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Abstract. The Earth System Model Evaluation Tool (ES-
MValTool), a community diagnostics and performance met-
rics tool for evaluation and analysis of Earth system mod-
els (ESMs), is designed to facilitate a more comprehensive
and rapid comparison of single or multiple models participat-
ing in the Coupled Model Intercomparison Project (CMIP).
The ESM results can be compared against observations or re-
analysis data as well as against other models including pre-
decessor versions of the same model. The updated and ex-
tended version (v2.0) of the ESMValTool includes several
new analysis scripts such as large-scale diagnostics for eval-
uation of ESMs as well as diagnostics for extreme events, re-
gional model and impact evaluation. In this paper, the newly
implemented climate metrics such as effective climate sensi-
tivity (ECS) and transient climate response (TCR) as well
as emergent constraints for various climate-relevant feed-
backs and diagnostics for future projections from ESMs are
described and illustrated with examples using results from
the well-established model ensemble CMIP5. The emergent
constraints implemented include constraints on ECS, snow-
albedo effect, climate–carbon cycle feedback, hydrologic cy-
cle intensification, future Indian summer monsoon precipi-
tation and year of disappearance of summer Arctic sea ice.
The diagnostics included in ESMValTool v2.0 to analyze fu-
ture climate projections from ESMs further include analy-
sis scripts to reproduce selected figures of chapter 12 of the

Intergovernmental Panel on Climate Change’s (IPCC) Fifth
Assessment Report (AR5) and various multi-model statistics.

1 Introduction

Climate models are important tools not only to improve our
understanding of the key processes in present-day climate but
also to project future climate change under different plausi-
ble scenarios. Climate models have been continuously im-
proved and extended over the last decades from relatively
simple atmosphere-only models to the complex state-of-the-
art Earth system models (ESMs) participating in the latest
(sixth) phase of the Coupled Model Intercomparison Project
(CMIP6; Eyring et al., 2016a). The increasing complexity of
the models is needed to represent key feedbacks that affect
climate change but is also likely to increase the spread of cli-
mate projections across the multi-model ensemble (Eyring et
al., 2019). This poses a challenge for evaluation and analysis
of the model results that requires efficient tools able to han-
dle the increasing number of variables, processes and also the
increasing data volume.

The Earth System Model Evaluation Tool (ESMValTool),
released in a first version in 2016 (Eyring et al., 2016b),
has been developed with the aim of taking model evalua-
tion to the next level by facilitating analysis of many dif-
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ferent ESM components, providing well-documented source
code and scientific background of implemented diagnostics
and metrics and allowing for traceability and reproducibil-
ity of results (provenance). This has been made possible by
a lively and growing development community continuously
improving the tool supported by multiple national and Eu-
ropean projects. Version 2.0 (v2.0) of the ESMValTool has
been developed as a large community effort to specifically
target the increased data volume of CMIP6 and the related
challenges posed by analysis and evaluation of output from
multiple high-resolution and complex ESMs.

For this, the core functionalities have been completely
rewritten in order to take advantage of state-of-the-art com-
putational libraries and methods to allow for faster, more ef-
ficient and user-friendly data processing (Righi et al., 2020).
Besides many technical improvements, ESMValTool v2.0 in-
cludes new large-scale diagnostics for evaluation of Earth
system models (Eyring et al., 2020) and diagnostics for ex-
treme events, regional model and impact evaluation and anal-
ysis of ESM results (Weigel et al., 2020). As part of a series
of four articles describing the new features and diagnostics
of the Earth System Model Evaluation Tool v2.0, this paper
focuses on the newly included diagnostics for emergent con-
straints and for analysis of future projections from ESMs as
well as multi-model products (Sect. 3.1) and the two new
climate metrics: effective climate sensitivity (ECS) and tran-
sient climate response (TCR) (Sect. 3.2).

An emergent constraint is a relationship across an ensem-
ble of models between some aspect of the Earth system sen-
sitivity and an observable trend or variation in the current cli-
mate, which offers the possibility to reduce uncertainties in
climate projections. Furthermore, emergent constraints can
help guide model development onto processes crucial to the
magnitude and spread of future climate change projections
and to point out future observational priorities (Eyring et al.,
2019). Emergent constraints implemented in ESMValTool
v2.0 (Sect. 3.3) include seven different approaches to con-
strain ECS as well as constraints for the hydrological cycle
intensification, snow-albedo effect, year of disappearance of
summer Arctic sea ice, future Indian summer monsoon pre-
cipitation and climate–carbon cycle feedback.

For the analysis of ESM projections, ESMValTool v2.0
now includes diagnostics to reproduce selected figures from
chapter 12 (Long-term Climate Change: Projections, Com-
mitments and Irreversibility) of the IPCC AR5 (Collins et
al., 2013). These include figures showing the change in a
variable between historical and future periods, e.g., maps
(2-D variables), zonal means (3-D variables), time series
showing the change in certain variables from historical to
future periods for multiple scenarios and maps visualizing
change in variables normalized by global mean tempera-
ture change (pattern scaling) and the possibility to show sta-
tistical significance of changes when compared to natural
variability and the degree of agreement between the mod-
els using the stippling and hatching methods as in Collins et

al. (2013). Furthermore, diagnostics tailored to analyze pro-
jections of sea ice such as calculation of the year of disap-
pearance (sea ice extent below 1 million km2) from a multi-
model ensemble and to constrain the future austral jet posi-
tion have been added. A newly implemented “toy model” can
be used to generate synthetic members of a single dataset.
When providing an estimate for the standard error of ob-
servations, e.g., from differences between different observa-
tional datasets, this toy model can be used to investigate and
take into account the effect of observational uncertainty in
model evaluation (Sect. 3.4). A summary is given in Sect. 4.
The aim of this paper is to document and illustrate how these
newly added ESMValTool “recipes”, i.e., configuration files
defining input, preprocessing, diagnostics and run-time op-
tions of the ESMValTool, can be used for model evaluation
and analysis.

2 Models and observations

The open-source release of ESMValTool (v2.0) that accom-
panies this paper is intended to work with CMIP5 and
CMIP6 model output (and partly also with CMIP3 if the re-
quired output has been generated), but the tool is compatible
with any arbitrary model output, provided that it is in CF-
compliant (CF: Climate and Forecast; http://cfconventions.
org/, last access: 18 June 2020) NetCDF format and
that the variables and metadata are following the CMOR
(Climate Model Output Rewriter; https://pcmdi.github.
io/cmor-site/media/pdf/cmor_users_guide.pdf, last access:
18 June 2020) tables and definitions (e.g., https://github.
com/PCMDI/cmip6-cmor-tables/tree/master/Tables, last ac-
cess: 7 November 2019, for CMIP6). These tables read in
by the ESMValTool contain the definition of all variables,
together with their metadata such as units and standard and
long names. Observations used in the evaluation are detailed
in the various sections of the paper (see also Sect. 6) and sum-
marized in Tables 1 and 2 but should also be seen as examples
as they can be easily replaced by other observational datasets
provided they follow the CMOR convention. For selected ob-
servational datasets, CMORizing scripts are provided with
the ESMValTool that contain detailed downloading and pro-
cessing instructions to convert the datasets into a CMOR-like
format that can be processed by the ESMValTool. These re-
format scripts serve as examples for writing similar scripts
for other observational datasets that do not follow the CMOR
standard. Such other datasets that are not available via
the obs4mips (https://esgf-node.llnl.gov/projects/obs4mips/,
last access: 26 February 2020) or ana4mips (https://esgf.
nccs.nasa.gov/projects/ana4mips/, last access: 30 June 2019)
projects and for which no CMORizing scripts are provided
can be used with the ESMValTool in two ways. The first is
to write a new CMORizing script using an available one as
a template to generate a local copy of CMORized data that
can readily be used with the ESMValTool. This typically in-
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Table 1. Overview of recipes for emergent constraints and future projections implemented in ESMValTool (v2.0) along with the section
where they are described, a brief description, the required CMIP5 variables, the diagnostic scripts included and the observational datasets
used in the examples. All diagnostics expect time series of monthly mean data as input. For further technical details, we refer to the GitHub
repository.

