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Abstract. The super-droplet method (SDM) is a particle-
based numerical scheme that enables accurate cloud micro-
physics simulation with lower computational demand than
multi-dimensional bin schemes. Using SDM, a detailed nu-
merical model of mixed-phase clouds is developed in which
ice morphologies are explicitly predicted without assuming
ice categories or mass–dimension relationships. Ice particles
are approximated using porous spheroids. The elementary
cloud microphysics processes considered are advection and
sedimentation; immersion/condensation and homogeneous
freezing; melting; condensation and evaporation including
cloud condensation nuclei activation and deactivation; depo-
sition and sublimation; and coalescence, riming, and aggre-
gation. To evaluate the model’s performance, a 2-D large-
eddy simulation of a cumulonimbus was conducted, and
the life cycle of a cumulonimbus typically observed in na-
ture was successfully reproduced. The mass–dimension and
velocity–dimension relationships the model predicted show
a reasonable agreement with existing formulas. Numerical
convergence is achieved at a super-particle number concen-
tration as low as 128 per cell, which consumes 30 times
more computational time than a two-moment bulk model.
Although the model still has room for improvement, these re-
sults strongly support the efficacy of the particle-based mod-
eling methodology to simulate mixed-phase clouds.

1 Introduction

Mixed-phase clouds, which are clouds comprising droplets
and ice particles, appear under multiple atmospheric condi-
tions, from the tropics to the poles, and throughout the year
(Shupe et al., 2008). Accurately simulating the evolution of
droplets and ice particles in mixed-phase clouds is crucial to
understanding cloud dynamics, precipitation formation, wa-
ter transport, radiative properties, aerosol–cloud interaction,
cloud electrification, and lightning. These features are all cru-
cial to many environmental and societal issues, such as cli-
mate change and variability, numerical weather prediction,
weather modification, and icing on infrastructure (e.g., wind
turbines and power lines) and aircraft (e.g., Korolev et al.,
2017).

Through their 70-year history, numerical models of cloud
microphysics have become increasingly sophisticated (e.g.,
Khain et al., 2015; Khain and Pinsky, 2018; Grabowski et al.,
2019; Morrison et al., 2020). However, recent model inter-
comparison studies revealed that the models do not show
any sign of converging toward the truth. Even the most so-
phisticated models do not correspond well, and the diver-
gence in model results is as large in sophisticated models
as it is in simple models (VanZanten et al., 2011; Xue et al.,
2017). Mixed-phase cloud microphysics modeling is partic-
ularly challenging because we still lack a sufficient scientific
understanding of mixed-phase cloud microphysics, and an
algorithm appropriate for mixed-phase cloud microphysics
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does not exist. This study aims to address the second prob-
lem.

Every numerical model is an approximation of a phe-
nomenon’s mathematical model, which is a theoretical de-
scription that should express the system’s behavior accu-
rately. We apply a numerical scheme to construct a numerical
model, which we use to produce an approximate solution of
the phenomenon’s underlying mathematical model for given
spatiotemporal boundary conditions. This general philoso-
phy of simulation is well documented, e.g., in Stevens and
Lenschow (2001).

There are several types of cloud microphysics numerical
models that are based on different levels of theoretical de-
scriptions.

The first of these is the bulk model, which is the most
widely used cloud microphysics model type (see, e.g., Khain
et al., 2015; Morrison and Milbrandt, 2015; Khain and Pin-
sky, 2018; Grabowski et al., 2019; Morrison et al., 2020, for
a review). Bulk models consider only the particle popula-
tion’s statistical features and are thus based on macroscopic
descriptions of cloud microphysics. They solve a mathemati-
cal model that is closed in the lower moments of the distribu-
tion function of cloud droplets, rain droplets, and ice particle
categories (e.g., mass and number mixing ratios). The basic
premise of bulk models is that the distribution function can
be determined by the lower moments, but such a universal re-
lationship is unknown. In other words, in bulk models, to pre-
dict the time evolution of a chosen set of moments, their time
derivatives are approximated by some functions of the mo-
ments being predicted, but this is not generally possible (see,
e.g., Beheng, 2010). It would be also informative to note the
analogy and difference between the Navier–Stokes equation
and bulk models (Morrison et al., 2020), which highlights
the difficulty in deriving bulk models. Therefore, for cloud
microphysics, a more bottom-up approach to construct more
accurate and reliable numerical models would be desired.

Kinetic description provides a more detailed microscopic
mathematical model of cloud microphysics, with the evolu-
tion and motion of individual aerosol, cloud, and precipita-
tion particles being explicitly considered. Assuming that par-
ticles are locally well mixed, particle collisions are regarded
as a stochastic process. Each particle is characterized by its
position and internal state, the latter of which is specified by
variables known as attributes, such as size, mass, ratio of the
ice crystal’s minor axis to the major axis (hereafter called
“aspect ratio”), velocity, and chemical composition.

Mixed-phase cloud microphysics are far more compli-
cated than those of liquid-phase clouds, with various ice
crystal formation mechanisms, diffusional growth by deposi-
tion/sublimation, diverse ice particle morphologies, ice melt-
ing and shedding, riming and wet growth, aggregation, spon-
taneous/collisional breakup of ice particles, and rime splin-
tering at play (e.g., Pruppacher and Klett, 1997; Hashino and
Tripoli, 2007, 2008, 2011a, b; Khvorostyanov and Curry,
2014; Khain and Pinsky, 2018). Although our scientific un-

derstanding is not yet sufficient, it is plausible that mixed-
phase cloud microphysics could be accurately described un-
der a kinetic description framework. Indeed, direct compar-
ison with laboratory data suggests that a kinetic description
could express ice particle morphology evolution accurately
(Jensen and Harrington, 2015). This is crucial because ice
particle morphology significantly influences the fall speed,
growth by diffusion and collision, and radiative properties of
ice particles. Because of their direct correspondence to ele-
mentary processes, it should also be easier to refine kinetic
descriptions using laboratory measurements.

Two numerical scheme types exist for kinetic descriptions,
namely bin schemes and particle-based schemes.

The development of bin schemes started independently of
bulk models in the 1950s (e.g., Mason and Ramanadham,
1954; Hardy, 1963; Srivastava, 1967). For a review, see, e.g.,
Khain et al. (2015), Khain and Pinsky (2018), Grabowski
et al. (2019), and Morrison et al. (2020).

Particle-based cloud microphysics modeling is a new ap-
proach that has emerged since the mid-2000s (e.g., Paoli
et al., 2004; Jensen and Pfister, 2004; Shirgaonkar and Lele,
2006; Andrejczuk et al., 2008, 2010; Shima et al., 2009;
Sölch and Kärcher, 2010; Riechelmann et al., 2012; Brdar
and Seifert, 2018; Seifert et al., 2019; Jaruga and Pawlowska,
2018; Grabowski and Abade, 2017; Abade et al., 2018;
Grabowski et al., 2018; Hoffmann et al., 2019). During
particle-based modeling’s early development, calculating the
coalescence process was a numerical challenge. Shima et al.
(2009), Andrejczuk et al. (2010), Sölch and Kärcher (2010),
and Riechelmann et al. (2012) proposed different algorithms,
and among those four schemes, the super-droplet method
(SDM) developed by Shima et al. (2009) provides a com-
putationally efficient Monte Carlo algorithm (Unterstrasser
et al., 2017; Dziekan and Pawlowska, 2017). Several other
coalescence algorithms were proposed in different research
areas such as the weighted flow algorithm for aerosol dynam-
ics (DeVille et al., 2011); O’Rourke’s method (1981), and
the no-time counter method (Schmidt and Rutland, 2000) for
spray combustion; and Ormel and Spaans’s method (2008)
and Johansen et al.’s method (2012) for astrophysics. Li et al.
(2017) confirmed that the performance of SDM is better than
Johansen et al.’s method (2012), but direct comparison with
other algorithms remains to be assessed.

The essential difference between bin schemes and particle-
based schemes lies in the representation of particles. Bin
schemes adopt an Eulerian approach and the particle dis-
tribution function is approximated using a finite number of
control volumes (histogram). The time evolution is solved
using a finite volume method or a finite difference method.
In contrast, particle-based schemes rely on a Lagrangian ap-
proach and the population of real particles is approximated
by using a population of weighted samples, sometimes re-
ferred to as super-droplets or super-particles. As discussed
in Grabowski et al. (2019), bin schemes face problems that
are challenging to overcome such as numerical diffusion,

Geosci. Model Dev., 13, 4107–4157, 2020 https://doi.org/10.5194/gmd-13-4107-2020



S. Shima et al.: Predicting morphology of ice particles using the super-droplet method 4109

computational cost, and the breakdown of the Smoluchowski
equation (Smoluchowski, 1916; Alfonso and Raga, 2017;
Dziekan and Pawlowska, 2017). However, SDM could re-
solve, or at least mitigate, those problems.

Therefore, SDM and similar particle-based schemes
should be more suitable for mixed-phase cloud microphysics
simulations than bin schemes. Mainly because of computa-
tional costs, it is practically impossible to apply bin schemes
to the most comprehensive form of kinetic description, which
inevitably involves multiple attributes to express each parti-
cle’s internal state. Instead, many existing bin models solve
a simplified kinetic description that uses particle distribution
functions with a one-dimensional attribute space approxima-
tion. For example, most rely on artificially separated cate-
gories of ice particles, with predefined mass–dimension and
area–dimension relationships in each category. Another ap-
proach is adopted in the SHIPS model developed by Hashino
and Tripoli (2007, 2008, 2011a, b), which is a bin model that
solves sophisticated and comprehensive kinetic descriptions
and does not use ice categories or mass–dimension relation-
ships. However, to justify using the one-dimensional particle
distribution function, they rely on the “implicit mass sorting
assumption”, stating that different solid hydrometeor species
do not belong to the same bin because they are naturally
sorted by mass. Such simplifications could be a significant
source of errors. SDM and similar particle-based schemes
could directly simulate comprehensive kinetic descriptions
with lower computational demand.

This study’s primary objective is to assess particle-based
modeling methodology’s capability to simulate mixed-phase
clouds. Therefore, we develop and evaluate the performance
of a detailed numerical mixed-phase cloud model using
SDM, wherein ice particle morphologies are explicitly pre-
dicted.

We first construct a mixed-phase cloud microphysics
mathematical model, which is based on kinetic description.
The fluid dynamics of moist air is described by the compress-
ible Navier–Stokes equation, and aerosol, cloud, and precip-
itation particles are represented by point particles. Following
Chen and Lamb (1994a, b) and Misumi et al. (2010), ice par-
ticles are approximated using porous spheroids. The elemen-
tary cloud microphysics processes considered in the model
are advection and sedimentation; immersion/condensation
and homogeneous freezing; melting; condensation and evap-
oration including the cloud condensation nuclei (CCN) acti-
vation and deactivation; deposition and sublimation; and co-
alescence, riming, and aggregation. We base the mathemat-
ical models used for those elementary processes on revised
versions of existing formulas. Additionally, our model does
not rely on ice categories or predefined mass–dimension re-
lationships. For simplicity, and due to the lack of appropri-
ate algorithms, we do not consider spontaneous/collisional
breakup or rime splintering. We then develop a numeri-
cal model called SCALE-SDM to solve the mathematical
model. Mixed-phase cloud microphysics is solved using the

SDM. The fluid dynamics of moist air is solved by adopt-
ing a forward temporal integration scheme to both horizontal
and vertical directions using a finite volume method with an
Arakawa-C staggered grid. To evaluate our model’s perfor-
mance, we conduct a two-dimensional (2-D) simulation of
an isolated cumulonimbus, and find that our model well re-
produces the life cycle of a cumulonimbus typically observed
in nature. The mass–dimension and velocity–dimension rela-
tionships our model predicts show a reasonable agreement
with existing formulas based on laboratory measurements
and field observations. We also investigate the simulation’s
numerical convergence and confirm that our model can pro-
duce an accurate approximate solution with lower computa-
tional demand than multi-dimensional bin schemes. We then
explore the possibility of further refining and sophisticating
the model; however, advancing our understanding of mixed-
phase cloud microphysics is beyond the scope of this study.

Several previous works are closely relevant to this study.
Chen and Lamb (1994a, b) developed a detailed multi-
dimensional bin model, which Misumi et al. (2010) ex-
tended and added ice volume as a new particle attribute.
We follow that strategy and approximate ice particles as
porous spheroids; however, their kinetic description is more
detailed than ours because they also considered sponta-
neous/collisional breakup, shedding, rime splintering, and
surface chemical reactions. They solved the model using a
multi-dimensional bin scheme; hence, their numerical model
carries a high computational cost. Hashino and Tripoli (2007,
2008, 2011a, b) further extended Chen and Lamb (1994a,
b)’s kinetic description to account for polycrystals that can
form below −20 ◦C. They solve the mathematical model us-
ing a one-dimensional bin scheme; however, careful vali-
dation is needed to justify their implicit mass sorting as-
sumption. Paoli et al. (2004), Jensen and Pfister (2004), and
Shirgaonkar and Lele (2006) separately developed a particle-
based model for ice-phase clouds, but neither the evolution of
ice particle morphologies nor the aggregation of ice particles
were considered in their models. Sölch and Kärcher (2010)
also developed a particle-based model for ice-phase clouds,
but that model relies on ice categories and mass–dimension
relationships. Brdar and Seifert (2018) developed McSnow,
the first particle-based model for mixed-phase clouds. Mc-
Snow is a multi-dimensional expansion of the P3 bulk model
(Morrison and Milbrandt, 2015; Milbrandt and Morrison,
2016) and thus free from ice categories; however, it still re-
lies on mass–dimension relationships. Further, a kinetic ap-
proach is applied to ice particles but not to droplets or aerosol
particles.

In this study, we demonstrate that a large-eddy simulation
of a cumulonimbus that predicts ice particle morphologies
without assuming ice categories or mass–dimension relation-
ships is possible if we use SDM.

The organization of the remainder of this paper is as fol-
lows. In Sects. 2–4, our mixed-phase cloud mathematical
model is described in detail. The cloud microphysics model
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is based on kinetic description and is coupled with moist
air fluid dynamics. Note that this model is an expansion of
Shima et al. (2009)’s warm cloud model. In Sect. 5, we de-
velop a numerical model called SCALE-SDM by applying
SDM. To evaluate SCALE-SDM’s performance, we conduct
a 2-D simulation of an isolated cumulonimbus. Section 6
presents the design of the numerical experiments, and in
Sect. 7, the overall properties of the simulated cumulonim-
bus and ice particle morphologies are analyzed. The numeri-
cal convergence characteristics of the model are investigated
in Sect. 8. In Sect. 9, possible improvements of the model are
discussed, and a summary and conclusions are presented in
Sect. 10. Lastly, lists of symbols and abbreviations are pro-
vided in Appendices A and B, respectively. Note that a com-
prehensive table of contents is provided as PDF bookmarks.

2 Attributes of atmospheric particles

2.1 Notion of a particle

Let us represent aerosol, cloud, and precipitation particles
as point particles. The particle state is then characterized
by two types of variables: position x and attributes a. At-
tributes consist of several variables representing the parti-
cle’s internal state, and the attributes considered in this study
are a = {r, {msol

α }, {m
insol
β },T fz,a,c,ρi,mrime,nmono,v}, i.e.,

liquid water amount, masses of soluble substances, masses
of insoluble substances, freezing temperature, equatorial ra-
dius, polar radius, apparent density, rime mass, number of
monomers, and velocity.

In this study, for simplicity, partially frozen/melted parti-
cles are not considered. We assume that each particle com-
pletely freezes or melts instantaneously (see Sects. 4.1.4 and
4.1.5). Therefore, either the equivalent droplet radius r or ice
particle attributes {a,c,ρi

} are always zero in our model. Fur-
thermore, we assume that all particles contain soluble sub-
stances and are always deliquescent even when the humidity
is low (see Sect. 4.1.6). Further, as a crude representation of
“pre-activation”, we do not allow the complete sublimation
of an ice particle (see Sect. 4.1.7). Therefore, r and {a,c,ρi

}

cannot be simultaneously zero.
In the remainder of this section, we provide a detailed ex-

planation of each attribute.

2.2 Liquid water amount

The amount of liquid water contained in a particle is ex-
pressed by the volume-equivalent sphere’s radius r . That is,
the volume of water in a particle is (4/3)πr3.

2.3 Masses of soluble and insoluble substances

Let msol
α , α = 1,2, . . .,N sol be the masses of soluble sub-

stances contained in the particle, and let minsol
β , β =

1,2, . . .,N insol be the masses of insoluble substances.

2.4 Freezing temperature and ice nucleation active
surface site

We only consider homogeneous freezing and condensa-
tion/immersion freezing in this study because these are dom-
inant in mixed-phase clouds (e.g., Cui et al., 2006; De Boer
et al., 2011; Murray et al., 2012).

Based on the “singular hypothesis” (Levine, 1950), we
consider that each insoluble particle has its own freezing
temperature T fz, and that a supercooled droplet freezes as
soon as the ambient temperature T decreases below T fz. The
freezing process is described in detail in Sect. 4.1.4.

Each particle’s T fz is directly connected to the ice nu-
cleation active surface site (INAS) density concept (e.g.,
Fletcher, 1969; Connolly et al., 2009; Niemand et al., 2012;
Hoose and Möhler, 2012).

An INAS is a localized structure, such as lattice mis-
matches, cracks, and hydrophilic sites, on an insoluble sub-
stance’s surface that catalyzes ice formation at temperatures
lower than a specific temperature. INAS density nS(T ) gives
the accumulated number of INAS per unit surface area of
the insoluble substance. Therefore, nS(T ) is a function that
increases as T decreases. The freezing temperature T fz cor-
responds to the highest temperature at which the first INAS
appears on the insoluble substance’s surface. Let Ainsol be
the insoluble substance’s surface area. Then, the probability
that T fz is larger than T can be calculated as P(T fz > T )=

1− exp[−AinsolnS(T )]. The probability density function of
T fz then becomes

p(T )=−
dP(T fz > T )

dT
=−Ainsol dnS

dT
e−A

insolnS . (1)

We can determine T fz by selecting a random number that
follows this probability distribution.

For mineral dust, biogenic substances, and soot, we can
use the INAS density formulas of Niemand et al. (2012), Wex
et al. (2015), and Ullrich et al. (2017), respectively. If a parti-
cle consists of multiple insoluble substances, we assume that
T fz is the highest of all.

It is possible that a single INAS does not appear until
−38 ◦C, meaning that the particle is ice nucleation (IN) in-
active and will not freeze by immersion/condensation freez-
ing but only by homogeneous freezing. To account for this,
we set T fz

=−38 ◦C. If a particle contains only soluble sub-
stances, we also set T fz

=−38 ◦C.
There are various ice nucleation pathways (e.g., Kanji

et al., 2017); however, in this study, we do not consider other
ice nucleation pathways, such as deposition nucleation, del-
iquescent freezing, pore freezing, and contact freezing. The
possibility of extending our model to incorporate these mech-
anisms is discussed in Sect. 9.3.1.
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2.5 Porous spheroid approximation of ice particles

Ice particles have diverse morphologies such as columns,
hexagonal plates, dendrites, rimed crystals, graupel, hail-
stones, and aggregates (e.g., Magono and Lee, 1966; Kikuchi
et al., 2013). Following the strategies of Chen and Lamb
(1994a, b), Misumi et al. (2010), and Jensen and Harring-
ton (2015), let us approximate each ice particle as a porous
spheroid, which is characterized by three variables, namely
equatorial radius a, polar radius c, and apparent density ρi.
That is, the ice particle’s apparent volume is V = (4π/3)a2c,
and its mass can be evaluated as m= ρiV . The two radii a
and c represent the ice particle’s spatial extent and ρi rep-
resents its internal structure. Let us define the aspect ratio
as φ := c/a. A spheroid is considered a prolate spheroid
if φ > 1, and columns could be approximated by prolate
spheroids. In contrast, plates and dendrites are approximated
by oblate spheroids, i.e., φ < 1. If an ice particle is hollowed
out or intricately branched, ρi becomes smaller than the ice
crystal’s true density ρi

true ≈ 916.8 kg m−3.

2.6 Rime mass and number of monomers

Following Brdar and Seifert (2018) we introduce two addi-
tional ice particle attributes, namely rime mass mrime and
number of monomers nmono. Rime mass mrime records the
mass of ice a particle has obtained through the riming pro-
cess. The number of monomers nmono is an integer repre-
senting the number of primary ice crystals in the particle. In
this study, mrime and nmono are used only for analyzing the
simulation results. Unlike the McSnow model of Brdar and
Seifert (2018), this study’s time evolution equations do not
depend on mrime or nmono, as will be detailed in Sect. 4.1.

2.7 Velocity

We approximate that each particle is always moving at its
terminal velocity. Therefore, a particle’s velocity v is a diag-
nostic attribute.

2.8 Effective number of attributes

In summary, particle attributes consist of a =

{r, {msol
α }, {m

insol
β },T fz,a,c,ρi,mrime,nmono,v}. We need the

mass of insoluble substances {minsol
β ,β = 1,2, . . .,N insol

}

(and corresponding INAS densities) to specify freezing
temperature T fz. However, as described in Sect. 4.1, time
evolution equations do not depend on {minsol

β }. Rime mass
mrime and the number of monomers nmono do not affect time
evolution either. Particle velocity v is a diagnostic attribute.
Therefore, the attributes directly relevant to time evolution
are reduced to {r, {msol

α },T
fz,a,c,ρi

}. Compared to the
warm cloud SDM model of Shima et al. (2009), we have
introduced four new attributes.

3 Variables for moist air

We only consider dry air and water vapor for the gas phase
and ignore other trace gases. In this section, we introduce
several variables that describe the state of moist air: wind
velocity U = (U,V,W), density of dry air ρd, density of
water vapor ρv, density of moist air ρ := ρd+ ρv, specific
humidity qv := ρv/ρ, mass of dry air per unit mass of
moist air qd := ρd/ρ, temperature T , pressure P , and po-
tential temperature of moist air θ := T/5 := T/(P/P0)

R/cp .
Here, P0 = 1000 hPa is a reference pressure; Rd, Rv, and
R := qdRd+ qvRv are the gas constants of dry air, water
vapor, and moist air, respectively; and cpd, cpv, and cp :=

qdcpd+ qvcpv are the isobaric specific heats of dry air, wa-
ter vapor, and moist air, respectively. To simplify notation,
we introduce a variable representing the state of moist air:
G := {U ,ρ,qv,θ,P,T }.

