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Abstract. Uncertain parameters in physical parameteriza-
tions of general circulation models (GCMs) greatly impact
model performance. In recent years, automatic parameter op-
timization has been introduced for tuning model performance
of GCMs, but most of the optimization methods are uncon-
strained optimization methods under a given performance in-
dicator. Therefore, the calibrated model may break through
essential constraints that models have to keep, such as the ra-
diation balance at the top of the model. The radiation balance
is known for its importance in the conservation of model en-
ergy. In this study, an automated and efficient parameter op-
timization with the radiation balance constraint is presented
and applied in the Community Atmospheric Model (CAM5)
in terms of a synthesized performance metric using normal-
ized mean square error of radiation, precipitation, relative hu-
midity, and temperature. The tuned parameters are from the
parameterization schemes of convection and cloud. The radi-
ation constraint is defined as the absolute difference of the net
longwave flux at the top of the model (FLNT) and the net so-
lar flux at the top of the model (FSNT) of less than 1 W m−2.
Results show that the synthesized performance under the op-
timal parameters is 6.3 % better than the control run (CNTL)
and the radiation imbalance is as low as 0.1 W m−2. The pro-
posed method provides an insight for physics-guided opti-
mization, and it can be easily applied to optimization prob-
lems with other prerequisite constraints in GCMs.

1 Introduction

The subgrid-scale physical processes in general circula-
tion models (GCMs) are represented by parameterization
schemes, which may exist with several uncertain parame-
ters. Inappropriate parameters can seriously affect the over-
all performance of the model. The Intergovernmental Panel
on Climate Change Fifth Assessment Report (IPCC AR5)
pointed out that studies on parameter uncertainty are criti-
cal to improve climate simulation capabilities (Mastrandrea
et al., 2011). Bauer et al. (2015) also indicated that small er-
rors in the physical parameterization schemes could lead to
large-scale systematic errors. Traditionally, to achieve better
performance, the uncertain parameters are tuned based on the
experience of model experts and statistical analysis. This is a
labor-intensive job, and the tuning results make it difficult to
achieve local or global optimality in complex climate mod-
els.

To efficiently reduce parameter-introduced uncertainty,
quite a few automated parameter calibration methods have
been proposed. These calibration methods can be categorized
into two types. One attempts to obtain the probability distri-
butions of the parameters by likelihood and Bayesian esti-
mation methods. Cameron et al. (1999) exploited the gen-
eralized likelihood uncertain estimation to obtain parameter
ranges with a specific confidence level. An adaptive Markov
Chain Monte Carlo (MCMC) was used to calibrate the un-
certain parameters in the fifth-generation atmospheric gen-
eral circulation model (ECHAM5) (Järvinen et al., 2010).
Edwards et al. (2011) proposed a simplified procedure of
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Bayesian calibration to make a quantification of uncertainty
in climate forecasting. This type of method has also been
successfully applied to the CAM3.1 model and the third
Hadley Centre Climate Model (HadCM3) (Jackson et al.,
2008; Williamson et al., 2013).

The other method is to adjust parameters using optimiza-
tion methods to minimize the errors between model simula-
tions and observations, which are formulated with a given
performance indicator. Many intelligent evolutionary opti-
mization algorithms were applied to model tuning. For ex-
ample, both simulated stochastic approximation annealing
(SSAA) (Yang et al., 2013) and multiple very fast simulated
annealing (MVFSA) (Zou et al., 2014) were used for uncer-
tainty quantification and parameter calibration.

Both methods can consider the interaction of parameters,
achieve automatic optimization, and avoid the subjectivity
and experientiality of manual calibration. However, they also
share high computation cost challenges due to the hundreds
and thousands of required simulations. This is usually un-
acceptable, especially for high-resolution climate models.
To overcome the computational issues, the surrogate model,
which is a way to replace the real climate model with a
cheaper statistical model for faster optimization, has been re-
cently introduced. Applications of these methods in climate
models include the work presented by Neelin et al. (2010)
and Wang et al. (2014). However, training a precise surrogate
model for a complicated climate model such as the Commu-
nity Earth System Model (CESM) is very challenging. More-
over, capturing the climatic characteristics of extreme events
is difficult for the cheap statistical model. To make it possible
to optimize parameters efficiently and quickly in the complex
and highly nonlinear earth system models, an improved sim-
plex algorithm was presented by Zhang et al. (2015). This
method can overcome the shortcomings of the traditional
simplex downhill method, and the computing efficiency of
the algorithm is improved compared with evolutionary opti-
mization algorithms.

The application of various automatic parameter optimiza-
tion methods in climate models has gradually received more
attention; however, the optimization algorithms mentioned
above are mostly unconstrained, and they lack emphasis on
the physical mechanisms of the model itself. This paper takes
radiation balance as an example. According to the Earth’s
energy conservation theory, the absorbed solar radiation is
approximately equal to outgoing longwave radiation at the
top of the model. Forster et al. (2007) proposed that radiative
balance is critical to the Earth’s system, and the bias of radi-
ation has a big impact on the change in surface temperature.
Hourdin et al. (2017) pointed out that a 1 W m−2 change in
global energy balance may result in a global mean surface
temperature change of 0.5 to 1.5 K in coupled simulations.
Additionally, Wild (2008) indicated that radiation biases in
the GCMs may influence climate sensitivity, thus possibly
distorting the prediction of future climate conditions. Lin
et al. (2010) showed the importance of climate energy im-

balance and stressed that long-term high-precision measure-
ments of top of the atmosphere (TOA) radiation are neces-
sary.