Recipe name Section Description Variables Diagnostic scripts Observational datasets

Section 3.1: calculations of multi-model products

recipe_multimodel_products.yml 3.1 tool to compute the en-
semble mean anomaly,
ensemble variance and
agreement and plot the
results as maps and
time series

tas (example) magic_bsc/multimodel_products.R –

Section 3.2: ECS and TCR

recipe_ecs.yml 3.2 ECS using linear re-
gression following Gre-
gory et al. (2004)

rtmt, rtnt, tas climate_metrics/ecs.py –

recipe_flato13ipcc.yml 3.2 Figure 9.42 of Flato et
al. (2013): (a) global
mean near-surface air
temperature vs. ECS;
(b) TCR vs. ECS

rtmt, rtnt, tas climate_metrics/ecs.py
climate_metrics/tcr.py
ipcc_ar5/ch09_fig09_42a.py
ipcc_ar5/ch09_fig09_42b.py

–

recipe_tcr.yml 3.2 TCR following Gre-
gory and Forster (2008)

tas climate_metrics/tcr.py –

Section 3.3: emergent constraints

recipe_ecs_scatter.yml 3.3.1 ECS vs. different
quantities (Brient and
Schneider, 2016; Lipat
et al., 2017; Sherwood
et al., 2014; Tian, 2015)

hur, hus, pr,
rsdt, rsut,
rsutcs, ta, ts, va,
wap

emergent_constraints/ecs_scatter.ncl ERA-Interim (hur, ta,
va, wap), TRMM (pr),
AIRS (hus), HadISST
(ts), CERES-EBAF
(rsdt, rsut, rsutcs)

recipe_cox18nature.yml 3.3.1 emergent constraint for
ECS based on global
temperature variabil-
ity following Cox et
al. (2018)

tas, tasa climate_metrics/ecs.py
climate_metrics/psi.py
emergent_constraints/cox18nature.py

HadCRUT4 (tas, tasa)

recipe_ecs_constraints.yml 3.3.1 ECS vs. difference be-
tween tropical and mid-
latitude cloud fraction
(Volodin, 2008)

clt emergent_constraints/ecs_scatter.py ISCCP-D2 (clt)

recipe_wenzel14jgr.yml 3.3.2 emergent constraint on
long-term sensitivity
of tropical land carbon
storage to climate
warming (γLT) (Wenzel
et al., 2014)

fgco2, nbp, tas carbon_ec/carbon_constraint.ncl
carbon_ec/carbon_gammaHist.ncl
carbon_ec/carbon_tsline.ncl

NCEP (tas), GCP (nbp,
fgco2)

recipe_wenzel16nat.yml 3.3.2 emergent constraint on
carbon cycle – CO2
concentration feedback
(β) (Wenzel et al.,
2016a)

gpp, co2 carbon_ec/carbon_beta.ncl
carbon_ec/carbon_cycle_co2.ncl
carbon_ec/carbon_co2-gpp-
correlation.ncl

NOAA station mea-
surements Alaska and
Hawaii (co2)

recipe_seaice.yml 3.3.3 emergent constraint on
YOD following Mas-
sonnet et al. (2012)

sic, areacello seaice/seaice_ecs.ncl HadISST (sic)

recipe_snowalbedo.yml 3.3.4 emergent constraint on
snow-albedo effect fol-
lowing Hall and Qu
(2006)

rsdscs, rsdt,
rsuscs, tas

emergent_constraints/snowalbedo.ncl ISCCP-FH (alb, rsdt),
ERA-Interim (tas)
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Table 1. Continued.

Recipe name Section Description Variables Diagnostic scripts Observational datasets

recipe_deangelis15nat.yml 3.3.5 constraint on hydro-
logic cycle intensifica-
tion (DeAngelis et al.,
2015)

hfss, lvp, prw,
rlnst, rlnstcs,
rsnst, rsnstcs,
rsnstcsnorm,
tas

deangelis15nat/deangelis1b.py
deangelis15nat/deangelis2.py
deangelis15nat/deangelis3.py

ERA-Interim (prw),
RSS (prw), CERES-
EBAF (rlnstcs, rsnst,
rsnstcs, rsnstcsnorm)

recipe_li2017natcc.yml 3.3.5 emergent constraint on
the future Indian sum-
mer monsoon precipi-
tation following Li et
al. (2017)

pr, ts, ua, va emergent_constraints/lif1.py GPCP (pr)

Section 3.4: climate model projections

recipe_wenzel16jclim.yml 3.4.1 constraint on austral jet
position in future pro-
jections

asr, ps, ta, uajet
(ua), va

austral_jet/asr.ncl
austral_jet/main.ncl
mder/absolute_correlation.ncl
mder/regression_stepwise.ncl
mder/select_for_mder.ncl

ERA-Interim (ps, ta,
ua, va), CERES-EBAF
(asr)

recipe_toymodel.yml 3.4.2 recipe for generating
synthetic observations
based on the model
presented in Weigel et
al. (2008)

psl (example) magic_bsc/toymodel.R ERA-Interim (psl)

recipe_collins13ipcc.yml 3.4.3 selected figures from
IPCC AR5, chap. 12
(Collins et al., 2013):
mainly difference maps
between future and
present

areacello, clt,
evspsbl, hurs,
mrro, mrsos,
pr, psl, rlut,
rsut, rtmt, sic,
snw, sos, ta, tas,
thetao, ua

ipcc_ar5/ch12_calc_IAV_for_
stippandhatch.ncl
ipcc_ar5/ch12_calc_map_diff_mmm_
stippandhatch.ncl
ipcc_ar5/ch12_calc_zonal_cont_
diff_mmm_stippandhatch.ncl
ipcc_ar5/ch12_map_diff_each_model_
fig12-9.ncl
ipcc_ar5/ch12_plot_map_diff_
mmm_stipp.ncl
ipcc_ar5/ch12_plot_ts_line_mean_
spread.ncl
ipcc_ar5/ch12_plot_zonal_diff_
mmm_stipp.ncl
ipcc_ar5/ch12_snw_area_change_fig12-
32.ncl
ipcc_ar5/ch12_ts_line_mean_spread.ncl
seaice/seaice_ecs.ncl
seaice/seaice_yod.ncl

HadISST (sic)

recipe_seaice.yml 3.4.4 time series of sea ice
area and extent, sea
ice extent trend distri-
butions, year of near
disappearance of Arctic
sea ice, emergent con-
straint on YOD (Mas-
sonnet et al., 2012)

areacello, sic seaice/seaice_aux.ncl
seaice/seaice_ecs.ncl
seaice/seaice_trends.ncl
seaice/seaice_tsline.ncl
seaice/seaice_yod.ncl

HadISST (sic)

volves saving only one variable per file and adding metadata
such as coordinates (e.g., longitude, latitude, pressure level,
time) and attributes (e.g., variable standard and long names,
units, dimensions) according to the CMOR standard to the
dataset(s). The second way is to implement specific “fixes”
for this dataset in which case the CMORizing is performed
“on the fly” during the execution of an ESMValTool recipe.
For details on both methods, we refer to the ESMValTool

user guide available at https://docs.esmvaltool.org/en/latest/
input.html#observations (last access: 18 June 2020).

3 Overview of recipes included in ESMValTool v2.0 for
emergent constraints and future projections

In this section, all diagnostics and metrics newly added to
ESMValTool v2.0 for analysis of future projections from
ESMs as well as the emergent constraints implemented are
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Table 2. Emergent constraints implemented in ESMValTool v2.0 and observational datasets used.

Reference Constrained parameter Description/observed quantity Observational datasets

Brient and Schneider (2016) ECS covariance of shortwave cloud
reflection

HadISST (ts), ERA-Interim
(hur), CERES-EBAF (rsut,
rsutcs, rsdt)

Cox et al. (2018) ECS global temperature variability HadCRUT4 (tasa)

DeAngelis et al. (2015) hydrologic cycle inten-
sification

radiative fluxes and precipitable
water

CERES-EBAF (rsdscs, rsdt,
rsuscs, rsutcs), RSS (prw),
ERA-Interim (prw)

Hall and Qu (2006) snow-albedo effect springtime snow-albedo feed-
back values in climate change
vs. springtime values in the sea-
sonal cycle in transient climate
change

ISCCP-FH (alb, rsdt), ERA-
Interim (tas)

Massonnet et al. (2012) YOD year of disappearance (YOD)
of September Arctic sea ice vs.
mean sea ice extent or trend in
sea ice extent

HadISST (sic)

Li et al. (2017) future Indian summer
monsoon precipitation

present-day precipitation over
the tropical western Pacific

GPCP (pr)

Lipat et al. (2017) ECS climatological Hadley cell ex-
tent

ERA-Interim (va)

Sherwood et al. (2014) ECS lower tropospheric mixing in-
dex (LTMI)

ERA-Interim (hur, ta, wap)

Tian (2015) ECS southern ITCZ index, tropi-
cal mid-tropospheric humidity
asymmetry index

TRMM (pr), AIRS (hus)

Volodin (2008) ECS difference between tropical and
midlatitude cloud fraction

ISCCP-D2 (clt)

Wenzel et al. (2014) climate–carbon cycle
feedback (γLT)

long-term sensitivity of tropical
land carbon storage to climate
warming

NCEP (tas), GCP (nbp, fgco2)

Wenzel et al. (2016a) land photosynthesis (β) carbon cycle – CO2 concentra-
tion feedback

NOAA station measurements
Alaska and Hawaii (co2)

described and illustrated with examples using results from
the CMIP5 model ensemble (Taylor et al., 2012). The ESM-
ValTool workflow is controlled by configuration files called
“recipes”, which define all input datasets, preprocessing
steps and diagnostics to run (for details we refer to Righi
et al., 2020). An overview of all recipes described in this pa-
per including a short description, the variables processed, the
names of the diagnostic scripts and observations is given in
Table 1.

All diagnostics output one or more NetCDF file(s) con-
taining the results of the analysis that are then visualized in
the figure(s) created. The file format of the figures can be
defined in the user configuration file and includes common
formats such as *.png, *.pdf, *.ps and *.eps. For more de-

tails on the technical infrastructure of the tool including ac-
cepted data formats, data reference syntax (DRS) used for
directory and file name conventions, available preprocessor
functions, etc., we refer again to Righi et al. (2020). Fur-
ther information can be found in the ESMValTool user guide,
which documents all technical aspects of the tool as well
as all available diagnostics; see https://docs.esmvaltool.org/
(last access: 1 September 2020).

3.1 Calculations of multi-model products

Multi-model means are commonly used to project climate
change (IPCC, 2013, 2007) and are thus a useful quantity to
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calculate in support of diagnostics included in the ESMVal-
Tool.