4 Time evolution equations of mixed-phase clouds

In this section, we describe our model’s time evolution equa-
tions, first from cloud microphysics and then moist air fluid
dynamics. Our model is detailed; however, it still falls short
in completely describing mixed-phase cloud microphysics.
To keep the model description concise, discussions on the
shortcomings and how to overcome them are left for Sect. 9.

4.1 Cloud microphysics

Let us assign a unique index i to each particle. This
section explains the time evolution equations of particles
{{xi(t),ai(t)}, i = 1,2, . . .,Nwp

r }. Here, Nwp
r represents the

total number of particles accumulated over the whole period.
However, because of coalescence, precipitation, and other
processes, some particles might not exist all the time; thus,
we let Ir(t) be the set of particle indices existing in the do-
main at time t .

4.1.1 Advection and sedimentation

Particle i’s motion equation is

d
dt
(mivi)= F

drg
i −migẑ,

dxi

dt
= vi, (2)

wheremi is the particle’s mass, F drg
i is the force of drag from

moist air, g is Earth’s gravity, and ẑ is the unit vector in the
z-axis direction. Note that−F

drg
i gives the reaction force act-

ing on moist air. The momentum of moist air changes as de-
scribed in Eqs. (73) and (81).

If terminal velocity is reached, the motion equation be-
comes

vi = U i − ẑv∞i ,
dxi

dt
= vi, (3)
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where U i := U(xi) is the ith particle’s ambient wind veloc-
ity, and v∞i is the terminal velocity, which is a function of
attributes ai and the state of the ambient air Gi .

In this study, we assume that terminal velocity is always
achieved instantaneously; however, this is a simplification.
For example, the relaxation time of large droplets is a few
seconds (Fig. 3 of Wang and Pruppacher, 1977) though that
of micrometer-sized droplets is approximately 10−5 s (see,
e.g., Eq. 1 of Chen et al., 2018, and the discussion that fol-
lows). The acceleration of particles can be considered by ex-
plicitly solving the motion equation (see, e.g., Naumann and
Seifert, 2015), but extremely small time steps would be re-
quired for small particles.

The next two subsections explain the formulas used to cal-
culate droplet and ice particle terminal velocities.

4.1.2 Droplet terminal velocity

To calculate droplet terminal velocity, we use the formula
of Beard (1976): v∞i = v

∞

Beard(min(ri,3.5mm);ρi,Pi,Ti),
where ρi := ρ(xi) and Pi := P(xi) are the density and pres-
sure of ambient moist air, respectively. This formula applies
to droplets with radii smaller than 3.5 mm. If we use the for-
mula for droplets larger than this, the fall speed becomes un-
realistically fast. Therefore, we use the fall speed of a droplet
with a 3.5 mm radius for droplets larger than the size limit.

4.1.3 Ice particle terminal velocity

For ice particle terminal velocity, we use the
formula of Böhm (1989, 1992c, 1999): v∞i =

v∞Böhm(mi,φi,di,qi;ρi,Ti), where di is the characteris-
tic length, and qi is the area ratio.

In Böhm’s theory, di is defined by 2ai , and qi is defined by
the area ratio regarding circumscribed ellipse qce

i := Ai/A
ce
i ,

where Ai is the projected area perpendicular to the flow di-
rection, andAce

i is the area of the circumscribed ellipse ofAi ,
i.e., the area of the smallest ellipse that completely contains
Ai .

However, in this study, we start from a slightly different
definition of di and qi , which we adopted mistakenly:

di =Di := 2max(ai,ci), qi = q
cc
i := Ai/A

cc
i , (4)

where Di is the maximum dimension, qcc
i is the area ratio

regarding circumcircle, and Acc
i is the area of the circumcir-

cle of Ai , i.e., the area of the smallest circle that completely
contains Ai .

Consequently, Eq. (4) underestimates the fall speeds of
columnar ice particles. Nevertheless, based on the assess-
ment detailed in Sect. 9.2, we will confirm that this difference
does not change the results of our simulation significantly,
and hence we conclude that this flaw causes only a minor
impact on this study. We also note that in Sect. 9.2 we will
develop and release a fixed version of the model, SCALE-
SDM 0.2.5-2.2.2.

In our model, we assume that ice particles are falling
with their maximum dimension perpendicular to the flow
direction. Therefore, the circumcircle area becomes Acc

i =

πmax(ai,ci)2. The projected area Ai can be roughly eval-
uated by the area of the circumscribed ellipse Ace

i =

πaimax(ai,ci); however, we must subtract pores and inden-
tations at boundaries from Ace

i . We assume that the ratio
Ai/A

ce
i is a power of the volume fraction ρi

i/ρ
i
true, and that

the exponent κ is a function of the aspect ratio φi :

Ai = A
ce
i

(
ρi
i

ρi
true

)κ(φi )
. (5)

Based on the following arguments, we propose a value κ of
the form

κ(φi)= exp(−φi). (6)

Following Jensen and Harrington (2015), we assume κ→
1 as φi→ 0, and κ→ 0 as φi→∞. φi � 1 means that the
ice particle is thin and extends horizontally. Therefore, we
can expect that the structure is uniform along the vertical
axis and that the ratio Ai/Ace

i is equal to the volume fraction
ρi
i/ρ

i
true. Thus, κ(φi = 0)= 1. At the other extreme, φi � 1

indicates that the ice particle is columnar. Such ice crys-
tals typically hollow inward along their basal face; therefore,
the volume fraction ρi

i/ρ
i
true will not affect the ratio Ai/Ace

i .
Thus, κ(φi→∞)= 0.

For φi ≈ 1, Jensen and Harrington (2015) argued that
(ρi
i/ρ

i
true)

κ
= 1, i.e., κ = 0. However, this cannot be justified

for aggregates with low apparent densities. Thus, we estimate
κ through a dimensional analysis. We assume that the power
laws mi ∝D

β
i and Ai ∝D

β/s
i hold. Thus, by the definition

of apparent density, ρi
i =mi/((4/3)πa

2
i ci)∝D

β−3
i . From

Eq. (5), Dβ/si =D
2
iD

(β−3)κ
i . Hence, κ = (2s−β)/{s(3−

β)} holds. Schmitt and Heymsfield (2010) estimated that
(β,s)= (2.22,1.30) for aggregates observed during the Cir-
rus Regional Study of Tropical Anvils and Cirrus Layers
– Florida Area Cirrus Experiment (CRYSTAL-FACE) field
project. Therefore, κ = 0.375 for CRYSTAL-FACE aggre-
gates. They also estimated that (β,s)= (2.20,1.25) for ag-
gregates observed during an Atmospheric Radiation Mea-
surement (ARM) field project, which results in κ = 0.300.

The κ given by Eq. (6) yields κ(0)= 1, κ(1)= 0.368, and
κ(∞)= 0, which agree with the aforementioned estimation.

4.1.4 Immersion/condensation and homogeneous
freezing

As explained in Sect. 2.4, a supercooled droplet freezes when
the ambient temperature drops below its freezing temper-
ature. This section provides a more precise description of
when and how freezing occurs in our model.

We consider that the ith particle freezes immediately when
the following three conditions are all satisfied: (1) the parti-
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cle is a droplet, i.e., ri > 0; (2) the ambient water vapor is su-
persaturated over liquid water, i.e., ei > ew

s (Ti); and (3) the
ambient temperature is lower than the particle’s freezing tem-
perature, i.e., Ti < T fz

i . Here, ei := e(xi) and Ti := T (xi) are
the ambient vapor pressure and temperature of the ith parti-
cle, respectively, and ew

s (T ) is the saturation vapor pressure
over a planar liquid water surface at temperature T .

We assume that the resulting ice crystal is spherical, with
the true ice crystal density ρi

true. Therefore, attributes are
initiated as follows: r ′i = 0, a′i = c

′

i = ri(ρ
w/ρi

true)
1/3, ρi′

i =

ρi
true, nmono′

i = 1, and mrime′
i = 0. The primed variables here

denote values after the update, and ρw is the density of liquid
water. {msol

αi }, {m
insol
βi }, and T fz

i remain unchanged.
When freezing occurs, each particle releases latent heat

of fusion to the moist air, as described in Eqs. (74), (79),
and (80).

4.1.5 Melting

When ambient temperature rises above 0 ◦C, we consider
that melting occurs immediately. Thus, the attributes are up-
dated as follows: r ′i = (a

2
i ciρ

i
i/ρ

w)1/3 and a′i = c
′

i = ρ
i′
i =

nmono′
i =mrime′

i = 0. {msol
αi }, {m

insol
βi }, and T fz

i remain un-
changed. When melting occurs, each particle absorbs latent
heat of fusion from the moist air, as indicated in Eqs. (74),
(79), and (80).

4.1.6 Condensation and evaporation

Following, e.g., Rogers and Yau (1989), the time evo-
lution equation describing droplet growth by condensa-
tion/evaporation can be derived as follows.

The growth rate is identical to vapor flux at the droplet
surface. If the diffusion of vapor around the droplet is in a
quasi-steady state, we obtain

dmi
dt
= 4πriDv(ρvi − ρ

sfc
vi ). (7)

Here, Dv is water vapor’s diffusivity in air, ρvi := ρv(xi) is
the ambient moist air’s water vapor density, and ρsfc

vi is water
vapor density at the surface of the droplet.

If we further assume that thermal diffusion is also in a
quasi-steady state, and that surface temperature T sfc

i and am-
bient temperature Ti are close to each other, i.e., (T sfc

i −

Ti)/Ti � 1, Eq. (7) can be reduced to

ri
dri
dt
=

1
ρw(Fw

k +F
w
d )

{
Sw
i −

e
w,eff
si

ew
s (Ti)

}
, (8)

where Sw
i := ei/e

w
s (Ti) is the ambient saturation ratio over

liquid water, and

Fw
k =

(
Lv

RvTi
− 1

)
Lv

kTi
, Fw

d =
RvTi

Dvew
s (Ti)

, (9)

where Lv is the latent heat of vaporization, k is the thermal
conductivity of moist air, and ew,eff

si is the effective saturation

vapor pressure regarding the ith droplet’s surface. Following
Köhler’s theory (Köhler, 1936), an approximate formula of
e

w,eff
si can be derived as

e
w,eff
si

ew
s (Ti)

= 1+
a(Ti)

ri
−
b
({
msol
αi

})
r3
i

, (10)

where a ≈ 3.3×10−5 cmK/Ti , b ≈ 4.3cm3∑
αIαm

sol
αi /M

sol
α ,

Iα is the van ’t Hoff factor, which represents the degree of
ionic dissociation, and Msol

α is the molecular weight of the
solute α. The second and third terms of Eq. (10) account for
curvature and solute effects, respectively.

The growth of a droplet by condensation/evaporation is
governed by Eqs. (8)–(10) in our model. When a droplet or
an ice particle falls through the air, the flow around it en-
hances the diffusional growth, a phenomenon known as the
ventilation effect. It does not essentially affect the growth
of droplets smaller than 50µm in radius (see Sect. 13.2.3 of
Pruppacher and Klett, 1997). Therefore, for simplicity, we do
not consider the ventilation effect on droplets in this study.
Notably, Eqs. (8)–(10) also describe the respective activation
and deactivation of cloud droplets from and to aerosol par-
ticles (see, e.g., Arabas and Shima, 2017; Hoffmann, 2017;
Abade et al., 2018).

Vapor and latent heat couplings to moist air through con-
densation and evaporation are calculated by Eqs. (71), (72),
(74), (76), (77), and (79).

4.1.7 Deposition and sublimation

The shapes of ice crystals formed by depositional growth ex-
hibit strong dependencies on temperature and, to a lesser ex-
tent, supersaturation (e.g., Nakaya, 1954; Hallett and Mason,
1958; Kobayashi, 1961). The former is known as the primary
growth habit and the latter as the secondary growth habit. The
primary growth habit determines the preferred growth direc-
tion, i.e., columnar or planar, and the secondary growth habit
determines the mode of growth, i.e., whether the columnar
crystal becomes solid or hollow, and whether the planar crys-
tal becomes plate-like, sectored, or dendritic. In this study,
we use the model of Chen and Lamb (1994a) with various
modifications.

The mass growth rate can be derived similarly to Eqs. (7)
and (8):

dmi
dt
= 4πCDv(ρvi − ρ

sfc
vi )fvnt = 4πC

Si
i − 1

F i
k+F

i
d
fvnt, (11)

where Si
i := ei/e

i
s(Ti) is the ambient saturation ratio over ice,

and ei
s(T ) is the saturation vapor pressure over ice at temper-

ature T ,

F i
k =

(
Ls

RvTi
− 1

)
Ls

kTi
, F i

d =
RvTi

Dvei
s(Ti)

, (12)

where Ls is the latent heat of sublimation, C = C(ai,ci)
is the electric capacitance of the spheroid, and fvnt is the
particle-averaged ventilation coefficient.
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The exact form of capacitance C(ai,ci) is given by Chen
and Lamb (1994a). C ≈ (2ai + ci)/3 gives a good approxi-
mation for φi ≈ 1.

The coefficient fvnt accounts for the ventilation effect, i.e.,
the enhancement of diffusional growth by air flow. Hall and
Pruppacher (1976) suggested that fvnt could be described by

fvnt = b1+ b2X
γ , (13)

where (b1,b2,γ )= (1.0,0.14,2) for X ≤ 1, (b1,b2,γ )=

(0.86,0.28,1) for X > 1, X =N
1/3
Sc (N

i
Rei)

1/2,
NSc = µ/(ρDv) is the Schmidt number, N i

Rei = ρv
∞

i Di/µ

is the Reynolds number of ice particle i, and µ is the
dynamic viscosity of moist air.

Note that mi in Eq. (11) can become zero through subli-
mation over a finite time. However, in this study, we prohibit
complete sublimation, and instead, we impose a limiter to
dmi as follows:

dmi =max(dmi,mi
min−mi), (14)

wheremi
min is an arbitrary small mass taken from the mass of

a spherical ice particle with a radius of 1nm and the true ice
density ρi

true. This is a crude representation of pre-activation
(see, e.g., Marcolli, 2017, for a review). Each particle keeps
the memory of ice activation until the ambient temperature
rises above 0 ◦C. A particle withmi

min ice grows immediately
after the ambient air is supersaturated over ice, irrespective of
its freezing temperature T fz

i .
In Chen and Lamb’s (1994a) model, the primary growth

habit is expressed by an empirical function known as the in-
herent growth ratio 0(T ), which modulates the c-axis to a-
axis growth rate ratio:

dci
dai
= 0(Ti)fvnt

ci

ai
=: 0∗

ci

ai
, (15)

where fvnt is the primary growth habit’s ventilation coeffi-
cient, and 0∗ is the effective inherent growth ratio, including
the ventilation effect.

For purely diffusional growth, dci/dai = ci/ai holds;
therefore, the aspect ratio does not change, i.e., dφi = 0.
0(T ) represents the lateral redistribution of vapor on the
ice crystal surface through kinetic processes. We use the
0(T ) proposed by Chen and Lamb (1994a) but set 0(T )=
1 for D < 10µm, as observations suggest that ice crystals
are quasi-spherical if D < 60µm (Baran, 2012; Korolev and
Isaac, 2003; Lawson et al., 2008). Additionally, the 0(T )
provided in Chen and Lamb (1994a) is for temperatures be-
tween −30 and 0 ◦C. For lower temperatures, we simply as-
sume

0(T )= 0(−30 ◦C)≈ 1.28, for T <−30 ◦C. (16)

The ventilation coefficient fvnt represents the preferential
enhancement of vapor flux toward the ice crystal’s major axis

because of the air flow around it. Chen and Lamb (1994a)
derived a fvnt of the form

fvnt =
b1+ b2X

γ (ci/C)
1/2

b1+ b2Xγ (ai/C)
1/2 . (17)

The secondary growth habit is expressed by deposition
density ρdep, which represents the apparent density of the ice
fraction newly created by deposition. Then, the change in ice
particle volume dVi is given by

dVi =
dmi
ρdep

, for dmi ≥ 0 (deposition). (18)

Deposition density ρdep can be expressed as

ρdep =

{
ρi

true, for 0(Ti) < 1∧ ai < 100µm;

ρCL94
dep , otherwise.

(19)

Here, following Jensen and Harrington (2015), we assume
that planar crystal branching does not occur if the equato-
rial radius ai is smaller than 100µm. ρCL94

dep is an empirical
formula of deposition density proposed by Chen and Lamb
(1994a),

ρCL94
dep = ρ

i
true exp

[
−

3max(1ρi − 0.05gm−3,0)
0(Ti)gm−3

]
, (20)

where 1ρi := ρvi − ρ
sfc
vi . From Eq. (11), 1ρi becomes

1ρi =
Si
i − 1

Dv(F
i
k+F

i
d)
. (21)

Here, following Miller and Young (1979), we limit ρvi by
water saturation and replace the 1ρi in Eq. (20) with

(1ρi)
↓
=

min(Si
i,e

w
s (Ti)/e

i
s(Ti))− 1

Dv(F
i
k+F

i
d)

. (22)

For sublimation, the particle volume change dVi is given
by

dVi =
dmi
ρsbl

, for dmi < 0 (sublimation), (23)

where sublimation density ρsbl represents the apparent den-
sity of the ice fraction removed by sublimation. For simplic-
ity, we assume that the ice particle’s apparent density will not
be changed through sublimation, i.e.,

ρsbl = ρ
i
i . (24)

We can now calculate the attributes at time t +dt . The ap-
parent density becomes

ρi
i(t + dt)=

mi + dmi
Vi + dVi

, (25)
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where dmi is given in Eqs. (11) and (14), and dVi is given in
Eqs. (18) and (23).

From Eq. (15) and the definition of volume Vi =

(4π/3)a2
i ci , after dt , the two radii become

ai(t + dt)= ai exp
(

dlogVi
2+0∗

)
, (26)

ci(t + dt)= ci exp
(
0∗d logVi

2+0∗

)
. (27)

Applying those equations to a small ice particle’s sublima-
tion creates an extremely small planar or columnar ice parti-
cle. However, observations suggest that ice crystals are quasi-
spherical if D < 60µm (Baran, 2012; Korolev and Isaac,
2003; Lawson et al., 2008). Therefore, we regard the ice par-
ticle as spherical with the true ice density if the minor axis
predicted by Eqs. (26) and (27) is smaller than 1µm. That is,
if min{ai(t + dt),ci(t + dt)}< 1µm,

ρi′
i (t + dt)= ρi

true, (28)

a′i(t + dt)= c′i(t + dt)=

(
mi + dmi

(4π/3)ρi′
i (t + dt)

) 1
3

, (29)

where primed variables indicate values after correction.
For simplicity, we assume that the rime mass fraction

mrime
i /mi does not change through sublimation, following

Brdar and Seifert (2018):

mrime
i (t + dt)=

m
rime
i , for dmi ≥ 0;

mrime
i

mi + dmi
mi

, for dmi < 0.
(30)

Vapor and latent heat couplings to moist air through depo-
sition and sublimation are calculated by Eqs. (71), (72), (74),
(76), (78), and (79).

In this section, we detailed the deposition and sublimation
model used in SCALE-SDM; however, there is significant
room for improvement. For example, as we will discuss in
Sect. 9.1.4, using 0(T ) for sublimation is questionable. In-
stead, we propose using 0(T )= 1 for sublimation (Eq. 110),
and validate this correction in Sect. 9.1.5. Furthermore, in
Sect. 9.2, to prohibit the creation of unnaturally slender ice
particles, we will propose to impose a limiter to the effective
inherent growth ratio 0∗ (Eq. 123). Several other issues of
our deposition/sublimation model, such as the representation
of polycrystals, will be discussed in Sect. 9.3.5.

4.1.8 Stochastic description of coalescence, riming, and
aggregation

Particle coalescence, riming, and aggregation can be con-
sidered a stochastic process. Following Gillespie (1972),
consider a region with volume 1V . If 1V is sufficiently
small, we can consider that particles within this region
are well mixed, e.g., by atmospheric turbulence (see, e.g.,

Shima et al., 2009; Dziekan and Pawlowska, 2017). Then,
all particle pairs in the volume can collide and coa-
lesce/rime/aggregate during an infinitesimal time interval dt .
The probability that a particle pair j and k inside 1V will
collide and coalesce/rime/aggregate within an infinitesimal
time interval (t, t + dt) is given by

Pjk =K(aj ,ak;G)
dt
1V

, (31)

where the function K(aj ,ak;G) is called the collision–
coalescence/–riming/–aggregation kernel, and G denotes the
state of the moist air in 1V .

In this study, we consider coalescence, riming, and aggre-
gation induced by differential gravitational settling of par-
ticles because this mechanism is dominant in mixed-phase
clouds.

4.1.9 Coalescence between two droplets

First, we consider droplet coalescence, which accounts for
the formation of rain droplets from cloud droplets (autocon-
version), the collection of cloud droplets by rain droplets
(accretion), and the coalescence of two rain droplets (self-
collection).

The collision–coalescence kernel is given by

Kcoal = Ecoal(rj , rk)π(rj + rk)
2
|v∞j − v

∞

k |, (32)

where Ecoal(rj , rk) is the collection efficiency of collision–
coalescence, which can be decomposed into Ecoal =

Ecollis
coal E

coal
coal . Here, collision efficiency Ecollis

coal considers the
effect that a smaller droplet is swept aside by the flow around
a larger droplet, or a droplet being caught in the wake of a
similarly sized droplet collides on the downstream side. We
adopt the collision efficiency used in Seeßelberg et al. (1996)
and Bott (1998). Here, Davis (1972) and Jonas (1972) are
used for small droplets, and Hall (1980) for larger droplets,
with modifications to the collector droplet radius range 70–
300µm to incorporate the wake effect suggested by Lin and
Lee (1975). Not all the collisions end up with coalescence.
Rebound or breakup (fragmentation) could also occur. Coa-
lescence efficiency Ecoal

coal represents the fraction of collisions
that result in permanent coalescence. In this study, we as-
sume Ecoal

coal = 1 for simplicity.
If coalescence takes place, droplets j and k then merge

into a single droplet. Thus, we keep j and remove k from the
system. The attributes of the new droplet j can be calculated
as follows:

r ′j = (r
3
j + r

3
k )

1
3 , (33)

msol′
αj =m

sol
αj +m

sol
αk , α = 1,2, . . .,N sol (34)

minsol′
βj =minsol

βj +m
insol
βk , β = 1,2, . . .,N insol (35)

T fz′
j =max(T fz

j ,T
fz
k ), (36)

where primed values indicate the resultant droplet. Here,
we assumed that the resultant particle’s T fz′

j is given by
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max(T fz
j ,T

fz
k ), i.e., the higher freezing temperature of the

two constituent particles. We also assume that the same ap-
plies to riming and aggregation.

