/s12237-010-9280-7, 2010.
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