The recipe recipe_multimodel_products.yml computes the
multi-model ensemble mean for a set of models selected by
the user for individual variables and different temporal reso-
lutions (annual, seasonal, monthly). For this, all data are re-
gridded to the same horizontal grid. In the example shown in
Fig. 1, all models are regridded to the grid of BCC-CSM1-
1 using a linear interpolation scheme. This task is done by
the ESMValTool’s preprocessor and defined in the recipe de-
pending on the application and user requirements. The user-
definable configuration options include definition of the tar-
get grid (e.g., 2.5◦× 2.5◦) and regridding scheme (e.g., lin-
ear, nearest, area weighted). Regridding/interpolation of the
input data in time is currently not supported. For further de-
tails, we refer to the ESMValTool user guide (https://docs.
esmvaltool.org/, last access: 1 September 2020). After select-
ing the region (rectangular region defined by the lowermost
and uppermost longitudes and latitudes), the mean for the se-
lected reference period is subtracted from the time series in
order to obtain the anomalies for the desired period. In addi-
tion, the recipe computes the percentage of models agreeing
on the sign of this anomaly, thus providing some information
on the robustness of the climate change signal.

The output of the recipe consists of a contour map show-
ing the time average of the multi-model mean anomalies and
stippling to indicate locations where the percentage of mod-
els agreeing on the sign of the multi-model mean anomaly
exceeds a threshold selected by the user (Fig. 1). The exam-
ple in Fig. 1 shows a warming over the continents in the range
of 1–2 K which is more pronounced than the warming over
the ocean which is mostly in the range of 0.5–1.5 K in this
scenario. The example also shows that the models largely
agree on the sign of the temperature change with the most
prominent exceptions found in parts of the Southern Ocean,
Greenland and the North Atlantic. Furthermore, a time se-
ries of the area-weighted mean anomalies is plotted. For the
plots, the user can select the length of the running window
for temporal smoothing and choose to display either the en-
semble mean with a light shading to represent the spread of
the ensemble or each individual model separately (Fig. 2).
The example in Fig. 2 shows an increase in global average
June temperatures up to about 2060 when temperatures start
to level off. By 2100, the four CMIP5 example models (MPI-
ESM-MR, CNRM-CM5, BCC-CSM1-1 and IPSL-CM5A-
LR) show a spread in temperature increase for the RCP2.6
scenario ranging from 0.7 to about 1.8 K.

3.2 ECS and TCR

The ECS is an important metric to assess the future warm-
ing of the climate system. It is defined as the change in
global mean near-surface air temperature as a result of a dou-
bling of the atmospheric CO2 concentration compared to pre-
industrial conditions after the climate system has reached a

new equilibrium (Gregory et al., 2004). Climate models of
the CMIP5 model ensemble simulated an ECS ranging be-
tween 2.1 and 4.7 K (Flato et al., 2013). Using all avail-
able evidence of that time, IPCC AR5 assessed a “likely”
range of ECS between 1.5 and 4.5 K in 2013 (IPCC, 2013).
recipe_ecs.yml uses a regression method proposed by Gre-
gory et al. (2004) to calculate ECS. Using the total radiative
forcing F caused by the doubling of atmospheric CO2 con-
centration and the climate feedback parameter λ, ECS is de-
fined as ECS= F/λ. Both of these variables can be assessed
by linear regression of the equation for radiative balance
N = F −λ1T , whereN is the net radiation flux at the top of
the atmosphere (TOA) and1T the global mean near-surface
air temperature change. N and 1T are both given as global
and annual mean differences between the abrupt quadrupled
CO2 simulation and the linear regression of the pre-industrial
control run. Figure 3 illustrates this regression for the CMIP5
multi-model mean. Moreover, it shows that the assumption
of a linear climate feedback parameter is only an approx-
imation. Using only the first 20 years (last 130 years) in-
stead of all 150 years of the abrupt quadrupled CO2 simu-
lations results in a stronger (weaker) feedback, which again
leads to a lower (higher) ECS. This demonstrates the differ-
ent response of the climate system at different timescales,
i.e., non-linear feedback processes. This diagnostic requires
the input variables near-surface air temperature (tas), TOA
incoming shortwave radiation (rsdt), TOA outgoing short-
wave radiation (rsut) and TOA outgoing longwave radiation
(rlut) from abrupt4xCO2 (quadrupling of CO2 compared to
pre-industrial conditions) and piControl (pre-industrial con-
trol) simulations.

Figure 9.42a of Flato et al. (2013) shows the globally av-
eraged mean near-surface air temperature (GMSAT) for the
historical period of 1961–1990 plotted vs. ECS of several
CMIP5 models. The latter quantity can be calculated by a re-
gression method based on Gregory et al. (2004) as outlined
above. A similar figure produced with recipe_flato13ipcc.yml
implemented in ESMValTool v2.0 shows that there are no
distinctive correlations between the historical surface tem-
peratures and the ECS, which suggests that the ECS is not
very sensitive to errors in the current climate in contrast to
other sources of uncertainty (Fig. 4).

The TCR is defined as the global and annual mean near-
surface air temperature anomaly in the 1pctCO2 simulation
(1 % increase in CO2 per year) for a 20-year period cen-
tered at the time of CO2 doubling, i.e., using the years 61 to
80 after the start of the simulation. The temperature anoma-
lies are calculated by subtracting a linear fit to the piControl
run for all 140 years from the 1pctCO2 experiment prior to
the TCR calculation (Gregory and Forster, 2008). Figure 5
shows (a) a time series of the 1pctCO2 near-surface temper-
ature anomalies from MIROC-ESM used to obtain TCR and
(b) TCR values for different CMIP5 models calculated with
recipe_tcr.yml.
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Figure 1. Multi-model mean of projected future June near-surface air temperature anomalies (2006–2099) compared with the period of
1961–1990 (colors). Crosses indicate that the 80 % of models agree with the sign of the multi-model mean anomaly. The models used in this
example are BCC-CSM1-1, MPI-ESM-MR and MIROC5 (r1i1p1 ensembles) for the RCP2.6 scenario. All models have been regridded to
the BCC-CSM1-1 grid using a linear interpolation scheme. See Sect. 3.1 for details on recipe_multimodel_products.yml.

Figure 2. Time series of global average near-surface air temper-
ature anomalies in June for the period of 2006–2099 (RCP2.6
scenario) compared to the reference period of 1961–1990.
The individual models are shown as colored lines; the multi-
model mean is shown in black. See Sect. 3.1 for details on
recipe_multimodel_products.yml.

Figure 3. Gregory plot to approximate the ECS (Gregory et al.,
2004). Shown is the relationship between the differences in global
and annual mean top-of-the-atmosphere net downward radiative
flux N (Wm−2) and global and annual mean near-surface air tem-
perature anomalies 1T (K) for the CMIP5 multi-model mean.
Anomalies are calculated as difference between the abrupt4xCO2
experiment (quadrupling of CO2) and the pre-industrial control run
(piControl). The blue dots show the first 20 years of the simulation;
the orange dots show the last 130 years. A linear regression using
only the first 20 years (blue line) instead of all 150 years (black
line) results in a stronger feedback (and thus lower ECS). Using the
last 130 years only (orange line) results in a weaker feedback (i.e.,
higher ECS). See Sect. 3.2 for details on recipe_ecs.yml.
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Figure 4. Globally averaged near-surface air temperature (GMSAT) of the historical period of 1961–1990 vs. the ECS for several CMIP5
models. Similar to Fig. 9.42a of Flato et al. (2013) and produced with recipe_flato13ipcc.yml; see details in Sect. 3.2.

Figure 5. (a) Time series of temperature anomalies from MIROC-ESM experiment 1pctCO2 (1 % increase in CO2 per year) compared to the
piControl simulation. (b) Transient climate response (in K) for CMIP5 models calculated with the method by Gregory and Forster (2008).
For details on recipe_tcr.yml, see Sect. 3.2.

3.3 Emergent constraints

An emergent constraint utilizes an ensemble of ESMs to-
gether with observational data to constrain a simulated future
Earth system feedback. A prerequisite for an emergent con-
straint is a robust relationship between, for example, changes
occurring on seasonal or interannual timescales and changes
found in ESM simulations of anthropogenically forced cli-
mate change (Eyring et al., 2019). If such a relationship can
be explained by a plausible physical mechanism, an obser-
vational constraint of multi-model projections of quantities
that cannot be observed directly might be possible. Such a
non-observable quantity is, for instance, ECS. The technique
of emergent constraints offers the possibility to reduce un-

certainties in climate projections and can help guide model
development by highlighting processes that are crucial to ex-
plaining the magnitude and spread of the modeled future cli-
mate change. Emergent constraints can also help point out
the need for more and/or more reliable observations.

We would like to note that a limitation of the emergent
constraints as currently implemented into the ESMValTool
is that model interdependency, as in the original studies, is
not explicitly taken into account. As some modeling groups
share model components or code, the models are not all in-
dependent. Duplicated code, as well as identical forcing and
validation data in multiple models, is expected to lead to
an overestimation of the sample size of a model ensemble
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and may result in spurious correlations (Sanderson et al.,
2015). As a possible approach, future implementations of
these emergent constraints could, for example, apply a model
weighting based on a model’s interdependence (e.g., Knutti
et al., 2017) or simply reduce the ensemble size by taking
into account only models that are above a given yet-to-be-
defined interdependence score.