Let us emphasize that the stochastic model introduced in
this section describes the underlying mathematical model of
the coalescence process, not the Monte Carlo algorithm of
SDM that solves the stochastic process numerically. In the
preceding paragraph, droplet k was removed from the system
because both j and k are real particles. On the contrary, in
the SDM, the number of super-particles is (almost always)
conserved through coalescence (Shima et al., 2009).

4.1.10 Riming between an ice particle and a droplet

Riming usually refers to the collection of small supercooled
droplets by a larger ice particle, but we also include the col-
lection of small ice particles by a larger droplet. The latter
case could be regarded as a type of contact freezing. How-
ever, ice particles grow preferentially when ice particles and
supercooled droplets coexist (Wegener–Bergeron–Findeisen
mechanism). Therefore, we can expect that the latter case
happens less frequently in mixed-phase clouds.

Hereafter we assume, without loss of generality, that par-
ticle j is an ice particle and particle k is a droplet. The
collision–riming kernel is expressed as

Krime = ErimeAg|v
∞

j − v
∞

k |, (37)

where Erime is the collision–riming collection efficiency and
Ag is the geometric cross-sectional area of j and k.

Figure 1 of Wang and Ji (2000) defines Ag for riming, but
calculating it rigorously for porous spheroid models is im-
possible. Thus, we approximate Ag by

Ag = π(aj + rk){max(aj ,cj )+ rk}− (Ace
j −Aj ); (38)

i.e., the indentation of the ice particle (Ace
j −Aj ) is sub-

tracted from the area of an ellipse with semi-axes (aj + rk)
and {max(aj ,cj )+ rk}. Therefore, if rk � aj ,cj , then Ag ≈

Aj . At the other extreme, if rk � aj ,cj , then Ag ≈ π(aj +

rk){max(aj ,cj )+ rk}.
To evaluate collision–riming collection efficiency Erime,

we combine formulas proposed by Beard and Grover (1974)
and Erfani and Mitchell (2017).

If v∞j < v∞k , we consider droplet k as the collector and
adopt the formula of Beard and Grover (1974):

Erime = EBG74(p
i/w,Nw

Rek,N
i/w
St ), (39)

where pi/w
:= r i

j/rk , r
i
j := (a

2
j cj )

1/3, Nw
Rek = ρv

∞

k 2rk/µ

is the Reynolds number of droplet k, N
i/w
St =

(pi/w)2ρi
jN

w
RekCSC/(9ρ) is the Stokes impaction pa-

rameter when droplet k is collecting an ice particle, and CSC
is the Cunningham slip correction factor.

If v∞j ≥ v
∞

k , we consider ice particle j to be the collec-
tor. For spherical ice particle φj ≈ 1, we again use the for-
mula of Beard and Grover (1974) but replace the Stokes im-
paction parameterN i/w

St with the mixed Froude numberNmFr

following Hall (1980), Rasmussen and Heymsfield (1985),
and Heymsfield and Pflaum (1985). For columnar and planar
ice particles, we use formulas Eclm

EM17 and Epln
EM17 from Erfani

and Mitchell (2017), which were obtained by fitting the nu-
merical results of Wang and Ji (2000). For the intermediate
case, we calculate an average weighted by the aspect ratio
φj . For φj ≤ 1 (planar),

Erime =φjEBG74(p
w/i,N i

Rej ,NmFr)

+ (1−φj )E
pln
EM17(N

i
Rej ,NmFr). (40)

For φj > 1 (columnar),

Erime =
1
φj
EBG74(p

w/i,N i
Rej ,NmFr)

+

(
1−

1
φj

)
Eclm

EM17(N
clm
Rej ,NmFr). (41)

Here, pw/i
:= 1/pi/w

= rk/r
i
j , NmFr = (v

∞

j −

v∞k )v
∞

k /(gDj/2), and Nclm
Rej = ρv

∞

j 2aj/µ is the Reynolds
number based on the width of column 2aj . Note that there is
a typo in Eq. (19) of Erfani and Mitchell (2017); i.e., the two
case conditions are opposite.

If riming takes place, the ice particle j and droplet k merge
and instantaneously freeze into a single ice particle. Thus, we
keep j and remove k from the system.

If max(aj ,cj ) < rk , we assume that the resultant ice parti-
cle is spherical with the true ice density:

ρi′
j = ρ

i
true, (42)

a′j = c
′

j =

(
mj +mk

(4π/3)ρi
true

) 1
3
, (43)

mrime′
j =mrime

j +mk, (44)

nmono′
j = nmono

j , (45)

msol′
αj =m

sol
αj +m

sol
αk , α = 1,2, . . .,N sol, (46)

minsol′
βj =minsol

βj +m
insol
βk , β = 1,2, . . .,N insol, (47)

T fz′
j =max(T fz

j ,T
fz
k ), (48)

where primed values indicate the resultant ice particle.
If max(aj ,cj )≥ rk , we preserve the ice particle’s max-

imum dimension, i.e., D′j =Dj , until the ice particle be-
comes quasi-spherical. This accounts for the gradual growth
of an unrimed ice crystal to a graupel particle with a quasi-
spherical shape. This filling-in simplification was introduced
by Heymsfield (1982), and is used in various models (e.g.,
Chen and Lamb, 1994b; Morrison and Grabowski, 2008,
2010; Jensen and Harrington, 2015; Morrison and Milbrandt,
2015). As graupels have an aspect ratio of approximately
0.8 (Heymsfield, 1978), we preserve the minor dimension if
0.8< φj ≤ 1/0.8= 1.25, which mimics graupel’s tumbling.
When an accreted droplet freezes, the air will be trapped in-
side. Let rime density ρrime be the frozen droplet’s appar-
ent density. Then, for φj ≤ 0.8 (planar) and 1.0< φj ≤ 1.25
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(columnar but quasi-spherical),

ρi′
j =

mj +mk

Vj +mk/ρrime
, (49)

a′j = aj , (50)

c′j =
Vj +mk/ρrime

(4π/3)a2
j

. (51)

Other attributes are updated using Eqs. (44)–(48). For
φj > 1.25 (columnar) and 0.8< φj ≤ 1.0 (planar but quasi-
spherical),

ρi′
j =

mj +mk

Vj +mk/ρrime
, (52)

a′j =

{
Vj +mk/ρrime

(4π/3)cj

} 1
2
, (53)

c′j = cj . (54)

Other attributes are updated using Eqs. (44)–(48). Following
Chen and Lamb (1994b), we use the formula of Heymsfield
and Pflaum (1985) to calculate rime density ρrime:

ρrime =max{min{ρHP85
rime (Y ),0.91gcm−3

},0.1gcm−3
},

(55)

where Y := (−rkvimp/T
sfc
j )/(µmms−1/◦C), vimp is impact

velocity, and T sfc
j is the surface temperature of ice particle j .

where A= 0.30g cm−3, B1 = 0.44, B2 =−0.03115, B3 =

−1.7030, B4 = 0.9116, and B5 =−0.1224.
Impact velocity can be calculated using the

formula of Rasmussen and Heymsfield (1985):
vimp = |v

∞

j − v
∞

k |max{fRH85(N
i
Rej , N

w/i
St ),0}, where

N
w/i
St = (p

w/i)2ρwN i
Rej/(9ρ) is the Stokes impaction pa-

rameter when an ice particle collects a droplet. Because the
fRH85 given in Rasmussen and Heymsfield (1985) becomes
slightly negative around 0.1<Nw/i

St < 1.0, we impose a
limiter to ensure it is positive. Surface temperature T sfc

j can
be evaluated as

T sfc
j = Tj +

LsDv

k
1ρj , (58)

where 1ρj is given in Eq. (21). This equation is derived un-
der an assumption of quasi-steady vapor and thermal diffu-
sion.

When riming occurs, the frozen droplet releases the latent
heat of fusion to the moist air as described in Eqs. (74), (79)
and (80).

As we will discuss in Sect. 9.1.1, the rime density formula
of Heymsfield and Pflaum (1985) must be revised slightly.

We propose to replace the Y in Eq. (56) (not in Eq. 57)
with Y↓ =min(Y,3.5) (Eq. 107), because the rime density
derived from Eq. (56) becomes too small for larger values
of Y , which affects the shape of hailstones near the freezing
level.

Another issue discussed in Sect. 9.1.2 is related to the
filling-in model. Assuming that the diameter of the frozen
droplet is preserved, if the diameter is larger than the ice par-
ticle’s maximum dimension, we propose replacing Eq. (50)
by Eq. (108) and Eq. (54) by Eq. (109).

We validate these two corrections in Sect. 9.1.5. More
discussions to refine our riming model will be presented in
Sect. 9.3.7.

4.1.11 Aggregation between two ice particles

Finally, we consider the aggregation of ice particles. Fol-
lowing Connolly et al. (2012), we use the projected area of
particles to evaluate the geometric cross-sectional area. The
collision–aggregation kernel is then given by

Kagg = Eagg

(
A

1
2
j +A

1
2
k

)2

|v∞j − v
∞

k |, (59)

where Eagg is the collision–aggregation collection efficiency.
Following Morrison and Grabowski (2010), we assume that
the efficiency is given by a constant,Eagg = 0.1, in this study.
Field et al. (2006) confirmed that Eagg = 0.09 produces a
good agreement with aircraft observations.

If aggregation takes place, ice particles j and k merge into
a single ice particle. Thus, we keep j and remove k from the
system. However, no reliable model exists for calculating the
next porous spheroid. Chen and Lamb (1994b) proposed a
model, but it tends to create snow aggregates with impossibly
low apparent densities (lighter than vapor). In this study, we
propose another intuitive model by incorporating the com-
paction of fluffy snowflakes to cope with the problem.

Snow aggregates have complicated fractal structures.
However, if we circumscribe them using a spheroid, the
growth by aggregation is in three dimensions, rather than one
(columnar) or two (planar). Therefore, as in the case of rim-
ing, we assume that only the minor dimension grows by ag-
gregation.

If the volume-weighted average density ρi
jk = (mj +

mk)/(Vj +Vk) is closer to the true density of ice ρi
true,

the two particles aggregate without changing their shapes.
Hence, when we approximate the resultant aggregate with
a spheroid, there are more empty spaces inside, thus reduc-
ing the apparent density. Let us denote the minimum possi-
ble apparent density as ρi,min

jk , which can be evaluated using
Eq. (61), which we will derive shortly.

In contrast, if ρi
jk is small, compaction of the fluffy

snowflakes occurs, and the empty space of the larger ice
particle could be filled with the smaller ice particle or the
particles might deform because of the collision–aggregation
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impact. Because of this compaction mechanism, we assume
there is a limiting value of the apparent density, and let it be
ρi

crt = 10kgm−3. This choice of value is roughly consistent
with observations by Magono and Nakamura (1965). If ρi

jk

is closer to ρi
crt, we consider that the apparent density of the

resultant aggregate is closer to the maximum possible density
ρ

i,max
jk . Let us assume ρi,max

jk = ρi
jk .

In the following, we derive equations describing how to
update the attributes.

Without loss of generality, assume thatDj ≥Dk . For φj ≤
1 (planar),

a′j = aj , (60)

because we assumed the maximum dimension is pre-
served. The longest possible minor axis length is cj +

min(ak,ck); hence, the largest possible volume becomes
Vmax = (4π/3)a2

j {cj +min(ak,ck)}. The minimum possible

apparent density ρi,min
jk then becomes

ρ
i,min
jk =

mj +mk

Vmax
. (61)

The resultant particle’s apparent density is given by a
weighted average of ρi,max

jk = ρi
jk and ρi,min

jk :

ρi′
j =

(ρi
true− ρ

i
jk)ρ

i,max
jk + (ρi

jk − ρ
i
crt)ρ

i,min
jk

ρi
true− ρ

i
crt

, (62)

where primed values indicate the resultant ice particle. All
other attributes are updated as follows:

c′j =
mj +mk

ρi′
j (4π/3)a

′

j
2 , (63)

mrime′
j =mrime

j +mrime
k , (64)

nmono′
j = nmono

j + nmono
k , (65)

msol′
αj =m

sol
αj +m

sol
αk , α = 1,2, . . .,N sol, (66)

minsol′
βj =minsol

βj +m
insol
βk , β = 1,2, . . .,N insol, (67)

T fz′
j =max(T fz

j ,T
fz
k ). (68)

For φj > 1 (columnar), the polar axis length is preserved

c′j = cj . (69)

If approximating the largest possible particle using an
ellipsoid, the largest possible volume becomes Vmax =

(4π/3)cj {aj +min(ak,ck)}max(aj ,ak,ck). Then, the resul-
tant ice particle’s apparent density ρi′

j can be calculated using
Eqs. (61) and (62). Then, the minor axis is updated by

a′j =

{
mj +mk

ρi′
j (4π/3)c

′

j

} 1
2

, (70)

and other attributes are updated by Eqs. (64)–(68).
Note that our aggregation outcome model does not pro-

duce particles lighter than ρi
crt = 10kgm−3.

4.1.12 Limitations of our cloud microphysics model

Equations (2)–(70) provide time evolution equations for
mixed-phase cloud microphysics. Our model is based on a
detailed kinetic description, and all aerosol, cloud, and pre-
cipitation particles in the system are followed. The respec-
tive activation and deactivation of cloud droplets from and
to CCN, and their growth by diffusion and collision are also
explicitly predicted. Additionally, the formation of ice par-
ticles by condensation/immersion and homogeneous freez-
ing, and gradual morphology changes in ice particles dur-
ing their growth by diffusion and collision are also pre-
dicted explicitly without relying on artificial ice categories
or predefined mass–dimension relationships. However, be-
cause our basic understanding of mixed-phase cloud mi-
crophysics is still insufficient, the introduced models have
room for improvement. Further, several processes critical for
mixed-phase clouds are ignored for simplicity. For example,
collisional breakup of ice particles and rime-splintering are
not considered, although they are thought to be responsi-
ble for secondary ice production (e.g., Field et al., 2017). In
Sect. 9.3, we will discuss more on the limitations and possi-
ble future refinements of our model.

4.2 Fluid dynamics of moist air

Moist air fluid dynamics can be described by the compress-
ible Navier–Stokes equation for moist air:

∂ρ

∂t
+∇ · (ρU)=

∂ρ

∂t

∣∣∣∣
cm
, (71)

∂ρqv

∂t
+∇ · (ρqvU)=

∂ρqv

∂t

∣∣∣∣
cm
+Dv∇

2(ρqv), (72)

∂ρU

∂t
+∇ · (ρU ⊗U)=−∇P − ρgẑ+

∂ρU

∂t

∣∣∣∣
cm
+µ∇2U ,

(73)

∂ρθ

∂t
+∇ · (ρθU)=

∂ρθ

∂t

∣∣∣∣
cm
+
k

cp
∇

2θ, (74)

P = ρRT = P0

(
ρθR

P0

)cp/(cp−R)
, (75)

where the four terms with the form ∂ ·/∂t |cm represent cloud
microphysics coupling terms. ∂ρ/∂t |cm = ∂ρqv/∂t |cm is the
source of vapor:

∂ρ

∂t

∣∣∣∣
cm
=
∂ρqv

∂t

∣∣∣∣
cm
= sv+ ss. (76)
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Here, sv and ss are sources of vapor through condensa-
tion/evaporation and deposition/sublimation, respectively:

sv(x, t)=−
∑
i∈Ir(t)

δ3(x− xi(t))
dmi
dt

∣∣∣∣
cnd/evp

, (77)

ss(x, t)=−
∑
i∈Ir(t)

δ3(x− xi(t))
dmi
dt

∣∣∣∣
dep/sbl

, (78)

where δ3(x) is the three-dimensional Dirac delta function,
and the time derivatives for condensation/evaporation and de-
position/sublimation are given by Eqs. (7) and (11), respec-
tively.
∂ρθ/∂t |cm represents heating due to the phase transition

of water:

∂ρθ

∂t

∣∣∣∣
cm
=−

Lvsv+Lsss+Lfsf

cp5
, (79)

where Lf is the latent heat of fusion, and sf is the production
rate of liquid water through freezing, melting, or riming. Let
t fzn be the time of the nth freezing event and ifzn be the index
of the frozen droplet. Similarly, let tmlt

n and imlt
n be the time

and melted ice particle of the nth melting event, respectively.
Let t rime

n and irime
n be the time and rimed droplet of the nth

riming event, respectively. Then, sf is given by

sf(x, t)=−
∑

freezing event n
δ3(x− xifzn

(t))δ(t − t fzn )mifzn
(t)

+

∑
melting event n

δ3(x− ximlt
n
(t))δ(t − tmlt

n )mimlt
n
(t)

−

∑
riming event n

δ3(x− xirime
n
(t))δ(t − t rime

n )mirime
n
(t).

(80)

∂ρU/∂t |cm is the drag force from the particles. From
Eq. (2), we can derive F

drg
i =migẑ+d(mivi)/dt . The termi-

nal velocity assumption does not mean that the second term
vanishes because mi and vi are still time dependent. How-
ever, even if a droplet accelerated from 0 to 10 m s−1 in 100 s
through rapid precipitation development, the contribution of
the second term is much smaller than that of the first term:
10m s−1/100s� g. Thus, we finally obtain

∂ρU

∂t

∣∣∣∣
cm
=−

∑
i∈Ir(t)

δ3(x− xi(t))F
drg
i

≈−

[ ∑
i∈Ir(t)

δ3(x− xi(t))mi(t)

]
gẑ. (81)

4.3 Summary of the section

Now, we have the complete set of the system’s time evolu-
tion equations: Eqs. (2)–(70) for cloud microphysics (i.e.,
aerosol, cloud, and precipitation particles) and Eqs. (71)–
(81) for cloud dynamics (i.e., moist air). With suitable ini-
tial and boundary conditions, our mathematical model can

predict mixed-phase cloud behavior. In the next section, we
explain how SCALE-SDM solves those time evolution equa-
tions numerically.

5 Numerical schemes and implementation

We develop a numerical model known as SCALE-SDM to
solve the mathematical model of mixed-phase clouds pre-
sented in the preceding sections.

SCALE is a library of weather and climate models of the
Earth and other planets (Nishizawa et al., 2015; Sato et al.,
2015, https://scale.riken.jp/, last access: 26 August 2020).
We implemented SDM into SCALE version 0.2.5, thus con-
structing a mixed-phase cloud model called SCALE-SDM
0.2.5-2.2.0.

In our model, we use SDM to solve cloud microphysics as
defined by Eqs. (2)–(70). SDM is a particle-based scheme us-
ing an efficient Monte Carlo algorithm for coalescence, rim-
ing, and aggregation, which enables the accurate simulation
of aerosol, cloud, and precipitation particles with lower com-
putational demand (Shima et al., 2009).

Moist air fluid dynamics are solved using SCALE’s dy-
namical core. We solve the compressible Navier–Stokes
equation for moist air (Eqs. 71–81) using a forward tem-
poral integration scheme using a finite volume method with
an Arakawa-C staggered grid. In this study, we resolve only
large eddies and do not use a subgrid-scale (SGS) turbu-
lence model. To stabilize the calculation, we add an artificial
fourth-order hyper-diffusion term. Numerical schemes and
implementation are described in further detail.

5.1 Spatial discretization of moist air

We consider the density of moist air ρ, density of water vapor
ρqv, momentum of moist air ρU , and mass-weighted poten-
tial temperature ρθ as prognostic variables for moist air. We
employ the Arakawa-C staggered grid for discretization: ρ,
ρqv, and ρθ are defined at the center of each grid cell, and
the three components of ρU are defined on the faces of each
grid cell. To simplify the notation, we use Glmn to denote the
status of moist air at each point on the center grid and the
face grid. Let 1x, 1y, and 1z represent the grid sizes.

5.2 Super-particles and real particles

There are many particles in the atmosphere; thus, it is practi-
cally impossible to follow all of them in a numerical model.
However, it is reasonable to assume that only the collec-
tive properties of the particle population are relevant to pre-
dict the behavior of clouds, because clouds are insensitive
to each individual particle. Therefore, let us approximate the
population of real particles {{xi(t),ai(t)}, i = 1,2, . . .,Nwp

r }

by a population of super-particles: {{ξi(t),xi(t),ai(t)}, i =
1,2, . . .,Nwp

s } (see, e.g., Fig. 4 of Grabowski et al., 2019).
A super-particle is characterized by multiplicity ξi , position
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xi , and attributes ai . We consider that the ith super-particle
represents ξi real particles {xi,ai}. Note that multiplicity ξi
is an integer and is time dependent. Nwp

s is the total number
of super-particles accumulated over the whole period.

The relationship between super-particles and real particles
can be expressed more precisely as follows. Let n(a,x, t)
be the particle distribution function, i.e., the mean number
density of particles with attributes a at position x and time t .
The following relation then holds:

n(a,x, t)=

〈 ∑
i∈Ir(t)

δd(a− ai(t))δ
3(x− xi(t))

〉
, (82)

where 〈· · ·〉 denotes the mean, and δd(a) is the d-dimensional
Dirac delta function. Super-particles reproduce the behavior
of particles in expectation:

n(a,x, t)=

〈 ∑
i∈Is(t)

ξi(t)δ
d(a− ai(t))δ

3(x− xi(t))

〉

=Ns(t)

∞∑
ξ=1

ξp(ξ,a,x, t), (83)

where p(ξ,a,x, t) is the probability density that a super-
particle has multiplicity ξ , attributes a, and position x at time
t ; Is(t) is the set of super-particle indices existing in the do-
main at time t ; and Ns(t) := #Is(t) is the number of super-
particles existing at time t .

5.3 Initialization of super-particles

There is an arbitrariness in how to initialize super-particles.
In this study, we use the uniform sampling method.

Any probability density function p(ξ,a,x, t = 0) that sat-
isfies Eq. (83) can be used to initialize super-particles; how-
ever, Unterstrasser et al. (2017) showed that SDM’s perfor-
mance is sensitive to the choice of the probability density
function.

Let us consider a specific type of procedure wherein we
assign a and x based on the probability density function
p(a,x), and determine the super-particle’s multiplicity ξ by
using a deterministic function of a and x, i.e., ξ = ξ(a,x).
Then, Eq. (83) at t = 0 reduces to

n(a,x,0)=Ns(0)ξ(a,x)p(a,x). (84)

If we set ξ(a,x) as a constant, the probability density func-
tion must be proportional to the initial distribution function
of real particles: p(a,x)∝ n(a,x,0). This so-called con-
stant multiplicity method was adopted in Shima et al. (2009).
However, Unterstrasser et al. (2017) found that the numeri-
cal convergence of this method regarding the super-particle
number is slow. Note that constant multiplicity method is re-
ferred to as νconst-init in Unterstrasser et al. (2017).

Instead, we can set p(a,x) as a constant (i.e., uniform
sampling). Multiplicity then becomes proportional to the ini-
tial distribution function of real particles:

ξ(a,x)=
n(a,x,0)
Ns(0)p

, p(a,x)= p = const. (85)

Using the uniform sampling method, we can more frequently
sample rare but important particles in the tail of the dis-
tribution, thus improving the numerical convergence. This
uniform sampling method was used in various studies (e.g.,
Arabas and Shima, 2013; Shima et al., 2014; Sato et al.,
2017, 2018).

Unterstrasser et al. (2017) proposed several other pro-
cedures using a grid, known as SingleSIP-init, multiSIP-
init, and νrandom-init to more uniformly distribute super-
particles along the particle size axis. They confirmed that
their methods had much better performance than the con-
stant multiplicity method but did not try the uniform sam-
pling method. Dziekan and Pawlowska (2017) also proposed
a similar procedure. However, both works focused on coa-
lescence and their initialization procedures are tested only
in a zero-dimensional simulation (box model) with one par-
ticle attribute (size). It is questionable whether their pro-
cedures would work efficiently for three-dimensional (3-D)
simulations with several particle attributes. The “discrep-
ancy” of axis-aligned grid decreases slowly in higher dimen-
sions (e.g., Niederreiter, 1978). Therefore, an axis-aligned
grid is generally unsuitable for sampling high-dimensional
spaces. A uniform sampling method should be more efficient
for such a purpose and using quasi-random numbers would
further improve performance. Meanwhile, as indicated in
Grabowski et al. (2018), we should also note that the unbal-
anced mass of super-particles could cause larger statistical
fluctuations when super-particles are advected from one grid
cell of moist air to another.

Overall, further investigation is required to determine an
optimal method for initializing super-particles. In this study,
we use the uniform sampling method given by Eq. (85). More
details of our procedure will be specified in Sect. 6.1.7. As
shown in Fig. 9, our model’s numerical convergence regard-
ing super-particle numbers is good for at least the 2-D cu-
mulonimbus simulation that we will conduct to evaluate our
model.

5.4 Operator splitting of the time integration

We separately evaluate each process using the first-order op-
erator splitting scheme. Let 1t be the common time step.
Here, we explain how {{ξi,xi,ai}} and Glmn are updated
from time t to t +1t .

Let 1tadv, 1tfz/mlt, 1tcnd/evp, 1tdep/sbl, and 1tcollis be the
time steps for the advection and sedimentation of particles,
freezing and melting, condensation and evaporation, depo-
sition and sublimation, and collision–coalescence, –riming,
and –aggregation, respectively.
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Table 1. An example of the calculation order when updating the
system state from t to t +1t . We first calculate the fluid dynamics
and then calculate cloud microphysics. Each process is integrated
one time step forward at a time. Processes lagging in time are cal-
culated preferentially.

Let 1tdyn be the time step for moist air fluid dynamics.
These process time steps are all divisors of the common

time step 1t .
We first calculate fluid dynamics without the coupling

terms from particles to moist air (Eqs. 76–81), and update
moist air from Glmn(t) to G′lmn(t). Then, we update super-
particles {{ξi,xi,ai}} from t to t+1t . We select one elemen-
tary cloud microphysics process, integrate it forward by one
time step, and then move on to the next process. Here, pro-
cesses lagging in time are calculated preferentially. Simul-
taneously, we evaluate feedback from the particles to moist
air through the coupling terms (Eqs. 76–81), and update the
moist air from G′lmn(t) to Glmn(t +1t). Table 1 shows an
example of the calculation order.

5.5 Time integration of cloud microphysics

We use SDM to solve cloud microphysics. We provide de-
tails of the numerical schemes used to calculate cloud micro-
physics in this section. The state of ambient air Gi :=G(xi)

around a super-particle i is often needed. For scalar variables,
we use the value at the center point of the grid cell in which
the super-particle is located, whereas we interpolate wind ve-
locities from face grids, as detailed in the next section.

5.5.1 Advection and sedimentation

For each super-particle, the motion equation (Eq. 3) is solved
using a time step 1tadv. We normally select a short enough
1tadv to satisfy the Courant–Friedrichs–Lewy (CFL) con-
dition for wind velocity. So that we can predict the parti-
cle number concentration accurately, we use the predictor-
corrector scheme with the “simple linear interpolation” of
wind velocities from the face grid following Grabowski et al.
(2018). The momentum ρU is defined on the face grid and
density ρ is defined on the center grid. Therefore, we aver-
age the ρlmn on both sides of the face grid to calculate wind
velocity U lmn on the face grid. We then interpolate U lmn to

the super-particle position using the simple linear scheme of
Grabowski et al. (2018), which ensures that the wind veloc-
ity divergence over any subgrid volume becomes exactly the
same as that over the grid cell volume.

The reaction force acting on moist air is calculated using
Eq. (81). Feedback from each super-particle is imposed only
on the (ρW)lmn nearest to the super-particle.

5.5.2 Freezing and melting

Every 1tfz/mlt interval, for each super-particle, freezing
and melting are examined following the model detailed in
Sects. 4.1.4 and 4.1.5. The exchange of latent heat of fusion
is calculated using Eqs. (74), (79), and (80). Feedback from
each super-particle is imposed only on the grid cell where the
super-particle is located.

5.5.3 Condensation and evaporation

For each super-droplet, we solve the condensation and evap-
oration equation (Eq. 8) with a time step of 1tcnd/evp. The
activation/deactivation timescale is much shorter than that of
other processes. To eliminate stiffness, we convert the equa-
tion to the time evolution equation of r2 following Shima
et al. (2009) and adopt the backward Euler scheme.

The exchange of vapor and latent heat with moist air is cal-
culated using Eqs. (71), (72), (74), (76), (77), and (79). Feed-
back from each super-droplet is imposed only on the grid cell
where the super-droplet is located.

The growth of droplets is calculated implicitly; however,
the evolution of supersaturation through feedback is cal-
culated explicitly. Therefore, the length of 1tcnd/evp is re-
stricted mostly by supersaturation’s phase relaxation time re-
garding condensation and evaporation, which is the timescale
on which a supersaturation fluctuation decays through con-
densation or evaporation.

5.5.4 Deposition and sublimation

For each ice super-particle, we solve the deposition and sub-
limation time evolution equations detailed in Sect. 4.1.7 us-
ing the time step 1tdep/sbl. Contrary to the condensation and
evaporation equation (Eq. 8), the time evolution equation of
mass (Eq. 11) is not stiff because the curvature term is ig-
nored and the solute effect does not exist. Let us convert
the equation to the time evolution equation of m2/3. Then,
in a situation when the ice particle is spherical and, at the
same time, so small that the ventilation effect can be ig-
nored, then the equation reduces to dm2/3/dt = const.; i.e.,
the right-hand side (r.h.s.) does not depend on m. Inspired
by this fact, we adopt the forward Euler scheme to solve the
time evolution equation of m2/3 even when the ice particle is
not spherical or small.

The exchange of vapor and latent heat with moist air is
calculated using Eqs. (71), (72), (74), (76), (78), and (79).
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Feedback from each ice super-particle is imposed only on
the grid cell where the ice super-particle is located.
1tdep/sbl is restricted by the timescale of individual ice

particle growth through deposition and sublimation, and the
phase relaxation time of supersaturation regarding deposition
and sublimation.

5.5.5 Coalescence, riming, and aggregation

The stochastic process of coalescence, riming, and aggrega-
tion detailed in Sects. 4.1.8–4.1.11 is solved using the Monte
Carlo algorithm of SDM (Shima et al., 2009). The compu-
tational cost of this algorithm is proportional to the number
of super-particles O(Ns), which is achieved by an efficient
collision candidate pair number reduction technique. An ad-
ditional advantage of this technique is the parallelizability of
computation; each super-particle belongs to only one candi-
date pair, and hence dependencies are eliminated.
1tcollis can be determined using the argument presented in

the last paragraph of Sect. 5.1.3 in Shima et al. (2009); how-
ever, here we repeat it in a slightly different way to provide a
precise physical interpretation. In short, the time step 1tcollis
is restricted by the mean free time of a particle, i.e., the aver-
age waiting time for a particle between two successive co-
alescence/riming/aggregation events. Let P be the typical
probability that a particle coalescence/rime/aggregate with
another particle within a small time interval 1tcollis. From
Eq. (31), P can be evaluated as

P ≈N ′rK
1tcollis

1V
≈ nrK1tcollis, (86)

where N ′r is the number of real particles in a volume 1V ,
K is the typical value of the coalescence/riming/aggregation
kernelK , and nr is the number concentration of real particles.
Requiring that P < 1 has to be satisfied, we obtain

1tcollis < 1/(nrK). (87)

Here, we relate the above argument to that of Shima et al.
(2009). Let Ps be the typical probability that a collision can-
didate super-particle pair coalescence/rime/aggregate after
the pair number reduction technique is applied. Note that Ps
is what Shima et al. (2009) evaluated in the last paragraph of
Sect. 5.1.3. We can derive Ps ≈ P as follows:

Ps ≈

{
N ′s(N

′
s− 1)
2

/[
N ′s
2

]}
ξ K

1tcollis

1V

≈N ′s
N ′r
N ′s
K
1tcollis

1V

≈ P , (88)

whereN ′s is the number of super-particles in the volume1V ,
the first term {. . .} represents the scale-up factor due to the
candidate pair number reduction, and ξ ≈N ′r/N

′
s is the typi-

cal multiplicity.

In SDM, the multiple coalescence technique is used to
make the algorithm robust to larger 1tcollis. Here, we clarify
how we adapt it to riming and aggregation. If it is a coales-
cence between a droplet j and γ̃ number of droplets k (see
Sect. 5.1.3 of Shima et al., 2009, for the definition of γ̃ ), we
modify Eqs. (33)–(35) by applying

(r3
k ,m

sol
αk ,m

insol
βk )→ γ̃ (r3

k ,m
sol
αk ,m

insol
βk ). (89)

If it is a coalescence between γ̃ number of droplets j and a
droplet k, we apply

(r3
j ,m

sol
αj ,m

insol
βj )→ γ̃ (r3

j ,m
sol
αj ,m

insol
βj ). (90)

Similarly, if it is a riming/aggregation between a particle j
and γ̃ number of particles k, we apply the following replace-
ment to Eqs. (42)–(54) and (60)–(70):

(mk,Vk,m
rime
k ,nmono

k ,msol
αk ,m

insol
βk )

→ γ̃ (mk,Vk,m
rime
k ,nmono

k ,msol
αk ,m

insol
βk ). (91)

If it is a riming/aggregation between γ̃ number of particles j
and a particle k,

(mj ,Vj ,m
rime
j ,nmono

j ,msol
αj ,m

insol
βj )

→ γ̃ (mj ,Vj ,m
rime
j ,nmono

j ,msol
αj ,m

insol
βj ). (92)

What is not straightforward is the calculation of Vmax used in
the aggregation outcome formula. For planar collector j , we
consider that Vmax is given by

Vmax =

{
(4π/3)a2

j {cj + γ̃min(ak,ck)},

(4π/3)a2
j {γ̃ cj +min(ak,ck)}.

(93)

For columnar collector j ,

Vmax =

{
(4π/3)cj {aj + γ̃min(ak,ck)}max(aj ,ak,ck),

(4π/3)cj {γ̃ aj +min(ak,ck)}max(aj ,ak,ck).

(94)

The exchange of the latent heat of fusion due to riming
is calculated using Eqs. (74), (79), and (80). Feedback from
each super-particle is imposed only on the grid cell where the
super-particle is located.

5.6 Time integration of moist air fluid dynamics

Moist air fluid dynamics is governed by the compressible
Navier–Stokes equation (Eqs. 71–81). In this study, as ex-
plained in the previous section, the four coupling terms from
cloud microphysics denoted by ∂ ·/∂t |cm are evaluated when
calculating cloud microphysics.

We solve the compressible Navier–Stokes equation with-
out the coupling terms using a finite volume method with
an Arakawa-C staggered grid. For spatial discretization, the
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fourth-order central difference scheme is used for advec-
tion terms and the second-order central difference scheme is
used for other spatial derivatives. To preserve the monotonic-
ity, we apply the flux-corrected transport scheme of Zalesak
(1979) to water vapor advection. For time integration, we
use the three-step Runge–Kutta scheme of Wicker and Ska-
marock (2002). An artificial, fourth-order hyper-diffusion
term is added to stabilize the calculation. For this study,
we set the non-dimensional diffusion coefficient defined in
Eq. (A132) of Nishizawa et al. (2015) as γ = 10−3. For more
details of the numerical schemes used for fluid dynamics, see
Nishizawa et al. (2015) and Sato et al. (2015).

The time step 1tdyn must satisfy the CFL condition of
acoustic waves.

6 Design of numerical experiments for model
evaluation: 2-D simulation of an isolated
cumulonimbus

The preceding sections described the basic equations and nu-
merical implementation of SCALE-SDM. To evaluate our
numerical model’s performance, we conduct a 2-D simu-
lation of an isolated cumulonimbus following the setup of
Khain et al. (2004). In this section, we first describe the at-
mospheric conditions and numerical parameters used for the
control case denoted by CTRL. To evaluate fluctuation, we
conduct a 10-member ensemble of simulations by changing
the pseudo-random number sequence. To investigate the sim-
ulation’s numerical convergence, we will change the super-
particle number concentration, grid sizes, and time steps of
CTRL. Those ensembles are denoted by NSP, DX, and DT,
respectively. Our choice of parameters is specified in the sub-
sequent sections. Table 2 summarizes the model setup for all
cases.

6.1 Control ensemble (CTRL)

In this section, we specify the atmospheric conditions and
numerical parameters used for the CTRL ensemble.

6.1.1 Initial moist air conditions

The domain is 2-D (x–z), 60km in the horizontal direction
and 16km in the vertical direction.

The initial atmospheric profile is horizontally uniform, and
the vertical moist air profile is given by sounding data from
Midland, Texas, on 13 August 1999, as shown in Fig. 4 of
Khain et al. (2004). The cloud base and freezing level are
at about 2.2km (14 ◦C) and 4.1km, respectively. We con-
sider that the wind is initially horizontal and wind velocity
increases from 4m s−1 near the surface to 7ms−1 at 400hPa,
and remains unchanged at higher levels.

6.1.2 Moist air boundary conditions

For the lateral boundaries, we impose periodic boundary con-
ditions. For the upper and lower boundaries, we set the verti-
cal wind velocity W to zero, i.e., a zero-fixed boundary con-
dition for vertical momentum ρW , and no flux boundary con-
ditions for other prognostic variables.

6.1.3 Initial conditions of particles

Initially, the particles are distributed uniformly in space at
random, and consist of pure ammonium bisulfate aerosol
particles and mineral dust internally mixed with ammonium
bisulfate.

The initial number-size distribution of the population of
pure ammonium bisulfate particles is given by a bimodal log-
normal distribution,

dN sulf

dlogrsulf
dry
=

2∑
a=1

1
√

2π

csulf
a

logσa
exp

−
(

logrsulf
dry − logra

)2

2log2σa

 ,
(95)

where rsulf
dry is the dry radius of the ammonium bisulfate

component and N sulf is the accumulated number of parti-
cles smaller than rsulf

dry per unit volume of air. The parti-
cle number concentrations are csulf

1 = 270cm−3 and csulf
2 =

45cm−3; thus, the total particle number concentration is
csulf
= csulf

1 +c
sulf
2 = 315cm−3. The geometric mean radii are

r1 = 0.03µm and r2 = 0.14µm, with geometric standard de-
viations of σ1 = 1.28 and σ2 = 1.75, respectively. This distri-
bution is based on in situ maritime aerosol data as detailed in
Sect. 2.2.3 of VanZanten et al. (2011), but the number con-
centration is multiplied by 3. As discussed in Sect. 2.4, we
consider that a droplet containing only soluble substances
freezes only through a homogeneous freezing mechanism;
therefore, the freezing temperature of these particles is T fz

=

−38 ◦C. Therefore, pure ammonium bisulfate’s initial distri-
bution function can be calculated as

nsulf(logrsulf
dry ,T

fz)=
dN sulf

dlogrsulf
dry
δ(T fz

− (−38 ◦C)). (96)

The other aerosol population consists of mineral dust in-
ternally mixed with ammonium bisulfate. We set the num-
ber concentration to cdust

= 1cm−3, and for simplicity, set
the mineral dust particle diameter to ddust

= 1µm initially
(see, e.g., Fig. 3 of Hoose et al., 2010). We assume that
the size distribution of internally mixed ammonium bisulfate
is the same as that of the pure ammonium bisulfate given
by Eq. (95). The probability density function of the freez-
ing temperature p(T fz) is given by Eq. (1). Here, we use the
INAS density formula from Niemand et al. (2012), but based
on the discussion in Niedermeier et al. (2015), we do not ex-
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Table 2. Summary of numerical experiments for model evaluation. The domain is two-dimensional (x–z): 60km in the horizontal direction
and 16km in the vertical direction. The initial profile of moist air is given by sounding data from Midland, Texas, on 13 August 1999, as
shown in Fig. 4 of Khain et al. (2004). The particles are initially distributed uniformly in space at random and consist of pure ammonium
bisulfate aerosol particles and mineral dust internally mixed with ammonium bisulfate. The numerical parameters used in each case are listed
in the table, and values changed from the CTRL case are in bold. We conducted a 10-member ensemble of simulations for each case by
changing the pseudo-random number sequence to evaluate fluctuation. The vertical dots indicate NSP008, NSP016, NSP032, and NSP064.

Super-particle

Case
number concentration Grid size Time steps

cSP 1x =1y =1z 1t 1tadv 1tfz/mlt 1tcollis 1tcnd/evp 1tdep/sbl 1tdyn
(per cell) (m) (s) (s) (s) (s) (s) (s) (s)

CTRL 128 62.5 0.4 0.4 0.4 0.2 0.1 0.1 0.05

NSP002 2 62.5 0.4 0.4 0.4 0.2 0.1 0.1 0.05
NSP004 4 62.5 0.4 0.4 0.4 0.2 0.1 0.1 0.05
...

...
...

...
...

...
...

...
...

...

NSP128 (CTRL) 128 62.5 0.4 0.4 0.4 0.2 0.1 0.1 0.05
NSP256 256 62.5 0.4 0.4 0.4 0.2 0.1 0.1 0.05
NSP512 512 62.5 0.4 0.4 0.4 0.2 0.1 0.1 0.05

DXx4 128 250.0 1.6 1.6 1.6 0.2 0.1 0.1 0.2
DXx2 128 125.0 0.8 0.8 0.8 0.2 0.1 0.1 0.1
DXx1 (CTRL) 128 62.5 0.4 0.4 0.4 0.2 0.1 0.1 0.05
DX/2 128 31.25 0.2 0.2 0.2 0.2 0.1 0.1 0.025

DTx10 128 62.5 4.0 4.0 4.0 2.0 1.0 1.0 0.05
DTx5 128 62.5 2.0 2.0 2.0 1.0 0.5 0.5 0.05
DTx2 128 62.5 0.8 0.8 0.8 0.4 0.2 0.2 0.05
DTx1 (CTRL) 128 62.5 0.4 0.4 0.4 0.2 0.1 0.1 0.05
DT/2 128 62.5 0.2 0.2 0.2 0.1 0.05 0.05 0.05
DT/4 128 62.5 0.1 0.1 0.1 0.05 0.025 0.025 0.05

trapolate the formula to lower or higher temperatures:

nS(T )=


0, for T > T fz

max;

nNiemand
S (T ), for T fz

max ≥ T > T
fz

min;

nNiemand
S (T fz

min), for T fz
min ≥ T ;

(97)

where T fz
max =−12 ◦C and T fz

min =−36 ◦C. The mineral dust
surface area is given by Ainsol

= π(ddust)2. As discussed in
Sect. 2.4, we set T fz

=−38 ◦C if the mineral dust is IN in-
active and no INAS appears until T fz

=−38 ◦C. Altogether,
the mineral dust distribution function is given by

ndust(ddust, logrsulf
dry ,T

fz)

=δ(ddust
− 1µm)

cdust

csulf
dN sulf

dlogrsulf
dry

[p(T fz)H(T fz
+ 38 ◦C)+PINiaδ(T

fz
+ 38 ◦C)], (98)

where H(T ) is the Heaviside step function and PINia :=

P(T fz
≤−38 ◦C) is the probability that a single INAS does

not appear until T fz
=−38 ◦C. For ddust

= 1µm, PINia ≈

0.056.

6.1.4 Boundary conditions for particles

We also impose periodic boundary conditions on particles for
the lateral boundaries. If a particle crosses the upper or lower
boundary, we remove that particle from the system.

6.1.5 Near-surface heating

Convective cloud development is triggered by a 20min heat-
ing started from the beginning within a 10km wide region
centered at x = 5km, and is expressed as

∂ρθ

∂t

∣∣∣∣
sfc
= ρHmax(W,0), (99)

W =

(
−

4
w2

)[
(x− x0)

2
−

(w
2

)2
]

exp
[
−
z− z0

z0

]
, (100)

where H = 10Kh−1, x0 = 5km, w = 10km, and z0 =

0.5km. The heating has a parabolic shape in the horizontal
direction and decays exponentially in the vertical direction.