Table 2 summarizes the emergent constraints that have
been implemented in ESMValTool (v2.0) including the ob-
servational datasets used and are described in the following.

3.3.1 Emergent constraints on effective climate
sensitivity

recipe_ecs_scatter.yml calculates five emergent constraints
for ECS (see Table 2). These are briefly described in
Sect. 3.3.1 (“Covariance of shortwave cloud reflection” to
“Tropical mid-tropospheric humidity asymmetry index”).
The ECS values from the models are pre-calculated with
recipe_ecs.yml (see Sect. 3.2) or can be taken from literature.
The diagnostic calculates ECS vs. selected constraining pa-
rameters, such as the climatological Hadley cell extent from
models, and fits a linear regression line to the data. If avail-
able, the observational uncertainty of a given observational
dataset can be estimated. For this, the standard error of the
observations is subtracted or added from or to the means be-
fore calculating the observational value (estimated minimum
or maximum, respectively). In addition to the scatter plots
of ECS vs. constraining parameter calculated by the diag-
nostic, the diagnostic also outputs the 25 %/75 % confidence
intervals of the regression (i.e., uncertainty of the fit) and the
25 %/75 % prediction intervals of the regression (i.e., mea-
sure for the quality of the linear fit). By definition, 50 % of
all model data points are within the 25 %/75 % prediction in-
terval of the regression line. Examples of the different scat-
ter plots that can be created by recipe_ecs_scatter.yml are
shown in Fig. 6. It should be noted that because a different
set of CMIP5 models might be used in the figures compared
to the originally published emergent constraints, the figures
could show some deviations to the ones published in litera-
ture. While the emergent constraints shown in Fig. 6a, c, d,
e suggest ECS values in the upper range of the values given
in IPCC AR5 (IPCC, 2007, 1.5 to 4.5 K), the emergent con-
straint shown in Fig. 6b suggests an ECS value in the lower
range of the IPCC AR5 values.

In addition to these five emergent constraints,
recipe_cox18nature.yml implements an emergent con-
straint for ECS based on global temperature vari-
ability (Sect. 3.3.1, “Global temperature variability”),
recipe_ecs_constraints.yml an emergent constraint based
on the difference between tropical and midlatitude cloud
fraction (Sect. 3.3.1, “Difference between tropical and
midlatitude cloud fraction”).

Covariance of shortwave cloud reflection

This emergent constraint uses the models’ correlation of
tropical low-level cloud (TLC) reflection with the underlying
SST to constrain ECS (Brient and Schneider, 2016). The def-
inition and calculation of the individual terms follows Brient
and Schneider (2016): TLC regions are defined as the 25 %
ocean areas between 30◦ S and 30◦ N with the lowest 500 hPa
relative humidity. TLC reflection is calculated as the ratio of
top-of-the-atmosphere shortwave cloud radiative forcing and
insolation, both averaged over the TLC region. This is then
used to calculate the regression coefficients of deseasonal-
ized variations of TLC shortwave reflection and sea surface
temperature in % per K used as an emergent constraint. In the
example shown in Fig. 6a, data from the CMIP5 historical
simulations between 1980 and 2005 are used for the models,
observational/reanalysis data used in Fig. 6 are ERA-Interim
(Dee et al., 2011) for relative humidity, HadISST (Rayner
et al., 2003) for sea surface temperatures and CERES-EBAF
(Ed2.7) (Loeb et al., 2012) for top-of-the-atmosphere radia-
tive fluxes.

Climatological Hadley cell extent

Lipat et al. (2017) found that the climatological mean
Hadley cell (HC) edge latitude from CMIP5 models corre-
lates with ECS. The HC edge latitude is calculated from
first two grid cells from the Equator going south where the
zonal average 500 hPa mass stream function changes sign
from negative to positive (downward branch of the HC).
The mass stream function is calculated from climatological
December–January–February (DJF) means of the meridional
wind fields. The correlation of the climatological HC extent
with ECS found in CMIP5 models is explained by obser-
vations that show a correlation of variability in midlatitude
clouds and cloud radiative effects with poleward HC expan-
sion (Lipat et al., 2017). For the example shown in Fig. 6b,
CMIP5 data from historical simulations and ERA-Interim
(Dee et al., 2011) are used as a reference dataset for the years
1980–2005.

Lower tropospheric mixing index

Following Sherwood et al. (2014), the lower tropospheric
mixing index (LTMI) can be used to constrain ECS and is
calculated as the sum of small-scale mixing S and the large-
scale component of mixing D. S is calculated from relative
humidity (RH) and temperature (T ) differences between 700
and 850 hPa and averaged over a tropical region between
30◦ S and 30◦ N defined by the upper quartile of the an-
nual mean 500 hPa ascent rate within ascending regions: S =
(1RH700−850/100%−1T700−850/9K)/2. The large-scale
component of mixing is the ratio of shallow to deep over-
turning:D = 〈1H(1)H(−ω1)〉/〈−ω2H(−ω2)〉withω1 the
average of the vertical velocity at 850 and 700 hPa, ω2 the av-
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Figure 6. Scatter plots of ECS vs. (a) covariance of shortwave cloud reflection (Brient and Schneider, 2016), (b) Southern Hemisphere
(SH) climatological Hadley cell extent (Lipat et al., 2017), (c) lower tropospheric mixing index (LTMI) (Sherwood et al., 2014), (d) south-
ern Intertropical Convergence Zone (ITCZ) index (Tian, 2015) and (e) tropical mid-tropospheric humidity asymmetry index (Tian, 2015)
for CMIP5 models (symbols). The vertical gray lines represent the observations; the shaded areas in light gray represent observational un-
certainties (if available). The solid red lines represent the regression lines, the dashed red lines the 25 %/75 % confidence intervals of the
regression and the dotted red lines the 25 %/75 % prediction intervals of the regression. Similar to (a) Fig. 6 of Brient and Schneider (2016),
(b) Fig. 4 of Lipat et al. (2017), (c) Fig. 5c of Sherwood et al. (2014), (d) Fig. 2 of Tian (2015) and (e) Fig. 4c of Tian (2015). For details on
recipe_ecs_scatter.yml, see Sect. 3.3.1.

erage of the vertical velocity at 600, 500 and 400 hPa, H the
step function and 〈. . .〉 the average over the tropical ocean
region 30◦ S–30◦ N, 160◦W–30◦ E. The lower tropospheric
mixing index is calculated as LTMI= S+D. Sherwood et
al. (2014) explain the correlation between LTMI and ECS in
CMIP3 and CMIP5 models by convective mixing between
the lower and middle tropical troposphere dehydrating low-
level cloud layers at an increasing rate as climate warms.
They argue that this rate of increase depends on initial mixing
strength, which links the mixing to clouds feedbacks and thus
ECS. Figure 6c shows an example of this emergent constraint
applied to CMIP5 historical simulations using ERA-Interim
data (Dee et al., 2011) as reference data. All datasets in this
example cover the time period of 1980–2005.

Southern ITCZ index

The southern Intertropical Convergence Zone (ITCZ) index
(Bellucci et al., 2010; Hirota et al., 2011) is defined as the
climatological annual mean precipitation bias averaged over
the south-eastern Pacific (30◦ S–0◦, 150–100◦W) given in

mmd−1. The southern ITCZ index is used to quantify the
double-ITCZ bias in CMIP3 and CMIP5 models and has
been found to correlate with ECS (Tian, 2015). In the ex-
ample shown in Fig. 6d, the ITCZ index has been calcu-
lated from CMIP5 historical model simulations averaged
over the years 1980–2005. Tropical Rainfall Measuring Mis-
sion (TRMM) (Huffman et al., 2007) satellite data (v7) aver-
aged over the years 1998–2013 have been used as observa-
tional reference.

Tropical mid-tropospheric humidity asymmetry index

The strong link found in CMIP3 and CMIP5 models between
the double-ITCZ bias and simulated moisture, precipitation,
clouds and large-scale circulation allows the double-ITCZ
bias and thus ECS to also be related to mid-tropospheric
humidity over the tropical Pacific (Tian, 2015). As shown
by Tian (2015), spatial patterns of mid-tropospheric humid-
ity and precipitation are similar as both are related to the
ITCZ. This allows defining a tropical mid-tropospheric hu-
midity asymmetry index to quantify the double-ITCZ bias
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in models and consequently constrain ECS. This index is
defined as relative bias in simulated annual mean 500 hPa
specific humidity compared with observations ((model−
observation)/observation·100%) averaged over the Southern
Hemisphere (SH) tropical Pacific (30◦ S–0◦, 120◦ E–80◦W)
minus the bias averaged over the Northern Hemisphere (NH)
tropical Pacific (20◦ N–0◦, 120◦ E–80◦W) (Tian, 2015). The
example for the tropical mid-tropospheric humidity asymme-
try index shown in Fig. 6e is calculated from CMIP5 his-
torical runs averaged over the years 1980–2005 and AIRS
(v5) satellite data (Susskind et al., 2006) averaged over the
years 2003–2010 as observational reference data.