6.1.6 Grid size and time steps

We use a uniform grid throughout this study, with
a grid size of 1x =1y =1z= 62.5m in the CTRL
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case. The time steps in the CTRL case are 1t =

0.4s, 1tadv =1tfz/mlt = 0.4s, 1tcollis = 0.2s, 1tcnd/evp =

1tdep/sbl = 0.1s, and 1tdyn = 0.05s.

6.1.7 Initialization of super-particles

Initially, the super-particles are distributed uniformly
throughout the domain at random with a number concentra-
tion of cSP

= 128 per cell. We consider half of them as pure
ammonium bisulfate aerosol particles, a few of them as IN
inactive mineral dust particles internally mixed with ammo-
nium bisulfate, and the remainder to be IN active mineral
dust particles internally mixed with ammonium bisulfate.

The multiplicity, ammonium bisulfate mass, and freezing
temperature of each pure ammonium bisulfate super-particle
is assigned as follows. For each pure ammonium bisulfate
super-particle, we draw a random number uniformly in log-
space from the interval [rsulf

dry,min, r
sulf
dry,max] and determine the

dry radius rsulf
dry,i . To accurately represent the size distribution

given in Eq. (95), we set rsulf
dry,min = 10.0nm and rsulf

dry,max =

5.0µm. From Eqs. (85) and (96), the super-particle’s multi-
plicity is then given by

ξi =
nsulf(logrsulf

dry,i,T
fz
i )

Ns(0)/2

Vdomain log(rsulf
dry,max/r

sulf
dry,min)

δ(T fz− (−38 ◦C))

=
dN sulf

dlogrsulf
dry

(
logrsulf

dry,i

) log(rsulf
dry,max/r

sulf
dry,min)

cSP/2
,

(101)

where Vdomain is the total volume of the domain, n and p in
Eq. (85) in this case are given by

n= nsulf(logrsulf
dry,i,T

fz
i ), (102)

p =
δ(T fz

− (−38 ◦C))
Vdomain log(rsulf

dry,max/r
sulf
dry,min)

, (103)

and Ns(0) in Eq. (85) is replaced by Ns(0)/2 be-
cause we use half of the super-particles for pure am-
monium bisulfate aerosol particles. The ammonium bisul-
fate mass is calculated from the dry radius rsulf

dry,i

as msol
1i = (4π/3)ρ(NH)4HSO4(r

sulf
dry,i)

3, where ρ(NH)4HSO4 =

1.78gcm−3. The soluble aerosol particle freezing tempera-
ture is T fz

i =−38 ◦C.
For IN inactive mineral dust super-particles, we use

P SP
INia = 0.05. The mineral dust initially has the same size
ddust
= 1µm. The dry radius rsulf

dry,i is calculated using the
same procedure as the pure ammonium bisulfate aerosol par-
ticles; i.e., for each super-particle, we draw a random number
uniformly in log-space from the interval [rsulf

dry,min, r
sulf
dry,max].

The IN inactive mineral dust freezing temperature is T fz
i =

−38 ◦C. From Eqs. (85) and (98), an IN inactive mineral dust

super-particle’s multiplicity is then given by

ξi =
cdust

csulf
dN sulf

dlogrsulf
dry

(
logrsulf

dry,i

) log(rsulf
dry,max/r

sulf
dry,min)

cSP/2
PINia

P SP
INia

.

(104)

Finally, we consider IN active mineral dust internally
mixed with ammonium bisulfate. The remaining super-
particles, i.e., (1−P SP

INia)/2, are used for this population. The
initial diameter of the mineral dust is ddust

= 1µm, and the
dry radius rsulf

dry,i is determined as in the other populations.
We draw another random number uniformly from the inter-
val [T fz

min,T
fz

max] and determine the freezing temperature T fz
i .

From Eqs. (85) and (98), an IN active mineral dust super-
particle’s multiplicity is then given by

ξi =
cdust

csulf
dN sulf

d logrsulf
dry

(
logrsulf

dry,i

)
p(T fz

i )

log(rsulf
dry,max/r

sulf
dry,min)(T

fz
max− T

fz
min)

(cSP/2)(1−P SP
INia)

. (105)

Note that multiplicity ξi is an integer variable. We round
the r.h.s. of Eqs. (101)–(105) to the nearest integer, and if the
r.h.s. is < 1, we draw a random number to decide whether to
choose ξi = 1 or ξi = 0 to avoid sampling error. If ξi = 0, the
super-particle will be removed from the system.

Assuming that all the particles are deliquescent, we con-
sider that the initial droplet radius ri is equal to the equi-
librium radius of condensation/evaporation growth equation
(Eq. 8). As the vapor profile is initially subsaturated relative
to liquid water and all particles contain soluble substances,
the growth equation (Eq. 8) has a unique, stable equilibrium
solution.

6.1.8 Pseudo-random numbers

To evaluate the fluctuation, we conduct a 10-member ensem-
ble of simulations by changing the pseudo-random number
sequence.

Now, the atmospheric conditions and numerical parame-
ters used for the CTRL ensemble have all been specified.

6.2 Other ensembles for investigating numerical
convergence

We also try various other test cases by changing the CTRL
ensemble’s numerical parameters, and assess the sensitivity
of results to numerical parameters. Our parameter selections
are specified in the following sections and a summary is pro-
vided in Table 2.

6.2.1 NSP ensembles for super-particle number
convergence

To investigate numerical convergence with respect to initial
the super-particle number concentration cSP, we vary cSP as
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follows: 2, 4, . . ., 512 per cell. Grid size and time steps are not
changed. These cases are respectively denoted by NSP002,
NSP004, . . . , NSP512. Note that NSP128 and CTRL are the
same.

6.2.2 DX ensembles for grid convergence

To investigate numerical convergence with respect to the grid
size, we run ensembles using different grid sizes.

The grid size of the DXx4 ensemble is 4 times
that of CTRL: 1x =1y =1z= 250m, 1tdyn = 0.2s, and
1t =1tadv =1tfz/mlt = 1.6s, but other time steps, i.e.,
{1tcollis,1tcnd/evp,1tdep/sbl}, are not changed.

The DXx2 ensemble’s grid size is twice that of CTRL:
1x =1y =1z= 125m, 1tdyn = 0.1s, and 1t =1tadv =

1tfz/mlt = 0.8s.
Note that DXx1 and CTRL are the same.
The DX/2 ensemble has a grid size that is half that

of CTRL: 1x =1y =1z= 31.25m. 1tdyn = 0.025s, and
1t =1tadv =1tfz/mlt = 0.2s.

6.2.3 DT ensembles for time step convergence

To investigate numerical convergence with respect to the
cloud microphysics time steps, we change the cloud micro-
physics time steps for CTRL without changing the time step
for fluid dynamics.

The time steps for the DTx10 ensemble’s cloud micro-
physics are 10 times that of CTRL: 1t =1tadv =1tfz/mlt =

4.0s,1tcollis = 2.0 s, and1tcnd/evp =1tdep/sbl = 1.0 s.1tdyn
is not changed.

The time steps of the DTx5 ensemble are 5 times that
of CTRL:1t =1tadv =1tfz/mlt = 2.0s,1tcollis = 1.0s, and
1tcnd/evp =1tdep/sbl = 0.5s.

The time steps of the DTx2 ensemble are twice that
of CTRL:1t =1tadv =1tfz/mlt = 0.8s,1tcollis = 0.4s, and
1tcnd/evp =1tdep/sbl = 0.2s.

Note that DTx1 and CTRL are the same.
The time steps of the DT/2 ensemble are half that of

CTRL: 1t =1tadv =1tfz/mlt = 0.2s, 1tcollis = 0.1s, and
1tcnd/evp =1tdep/sbl = 0.05s.

The time steps of the DT/4 ensemble are one-quarter that
of CTRL: 1t =1tadv =1tfz/mlt = 0.1s, 1tcollis = 0.05s,
and 1tcnd/evp =1tdep/sbl = 0.025s.

7 Typical behavior of CTRL ensemble

From the 10 CTRL ensemble members, we selected the one
that produced accumulated precipitation amounts closest to
the mean value as the representative, hereafter referred to as
the typical realization of CTRL. In this section, we analyze
these results in detail.

7.1 Hydrometeor categorization

We do not categorize hydrometeors during the simulation,
which is one of the salient features of our model because the
artificial partitioning of hydrometeors could cause various ar-
tifacts. In contrast, when analyzing results, dividing hydrom-
eteors into categories is useful to precisely understand the
results.

In this study, we assume that hydrometeors completely
freeze or melt instantaneously (see Sect. 4.1.4 and 4.1.5).
Further, we assume that all particles contain soluble com-
ponents and are hygroscopic. If not frozen, we assume that
the particles are deliquescent even when humidity is low (see
Sect. 4.1.6). We also introduced a limiter (Eq. 14) to prevent
complete sublimation. Hence, all particles can be categorized
as either droplets or ice particles with no ambiguity.

If a particle is a droplet and its radius r is< 40µm, we con-
sider it a cloud droplet. Otherwise, the particle is considered
a rain droplet.

If a particle is an ice particle with a rimed mass fraction
satisfying mrime/m > 0.3, we consider it a graupel particle.
This criterion is based on the riming categories in Fig. 5
of Mosimann et al. (1994), in which 0.3 corresponds to a
densely rimed ice crystal. If the maximum dimension of a
graupel particle is > 5mm, we consider it a hailstone. How-
ever, for the sake of simplicity, we consider hailstones as a
subset of graupel and they will not be distinguished in the
figures. If the ice particle is not a graupel particle but is rather
composed of > 10 monomers, i.e., nmono > 10, we consider
the ice particle a snow aggregate. Otherwise, we categorize
the ice particle as a cloud ice particle.

7.2 Spatial structure of the cloud, water path, and
precipitation amount

We first analyze the cloud’s overall properties, and then, in
the next section, we analyze the properties of individual ice
particles.

Figure 1 shows how the cloud’s spatial structure in the typ-
ical realization of CTRL evolved over time. The mixing ratio
of cloud water, rainwater, cloud ice, graupel, and snow aggre-
gates are plotted in fading white, yellow, blue, red, and green,
respectively. See also Movie 1 in the video supplement.

Figure 2 shows how the amounts of hydrometeors in the
atmosphere evolved over time. The domain-averaged cloud
water, rainwater, cloud ice water, graupel water, and snow
aggregate water paths are plotted in gray, yellow, blue, red,
and green, respectively. Figure 3 shows the time evolution
of domain-averaged accumulated precipitation amounts. The
solid lines represent the typical realization of CTRL in both
figures. The dark shades indicate the mean ± standard de-
viation that were calculated using the 10 CTRL ensemble
members. The unbiased estimator was used to calculate the
standard deviation. Pale shades indicate the maximum and
minimum values of the 10 ensemble members.
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Figure 1. Typical realization of CTRL cloud spatial structures at t = 2040, 2460, 3000, 4200, and 5400s. The mixing ratio of cloud water,
rainwater, cloud ice, graupel, and snow aggregates are plotted in fading white, yellow, blue, red, and green, respectively. The symbols indicate
examples of unrealistic predicted ice particles (Sects. 7.3 and 9.1). See also Movie 1 in the video supplement.

The cloud started to form at approximately t = 1200s, and
at approximately t = 1900s, rain droplets started to be cre-
ated through warm rain microphysics processes. Soon af-
ter that, supercooled droplets near the cloud top started to
freeze and the number of supercooled cloud droplets quickly

decreased because of the Wegener–Bergeron–Findeisen pro-
cess and riming. At the same time, we also observed that
convective cores near the homogeneous freezing level (z≈
9.3km) containing high liquid water content were sustained
until around t = 5000s. For example, at t = 3300s, we
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Figure 2. Time evolution of the domain-averaged water path in the
CTRL ensemble. The cloud water, rainwater, cloud ice water, grau-
pel water, and snow aggregate water paths are plotted in gray, yel-
low, blue, red, and green, respectively. The solid line represents the
typical realization of CTRL. Dark shades indicate the mean ± stan-
dard deviation, and pale shades indicate the maximum and mini-
mum values of the 10 ensemble members.

observed a liquid water content of 2.1gm−3 at (x,z)=
(21.8km,9.8km), where T =−37.5 ◦C. The existence of
such high supercooled liquid water content down to the ho-
mogeneous freezing limit −38 ◦C are frequently observed in
deep convective clouds (Rosenfeld and Woodley, 2000). The
ice particles quickly evolved into graupel particles through
riming, and then fell toward the surface. When crossing the
freezing level at approximately z= 4.1km, the graupel in-
stantaneously melted into rain droplets, based on our model.
The peak of the rainwater path at t = 2800s was created by
graupel melting. The first rain droplet reached the surface at
about t = 2800s, and heavy precipitation was sustained for
1200s, followed by weak precipitation. At the end of the
simulation (t = 5400s), the domain-averaged accumulated
precipitation amount was 1.2mm. An anvil cloud was cre-
ated between z= 10km and z= 12km. The anvil cloud was
mostly composed of cloud ice particles, with a small amount
of snow aggregates that increased slowly over time through
the aggregation of cloud ice particles. The maximum up-
draft and downdraft speeds were 39.0 and 21.9ms−1, which
were observed at (t,x,z)= (2340s,12.8km,11.1km) and
(1620s,9.5km,4.1 km), respectively.

Our model successfully simulated the life cycle of a cu-
mulonimbus typically observed in nature (see, e.g., Chap. 8
of Cotton et al., 2010). At the same time, our results are
limited because the simulation was conducted in 2-D; the
turbulence characteristics are different in 2-D and 3-D. Fur-
thermore, the convection was initiated from a stratified, non-
turbulent atmosphere; however, this is unrealistic. Following
Lasher-Trapp et al. (2005), imposing a spin-up period to de-
velop turbulence in the boundary layer before initiating the
deep convection would be desirable.

Figure 3. Time evolution of domain-averaged accumulated precipi-
tation amounts in the CTRL ensemble. The solid line represents the
typical realization of CTRL. The dark shading indicates the mean
± standard deviation, and the pale shading indicates the maximum
and minimum values of the 10 ensemble members.

7.3 Ice particle morphology and fall speeds

Now, we analyze the properties of individual ice particles in
the typical realization of CTRL.

Figure 4 shows the mass–dimension relationship of ice
particles at t = 2040s (towering stage), 3000s (mature
stage), and 5400s (dissipating stage). The 2-D mass densi-
ties of cloud ice particles, graupel particles, and snow aggre-
gates are plotted in fading blue, red, and green, respectively.
The horizontal axis represents the maximum ice particle di-
mension D. The vertical axis represents the normalized ice
particle mass m∗, which is defined by the ratio of ice particle
mass m to the mass of a spherical ice particle with the same
maximum dimension D and the true density of ice ρi

true:

m∗ :=
ρia2c

ρi
true(D/2)3

, D = 2max(a,c). (106)

Note thatm∗ ≤ 1 always holds. To calculate 2-D mass densi-
ties, we divided the 2-DD–m∗ space into 100×100 bins, ac-
cumulated the masses of ice particles in each bin, and divided
the total masses by the area of each bin measured in log10(D)

and log10(m
∗). The colored slopes in Fig. 4 represent mass–

dimension relationship formulas from various studies, and
M96, HK87, K89, M90, and LH74 indicate Mitchell (1996),
Heymsfield and Kajikawa (1987), Kajikawa (1989), Mitchell
et al. (1990), and Locatelli and Hobbs (1974), respectively.
Note that “crystals with sector like branches (M96)” and
“stellar crystals with broad arms (M96)” consists of two
slopes, respectively, but both are not continuous. See also
Movie 2 in the video supplement.

Figure 5 shows the relationship between ice particle aspect
ratios and dimensions at t = 2040, 3000, and 5400 s. The
horizontal axis represents the maximum ice particle dimen-
sionD, and the vertical axis represents the ice particle aspect
ratio φ. The 2-D mass densities of cloud ice particles, graupel
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particles, and snow aggregates are plotted in the same man-
ner as Fig. 4, except for differences in the vertical axis. Note
that if φ > 1 (φ < 1), ice particles are columnar (planar). See
also Movie 3 in the video supplement.

Figure 6 shows the relationship between ice particle appar-
ent densities and dimensions at t = 2040, 3000, and 5400 s.
The horizontal axis represents the maximum ice particle di-
mension D, and the vertical axis represents ice particle ap-
parent density ρi. The 2-D mass densities of cloud ice parti-
cles, graupel particles, and snow aggregates are plotted in the
same manner as Fig. 4, except for differences in the vertical
axis. See also Movie 4 in the video supplement.

Figure 7 shows the relationship between ice particle ve-
locities and dimensions at t = 2040, 3000, and 5400 s. The
horizontal axis represents the maximum ice particle dimen-
sion D, and the vertical axis represents ice particle termi-
nal velocity v∞. The 2-D mass densities of cloud ice par-
ticles, graupel particles, and snow aggregates are plotted in
the same manner as Fig. 4, except for differences in the ver-
tical axis. The colored slopes in Fig. 7 represent the velocity–
dimension relationship formulas from various studies, and
SC85, W08, H72, KH83, A72, and H02 indicate Starr and
Cox (1985), Westbrook et al. (2008), Heymsfield (1972),
Knight and Heymsfield (1983), Auer (1972), and Heymsfield
et al. (2002), respectively. “Stokes’ law for ice spheres” is
based on the Stokes’ terminal velocity for spherical ice parti-
cles with the true ice density. We use the dynamic viscosity at
a temperature of −20 ◦C, i.e., µ= 1.630× 10−5 kgm−1s−1.
The two slopes of W08 are based on the analytical formula
of Westbrook et al. (2008) for < 100µm ice particles. For
“hexagonal plates”, L/2a = 0.05 is assumed, with L being
the height of the hexagonal prism and a =D/2 being the
hexagon’s maximal radius. The effective radius is calculated
using the horizontal orientation model from Roscoe (1949).
For “hexagonal columns”, L/2a = 20 is assumed, and the
effective radius is calculated using the random orientation
model of Hubbard and Douglas (1993). In both cases, we
use the dynamic viscosity at a temperature of −20 ◦C. See
also Movie 5 in the video supplement.

At t = 2040s (towering stage), cloud glaciation had just
started, and a small amount of planar and columnar cloud ice
particles and graupel particles can be observed. The two hor-
izontal red bands at φ = 0.8 and φ = 1/0.8 in Fig. 5 were
created because of our assumption that riming growth even-
tually makes ice particles quasi-spherical.

At t = 3000s (mature stage), many hailstones (graupel
particles > 5mm) can be observed in the cloud’s middle
layer. We also have many columnar cloud ice particles and
a small number of snow aggregates in the upper part of the
cloud. Those cloud ice particles were columnar because our
model’s inherent growth ratio 0(T ) is > 1 at this height.
Many of the snow aggregates were spherical because our
model assumed that the aspect ratio φ approaches 1 as ag-
gregation occurs.

Figure 4. Mass–dimension relationship of ice particles in the typ-
ical realization of CTRL at t = 2040, 3000, and 5400 s. The 2-D
mass densities of cloud ice particles, graupel particles, and snow
aggregates are plotted in fading blue, red, and green, respectively.
The horizontal and vertical axes represent the maximum ice parti-
cle dimension D and the normalized ice particle mass m∗, respec-
tively. The colored slopes represent various mass–dimension rela-
tionship formulas. The symbols indicate examples of unrealistically
predicted ice particles (Sects. 7.3 and 9.1). See also Movie 2 in the
video supplement.
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Figure 5. Aspect ratio–dimension relationship of ice particles in the
typical realization of CTRL at t = 2040, 3000, and 5400s. The ver-
tical axis represents the ice particle aspect ratio φ. This figure is the
same as Fig. 4, except for the vertical axis. The symbols indicate ex-
amples of unrealistically predicted ice particles (Sects. 7.3 and 9.1).
See also Movie 3 in the video supplement.

Figure 6. Apparent density–dimension relationship of ice particles
in the typical realization of CTRL at t = 2040, 3000, and 5400s.
The vertical axis represents the ice particle apparent density ρi.
This figure is the same as Fig. 4, except for the vertical axis. The
symbols indicate examples of unrealistically predicted ice particles
(Sects. 7.3 and 9.1). See also Movie 4 in the video supplement.
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Figure 7. Velocity–dimension relationship of ice particles in the
typical realization of CTRL at t = 2040, 3000, and 5400 s. The ver-
tical axis represents the ice particle terminal velocity v∞. This fig-
ure is the same as Fig. 4, except for the vertical axis. The colored
slopes represent various velocity–dimension relationship formulas.
The symbols indicate examples of unrealistically predicted ice par-
ticles (Sects. 7.3 and 9.1). See also Movie 5 in the video supplement.

At t = 5400s (dissipating stage), most of the graupel par-
ticles had fallen away and only a small amount remained.
More columnar cloud ice particles and snow aggregates can
be observed in the anvil.

The mass–dimension relationship shown in Fig. 4, and the
velocity–dimension relationship shown in Fig. 7 show a rea-
sonable agreement between our model’s predicted results and
existing formulas based on laboratory measurements and ob-
servations. In both figures, cloud ice particles, graupel parti-
cles, and snow aggregates are distributed near the blue, red,
and green slopes, respectively. In Fig. 7, one might note that
snow aggregates in our model fall faster than those in the
formulas; however, this bias can be explained by the air den-
sity dependence of the fall speed. The green slopes in Fig. 7
represent the formulas of LH74 and H02. LH74’s formu-
las are constructed from data measured between altitudes of
750 and 1500m above sea level; hence, the density is ap-
proximately 1.1kgm−3. H02’s formula is for temperature
and pressure of −10 ◦C and 500hPa; hence, the density is
approximately 0.66kgm−3. In our simulation, most of the
snow aggregates exist in the anvil cloud, wherein the den-
sity is approximately 0.38kgm−3. Khvorostyanov and Curry
(2002) estimated that the terminal velocities of large ice par-
ticles scale with the ambient density to the power of −1/2.
Therefore, we can incorporate the density dependence by
multiplying the LH74 formulas for aggregates by a factor of
(0.38kgm−3/1.1kgm−3)1/2 ≈ 1.70 and that of H02 for ag-
gregates by a factor of (0.38kgm−3/0.66kgm−3)1/2 ≈ 1.32.
We confirmed that these corrections improve the agreement
between our model results and the formulas (see Fig. R2-1 in
the authors’ response to anonymous referee no. 2).