Global temperature variability

Cox et al. (2018) propose an emergent constraint for the ECS
using global temperature variability. The latter is defined by
a metric ψ which can be calculated from the global tempera-
ture variance (in time) σT and the 1-year-lag autocorrelation
of the global temperature α1T by

ψ =
σT

√
− ln(α1T )

. (1)

Using the simple “Hasselmann model” (Hasselmann, 1976),
Cox et al. (2018) showed that ψ is linearly correlated with
ECS in CMIP5 data. Since calculation of ψ only depends
on the temporal evolution of the global surface tempera-
ture, there are many observational datasets available. In the
original publication, data from HadCRUT4 (Morice et al.,
2012) are used to construct the emergent relationship. In the
ESMValTool, this is reproduced by recipe_cox18nature.yml,
which only needs two variables: historical near-surface air
temperature (tas) and ECS (see Sect. 3.2). The emergent re-
lationship between ECS and ψ is shown in Fig. 7 includ-
ing means and confidence intervals. The constrained range
of ECS based on this plot is 2.2 to 3.4 K with a 66 % confi-
dence interval, similar to Cox et al. (2018).

Difference between tropical and midlatitude cloud
fraction

Volodin (2008) proposes an emergent constraint for ECS
based on the distribution of clouds in global climate mod-
els. The study finds that models with high climate sensi-
tivity show a higher total cloud cover over the southern
midlatitudes and a lower total cloud cover over the tropics
than the multi-model average. Thus, the difference in trop-
ical total cloud cover (between 28◦ S and 28◦ N) and the
SH midlatitude total cloud cover (between 56 and 36◦ S)
is negatively correlated with ECS. The original publication
uses the CMIP3 ensemble and the International Satellite
Cloud Climatology Project (ISCCP)-D2 dataset (Rossow and
Schiffer, 1991) as observational reference, but the relation-
ship also holds when using CMIP5 models. In the ESM-
ValTool, this emergent constraint for ECS can be produced

Figure 7. Emergent constraint for ECS. Shown is the relation-
ship between ECS and the temperature variability metric ψ pro-
posed by Cox et al. (2018). Letters show individual CMIP5 mod-
els (for nomenclature details, see original publication) with lower-
sensitivity models in green and higher-sensitivity models in purple.
The black lines show the linear fit including the prediction error and
the vertical blue lines indicate the observational mean and standard
deviation given by the HadCRUT4 dataset. Similar to Fig. 2 of Cox
et al. (2018) and produced with recipe_cox18nature.yml (see details
in Sect. 3.3.1, “Global temperature variability”).

with recipe_ecs_constraints.yml, which uses CMIP5 histori-
cal runs averaged between 1980 and 2000 (Fig. 8). The ob-
served values are based on ISCCP-D2 data and are taken
from Volodin (2008).

3.3.2 Emergent constraints on the carbon cycle

Uncertainties in projections of future temperature using
ESMs are high, in a large part due to uncertainties of emis-
sions and feedbacks. Within the carbon cycle, feedbacks are
usually split into the carbon cycle – climate feedback γ ,
which quantifies carbon to climate change, and the carbon
cycle – CO2 concentration feedback β, which is the carbon
sensitivity to atmospheric CO2 (Friedlingstein et al., 2006).
γ is a positive feedback as climate warming reduces the ef-
ficiency of CO2 absorption by the land and ocean, leading to
more of the emitted carbon staying in the atmosphere, which
in turn leads to additional warming. In contrast, β is a neg-
ative feedback because of the so-called CO2 fertilization ef-
fect, where plants take up a higher amount of CO2 for pho-
tosynthesis with increasing atmospheric CO2 concentrations.
Efforts have been made to reduce the uncertainties of these
two carbon cycle feedback parameters.

Wenzel et al. (2014) employed the emergent constraint
described by Cox et al. (2013) for the long-term sensitiv-
ity of tropical land carbon storage to climate warming (γLT)
to the interannual sensitivity of atmospheric CO2 to interan-
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Figure 8. ECS vs. difference in total cloud cover between the trop-
ics (28◦ S–28◦ N) and southern midlatitudes (56–36◦ S) for CMIP5
models (orange dots). The orange line and shaded area show the
linear regression line and its 95 % uncertainty range (estimated via
bootstrapping). Together with the observational estimate (vertical
blue line and shaded area), this can be used as an emergent con-
straint for ECS (Volodin, 2008). The observational range is based
on ISCCP-D2 data (Rossow and Schiffer, 1991) and taken from
Volodin (2008). Similar to Fig. 3a of Volodin (2008) and produced
with recipe_ecs_constraints.yml (see details in Sect. 3.3.1, “Differ-
ence between tropical and midlatitude cloud fraction”).

nual tropical temperature variability (γIAV) in CMIP5 mod-
els. The analysis from this paper can be reproduced using
recipe_wenzel14jgr.yml with the emergent relationship be-
ing able to reduce the range of projected γLT (Fig. 9). In-
put variables include net primary productivity (nbp), surface
temperature (tas), gas exchange flux of CO2 into the ocean
(fgco2) from the experiment 1pctCO2, nbp, fgco2, tas from
the emission-driven historical simulations (esmHistorical),
as well as nbp from the esmFixClim1 (carbon cycle sees CO2
concentration increase but radiation does not) simulations.
The different simulations are included in γIAV, which is es-
timated from both the 1pctCO2 experiment and the esmHis-
torical simulation, and then compared in the paper. The de-
fault observational datasets are NCEP reanalysis (Kalnay et
al., 1996) for the surface temperature and the Global Carbon
Project (GCP; Le Quere et al., 2015) for the carbon fluxes.

Wenzel et al. (2016a) developed an emergent constraint for
β on land in the extratropics and northern midlatitudes con-
straining the projected land photosynthesis with changes in
the seasonal cycle of atmospheric CO2. The figures from this
paper can be reproduced with recipe_wenzel16nat.yml, with
Fig. 10 showing the emergent constraint reproduced with the
ESMValTool. The unconstrained CO2 fertilization effect lies
at 40± 20 %, which can be narrowed down to 37± 9 % in
high latitudes and 32±9 % in the extratropics with this emer-
gent constraint. Input variables from the models needed to

Figure 9. Relationship between long-term sensitivity of tropi-
cal land carbon storage to climate warming (γLT) and short-term
sensitivity of atmospheric CO2 to interannual temperature vari-
ability (γIAV) for CMIP5 models (markers with horizontal and
vertical error bars) using the historical simulation. The red line
shows the linear regression through the CMIP5 models; the ver-
tical gray area shows the range of observed γIAV. Produced with
recipe_wenzel14jgr.yml, similar to Fig. 5a of Wenzel et al. (2014)
(for details, see Sect. 3.3.2).

run this recipe is gross primary productivity (GPP) in the
esmFixClim1 simulations, as well as the atmospheric CO2
concentration (co2) from emission-driven historical simula-
tions. Observations used are the atmospheric CO2 concen-
trations at Point Barrow (BRW; 71.3◦ N, 156.6◦W), Alaska,
and Cape Kumukahi, Hawaii (KMK; 19.5◦ N, 155.6◦W)
(NOAA, 2018).

3.3.3 Emergent constraints on the year of
disappearance of September Arctic sea ice

This sea ice diagnostic produces scatter plots of (a) mean
of and (b) trend in historical September Arctic sea ice ex-
tent (SSIE) vs. the first year of disappearance (YOD). Here,
YOD is defined as the first of five consecutive years in which
the Arctic SSIE drops below 1 million km2 (Wang and Over-
land, 2009). Sea ice extent is defined in the diagnostic as the
total area of all grid cells in which the sea ice concentra-
tion is 15 % or larger, Arctic is defined as the region north of
60◦ N. The annual minimum Arctic sea ice extent typically
occurs in September. For this reason, September mean sea ice
quantities are commonly used in literature for analyses of the
timing of an ice-free Arctic (e.g., Massonnet et al., 2012; Sig-
mond et al., 2018). The two scatter plots in Fig. 11a and b are
similar to those in Fig. 12.31a/c of Collins et al. (2013), re-
spectively. In addition, the diagnostic produces a scatter plot
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Figure 10. (a) Correlations between the sensitivity of the CO2 amplitude to annual mean CO2 increases at Point Barrow, Alaska (abscissa),
and the high-latitude (60–90◦ N) CO2 fertilization of GPP at twice the CO2. The gray shading shows the range of the observed sensitivity.
The red line shows the linear best fit across the CMIP5 ensemble together with the prediction error (orange) and error bars show the standard
deviation for each data point. (b) The probability density function for the unconstrained CO2 fertilization of GPP (black, dotted) and the
conditional probability density function arising from the emergent constraint (red). Produced with recipe_wenzel16nat.yml, similar to Fig. 3
of Wenzel et al. (2016a) (for details, see Sect. 3.3.2).

of mean SSIE vs. trend in historical SSIE, similar to Fig. 2
of Massonnet et al. (2012). In the example shown in Fig. 11,
HadISST data (Rayner et al., 2003) over the time period of
1960–2005 have been used as a reference dataset for com-
parison with CMIP5 results. The figure shows that while the
individual models spread widely around the observed mean
Arctic SSIE, most of the CMIP5 models tend to underesti-
mate the trend in Arctic SSIE observed over the period of
1960–2005.