However, at the same time, we also see several types of
seemingly unrealistic ice particles, representative examples
of which are indicated by symbols in Figs. 1, 4–7: The
ice particle denoted by the circle at t = 3000s is a long,
slowly falling hailstone. The square at t = 3000s is a colum-
nar cloud ice particle that is inconsistent with known mass–
dimension relationships. The cross at t = 3000s is a hail-
stone with an extremely low apparent density. The triangle
at t = 5400s is an extremely long graupel particle with a low
apparent density. In Sect. 9.1, we will investigate the causes
of these odd behaviors in more detail, but those issues could
be attributed to uncertainties in ice microphysics process for-
mulations.

8 Numerical convergence characteristics

Our numerical model uses three types of numerical param-
eters, namely the super-particle number concentration, grid
size, and time steps. These parameters correspond to the res-
olution of aerosol/cloud/precipitation particle distribution in
real space and attribute space, the spatial resolution of moist
air, and temporal resolution. The numerical solution from our
model approaches the true solution of time evolution equa-
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tions (Eqs. 2–81) as the super-particle number approaches
the number of real particles, and the grid size and time steps
approach zero.

To confirm the numerical convergence of the cumulonim-
bus case, we conducted a series of simulations changing
the numerical parameters of CTRL. These ensembles are re-
ferred to as NSP, DX, and DT (see Table 2). Our results sug-
gest that the numerical parameters used for the CTRL case
could produce accurate numerical results. In what follows,
the detail of this analysis is presented. Then, we conduct
a general discussion of our model’s numerical convergence
characteristics and computational cost.

8.1 NSP ensembles and super-particle number
convergence

Numerical convergence regarding the initial super-particle
number concentration cSP was investigated by varying the
cSP value of CTRL as follows: 2, 4, . . ., 512 per cell (see Ta-
ble 2). These cases are referred to as NSP002, NSP004, . . . ,
and NSP512, respectively. Note that NSP128 and CTRL are
the same.

Figure 8 shows the accumulated precipitation amount
statistics at the end of the simulation (t = 5400s) versus
the initial super-particle number concentration cSP. The er-
ror bars indicate the mean and standard deviation calculated
from the 10 members of each NSP ensemble. The unbi-
ased estimator was used to calculate standard deviations. The
crosses denote the maximum and minimum values of the 10
ensemble members.

Figure 9 shows the statistics of the maximum water path of
each hydrometeor type during the simulation (i.e., the max-
imum of each line in Fig. 2) versus the initial super-particle
number concentration cSP. The error bars indicate the mean
and standard deviation from the 10 members of each NSP
ensemble. The unbiased estimator was used for calculating
the standard deviations. The symbols indicate the maximum
and minimum values of each hydrometeor type in the 10 en-
semble members.

Our model has two sources of fluctuation, namely atmo-
spheric turbulence and SDM randomness. Pseudo-random
numbers are used for the Monte Carlo calculation of coales-
cence, riming, and aggregation, and to initialize the super-
particles. The standard deviation (i.e., fluctuation) caused
by SDM randomness decreases proportionally to the inverse
of the square root of the super-particle number. However,
Figs. 8 and 9 show that the fluctuation is not sensitive to
the initial super-particle number concentration cSP. This in-
dicates that fluctuations in all simulations are mostly dom-
inated by atmospheric turbulence. One might note that the
fluctuations are slightly increasing as cSP increases. This sug-
gests that the super-particle number affects the turbulence
characteristics; however, we leave that for further investiga-
tion in future work.

Figure 8. Statistics of NSP ensemble accumulated precipitation
amounts. The vertical axis represents the accumulated precipitation
at the end of the simulation (t = 5400s), and the horizontal axis
represents the initial super-particle number concentration cSP. The
error bars indicate the mean and standard deviation calculated from
the 10 members of each NSP ensemble. The crosses denote maxi-
mum and minimum values of the 10 ensemble members.

Figure 8 indicates that the accumulated precipitation
amount is less sensitive to the super-particle number. How-
ever, Fig. 9 reveals that the initial super-particle number con-
centration cSP affects the maximum water path statistics. The
numerical convergence of the maximum cloud water path is
noticeably slow. This is closely related to the onset of warm
rain through coalescence. From Fig. 2, we determine that the
maximum of the cloud water path coincides with the emer-
gence of rainwater. Therefore, a small shift of the warm rain
onset time changes the maximum cloud water path; however,
it does not have a considerable impact on the overall proper-
ties of the simulated cloud. The maximum water paths of all
the other hydrometeor types do not show a significant differ-
ence if cSP is larger than 64 or 128 per cell (see also Table R2-
1 of authors’ response to anonymous referee no. 2). When the
number of super-particles was too low, more rain droplets
were produced because of an erroneous enhancement of coa-
lescence that reduced the amount of cloud droplets, cloud ice
particles, and graupel particles.

To summarize, we conclude that the numerical conver-
gence regarding the super-particle number is fairly well
achieved at NSP128 (CTRL), i.e., cSP

= 128 per cell.

8.2 DX ensembles and grid convergence

We investigated the numerical convergence with respect to
the grid size by varying1x =1y =1z of CTRL as follows:
31.25, 62.5, 125, and 250m (see Table 2). These cases are
referred to as DX/2, DXx1, DXx2, and DXx4, respectively.
Note that DXx1 and CTRL are the same.

Figure 10 shows the accumulated precipitation amount
statistics at the end of the simulation versus the grid size,
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Figure 9. Statistics of NSP ensemble maximum water paths for
each hydrometeor type. The vertical axis represents the maximum
water path of each hydrometeor type during the simulation (i.e.,
the maximum of each line in Fig. 2), and the horizontal axis repre-
sents the initial super-particle number concentration cSP. The error
bars indicate the mean and standard deviation calculated from the
10 members of each NSP ensemble. The symbols denote the maxi-
mum and minimum values of the 10 ensemble members.

plotted in the same way as Fig. 8, except for the difference in
the horizontal axis.

Figure 11 shows the maximum water path statistics for
each hydrometeor type during the simulation versus the grid
size, plotted in the same way as Fig. 9, except for the differ-
ence in the horizontal axis.

The DX/2 ensemble is the highest grid resolution tested
in this study, and a snapshot of the cloud from the DX/2 en-
semble is shown in Fig. 12. The mixing ratios are plotted in
the same manner as Fig. 1. See also Movie 6 in the video
supplement.

Figure 10 shows that the accumulated precipitation
amount increased from a grid size of 125m to a grid size
of 62.5m, but no significant difference exists between the
62.5 and 31.25m grids. Similar behavior can be observed in
the maximum rainwater path in Fig. 11; however, no signifi-
cant difference exists for other hydrometeor types. Compar-
ing Fig. 12 (31.25 m) and Fig. 1 (62.5m), the spatial struc-
tures of the clouds also look similar.

Therefore, we conclude that the numerical convergence
with respect to the grid size is achieved at DXx1 (CTRL),
i.e., 1x =1y =1z= 62.5m.

8.3 DT ensembles and time step convergence

We investigated the numerical convergence with respect to
the cloud microphysics time steps by varying CTRL’s cloud
microphysics time steps by factors of 1/4, 1/2, 1, 2, 5,
and 10 (see Table 2). These cases are referred to as DT/4,
DT/2, DTx1, DTx2, DTx5, and DTx10, respectively. Note
that DTx1 and CTRL are the same.

Figure 10. Statistics of DX ensemble accumulated precipitation
amounts. The horizontal axis represents the grid size 1x =1y =
1z. This figure has the same form as Fig. 8, except for the horizon-
tal axis.

Figure 11. Statistics of the DX ensemble maximum water paths for
each hydrometeor type. The horizontal axis represents the grid size
1x =1y =1z. This figure has the same form as Fig. 9, except for
the horizontal axis.

We found that DTx10 diverges at around t = 1200s be-
cause of a numerical instability. Let us compare the results
of the other five ensembles.

Figure 13 shows the statistics of the accumulated precipi-
tation amounts at the end of the simulation versus the ratio of
cloud microphysics time steps to CTRL, plotted in the same
manner as Fig. 8, except for the difference in the horizontal
axis.

Figure 14 shows the statistics of the maximum water path
of each hydrometeor type during the simulation versus the
ratio of cloud microphysics time steps to CTRL, plotted in
the same manner as Fig. 9, except for the difference in the
horizontal axis.

Both figures show no significant difference among the five
ensembles; therefore, we conclude that the numerical con-
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Figure 12. Spatial structure of the cloud at t = 3000s from a DX/2 ensemble member. This figure is formatted the same as Fig. 1, except for
the grid resolution. See also Movie 6 in the video supplement.

Figure 13. Statistics of DT ensemble accumulated precipitation
amounts. The horizontal axis represents the ratio of cloud micro-
physics time steps to CTRL. This figure has the same form as Fig. 8,
except for the horizontal axis.

vergence with respect to the time steps is already attained at
DTx1 (CTRL), i.e., (1t , 1tadv, 1tfz/mlt, 1tcollis, 1tcnd/evp,
1tdep/sbl)= (0.4, 0.4, 0.4, 0.2, 0.1, 0.1 s). Because DTx5
does not show any difference, time steps of 5–10 times as
large could suffice.

Further discussion of numerical convergence characteris-
tics is provided in Sect. 8.4.

8.4 Interpretation and computational cost

As confirmed in the preceding sections, the numerical pa-
rameters used for the CTRL ensemble (see Table 2) could
produce an accurate numerical solution of the cumulonim-
bus case.

The CTRL ensemble’s super-particle number concentra-
tion is cSP

= 128 per cell, which is comparable to vari-
ous previous studies (e.g., Andrejczuk et al., 2010; Sölch
and Kärcher, 2010; Riechelmann et al., 2012; Arabas and
Shima, 2013; Unterstrasser and Sölch, 2014; Unterstrasser

Figure 14. Statistics of the DT ensemble maximum water path for
each hydrometeor type. The horizontal axis represents the ratio of
cloud microphysics time steps to CTRL. This figure has the same
form as Fig. 9, except for the horizontal axis.

et al., 2017; Grabowski et al., 2018; Jaruga and Pawlowska,
2018; Dziekan et al., 2019; Hoffmann et al., 2019). Those
studies reported that approximately 50–200 super-particles
per cell are needed to accurately simulate clouds in two or
three dimensions. If the number of attributes is increased,
we generally need more super-particles to cover the higher-
dimensional attribute space. In this study, we used 5 at-
tributes to represent ice particles, which is relatively large
compared to previous studies. Therefore, achieving numeri-
cal convergence with a super-particle number concentration
as low as 128 per cell is a remarkable result, revealing the
efficacy of a particle-based cloud modeling approach. An-
other example of studies using many attributes is Jaruga
and Pawlowska (2018), which included 8 attributes to study
aqueous-phase oxidation of sulfur to sulfate and confirmed
that the results do not change significantly if the number con-
centration of super-droplets is larger than 64 per cell. How-
ever, the readers must be warned that the performance is
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sensitive to how super-particles are initialized (Unterstrasser
et al., 2017), as we discussed in Sect. 5.3.

The CTRL ensemble’s grid size is 1x =1y =1z=

62.5m, which is highly dependent on the simulated cloud’s
energy injection scale. As we will discuss in Sect. 9.3.10, in-
troducing SGS turbulence models should improve the grid
convergence characteristics.

The time steps for cloud microphysical processes used in
the CTRL ensemble are (1tadv, 1tfz/mlt, 1tcollis, 1tcnd/evp,
1tdep/sbl)= (0.4, 0.4, 0.2, 0.1, 0.1 s). As shown in Sect. 8.3,
time steps as large as 5–10 times could suffice. In the follow-
ing section, we discuss how those time steps are determined
and whether the constraints could be relaxed.

To accurately trace the flow of moist air, 1tadv should be
limited by the CFL condition of wind velocity.

To avoid a sudden release of latent heat,1tfz/mlt must also
be restricted through the CFL condition.
1tcollis is the time step of coalescence, riming, and ag-

gregation. As shown in Shima et al. (2009) and clarified
in Sect. 5.5.5, 1tcollis can be estimated from the number
concentration and size of real particles, and that 1tcollis
does not depend on the numerical parameters such as super-
particle number concentration or grid size. To make the
calculation robust to larger time steps, a technique to al-
low multiple coalescence, riming, and aggregation occur-
rences is implemented in the SDM (see Sect. 5.5.5); how-
ever, this does not work properly if the collected super-
particle’s multiplicity is not sufficiently large. Multiple coa-
lescence/riming/aggregation of collector particles would not
be an accurate approximation either. These issues could
be improved by introducing a recursive algorithm (Okawa,
2015), which could allow us to use larger 1tcollis values.
1tcnd/evp and 1tdep/sbl are determined by the phase

relaxation time of supersaturation, τphase ∝ 1/
∑
ξiri

(e.g., Squires, 1952). The timescale of CCN activa-
tion/deactivation is normally much smaller than the phase
relaxation time; however, our model is not constrained by the
activation/deactivation timescale because the condensation
and evaporation equation (Eq. 8) is solved implicitly (see
Sect. 5.5.3). However, we explicitly calculate the exchange
of vapor and latent heat with moist air (see Sect. 5.5.3); thus,
1tcnd/evp and 1tdep/sbl must be smaller than the phase relax-
ation time. Otherwise, numerical instability occurs (Árnason
and Brown, 1971). This restriction could be relaxed if we
fully implicitly solve this coupled process of droplets and
moist air. Perhaps the approach described in Sect. 2.6 of
Grabowski et al. (2018) for mitigating spurious cloud-edge
supersaturations could also be used for this purpose.

We used the first-order operator splitting scheme to sepa-
rate the calculation (Table 1). Employing higher-order opera-
tor splitting and/or tendencies would also improve numerical
convergence characteristics.

Lastly, we discuss SCALE-SDM’s actual computational
cost. Calculating one realization of the CTRL case required
approximately 10 h using 160 Intel Xeon E5-2650v3 CPU

cores. To compare computational cost, we also tried the two-
moment bulk scheme of Seiki and Nakajima (2014) imple-
mented on SCALE. This took approximately 20 min, which
is about 30 times faster than SDM. As SDM’s computational
cost scales linearly with the number of super-particles and
the number concentration of super-particles for the CTRL
case was 128 per cell, it is a plausible result. We can solve
the same mathematical model using a multi-dimensional bin
scheme. Let us also estimate the bin model’s computational
cost. The effective number of attributes we used for ice par-
ticles is 5, implying that the bin space is five-dimensional.
If we assume that 10–100 bins are needed for each axis, the
total number of bins becomes 105–1005. For the binary colli-
sion calculation, most bin models assess all the combinations
of the bins. In this case, the computational cost scales with
the square of the number of bins, i.e., 1010–10010. However,
we can reduce the cost of bin models by introducing a colli-
sion pair number reduction technique similar to that of SDM
(Sato et al., 2009). Therefore, if we enhance the efficiency
by using this algorithm, the computational cost of bin mod-
els scales linearly with the number of bins, i.e., 105–1005.
However, this is still much larger than 100, i.e., the compu-
tational cost of SDM.

In SCALE-SDM, super-particles are distributed all over
the simulated domain. If we use super-particles only inside
the clouds by employing, e.g., the Twomey super-droplet
methodology (Grabowski et al., 2018), computational costs
could be considerably reduced.

9 Improvement of the model

Results of the typical realization of CTRL presented in
Sect. 7 show that the life cycle of a cumulonimbus was suc-
cessfully simulated and the predicted mass–dimension and
velocity–dimension relationships agree fairly well with the
existing formulas based on laboratory measurements and ob-
servations. At the same time, as indicated by the symbols in
Figs. 1 and 4–7, our model produces several types of seem-
ingly unrealistic ice particles. Another issue is the underesti-
mation of columnar ice particle terminal velocities. As stated
in Sect. 4.1.3, we did not properly implement the formula
of Böhm (1989, 1992c, 1999) in our model. Further, not all
of the elementary cloud microphysics processes critical for
mixed-phase clouds are incorporated in our model yet. In this
section, we explore the possible improvements and further
sophistication of the model.

9.1 Origins of odd particles

Let us determine the origins of the four types of odd particles
denoted by the symbols in Figs. 1 and 4–7. Once determined,
we then modify the time evolution equations to resolve three
of the four issues in effect.
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9.1.1 Long, slowly falling hailstones

The ice particle denoted by the circle at t = 3000s is an
example of hailstones that are too long and slow-falling.
The attributes related to this ice particle’s morphology
are {a,c,ρi,mrime/m,nmono

} = {2.58mm,36.1mm,1.12×
102 kgm−3,0.98,213}. Therefore, this ice particle is catego-
rized as a hailstone. However, the aspect ratio is> 10, which
is unrealistically long for a hailstone. Because of the odd
shape, its terminal velocity v∞ = 4.25× 10−1 ms−1 is also
much smaller than that of typical hailstones (Fig. 7). It is lo-
cated at (x,z)= (20.0km,4.11km), which is near the freez-
ing level (see Fig. 1).

This odd particle was caused by a problem with the rim-
ing density formula (Eqs. 55–57). By analyzing this parti-
cle’s history, we found that it was created by only a single
riming event between a graupel particle and a similarly sized
rain droplet. We can explain the mechanism as follows: con-
sider the riming of a quasi-spherical columnar graupel par-
ticle with a radius of 1mm and a rain droplet with a ra-
dius slightly smaller than 1mm. Assume also that the am-
bient temperature is slightly lower than 0 ◦C. Then, from
Eqs. (55)–(57), ρrime = 0.1gcm−3. In other words, the ap-
parent volume of the rimed rain droplet expands 10-fold. Be-
cause of the filling-in model we employed for riming out-
come (see Sect. 4.1.10), the resultant ice particle became a
long columnar hailstone: (a,c)= (1mm,11mm).

However, ρrime = 0.1gcm−3 must be reconsidered. Equa-
tion (56) has a global maximum of approximately
0.95gcm−3 at around Y = 3.7 and then quickly decreases,
becoming < 0.1g cm−3 at around Y = 5.5. Then, from
Eq. (55), ρrime = 0.1gcm−3 for Y > 5.5. Consequently, con-
sidering the definition Y := (−rkvimp/T

sfc
j )/(µmms−1/◦C),

ρrime = 0.1gcm−3 frequently happens near the freezing
level. For example, Y = 1000 for rk = 1mm, vimp = 1ms−1,
and T sfc

j =−1 ◦C. However, ρrime would be much larger and
even closer to ρi

true in such a situation in reality because
the rimed droplet freezes slowly. Therefore, we argue that
Eq. (56) is valid only up to Y = 3.5 and levels off after that.
This correction can be made by replacing the Y value in
Eq. (56) (but not in Eq. 57) with

Y↓ =min(Y,3.5). (107)

In Sect. 9.1.5, we will confirm that this correction elimi-
nates those long hailstones (Figs. 15–18).

Additionally, the same problem occurs if a quasi-spherical
planar graupel particle and a slightly smaller rain droplet col-
lide and rime near the freezing level. However, it is less evi-
dent than with the previous case because the equatorial radius
grows as the square root of the volume (Eq. 53). Regardless,
this problem can also be addressed using the above correc-
tion.

9.1.2 Columns with steep mass–dimension relationship

The square at t = 3000s indicates another odd particle. If
we look around the square in Figs. 4 and 5, we see that
this particle belongs to a population of columnar cloud
ice particles that have a steeper mass–dimension relation-
ship than observed. The attributes related to this cloud
ice particle’s morphology are {a,c,ρi,mrime/m,nmono

} =

{24.9µm, 138.8µm, 269.7kgm−3, 0.29, 1}. Its terminal ve-
locity is v∞ = 1.46×10−2 ms−1 and it is located at (x,z)=
(20.3km,11.0km) (see Fig. 1).

As in the previous case, we found that a single riming
event between a cloud ice particle and a cloud droplet fol-
lowed by depositional growth created this columnar ice parti-
cle type. We can explain the mechanism as follows: consider
a quasi-spherical columnar ice particle with a radius of 10µm
and a supercooled droplet with a radius slightly smaller than
10µm. Assuming an impact velocity of 10−2 ms−1 and am-
bient temperature of−10 ◦C, then, from Eqs. (55)–(57), Y =
10−2 and ρrime = 0.1gcm−3. In other words, the apparent
volume of the rimed droplet expands 10-fold and creates a
columnar graupel particle: (a,c)= (10µm,110µm) because
of our riming outcome model’s filling-in assumption. Then,
through subsequent depositional growth, this columnar grau-
pel particle turns back into a columnar cloud ice particle.

Contrary to the previous case, the low riming density is
reasonable. Instead, we must reconsider the filling-in model.
We assumed that the ice particle’s maximum dimension is
preserved. However, this is not realistic for riming between
an ice particle and a similarly sized droplet, as our thought
experiment revealed. Generalizing the idea, we consider that
the frozen droplet’s diameter is preserved if the diameter is
larger than the ice particle’s maximum dimension. That is,
we propose to replace Eq. (50) with

a′j =max(aj , rk(ρw/ρrime)
1/3), (108)

and Eq. (54) with

c′j =max(cj , rk(ρw/ρrime)
1/3). (109)

In Sect. 9.1.5, we will confirm that those columns that fol-
low an extremely steep mass–dimension relationship can be
eliminated using this correction (Figs. 15–18).

9.1.3 Low-density hailstones

The cross at t = 3000s represents a hailstone with an
extremely low apparent density. The attributes related to
this hailstone’s morphology are {a,c,ρi,mrime/m,nmono

} =

{12.6mm, 15.0mm, 10.7kgm−3, 0.85, 1585116}. Its termi-
nal velocity is v∞ = 4.31ms−1 and it is located at (x,z)=
(10.6km,11.5km) (see Fig. 1). What is unusual here is the
very low apparent density ρi

= 10.7kgm−3. This particle is
composed of many monomers nmono

= 1585116, and we
set the limiting value of aggregate density in Eq. (62) to
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ρi
crt = 10kgm−3. Thus, we can conclude that this hailstone

is created by the repeated aggregation between graupel par-
ticles.

Lump graupel particles with apparent densities as low
as 50kgm−3 were reported in Locatelli and Hobbs (1974).
Therefore, a hailstone with an apparent density of 10kgm−3

is not extremely unrealistic. However, our aggregation model
is crude. Following Morrison and Grabowski (2010), we as-
sumed that collision–aggregation collection efficiency is a
fixed constant of Eagg = 0.1 regardless of morphology or
temperature. Therefore, this could cause the accumulation
of graupel particles near the limiting value ρi

crt in Fig. 6.
There should be further detailed investigation to assess our
aggregation model’s applicability to graupel particles. See
also Sect. 9.3.8, which provides a discussion to refine our
aggregation model.