3.3.4 Emergent constraints on the snow-albedo effect

The recipe recipe_snowalbedo.yml computes springtime
snow-albedo feedback values in climate change vs. spring-
time values in the seasonal cycle in transient climate change
experiments following Hall and Qu (2006). The strength of
the snow-albedo effect is quantified by the variation in net in-
coming shortwave radiation (Q) with surface air temperature
(Ts) due to changes in surface albedo αs:(
∂Q

∂Ts

)
=−It ·

∂αp

∂αs
·
1αs

1Ts
. (2)

Here, It is the constant incoming solar radiation at the top
of the atmosphere, αp the planetary albedo. The diagnos-
tic produces scatter plots of simulated springtime 1αs/1Ts
values in climate change (ordinate) vs. simulated springtime
1αs/1Ts values in the seasonal cycle (abscissa). These val-
ues are calculated as follows:

– (ordinate values) the change in April αs (future projec-
tion – historical) averaged over NH land masses pole-
ward of 30◦ N is divided by the change in April Ts (fu-
ture projection – historical) averaged over the same re-
gion. The change in αs (or Ts) is defined as the dif-
ference between 22nd century mean αs (Ts) and 20th-
century-mean αs. Values of αs are weighted by April
incoming insolation (It) prior to averaging.

– The seasonal cycle 1αs/1Ts values (abscissa values),
based on 20th century climatological means, are calcu-
lated by dividing the difference between April and May
αs (averaged over NH continents poleward of 30◦ N) by
the difference between April and May Ts averaged over
the same area. Values of αs are weighted by April in-
coming insolation prior to averaging.

Figure 12 shows an example calculated from CMIP5 his-
torical (1901–2000) and Representative Concentration Path-
ways 4.5 (RCP4.5, 2101–2200) experiments for 12 different
models. The seasonal cycle values used as reference (ver-
tical gray line) are calculated from the third generation of
ISCCP radiative fluxes (ISCCP-FH; Young et al., 2018) and
near-surface air temperature from ERA-Interim (Dee et al.,
2011) for the years 1984–2000. While data from ISCCP-
FH data suggest that CMIP5 models tend to underestimate
springtime snow-albedo effect values in climate change, us-
ing the second generation of ISCCP radiative fluxes (ISCCP-
FD, Zhang et al., 2004, not shown) as in Fig. 9.45a of Flato et
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Figure 11. Scatter plot of (a) mean historical (1960–2005) September Arctic sea ice extent (SSIE, million km2) and (b) trend in September
Arctic sea ice extent (1960–2005) vs. first year of disappearance for scenario RCP8.5. The vertical gray lines are calculated from observations
(HadISST, Rayner et al., 2003), similar to Fig. 12.31a/d of Collins et al. (2013). For details on recipe_seaice.yml, see Sect. 3.3.3.

al. (2013) suggests that the CMIP5 models under- and over-
estimate springtime snow-albedo effect almost equally.

3.3.5 Emergent constraints on the hydrological cycle

The recipes recipe_deangelis2015nat.yml and
recipe_li2017natcc.yml, newly developed for v2.0, re-
produce the analysis from DeAngelis et al. (2015) and
Li et al. (2017), respectively. DeAngelis et al. (2015)
constrain the hydrologic cycle intensification with ob-
served radiative fluxes and water vapor data. The recipe
recipe_deangelis2015nat.yml reproduces their Figs. 1b
(Fig. 13a) to 4 (Fig. 13b) as well as their extended data
Figs. 1 and 2. Here, the analysis is shown for 17 CMIP5
models and includes monthly mean total precipitable water
on a 1◦× 1◦ grid from RSS (Remote Sensing System)
version-7 microwave radiometer data (Wentz et al., 2007)
and ERA-Interim reanalysis (Dee et al., 2011), as well as
radiative fluxes from the Clouds and the Earth’s Radiant
Energy System Energy Balance and Filled (CERES-EBAF;
Kato et al., 2013; Loeb et al., 2009) dataset. Figure 13a
shows that energy sources and sinks readjust in reply to
an increase in greenhouse gases, leading to a decrease in
the sensible heat flux and an increase in the other fluxes;
Fig. 13b shows that results from parameterization schemes
using pseudo-k distributions with more than 20 exponential
terms representing water vapor absorption and correlated-k
distributions agree better with the observations than the
other schemes.

Li et al. (2017) relate the future Indian summer monsoon
projections to the present-day precipitation over the tropi-

Figure 12. Scatter plot of springtime snow-albedo effect values
in climate change (ordinate) vs. springtime 1αs/1Ts values in
the seasonal cycle (abscissa) in transient climate change experi-
ments calculated from CMIP5 historical (1901–2000) and RCP4.5
(2101–2200) experiments. The vertical gray line shows the seasonal
cycle values calculated from third generation of ISCCP radiative
fluxes (ISCCP-FH, Young et al., 2018) and near-surface air tem-
perature from ERA-Interim (Dee et al., 2011) for the years 1984–
2000. Models with higher surface albedos over NH continents
poleward of 30◦ N typically have a larger contrast between snow-
covered and snow-free areas, and hence a stronger snow-albedo
feedback. Similar to Fig. 9.45a of Flato et al. (2013); for details
on recipe_snowalbedo.yml, see Sect. 3.3.4.
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Figure 13. The atmospheric energy budget (DeAngelis et al., 2015): (a) net atmospheric longwave cooling to the surface and outer space
calculated as sum of upward longwave radiative flux at TOA and net downward longwave flux at the surface (rlnst), heating from shortwave
absorption (rsnst), latent heat release from precipitation (lvp) and global average multi-model mean sensible heat flux (hfss). The panel shows
three model experiments: the pre-industrial control simulation averaged over 150 years (blue), the RCP8.5 scenario averaged over 2091–2100
(orange) and the abrupt quadrupled CO2 scenario averaged over years 141–150 after CO2 quadrupling in all models except IPSL-CM5A-MR,
for which the average is calculated over years 131–140 (gray). (b) The 95 % confidence interval for the slope of the regression of clear-sky
rsnst normalized by the incoming shortwave flux at TOA with the water vapor path (prw) over the tropical ocean (30◦ S–30◦ N), regridded to
a 2.5◦ latitude × 2 kgm−2 prw grid for different CMIP5 models (horizontal bars) and for data from CERES-EBAF (Kato et al., 2013; Loeb
et al., 2009, rsnst) and RSS version-7 microwave radiometer data (Wentz et al., 2007, prw) together with ERA-Interim (Dee et al., 2011,
prw) (dotted lines). The colors indicate different parameterization schemes for solar absorption by water vapor in a cloud-free atmosphere
implemented in the models. Similar to Figs. 1b and 4 from DeAngelis et al. (2015) and produced with recipe_deangelis15nat.yml (see details
in Sect. 3.3.5).

cal western Pacific. With this relationship, they can correct
the projected rainfall for models with too strong negative
cloud–radiation feedback on sea surface temperature. The
corrected values (see Fig. 14) do not show an increase in
rainfall over the whole Indian summer monsoon (ISM) re-
gion under greenhouse warming and are expected to be more
robust than the uncorrected projection (Li et al., 2017). The
recipe_li2017natcc.yml reproduces their Figs. 1 and 2 for an
ensemble of 22 CMIP5 models (Fig. 14) and their Fig. 1a for
each of the individual models and the multi-model mean.

3.4 Climate model projections

In addition to the emergent constraints described in the pre-
vious section, ESMValTool v2.0 also includes new diagnos-
tics specifically designed to analyze future climate projec-
tions from ESMs. This includes diagnostics using the multi-
ple diagnostic ensemble regression used to constrain the fu-
ture position of the austral jet, a “toy model” to allow for in-
vestigating the effect of observational uncertainty on model
evaluation, diagnostics for reproducing selected figures from
the climate projection chapter in IPCC AR5 (Collins et al.,
2013) and for analyzing future sea ice quantities. All of these

new diagnostics in ESMValTool v2.0 are briefly described in
the following sections.

3.4.1 MDER to constrain future austral jet position

The position of the austral jet stream is poorly modeled
by CMIP5 models with a latitude range of 10◦ within
the ensemble and a mean bias towards the Equator. The
recipe_wenzel16jclim.yml reproduces the study of Wenzel et
al. (2016b) who used a process-oriented multiple diagnos-
tic ensemble regression (MDER) to constrain the future jet
position in the RCP4.5 scenario. MDER uses a stepwise re-
gression scheme to identify the most relevant present-day di-
agnostics from a list of diagnostics provided as an input and
links those to future projections via a multivariate linear re-
gression scheme. With the diagnostics selected by MDER,
the future quantity (in this case, the austral jet position)
can be constrained with suitable observationally based data
(here: ERA-Interim; Dee et al., 2011), following the same
basic idea as emergent constraints (see also Sect. 3.3). Using
this approach, the future jet position from CMIP5 models is
bias corrected about 1.5◦ southwards compared to the un-
weighted multi-model mean (Fig. 15).
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Figure 14. Correction of the Indian summer monsoon (ISM; 10–30◦ N, 60–95◦ E) rainfall projected by models for the RCP8.5 scenario
based on the bias in present-day precipitation over the tropical western Pacific (12◦ S–12◦ N, 140◦ E–170◦W). (a) Scatter plot and the linear
regression (black line, with the correlation coefficient r) of the western Pacific precipitation (mmd−1) from the CMIP5 historical simulations
(1980–2005) and the ISM rainfall change between historical and RCP8.5 for the years 2070–2099 for different CMIP5 models. The red line
indicates the present-day value for the western Pacific precipitation from observations as used in Li et al. (2017) estimated from the Global
Precipitation Climatology Project (GPCP) dataset for 1980–1999 (Adler et al., 2003). (b) Uncorrected ISM rainfall change ratio (% per ◦C)
vs. the corrected ratio from CMIP5 models and the multi-model mean with the standard deviations shown as error bars. The rain data are
normalized by the global mean near-surface temperature change. (c) Projected multi-model mean rainfall change errors and (d) corrected
multi-model mean rainfall change over the Indian Ocean. Similar to Fig. 2 of Li et al. (2017) and produced with recipe_li2017natcc.yml (see
details in Sect. 3.3.5).