9.1.4 Long graupel particles

The triangle at t = 5400s is an extremely long grau-
pel particle with a low apparent density. The at-
tributes related to this cloud ice particle’s morphol-
ogy are {a,c,ρi,mrime/m,nmono

} = {31.9µm, 438.2µm,
19.4kgm−3, 0.53, 26679}. Its terminal velocity is v∞ =
1.02× 10−3 ms−1, it is located at (x,z)= (29.7km,6.4km)
(see Fig. 1), and the ambient temperature is T =−14.4 ◦C.

The particle is created by a sublimation of a graupel par-
ticle. The inherent growth ratio 0(T ) proposed by Chen and
Lamb (1994a) was used to calculate the deposition and sub-
limation process as described in Sect. 4.1.7. 0(T ) < 1 if
T is in the range of approximately [−20 ◦C,−10 ◦C] and
[−5 ◦C,0 ◦C]; therefore, in this temperature range, ice par-
ticles grow to become planar through deposition and shrink
to become columnar by sublimation.

However, 0(T ) was derived from measurements of depo-
sitional growth; hence, it is questionable whether it is appli-
cable for sublimation. According to Harrington et al. (2019)
and references therein, 0(T ) should be considered as unity
for sublimation,

0(Ti)= 1, for dmi < 0 (sublimation); (110)

thus, the aspect ratios of ice particles are preserved during
sublimation.

In Sect. 9.1.5, we will confirm that those long graupel par-
ticles can be eliminated using this correction (Figs. 15–18).

9.1.5 Results after corrections

In the preceding sections, we proposed three corrections to
the time evolution equations (Eqs. 107–110) to avoid the cre-
ation of ice particles with unrealistic morphologies.

We incorporated the proposed corrections into our model
to create a new revision, SCALE-SDM 0.2.5-2.2.1. To as-
sess the validity of these corrections, we conducted the same
simulations as the typical realization of CTRL using the new

model. By comparing these results (Figs. 15–18) to the orig-
inal results (Figs. 4–7), we confirm that the three types of
odd ice particles no longer exist, as we intended. See also
Movies 7–11 in the video supplement. Note that we left the
issue of low-density hailstones for future studies. These cor-
rections have little effect on the overall cloud properties, i.e.,
spatial structure (Movie 7 in the video supplement), the time
evolution of the water path (Fig. 19), and the accumulated
precipitation amount (Fig. 20).

9.2 Fix of underestimated terminal velocities of
columnar ice particles

As explained in Sect. 4.1.3, our model did not properly im-
plement the ice particle terminal velocity formula of Böhm
(1989, 1992c, 1999). In this section, we fix the problem and
assess its impact on this study.

Noting that the area ratio qi ≤ 1 always holds in our
model, Böhm’s formula v∞Böhm(mi,φi,di,qi;ρi,Ti) can be
summarized as follows:

X =
8migρ

πµ2max(φi,1)q
1/4
i

, (111)

X′ =X
1+ (X/X0)

2

1+ 1.6(X/X0)2
, (112)

X0 = 2.8× 106, for ice particles, (113)

k =min
{

max(0.82+ 0.18φi,0.85),
(

0.37+
0.63
√
φi

)
,

1.33
max(logφi,0)+ 1.19

}
, (114)

0 =max{1,min(1.98,3.76− 8.41φi + 9.18φ2
i − 3.53φ3

i )},

(115)

CDP =max(0.292k0,0.492− 0.200/
√
φi), (116)

CDO = 4.5k2max(φi,1), (117)

β =

[
1+

CDP

6k

(
X′

CDP

)1/2
]1/2

− 1, (118)

γ =
CDO−CDP

4CDP
, (119)

NRe =
6k
CDP

β2
[

1+
2βe−βγ

(2+β)(1+β)

]
, (120)

v∞Böhm =
µNRe

ρdi
. (121)

In our model (SCALE-SDM 0.2.5-2.2.0/2.2.1), we as-
sumed that the characteristic length di is given by the max-
imum dimension Di = 2max(ai,ci), and the area ratio qi
is given by the area ratio regarding the circumcircle qcc

i =

Ai/A
cc
i (Eq. 4). However, in Böhm’s theory, they are defined

by

di = 2ai, qi = q
ce
i = Ai/A

ce
i ; (122)
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Figure 15. This figure is the same as Fig. 4 but shows results from
SCALE-SDM 0.2.5-2.2.1, which incorporates the three corrections
(Eqs. 107–110) proposed to avoid the creation of ice particles with
unrealistic morphologies. See also Movie 8 in the video supplement.

Figure 16. This figure is the same as Fig. 5 but shows results from
SCALE-SDM 0.2.5-2.2.1, which incorporates the three corrections
(Eqs. 107–110) proposed to avoid the creation of ice particles with
unrealistic morphologies. See also Movie 9 in the video supplement.
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Figure 17. This figure is the same as Fig. 6 but shows results from
SCALE-SDM 0.2.5-2.2.1, which incorporates the three corrections
(Eqs. 107–110) proposed to avoid the creation of ice particles with
unrealistic morphologies. See also Movie 10 in the video supple-
ment.

Figure 18. This figure is the same as Fig. 7 but shows results from
SCALE-SDM 0.2.5-2.2.1, which incorporates the three corrections
(Eqs. 107–110) proposed to avoid the creation of ice particles with
unrealistic morphologies. See also Movie 11 in the video supple-
ment.
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Figure 19. Changes in the domain-averaged water path before and
after corrections. The long dashed, solid, and short dashed lines rep-
resent the SCALE-SDM 0.2.5-2.2.0, -2.2.1, and -2.2.2, respectively.

Figure 20. Changes in accumulated precipitation amounts before
and after corrections. The long dashed, solid, and short dashed lines
represent the SCALE-SDM 0.2.5-2.2.0, -2.2.1, and -2.2.2, respec-
tively.

i.e., for columnar particles, minor axis is used for di , and
the area ratio regarding circumscribed ellipse is used for qi .
Figure 1 in Böhm (1989) suggests qi = qce

i . It is not clearly
specified, but from the second equality of Eq. 17 in Böhm
(1992c), we can confirm that di = 2ai .

For planar ice particles (φi < 1), v∞Böhm(di = 2ai,qi =
qce
i ) and v∞Böhm(di =Di,qi = q

cc
i ) yield the same results, be-

cause 2ai =Di and qce
i = q

cc
i hold. However, for colum-

nar ice particles (φi > 1), v∞Böhm(Di,q
cc
i ) always underesti-

mates the fall velocity. From Eqs. (111)–(121), we can de-
rive v∞Böhm(2ai,q

ce
i )/v

∞

Böhm(Di,q
cc
i )= φ

3/4
i for X� 1, and

v∞Böhm(2ai,q
ce
i )/v

∞

Böhm(Di,q
cc
i )= φ

7/8
i for X� 1. There-

fore, if φi = 2, the ratio v∞Böhm(2ai,q
ce
i )/v

∞

Böhm(Di,q
cc
i ) is in

the rage of 1.68–1.83. If φi = 10, the range is 5.62–7.50, and
if φi = 20, it is 9.46–13.75. We also confirmed that Böhm’s
original definition v∞Böhm(2ai,q

ce
i ) agrees well with the for-

mulas of Westbrook et al. (2008), and Heymsfield and West-
brook (2010) (see also Fig. R2-2 in the authors’ response to
anonymous referee no. 2).

Therefore, the correction (Eq. 122) generally increases the
fall speed of columnar ice particles, and the increase factor is
larger for longer particles. Then, through the ventilation ef-
fects (Eqs. 11 and 15), the diffusional growth of columnar ice
particles is enhanced. Due to this mechanism, we observed
the creation of extremely long ice particles with aspect ra-
tio φi > 100 if we incorporate the correction (Eq. 122) to
SCALE-SDM 0.2.5-2.2.1. However, this is unrealistic. The
maximum aspect ratio reported is approximately 30 in Auer
and Veal (1970) (Fig. 12 therein) and 15.77 in Um et al.
(2015). In nature, such an extreme-shaped ice particle would
be shattered spontaneously or by collision. However, for the
moment, we fix this issue in an ad hoc way. We do not allow
an ice particle to grow by diffusion slenderer than φi = 40 by
imposing a limiter to the effective inherent growth ratio 0∗

as follows:

0∗ = 1 for dmi ≥ 0∧φi > 40. (123)

We incorporated the corrections (Eqs. 122 and 123) into
SCALE-SDM 0.2.5-2.2.1 to create a revision, SCALE-SDM
0.2.5-2.2.2. To assess the impact of these corrections, we
conducted the same simulation as the typical realization of
CTRL using the new model. We observed that the precip-
itation was developed a few minutes faster, but the total
precipitation amount was almost the same as the previous
versions (Fig. 20). Figure 19 compares the time evolution
of water paths. Here, a noticeable decrease in the graupel
water path can be observed, which is attributed to the in-
creased fall speed of columnar graupel particles (i.e., densely
rimed columns). This, in turn, increased the rainwater path.
The time evolution of other hydrometeor water paths (cloud,
cloud ice, and snow) was almost unchanged. Ice particle mor-
phology distributions resemble closely to the previous re-
sults, except for the vanishing of cloud ice particles with rel-
atively slow terminal velocities (Figs. R2-5–R2-8 in the au-
thors’ response to anonymous referee no. 2. See also Movies
13–16 in the video supplement). The corrections also do not
alter the spatial structure of the cloud (Movie 12 in the video
supplement).

9.3 Further sophistication of the model

Our model is based on a kinetic description, i.e., individual
dynamics of particles and their stochastic collisions. How-
ever, a quantitative understanding of mixed-phase cloud mi-
crophysics is a long-standing meteorological issue, and a ki-
netic description of mixed-phase cloud microphysics has not
been established. Further, our model does not incorporate
several elementary processes that are critical for mixed-phase
clouds. In this section, we explore the possibilities of further
refining and sophisticating our model. Readers can also refer
to Chen and Lamb (1994a, b), Misumi et al. (2010), Hashino
and Tripoli (2007, 2008, 2011a, b), Jensen and Harrington
(2015), Sölch and Kärcher (2010), Brdar and Seifert (2018),
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and Seifert et al. (2019), as these are modeling studies closely
relevant to our study.

9.3.1 Ice nucleation pathways

There are various ice nucleation pathways (e.g., Kanji et al.,
2017); however, in this study, we only considered condensa-
tion/immersion freezing and homogeneous freezing, as these
are the dominant mechanisms in mixed-phase clouds.

Based on the singular hypothesis (Levine, 1950), we con-
sidered that each insoluble particle has its own freezing tem-
perature T fz that can be determined by INAS formulas. In
the model evaluation experiments, we assumed that ice nu-
clei consist of mineral dust and used the INAS formula of
Niemand et al. (2012). Formulas from Wex et al. (2015) and
Ullrich et al. (2017) can be used for biogenic substances and
soot, respectively.

The singular hypothesis ignores the time dependence of
ice nucleation; thus, we assumed that particles initiate freez-
ing immediately after the temperature drops below T fz and
the ambient air becomes saturated over liquid water. How-
ever, the time dependence of ice nucleation could be critical
for clouds with long lifetimes, known as the “stochastic hy-
pothesis”. The soccer ball model of Niedermeier et al. (2011,
2014, 2015), which is based on classical nucleation theory,
could be used to incorporate time dependence. Then, instead
of the freezing temperature T fz, the contact angle of the sur-
face site θ must be treated as an attribute.

Note that our requirement that the ambient water vapor
must be supersaturated over liquid water would be too re-
strictive for immersion freezing. Even under an unsaturated
condition, it is reasonable to allow immersion freezing if the
droplet is sufficiently large, for instance, larger than 1µm in
radius.

To express homogeneous freezing, we assigned a fixed
freezing temperature of T fz

=−38 ◦C to all the IN inactive
particles and ignored the time dependence of ice nucleation.
However, this is not appropriate for the homogeneous freez-
ing of deliquescent aerosol particles because homogeneous
ice nucleation is suppressed when solute concentration in-
creases. Additionally, the time dependence of ice nucleation
could be also critical because the probability that a droplet
freezing homogeneously is proportional to the liquid wa-
ter volume. These effects can all be incorporated using the
model of Koop et al. (2000).

Condensation/immersion freezing of deliquescent IN par-
ticles can also be incorporated by considering the depression
of the freezing temperature T fz by the solute (see Wex et al.,
2014, and references therein). Alternatively, a model based
on classical nucleation theory proposed by Khvorostyanov
and Curry (2004, 2005) can be used to incorporate time de-
pendence.

The formation of ice directly from the vapor phase onto
an IN particle is known as deposition freezing. This can be
observed at <−25 ◦C and in air that is below water satu-

ration. Marcolli (2014) suggested that the phenomena con-
ventionally known as deposition freezing could be reinter-
preted as pore condensation and freezing. We can use the
temperature-dependent and saturation-ratio-dependent INAS
formula proposed by Steinke et al. (2015) to incorporate
this process. Here, INAS density nS is a function of xtherm,
and xtherm is a function of temperature T and saturation
ratio over ice Si. We can assign xtherm,i to each parti-
cle as an attribute. We consider that freezing occurs when
xtherm(T ,S

i) > xtherm,i .
A crude model of pre-activation is incorporated in our

model by inhibiting complete sublimation (see Eq. 14 and
the explanation that follows). Pre-activation denotes “the ca-
pability of particles or materials to nucleate ice at lower rela-
tive humidities or higher temperatures compared to their in-
trinsic ice nucleation efficiency after having experienced an
ice nucleation event or low temperature before” (Marcolli,
2017). Intensive sophistication based on laboratory studies
is required; however, particle-based models are suitable for
exploring the atmospheric relevance of pre-activation. Con-
versely, one might want to switch off pre-activation in our
model, which is possible by resetting the particles as del-
iquescent aerosol particles when complete sublimation oc-
curs.

Contact freezing is another ice nucleation mechanism in
which solid particles can initiate freezing upon contacting
the surface of a supercooled droplet. Contact freezing oc-
curs at temperatures greater than that of the same particle
immersed in a droplet (e.g., Shaw et al., 2005); therefore, it
might also be relevant to mixed-phase clouds. To explain the
scavenging of aerosol particles by droplets, we must consider
Brownian diffusion and phoretic forces. This process can be
incorporated into our model by introducing the collision–
coalescence kernels detailed in Sect. 17.4.2 of Pruppacher
and Klett (1997). Then, based on the results of Shaw et al.
(2005), as suggested by Will H. Cantrell (personal commu-
nication, 2017), contact freezing could be expressed by in-
creasing the particle’s T fz by 4.5 ◦C in each single particle–
droplet collision event. Another possibility is using labora-
tory data from Niehaus et al. (2014), who measured the freez-
ing efficiency of various insoluble particles. This can be in-
terpreted as the probability that each particle–droplet colli-
sion results in a freezing event.

It is also known that the evaporation of a droplet could lead
to inside-out contact freezing (e.g., Durant and Shaw, 2005);
however, there are still substantial uncertainties.

9.3.2 Onset of melting

We assumed that ice particles start melting immediately after
the ambient temperature reaches > 0 ◦C. However, evapora-
tive cooling delays the melting onset. For example, at a rela-
tive humidity of 50%, melting starts at+4 ◦C. We can incor-
porate this effect by considering ice particle surface temper-
atures, as discussed in Rasmussen and Pruppacher (1982).
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9.3.3 Partially frozen/melted particles

After the onset of freezing or melting, we assumed that com-
plete freezing/melting occurs instantaneously.

However, as shown in Murray and List (1972), the freez-
ing time of millimeter-sized droplets could be of the order
of 100s. We can explicitly incorporate this process using
the time evolution equation summarized in Sect. 16.1.4 of
Pruppacher and Klett (1997), which is derived from a quasi-
steady assumption of vapor and thermal diffusion around a
partially frozen droplet.

We also assumed that rimed supercooled droplets freeze
instantaneously; however, wet growth of graupel particles is
critical to accurately predict hailstone formation. We can use
the model from Rasmussen and Heymsfield (1987) to incor-
porate the wet growth process.

Depending on the relative humidity and warming rate, the
melting time of spherical ice particles with radii of approxi-
mately 300–400µm ranges between 20 and 70s (Rasmussen
and Pruppacher, 1982). A large hailstone could escape com-
plete melting and reach the ground. The shedding of droplets
could also occur if a partially melted hailstone contains ex-
cess meltwater, which could affect the raindrop size distribu-
tion below the cloud. Partially melted snow aggregates could
create a layer of stronger radar reflectivity below the melting
level, known as the “bright band”. We can explicitly incorpo-
rate these processes using the model summarized in Phillips
et al. (2007).

Additionally, to complete the model, all other time evolu-
tion equations must be extended to make them compatible
with partially frozen/melted particles, which would require
some effort.

9.3.4 Condensation and evaporation

In SCALE-SDM, we assumed that water vapor’s diffusiv-
ity in air and moist air’s thermal conductivity in Eq. (9)
are fixed constants,Dv = 2.52×10−5 m2 s−1 and k = 2.55×
10−2 Jm−1 s−1 K−1, which are the values for T = 20 ◦C
and p = 1000hPa. However, this approximation is erro-
neous, particularly because diffusivity Dv is inversely pro-
portional to pressure. In the case of the initial profile we
used for model evaluation, T =−44 ◦C and p = 250hPa at
z= 10km. Thus, Dv = 6.08× 10−5 m2 s−1, which is about
2.4 times larger than we assumed. The temperature and pres-
sure dependence of water vapor’s diffusivity in air Dv, and
the temperature dependence of moist air’s thermal conduc-
tivity k must be considered. The formulas summarized in
Sect. 13.1 of Pruppacher and Klett (1997) can be used.

We considered the ventilation effect for deposition and
sublimation but not for condensation and evaporation, even
though it also enhances the growth and evaporation of larger
droplets. We can include this effect by using the model de-
scribed in Sect. 13.2.3 of Pruppacher and Klett (1997).

For cloud droplets, we must also consider kinetic correc-
tion toDv and k. See, e.g., Sect. 13.1 of Pruppacher and Klett
(1997) and Kogan (1991).

In our model, aerosol particle hygroscopicity is expressed
by Raoult’s law with the van ’t Hoff factor i (Low, 1969);
however, using the kappa parameterization of Petters and
Kreidenweis (2007) would be more convenient.

9.3.5 Deposition and sublimation

There are many issues around 0(T ), which represents the
primary growth habit of ice crystals. Considering the amount
of data used for the fitting, the proposed shape of 0(T )
is subject to large uncertainties (see Fig. 3 of Chen and
Lamb, 1994a). The applicable range is also unclear. We set
0(T )= 1 for small ice crystals D < 10µm. As discussed in
Sect. 9.1.4, 0(T )= 1 should be used for sublimation (Har-
rington et al., 2019, and references therein). We might need
to use some other form of 0(T ) for graupel particles and
snow aggregates. Connolly et al. (2012) had to adjust 0(T )
somewhat arbitrarily to obtain a better agreement.

Further, as shown by Kumai (1982) and Bailey and Hal-
lett (2004), at T <−20 ◦C, both plates and columns can be
created at the same temperature depending on the saturation
ratio over ice Si, and polycrystals can also be created. There-
fore, for T <−20 ◦C, 0 might better be considered a func-
tion of both T and Si, and formation of polycrystals must
be somehow incorporated into our model. We can employ
the mathematical model from Hashino and Tripoli (2008),
which extends Chen and Lamb (1994a)’s model to describe
these behaviors.

Harrington et al. (2019) reformulated the model from
Chen and Lamb (1994a), and their model does not rely on
0(T ), predicting the aspect ratio evolution using the “facet-
based hypothesis”. The model is as good as Chen and Lamb’s
original model at liquid saturation, and further, it can be ap-
plied to a wider range of environmental conditions, such as
low supersaturation and low pressure. However, it is still un-
clear how well the model would work for polycrystals or ir-
regular ice particles.

We used Chen and Lamb (1994a)’s deposition density
formula; however, as discussed in Jensen and Harrington
(2015), their formula does not capture the wind tunnel data
of Takahashi et al. (1991) very well. Instead, Jensen and Har-
rington (2015) proposed a simple formula: ρdep = ρ

i
true0(T )

for 0 < 1; ρdep = ρ
i
true/0(T ) for 0 > 1. Their idea to relate

deposition density ρdep to axis growth ratio is plausible, but
its dependence on Si is lost. Because ρdep accounts for the
secondary growth habit, dependence on Si must be reconsid-
ered.

In our model, each ice particle is approximated by a porous
spheroid (a,c,ρi). We used spheroid capacitance C(a,c) to
evaluate C in Eq. (11). However, the spheroid (a,c) repre-
sents the ice particle’s spatial extent, and it might have a
more detailed internal structure, which is represented by the
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apparent density ρi. The actual ice particle capacitance also
depends on the internal structure. Westbrook et al. (2008)
accurately calculated the capacitance of realistic ice parti-
cles by directly simulating the trajectories of diffusing wa-
ter molecules. Thus, we can use their formulas to refine our
model’s accuracy. For example, they showed that the capaci-
tance of snow aggregates can be approximated by C =D/4,
which is half that of a sphere.

As with condensation and evaporation, we assumed that
water vapor’s diffusivity in air Dv and moist air’s thermal
conductivity k in Eq. (12) are fixed constants, but this must
be revised.

Demange et al. (2017) constructed a sophisticated phase
field model for ice crystal growth that successfully repro-
duced the formation of diverse ice crystal shapes. This model
could help us construct a more accurate kinetic description of
the deposition and sublimation processes.

9.3.6 Coalescence

For the collision efficiency of collision–coalescence Ecollis
coal ,

we used a modified table of Hall (1980) proposed in Seeßel-
berg et al. (1996) and Bott (1998). However, the table of Pin-
sky et al. (2001) is more comprehensive and reliable. It is
based on numerical results but supported by the laboratory
experiments of Vohl et al. (2007). Another option is to use
the formula of Böhm (1992b, 1999, 2004). It is interesting
to note that Böhm’s formula (1992b; 1999) predicts that the
collision–coalescence kernel Kcoal does not vanish for equal
size droplets due to wake capture effect, but caution must be
taken because his theory has an error (Böhm, 2004).

We assumed that the coalescence efficiency is unity,
Ecoal

coal = 1, for simplicity; however, it can be much smaller
than 1 for large droplets. Straub et al. (2010) proposed a sim-
ple formula based on their numerical results. We can also use
the formula of Seifert et al. (2005), which compiles the for-
mulas of Low and List (1982) and Beard and Ochs (1995).

9.3.7 Riming

For the collection efficiency of collision–riming Erime, when
a large spherical ice particle collects a supercooled droplet,
we used the formula from Beard and Grover (1974) with a
mixed Froude number (Eqs. 40 and 41). von Blohn et al.
(2009) demonstrated that the formula underestimates the ef-
ficiency if the spherical ice particle is large, but Eq. (11) in
their paper seems to be incorrect, and thus we did not con-
sider this.

When a large droplet collects ice particles, we used the
original formula from Beard and Grover (1974), approximat-
ing the ice particle as spherical. To consider the ice particle
shape, we can use the formulas from Lew and Pruppacher
(1983) for a large droplet collecting small columns, and Lew
et al. (1985) for a large droplet collecting small planar crys-
tals.

Beard and Grover (1974)’s formula is valid only for p <
0.1, where p is the size ratio of the collector ice/droplet and
collected droplet/ice. We forcibly applied the formula be-
yond this range, which increases the collection efficiency of
riming between small similar size droplets and ice particles,
asEBG74(p,NRe,NSt)≈ p

2/(1+p2) forNSt� 1. This must
be corrected.

When an ice particle collects a droplet, we employed the
filling-in model and preserved the ice particle’s maximum di-
mension. However, if the collector is a snow aggregate, we
should use the similarity model proposed by Seifert et al.
(2019). Unrimed/rimed snow aggregates have fractal struc-
tures, and Seifert et al. (2019) found a universal self-similar
relation in snow aggregate growth through riming. The sim-
ilarity model considers the maximum dimension’s increase
during the early stages of riming, which could lead to more
rapid ice particle growth due to riming.

9.3.8 Aggregation

We assumed that collision–aggregation’s collection effi-
ciency is given by a constant Eagg = 0.1, following Morri-
son and Grabowski (2010), but this is a simplification. Eagg
should be larger for large particles because of the interlock-
ing mechanism, and near water-saturated conditions. Eagg
can be decomposed into Eagg = E

collis
agg Estick

agg , where Ecollis
agg

is collision efficiency and Estick
agg is sticking efficiency. For

Ecollis
agg , we can use the formula of Böhm (1989, 1992a, b, c,

1994, 1999, 2004). For Estick
agg , Pruppacher and Klett (1997,

Sect. 16.2) provides a simple formula that depends solely on
temperature. The Estick

agg formula provided by Phillips et al.
(2015) is physically based and should thus be more reliable.

Calculating the attributes of the resultant ice particles is
also not easy. Let (a′,c′,ρi′,mrime′,nmono′) be the ice par-
ticle created by the aggregation of (a1,c1,ρ

i
1,m

rime
1 ,nmono

1 )

and (a2,c2,ρ
i
2,m

rime
2 ,nmono

2 ). For rime mass and number
of monomers, mrime′

=mrime
1 +mrime

2 and nmono′
= nmono

1 +

nmono
2 hold. To determine the remainder, (a′,c′,ρi′), speci-

fying two out of the three attributes is sufficient because of
the conservation of the total mass. In this study, as in the
case of riming, we assumed that the filling-in model can
be applied to aggregation; i.e., the maximum dimension is
conserved and only the minor axis grows. Therefore, D′ =
max(D1,D2)=max(a1,c1,a2,c2). However, one more at-
tribute must be specified. In this study, instead of predict-
ing minor axis growth, we predict the apparent density ρi′

by introducing an intuitive model that considers the com-
paction of fluffy snowflakes. Consequently, the fractal di-
mension of the mass–dimension relationship of snow aggre-
gates predicted by our model is close to 2 (see the green
shading in Figs. 4 and 15), which agrees well with various
previous studies (e.g., Brown and Francis, 1995; Heymsfield
et al., 2010; Mitchell, 1996; Schmitt and Heymsfield, 2010).
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However, the filling-in assumption is not valid for aggre-
gation. Higuchi (1960) introduced a parameter called the sep-
aration ratio: s := 2l/(D1+D2), s ∈ [0,1], where l is the
horizontal distance between the centers of the two particles.
For an aggregation between two planar ice particles, the re-
sultant ice particle’s maximum dimension can be evaluated
by D′ =max{D1,D2, (1+ s)(D1+D2)/2}. Our model cor-
responds to the special case of s = 0, but it has been re-
ported that s ≈ 0.5–0.6 for two planar crystals and dendrites
(Higuchi, 1960; Kajikawa and Heymsfield, 1989; Kajikawa
et al., 2002), and s ≈ 0.9 for spatial dendrites (Kajikawa
et al., 2002). In contrast, s = 0 for columnar ice crystals can
be justified from Kajikawa (1995)’s observation that two nee-
dles of similar sizes tend to attach with their centers close
(s ≈ 0) and a right angle between their polar axes (crossed
adhesion). Notably, the cross-adhesion displacement gives
the largest possible volume Vmax, which we used to calcu-
late the apparent density ρi′ of the resultant ice particle by
interpolation.

Another issue of the filling-in assumption is that it grad-
ually makes snow aggregates quasi-spherical (see the green
shading in Figs. 5 and 16). Measurements indicate that snow
aggregates have an average aspect ratio of 0.6 (e.g., Korolev
and Isaac, 2003) or smaller (Jiang et al., 2017).

Introducing the separation ratio s in our model is straight-
forward and could improve our model’s accuracy. In general,
this tends to reduce the mass–dimension relationship’s fractal
dimension, and their aspect ratio. Locatelli and Hobbs (1974)
reported that aggregates of dendrites and aggregates of un-
rimed side planes had fractal dimensions of 1.4 (plotted in
Figs. 4 and 15), which is smaller than 2.

In our model, the apparent density ρi′ after aggregation is
predicted by the formula given in Eq. (62). It is natural to
assume that there is a lower limit of apparent density; how-
ever, this is a crude expression of the idea and requires further
validation and improvement. Also note that a contact angle
model was used in Chen and Lamb (1994b) and Hashino and
Tripoli (2011a) to determine the resultant ice particle.

Several numerical models can create detailed 3-D struc-
tures of snow aggregates consisting of primary ice crystals
(e.g., Westbrook et al., 2004a, b; Maruyama and Fujiyoshi,
2005; Schmitt and Heymsfield, 2010). We can refine our ag-
gregation outcome model by using the results of those more
microscopic models that resolve snow aggregate structures.
For example, Przybylo et al. (2019) and Dunnavan et al.
(2019) intensively studied the geometry of aggregates using
such numerical models.

9.3.9 Spontaneous/collisional breakup

Several mechanisms can induce the spontaneous/collisional
breakup of hydrometeors. However, we did not consider any
of them in the present study. In particular, rime splintering
(Findeisen and Findeisen, 1943; Hallett and Mossop, 1974),
and the collisional breakup of ice particles (Vardiman, 1978)

are critical in mixed-phase clouds, as these processes are
thought to be responsible for the large excess in the observed
number concentration of ice particles to the number concen-
tration of IN aerosol particles (e.g., Field et al., 2017).

First, a particle-based numerical algorithm for calculating
spontaneous/collisional breakup processes has not yet been
established. A simple strategy is to add more super-particles
to the system when a breakup event occurs, but this could be
computationally inefficient.

Mathematical models of spontaneous/collisional breakup
processes are available from various studies. For the spon-
taneous breakup of rain droplets > 6.5mm, we can use the
mathematical model from Kamra et al. (1991). For the col-
lisional breakup of droplets, the models compiled and com-
pared in Prat et al. (2012) can be used. For the shedding of
excess meltwater, Phillips et al. (2007)’s model can be used.
For rime splintering, the model summarized in Sect. 16.1.6 of
Pruppacher and Klett (1997) can be used. Readers may also
refer to Field et al. (2017) and the references cited therein.
For the collisional breakup of ice particles, Phillips et al.
(2017)’s model can be used.

9.3.10 Subgrid-scale turbulence

The grid size we tested for evaluating the model ranged from
31.25 to 250m, and only flows that are larger than the chosen
grid size can be resolved. A substantial portion of turbulence
kinetic energy is accumulated in large scales, and small-scale
turbulence is mostly driven by large-scale motions; therefore,
SGS turbulence is of secondary importance to the phenom-
ena. Nevertheless, SGS turbulence does affect moist air flow
and atmospheric particle behavior. SGS turbulence should be
appropriately incorporated to improve the model’s grid con-
vergence.

The Smagorinsky–Lilly model (Smagorinsky, 1963; Lilly,
1962; Brown et al., 1994; Scotti et al., 1993), which is al-
ready available in SCALE-SDM, can be used for the diffu-
sion of moist air by SGS turbulence. However, we did not
use it in this study because the model is designed for 3-D
turbulence.

SGS turbulence can enhance particle collision, which can
be incorporated by using the collision kernels proposed in
Wang et al. (2008), Onishi and Seifert (2016), and Chen
et al. (2018). Particle velocity fluctuations due to SGS tur-
bulence can be modeled as an Ornstein–Uhlenbeck process
(e.g., Pope, 1994; Schilling et al., 1996; Grabowski and
Abade, 2017). The fluctuation of supersaturation through
eddy-hopping and entrainment can be considered by intro-
ducing a new stochastic attribute (Grabowski and Abade,
2017; Abade et al., 2018) or by applying the linear eddy
model to particles (Hoffmann et al., 2019).
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10 Conclusions

Using SDM, we constructed a detailed numerical model of
mixed-phase clouds based on a kinetic description, and sub-
sequently demonstrated that a large-eddy simulation of a
cumulonimbus that predicts ice particle morphology with-
out assuming ice categories or mass–dimension relationships
is possible. Our results strongly support the particle-based
modeling methodology’s efficacy for simulating mixed-
phase clouds.

In our model, ice particles are approximated by porous
spheroids. The elementary cloud microphysics processes that
the model considers include advection and sedimentation;
immersion/condensation and homogeneous freezing; melt-
ing; condensation and evaporation including the activation
and deactivation of CCN; deposition and sublimation; and
coalescence, riming, and aggregation. Moist air fluid dynam-
ics is described using the compressible Navier–Stokes equa-
tion.

Our model successfully simulated the life cycle of a cumu-
lonimbus, and the predicted mass–dimension and velocity–
dimension relationships were comparable with existing for-
mulas. Numerical convergence was achieved at a super-
particle number concentration as low as 128 per cell, which
consumed 30 times more computational time than a typi-
cal two-moment bulk model. We then fixed several issues
of the original model and developed two updated versions:
SCALE-SDM 0.2.5-2.2.1 (fix of the odd ice particle cre-
ation) and SCALE-SDM 0.2.5-2.2.2 (fix of the underesti-
mated columnar ice terminal velocity).

A more detailed evaluation of the model to explore the ap-
plicability of the new approach is an essential step forward.
Our results strongly indicate that ice particle morphology can
be predicted more accurately by further developing particle-
based models. However, from this study, we cannot quan-
tify the extent to which the refined representation of mixed-
phase cloud microphysics could improve the predictability
of mixed-phase clouds’ macroscopic properties. Such profi-
ciency can be addressed by conducting a thorough compari-
son with observations and other models.

In addition, further sophistication of the model is neces-
sary. As discussed in Sect. 9.3, various elementary processes
must be incorporated or refined in the model. In particular,
rime splintering and the collisional breakup of ice particles
are critical because these processes are thought to be respon-
sible for secondary ice production. Therefore, establishing
an accurate and efficient particle-based algorithm for sponta-
neous/collisional breakup is also crucial.

Particle-based model accuracy is more subject to cloud mi-
crophysics uncertainties than numerical errors. Therefore, a
quantitative understanding of elementary cloud microphysics
processes is becoming increasingly important. More labora-
tory, observational, and theoretical studies to advance our
knowledge of cloud microphysics are desired in the future
(Morrison et al., 2020). Additionally, we can go into a more
microscopic description of cloud microphysics than kinetic
description, i.e., to explicitly resolve droplet and ice par-
ticle shapes and deterministically consider their collisions
(e.g., Demange et al., 2017; Wang and Ji, 2000; Westbrook
et al., 2004a, b; Maruyama and Fujiyoshi, 2005; Schmitt and
Heymsfield, 2010; Mazloomi Moqaddam et al., 2015). Such
model studies would also be useful for refining kinetic de-
scriptions.

Our model’s computational cost is at least 1 or 2 orders
of magnitude larger than that of bulk models. To further
accelerate calculation, the use of SGS models discussed in
Sect. 9.3.10 is crucial. Further reduction of the computational
cost could also be achieved by using the Twomey super-
droplet methodology described in Grabowski et al. (2018);
however, it is vital to introduce dynamic load balancing. The
acceleration achieved by those improvements might be in-
sufficient to allow using particle-based cloud microphysics
models in weather or climate models. Studies to construct
a high-fidelity bulk model or another form of macroscopic
cloud microphysics model must also be pursued (e.g., Noh
et al., 2018; Morrison et al., 2020).
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Appendix A: List of symbols

Table A1 summarizes important variables used in this study.

Table A1. List of symbols.

Symbol Description

a, ai attributes of a particle
a, ai equatorial radius of an ice particle
a coefficient of curvature term of Köhler curve
Ai projected area of a particle perpendicular to flow direction
Acc
i

area of circumcircle of Ai
Ace
i

area of circumscribed ellipse of Ai
Ag geometric cross-sectional area
Ainsol surface area of an insoluble substance
b coefficient of solute term of Köhler curve
b1, b2 constant for ventilation coefficients
c, ci polar radius of an ice particle
cpd, cpv, cp isobaric specific heat of dry air, water vapor, and moist air; cp := qdcpd+ qvcpv
csulf, cdust initial number concentration of ammonium bisulfate aerosol particles and mineral dust particles
cSP initial number concentration of super-particles
C electric capacitance of a spheroid
CSC Cunningham slip correction factor
ddust mineral dust particle diameter
di particle characteristic length
Di particle maximum dimension
Dv diffusivity of water vapor in air
e, ei vapor pressure and ambient vapor pressure
ew

s , ei
s saturation vapor pressure over planar liquid water surface, over planar ice surface

e
w,eff
si effective saturation vapor pressure with respect to droplet surface
Ecoal, Erime, Eagg collection efficiencies of collision–coalescence, –riming, and –aggregation
Ecollis

coal , Ecoal
coal collision and coalescence efficiencies of coalescence; Ecoal = E

collis
coal E

coal
coal

Ecollis
agg , Estick

agg collision and sticking efficiencies of aggregation; Eagg = E
collis
agg Estick

agg
fvnt, fvnt ventilation coefficients for mass growth rate and axis growth rate
F

drg
i

drag force from moist air on a particle
F i

k, F i
d, Fw

k , Fw
d thermodynamic terms of a particle’s diffusional growth

g Earth’s gravity
G, Gi , Glmn state of moist air, state of ambient moist air, state of moist air at grid point (l,m,n)
i, j , k index of particles or super-particles
ifzn , imlt

n , irime
n indices of the nth frozen droplet, melted ice particle, and rimed droplet

Ir(t), Is(t) set of all particle indices at time t , set of all super-particle indices
Iα degree of a solute’s ionic dissociation
k thermal conductivity of moist air, or viscous shape factor for v∞Böhm
K , Kcoal, Krime, Kagg collision–coalescence, –riming, and –aggregation kernels
Lv, Ls Lf latent heat of vaporization, latent heat of sublimation, and latent heat of fusion
m, mi particle mass
m∗ normalized ice particle mass
mi

min arbitrary small mass
mrime, mrime

i
ice particle rime mass

msol
α , msol

αi
mass of a soluble substance contained in a particle; α = 1, . . .,N sol

minsol
α , minsol

αi
mass of an insoluble substance contained in a particle; α = 1, . . .,N insol

Msol
α molecular weight of a solute

n(a,x, t) particle distribution function
nsulf(logrsulf

dry ,T
fz) initial distribution function of ammonium bisulfate particles

nmono, nmono
i

number of monomers of an ice particle
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Table A1. Continued.

Symbol Description

nS(T ) ice nucleation active surface site (INAS) density
Nr(t), Ns(t) total number of particles at time t , total number of super-particles at time t
N

wp
r , Nwp

s total number of particles accumulated over the whole period, total number of accumulated super-particles
NmFr mixed Froude number
NSc Schmidt number
N insol, N sol number of insoluble substances, number of soluble substances
N i

Rei , N
clm
Rei , Nw

Rei Reynolds number of an ice particle, of an ice particle based on the column width, and of a droplet
N

i/w
St , Nw/i

St Stokes impaction parameter when a droplet collects an ice particle and when an ice particle collects a droplet
N sulf(rsulf

dry ) accumulated number of particles smaller than rsulf
dry per unit volume of air at t = 0

p probability density
pi/w, pw/i pi/w

:= r i
j
/rk , pw/i

:= rk/r
i
j

P probability
PINia probability that a mineral dust particle is IN inactive; PINia := P(T

fz
≤−38◦C)

P SP
INia fraction of super-particles used for IN inactive mineral dust particles
P , Pi pressure, ambient pressure
P0 reference pressure; P0 = 1000 hPa
Pjk probability of collision–coalescence, –riming, and –aggregation
qi , qcc

i
, qce
i

area ratio, area ratio with respect to circumcircle, and area ratio with respect to circumscribed ellipse;
qcc
i
:= Ai/A

cc
i

, qce
i
:= Ai/A

ce
i

qv, qd specific humidity and mass of dry air per unit mass of moist air; qv := ρv/ρ, qd := ρd/ρ
r , ri radius of the volume-equivalent sphere of liquid water in a particle
r i
i

radius of the volume-equivalent sphere of an ice particle; r i
i
:= (a2

i
ci)

1/3

rsulf
dry dry radius of the ammonium bisulfate component
Rd, Rv, R gas constants of dry air, vapor, and moist air; R := qdRd+ qvRv
s power-law exponent of area–dimension relationship
sv, ss, sf source terms by vaporization, sublimation, and fusion
Sw
i

, Si
i

ambient saturation ratio over liquid water, over ice; Sw
i
:= ei/e

w
s , Si

i
:= ei/e

i
s

t time
1t , 1tadv, 1tfz/mlt, common time step, time steps for advection of particles; freezing and melting;
1tcnd/evp, 1tdep/sbl, condensation and evaporation; deposition and sublimation;
1tcollis, 1tdyn collision–coalescence, –riming, and –aggregation; and fluid dynamics
t fzn , tmlt

n , t rime
n times of the nth freezing event, melting event, and riming event

T , Ti temperature, ambient temperature
T fz, T fz

i
particle freezing temperature

T fz
min, T fz

max T fz
min := −36 ◦C, T fz

max := −12 ◦C
T sfc
i

particle surface temperature
U , U i wind velocity, ambient wind velocity; U = (U,V,W)

v, vi particle velocity
vimp impact velocity
v∞
i

particle terminal velocity
V , Vi ice particle apparent volume
Vmax largest possible volume
1V well-mixed volume
x, xi particle position
1x, 1y, 1z grid size
X N

1/3
Sc (N

i
Rei)

1/2, or Davies (Best) number for v∞Böhm
Y ,Y↓ Y := −rkvimp/T

sfc
j

, Y↓ :=min(Y,3.5)
ẑ unit vector in the z-axis direction
α, β index of aerosol substances
β power-law exponent of mass–dimension relationship, or auxiliary parameter for v∞Böhm
γ constant for ventilation coefficients, coefficient of the artificial hyper-diffusion term,

or auxiliary parameter for v∞Böhm
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Table A1. Continued.

Symbol Description

0(T ), 0∗ inherent growth ratio, effective inherent growth ratio; 0∗ := 0(T )fvnt
0(φ) a function for v∞Böhm
δd (x) d-dimensional Dirac delta function
θ potential temperature of moist air; θ := T/5
κ power exponent relating porosity to projected area
µ dynamic viscosity of moist air
ξi super-particle multiplicity
5 Exner function of moist air; 5 := (P/P0)

R/cp

ρ, ρi density of moist air, density of ambient moist air; ρ := ρd+ ρv
ρd density of dry air
ρdep, ρrime, ρsbl deposition, rime, and sublimation densities
ρv, ρvi vapor density, ambient vapor density
ρi, ρi

i
ice particle apparent density

ρi
crt limiting value of the apparent density

ρi
jk

volume-weighted average density

ρ
i,min
jk

, ρi,max
jk

minimum and maximum possible apparent density
ρi

true ice crystal true density
ρsfc

vi vapor density at a particle surface
ρw density of liquid water
φ, φi ice particle aspect ratio; φ := c/a
∂ · /∂t |cm coupling term from cloud microphysics to fluid dynamics of moist air
′ prime denotes a resultant particle
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Appendix B: List of abbreviations

Table B1 summarizes important abbreviations that are used
in this study.

Table B1. List of abbreviations.

Abbreviations Full form

A72 Auer (1972)
ARM atmospheric radiation measurement
BG74 Beard and Grover (1974)
CCN cloud condensation nuclei
CFL Courant–Friedrichs–Lewy
CL94 Chen and Lamb (1994a)
CRYSTAL-FACE Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cirrus Experiment
EM17 Erfani and Mitchell (2017)
H02 Heymsfield et al. (2002)
H72 Heymsfield (1972)
HK87 Heymsfield and Kajikawa (1987)
HP85 Heymsfield and Pflaum (1985)
IN ice nucleation
INAS ice nucleation active site
K89 Kajikawa (1989)
KH83 Knight and Heymsfield (1983)
LH74 Locatelli and Hobbs (1974)
M90 Mitchell et al. (1990)
M96 Mitchell (1996)
SC85 Starr and Cox (1985)
SDM super-droplet method
SGS subgrid scale
W08 Westbrook et al. (2008)

https://doi.org/10.5194/gmd-13-4107-2020 Geosci. Model Dev., 13, 4107–4157, 2020



4150 S. Shima et al.: Predicting morphology of ice particles using the super-droplet method

Code and data availability. The source code of SCALE-
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https://doi.org/10.5281/zenodo.3483650 (Shima, 2020). All
the data used for this study can be reproduced by following the
instructions included in the above repository. The data are also
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