3.5 Toy model

Synthetic datasets generated from “toy models” have been
used in the literature for assessing the effectiveness of multi-
model combination strategies and for estimating the effect of
observational uncertainties on the correlation between fore-
casts and observational datasets (Massonnet et al., 2016).
The toy model recipe implemented into ESMValTool v2.0 is
based on the approach presented in Weigel et al. (2008) for
simulating single-model ensembles from a Gaussian distri-
bution, where the number of members and the standard devi-
ation of the error are defined by the user. Following Weigel et
al. (2008), the recipe takes as input a set of observations, y1,
y2, . . . , yN and for each observation yi , M synthetic mem-

bers x are generated from

xi,m = αyi + εβ + εi,m, (3)

where y ∼N(µ,1), εβ ∼N(0,β) and ε1, . . . , εM ∼

N(0,
√
(1−α2

−β2)) with the notation N(µ,σ) referring
to a random number drawn from a normal distribution with
mean µ and standard deviation σ . The simulated value xm
is obtained by multiplying y by α, the predictability of the
observation, which is set to 1 in this instance, and by adding
a vector of perturbations εm and the scalar perturbation εβ .
The simulated values have the following properties:

1. The simulated values xi,1 have the same climatology as
the observations.

Geosci. Model Dev., 13, 4205–4228, 2020 https://doi.org/10.5194/gmd-13-4205-2020



A. Lauer et al.: Earth System Model Evaluation Tool (ESMValTool) v2.0 4221

Figure 15. Time series of the austral jet position for the RCP4.5 sce-
nario between 1980 and 2100 based on Wenzel et al. (2016b). The
gray lines show individual CMIP5 models and the dotted red line the
unweighted CMIP5 multi-model mean (uMMM). Observationally
based estimates of the jet position from ERA-Interim (Dee et al.,
2011) are represented by the dashed yellow line. Blue error bars in-
dicate the predicted jet position by the MDER analysis (multiple di-
agnostic ensemble regression) for the near-term future (2015–2034)
and the midterm future (2040–2059). Similar to Fig. 5 of Wenzel et
al. (2016b) and produced with recipe_wenzel16jclim.yml; see de-
tails in Sect. 3.4.1.

2. The mean correlation between the simulations xi,1, . . . ,
xi,M and observation yi is determined by α (see toy
model properties described in Weigel et al., 2008).

3. The parameter β describes the model underdispersion,
where β = 0 corresponds to the case where the synthetic
ensemble is well dispersed and covers the full range
of uncertainties for a given correlation α. The under-
dispersion increases with β being limited to the range
0≤ β ≤

√
(1−α2).

Parameter β is introduced to control the dispersion. For well-
dispersed ensembles, skill is independent of the number of
simulations involved, while for overconfident model ensem-
bles, skill grows with the ensemble size. Given that β ac-
counts for the dispersion, this approach leads α to represent
a measure of predictability (Weigel et al., 2008).

This toy model is based on very simplifying assump-
tions: (1) normality and stationarity: the climatology and
the ensemble distributions are assumed to be stationary and
normally distributed; (2) well-calibrated model climatology:
each ensemble member has the same climatology as the ob-
servations; (3) stationary skill: spread and correlation do not
vary from sample to sample; (4) predictable signal and ob-
servational errors: requires the signal to be given by αx,
and therefore it is determined by the verifying observation
(Weigel et al., 2008).

The predictability α is 1 since we are only interested in
generating synthetic observations. Thus, the user only needs
to define the standard deviation of the error. This term can
be based on the observational uncertainty when available
(e.g., as provided with the European Space Agency’s Climate
Change Initiative (ESA CCI) SST dataset; Merchant et al.,
2014a, b) or estimated by the user, e.g., by calculating the
standard deviation between different observational reference
datasets (Bellprat et al., 2017).

We would like to note that in addition to the observational
uncertainty itself, also spatiotemporal representativeness of
observations plays an important role when evaluating mod-
els. Schutgens et al. (2017) showed that such representation
errors remain even after spatial and temporal averaging and
may be larger than typical measurement errors. In addition,
also the calculation method of a quantity to be compared with
observations can play an important role. This is, for exam-
ple, the case when comparing satellite retrievals with model
quantities that are not derived the same way. Application of
satellite simulators such as the Cloud Feedback Model Inter-
comparison Project (CFMIP) Observation Simulator Pack-
age (COSP; Bodas-Salcedo et al., 2011) can help to reduce
such uncertainties in model evaluation. Both of these aspects
are not covered by the toy model, which only provides an
estimate for the observational uncertainty itself.

For further discussion of this synthetic value generator,
its general application to forecasts and its limitations, see
Weigel et al. (2008). The recipe recipe_toymodel.yml writes
a NetCDF file containing the synthetic observations. Due to
the sampling of the perturbations from a Gaussian distribu-
tion, running the recipe multiple times, with the same obser-
vation dataset and input parameters, will result in different
outputs (Fig. 16).

3.5.1 Climate projection chapter of IPCC WGI AR5

The recipe_collins13ipcc.yml reproduces a subset of the fig-
ures from the long-term climate change projections chapter
of the IPCC AR5 (chapter 12, Collins et al., 2013). This new
recipe in version 2.0 allows for reproduction of selected fig-
ures from AR5 to show changes between historical and fu-
ture projections over the available CMIP models. It will also
allow a faster analysis of the CMIP6 climate projections that
are part of the Scenario Model Intercomparison Project (Sce-
narioMIP; O’Neill et al., 2016). The recipe includes figures
such as time series from historical periods to projections (in-
cluding spread among models; see Fig. 17), horizontal maps
for individual models as well as multi-model means (in-
cluding stippling to indicate large changes with high model
agreement and hatching to indicate areas with a small sig-
nal or low agreement of models; see Fig. 18) and vertical
zonal mean plots (also including stippling and hatching to
indicate significant changes). The example shown in Fig. 18
shows where the CMIP5 models project an increase in pre-
cipitation and where they project a decrease. This example
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Figure 16. Example of 20 synthetic members of a single dataset
ensemble generated by recipe_toymodel.yml. Shown are time series
of surface-level pressure (psl) averaged over the region 30–50◦ N,
40◦ E–40◦W, from 2000 to 2015, created from monthly mean data
from ERA-Interim (Dee et al., 2011). With the user providing an es-
timate for the standard error, e.g., from differences between differ-
ent observational datasets, this diagnostic can be used to investigate
the effect of observational uncertainty. For details, see Sect. 3.4.2.

Figure 17. Time series of global annual mean surface air temper-
ature anomalies (relative to 1986–2005) from CMIP5 models and
RCP2.6, 4.5, 6.0 and 8.5 scenarios. The solid lines show the multi-
model mean; the shading shows the 5 % to 95 % range (±1.64 stan-
dard deviations). The numbers indicate the number of models these
estimates are based on. Similar to Collins et al. (2013) Fig. 12.5 and
produced with recipe_collins13ipcc.yml (see Sect. 3.4.3 for details).

also shows quite large regions where the projections are still
uncertain; i.e., the multi-model mean signal is smaller than
1 standard deviation of the natural variability estimated from
pre-industrial control simulations (hatching).

Most diagnostics scripts are set up in a generic way, so that
in principle they can be used for any variable from the CMIP
archive. The scripts have been tested for the variables indi-
cated in Table 1. To be able to determine if a change signal is

larger than natural variability the natural variability is calcu-
lated from the piControl runs, other than that the recipe uses
historical and RCP runs. All diagnostics in this recipe with
the exception of the emergent constraints on the year of dis-
appearance of September Arctic sea ice (Sect. 3.3.3) do not
use observations.

3.5.2 Sea ice

The sea ice diagnostics included in the ESMValTool
(recipe_seaice.yml) have been extended with three new di-
agnostics. The first new diagnostic (seaice_trends.ncl) cal-
culates the trend in sea ice extent or sea ice area from each
model and reference observation(s) or reanalysis data that are
given in the recipe. The diagnostic produces histogram plots
of the trend distributions from all models and adds the ref-
erence datasets (here: HadISST; Rayner et al., 2003) as col-
ored vertical lines. The user can specify the region (Arctic
or Antarctic) and the month of the year for which sea ice
area/extent is calculated. The trends are calculated over the
full period specified in the recipe and the resulting plots are
similar to those of Fig. 9.24c/d in Flato et al. (2013) . The ex-
ample plot (Fig. 19) shows that the majority of CMIP5 mod-
els slightly underestimate the observed trend in summer sea
ice extent over the time period of 1960–2005.

The second new diagnostic (seaice_yod.ncl) calculates the
year of near disappearance of Arctic sea ice. The diagnos-
tic creates a time series plot of September Arctic sea ice
extent for each model given in the recipe and adds three
multi-model statistics: mean, standard deviation and YOD.
It optionally reads a list of pre-calculated model weights and
adds the weighted multi-model mean time series including
weighted multi-model standard deviation to the plot (see, for
example, Fig. 7 of Senftleben et al., 2020). The example in
Fig. 20 shows that there is a large spread in simulated sea
ice extent among the CMIP5 models with individual models
simulating a summer sea ice extent below 1 million km2 al-
ready around the year 2025, while other models are still well
above this threshold in 2100.

The third new diagnostic (seaice_ecs.ncl) calculates emer-
gent constraints for YOD using mean or trend in sea ice ex-
tent. The diagnostic produces scatter plots of different his-
torical and future sea ice metrics, similar to those in Fig. 2
of Massonnet et al. (2012) and Fig. 12.31a/c of Collins et
al. (2013) (see Sect. 3.3.3 for details).

4 Summary

In this article, diagnostics and metrics, newly implemented
into the Earth System Model Evaluation Tool v2.0 to analyze
projections from ESMs and emergent constraints for climate-
relevant parameters including effective climate sensitivity,
snow-albedo effect, climate–carbon cycle feedback, hydro-
logic cycle intensification, future Indian summer monsoon
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Figure 18. Global maps of seasonal mean change in precipitation from 1986–2005 (reference period) to 2081–2100 for the RCP8.5 scenario.
Hatching indicates regions where the multi-model mean change is less than 1 standard deviation of the internal variability estimated from
piControl simulations. Stippling indicates regions where the multi-model mean change is greater than 2 standard deviations of the internal
variability and where at least 90 % of models agree on the sign of the change. The numbers in the upper right of each panel indicate the number
of models used. Similar to Fig. 12.22 of Collins et al. (2013) but only for one future time period. Produced with recipe_collins13ipcc.yml
(see Sect. 3.4.3 for details).

precipitation, land photosynthesis and year of disappearance
of summer Arctic sea ice, are described and illustrated with
examples using CMIP5 data.

The implemented multi-model products allow for an easy
and quick overview of the multi-model ensemble mean and
the inter-model agreement in the sign of the multi-model
mean anomaly for a given variable, geographical region, sea-
son and time period. In addition to maps showing the anoma-
lies and their inter-model agreement, the results are also
given as anomaly time series showing each individual model
and the multi-model ensemble mean, which can be used to
estimate the inter-model spread.

ECS and TCR are climate metrics that can be used to
estimate and compare the sensitivity of simulated near-
surface temperature from individual models to increased at-
mospheric CO2 concentrations. With these metrics included
in the ESMValTool, it is easily possible to group the models
in high- and low-sensitivity models for further analysis.

Emergent constraints offer the possibility to use an en-
semble of ESMs together with observations in order to con-
strain non-observable parameters such as simulated future
Earth system feedbacks. Overall, seven emergent constraints
are available in ESMValTool v2.0 for ECS: (1) covariance
of shortwave cloud reflection using the models’ correlation
of the covariance of tropical low-level cloud reflection with
the underlying SST (Brient and Schneider, 2016); (2) lati-
tude of the climatological mean Hadley cell edge (Lipat et
al., 2017); (3) atmospheric convective mixing calculated as
sum of small- and large-scale component, the lower tropo-
spheric mixing index (Sherwood et al., 2014); (4) bias in
climatological annual mean precipitation over the southeast-
ern Pacific, the southern ITCZ index (Tian, 2015); (5) mid-
tropospheric humidity over the tropical Pacific, the tropical
mid-tropospheric humidity asymmetry index (Tian, 2015);
(6) global temperature variability (Cox et al., 2018); and
(7) difference between tropical and midlatitude cloud frac-
tion (Volodin, 2008). Two emergent constraints on the hy-
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Figure 19. Distribution of trends in September Arctic sea ice ex-
tent calculated from the historical simulations (1960–2005) of 26
CMIP5 models (similar to Flato et al., 2013, Fig. 9.24c). An ob-
servational estimate of the trend in summer sea ice extent from
HadISST (Rayner et al., 2003) over the same time period is shown
by the vertical red line. Produced with recipe_seaice.yml; for de-
tails, see Sect. 3.4.4.

Figure 20. Time series of September Arctic sea ice extent for indi-
vidual CMIP5 models (dashed gray lines), multi-model mean (thick
red line) and multi-model standard deviation (area shaded between
thin red lines) for scenario RCP8.5. The year of disappearance (sea
ice extent below 1 million km2) obtained from the CMIP5 multi-
model mean is indicated by the vertical red line (similar to Collins
et al., 2013, Fig. 12.31e). Produced with recipe_seaice.yml; for de-
tails, see Sect. 3.4.4.

drological cycle are implemented: (1) a constraint on the hy-
drological cycle intensification that uses observations of ra-
diative fluxes and water vapor (DeAngelis et al., 2015); and
(2) a constraint on the future Indian summer monsoon using
present-day precipitation data over the tropical western Pa-

cific (Li et al., 2017). Additionally, emergent constraints are
available for the carbon cycle: (1) future tropical land carbon
storage (Wenzel et al., 2014); (2) projected land photosynthe-
sis (Wenzel et al., 2016a). Also implemented are emergent
constraints for the year of disappearance of September Arc-
tic sea ice (Massonnet et al., 2012) and for the snow-albedo
effect (Hall and Qu, 2006).

Various new diagnostics are available specifically for anal-
ysis of climate model projections. The MDER method has
been implemented to constrain the projected position of the
austral jet following Wenzel et al. (2016b). The method uses
a stepwise regression to identify the most relevant diagnos-
tics (calculated with present-day data) that are linked to pro-
jections of a quantity via a multivariate linear regression
scheme. Observational data can then be used to constrain the
projected quantity such as the future austral jet position.

A number of newly implemented diagnostics resembling
selected figures from IPCC AR5 chapter 12 (Collins et al.,
2013) for analysis of climate model projections are grouped
in one recipe. The diagnostics include time series and hori-
zontal maps and vertical zonal maps including stippling and
hatching to show significant changes between a climate pro-
jection scenario and a historical simulation. For the stip-
pling and hatching, results from pre-industrial control runs
are used to estimate internal variability of a variable, which
is then used to assess whether simulated changes are signif-
icant or not. Diagnostics to analyze sea ice in climate model
simulations are also grouped in one recipe. The new diagnos-
tics include calculation of trends in sea ice area and extent,
multi-model estimates for the year of disappearance of sea
ice in climate projections and scatter plots of different histor-
ical and future sea ice metrics such as historical trend in sea
ice extent vs. YOD. In addition, a “toy model” has been im-
plemented into ESMValTool v2.0 that allows generating syn-
thetic ensemble members from a single dataset (Weigel et al.,
2008). When applied to observational data, this can be used
to take into account observational uncertainty when compar-
ing the observations with model results. For this, the user
needs to specify the standard error of the observations that is
provided with some observational datasets or estimated from
differences between different observational datasets for the
same quantity.

ESMValTool v2.0 is an open-source software tool that
has been specifically developed to facilitate evaluation and
analysis of Earth system models participating in CMIP. As
such, it can process and analyze CMOR compliant model
output and observational datasets with the particular aim to
provide traceable and reproducible results, well-documented
diagnostics and metrics and an efficient workflow allowing
to evaluate models in more depth and more rapidly than it
was typically possible in previous CMIP phases. The CMOR
standard is, however, quite detailed and implemented in a
relatively strict way in the ESMValTool in order to ensure
data consistency and to minimize the probability of errors in
the data processing. Increasing the flexibility of the CMOR
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check and automatic fixes of small inconsistencies is a cur-
rently ongoing activity and should make the data process-
ing smoother, especially for datasets which are not part of
CMIP or any CMIP-endorsed model intercomparison project
(MIP). This means that a certain familiarity with these data
standards is required in order to use the ESMValTool. An-
other limitation is that for license issues, observations can-
not be distributed together with the software package. New
users are required to download and process observational
datasets before being able to use the tool or to have access
to a computing center where observational data for the ESM-
ValTool (i.e., CMORized) are already available. We are cur-
rently working on automating this process to facilitate the
data retrieval and CMORization process.

The new ESMValTool is now available to the community
for evaluation and scientific analyses of CMIP6 data. Thanks
to a strong community involvement, the ESMValTool is con-
stantly extended and improved in an effort to make the tool
more user friendly, more efficient and a better tool for climate
analyses. The ongoing ESMValTool development and dis-
cussions regarding new features can be followed on GitHub
at https://github.com/ESMValGroup (last access: 1 Septem-
ber 2020). Feedback, bug reports and contributions by the
scientific community are very welcome at any time.

Code availability. ESMValTool v2.0 is released under
the Apache License, VERSION 2.0. The latest release
of ESMValTool v2.0 is publicly available on Zenodo at
https://doi.org/10.5281/zenodo.3970975 (Andela et al., 2020a).
The source code of the ESMValCore package, which is installed
as a dependency of ESMValTool v2.0, is also publicly available
on Zenodo at https://doi.org/10.5281/zenodo.3952695 (Andela et
al., 2020b). ESMValTool and ESMValCore are developed on the
GitHub repositories available at https://github.com/ESMValGroup
(last access: 1 September 2020).

Data availability. CMIP5 data are available freely and publicly
from the Earth System Grid Federation (ESGF). Observations used
in the evaluation are detailed in the various sections of the pa-
per. The observational datasets are not distributed with the ES-
MValTool that is restricted to the code as open-source software.
Observational datasets that are available through the Observations
for Model Intercomparisons Project (obs4MIPs, https://esgf-node.
llnl.gov/projects/obs4mips/, last access: 26 February 2020) can be
downloaded freely from the ESGF and directly used in the ESMVal-
Tool. For all other observational datasets, the ESMValTool provides
a collection of scripts (NCL and Python) with exact downloading
and processing instructions to recreate the datasets used in this pub-
lication.
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