Radiation balance is critical for GCMs, but its deviation
can still exceed 1 W m−2 in some CMIP5 models (Smith et
al., 2015). To better understand this problem, many studies
have tried to determine the cause of radiation deviation by
analyzing the influence of uncertain parameters and making
corresponding adjustments. Zhao et al. (2013) concluded that
cloud microphysics and emission-related parameters have
statistically important impacts on the global mean net radia-
tion flux. Qian et al. (2015) indicated that net radiation flux is
very sensitive to some parameters in cloud microphysics and
convection. The improvement of the simulation performance
of the climatology and variability based on the radiation bal-
ance is very meaningful. However, the constrained optimiza-
tion methods used to calibrate parameters with physical con-
straints in climate models remain to be further studied. Cheng
et al. (2018) showed that penalty functions and the separation
of objective and constraint methods are popular for solving
constrained problems. Penalty methods encourage the search
toward feasible regions by increasing the objective function
value with a penalty value for the points that violate the con-
straints. The exterior penalty method is relatively easy to im-
plement, and it can be widely used in various algorithms. The
separation of objective and constraint is commonly used by
transforming constraints into objectives, but it is limited by
the convergence of the multi-objective algorithms when the
optimization problem has a high computational cost.

The purpose of this paper is to propose an effective con-
strained optimization method and demonstrate its feasibility
in the calibration of uncertain parameters under the premise
of ensuring the balance of radiation. This paper is orga-
nized as follows. Section 2 describes the details of the model
and experimental design. Section 3 introduces the new con-
strained parameter calibration method. Evaluations and anal-
ysis of the optimization results are presented in Sect. 4. The
last section contains the conclusion and discussion.

2 Model and experiment

2.1 Model description

The model used in this study is CAM5 (release v5.3), which
is the atmospheric component of the CESM 1.2.1. The dy-
namical core uses the finite-volume method developed by Lin
and Rood (1996) and Lin (2004).

More details on CAM5 can be found in the work of Neale
et al. (2010). Deep convection is handled by a parameteri-
zation scheme developed by Zhang and McFarlane (1995)
with the further modifications of Richter and Rasch (2008),
as well as Neale et al. (2008). The original parameterization
of stratiform cloud microphysics is handled by Morrison and
Gettelman (2008). Modifications of ice nucleation and ice
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Table 1. Parameters description of CAM5. The default, final optimal values by constrained and unconstrained calibrations, as well as the
ranges of parameters. CAPE means the convective available potential energy.

Unconstrained Constrained
Parameter Description Range Default tune tune

zmconv_c0_lnd Deep-convection precipitation 2.95× 10−3– 0.0059 0.00319 0.00295
efficiency over land 85× 10−3

zmconv_c0_ocn Deep-convection precipitation 2.25× 10−2– 0.045 0.025 0.0225
efficiency over ocean 6.75× 10−2

zmconv_tau Timescale for consumption rate
deep CAPE

1800–5400 3600 1838.814 1800

cldfrc_rhminh Threshold relative humidity for
high stable clouds

0.6–0.9 0.80 0.897 0.900

cldfrc_rhminl Threshold relative humidity for
low stable clouds

0.8–0.95 0.8875 0.930 0.900

cldsed_ai Fall speed parameter for
cloud ice

300–1100 700 853.207 970.613

supersaturation can be found in Gettelman et al. (2010). The
parameterization of fractional stratiform condensation is de-
scribed by Zhang et al. (2003) as well as Park et al. (2014).
Radiation scheme uses the rapid radiative transfer method for
GCMs (RRTMG) (Mlawer et al., 1997; Iacono et al., 2008).

2.2 Experiment design

Table 1 shows the parameters to be adjusted, the ranges, and
the default values. These parameters were identified as sen-
sitive to cloud and convection processes in previous stud-
ies. Qian et al. (2018) showed that deep-convection precip-
itation efficiency zmconv_c0_lnd and zmconv_ c0_ocn have
significant impact on the variance of shortwave cloud forc-
ing (SWCF) over the land and ocean, respectively. Thresh-
olds of relative humidity for high and low stable clouds (cld-
frc_rhminh and cldfrc_rhminl) are regarded as the important
parameters for cloud and radiation (Zhang et al., 2018). In
addition, the relative humidity threshold for low clouds is
also one of the strongest parameters impacting the global
mean precipitation, and it makes a huge contribution to the
TOA net radiative fluxes in CAM5 (Qian et al., 2015). The
timescale for the consumption rate of deep convective avail-
able potential energy (CAPE) (zmconv_tau) is identified as
the most sensitive parameter to the convective precipitation
in the Zhang–McFarlance scheme by Yang et al. (2013). The
cloud ice sedimentation velocity (cldsed_ai) has a significant
effect on cloud radiative forcing (Mitchell et al., 2008), and it
has been identified as a high-impact parameter in sensitivity
experiments related to temperature, radiation, and precipita-
tion, etc. (Sanderson et al., 2008). The ranges of these param-
eters are based on previous studies (Qian et al., 2015; Zhang
et al., 2018).

Table 2. The output variables used to evaluate performance metric
index and the source of the corresponding observations.

Variable Full name Observation (OBS)

LWCF Longwave cloud forcing CERES-EBAF
SWCF Shortwave cloud forcing CERES-EBAF
PRECT Total precipitation rate GPCP
Q850 Specific humidity at 850 hPa ERA-Interim
T850 Temperature at 850 hPa ERA-Interim

The output variables used to synthesize a performance in-
dicator are longwave cloud forcing (LWCF), SWCF, precip-
itation (PRECT), humidity at 850 hPa (Q850), and tempera-
ture at 850 hPa (T850), shown in Table 2. The observations of
LWCF and SWCF are from CERES-EBAF (Clouds and the
Earth’s Radiant Energy System-Energy Balanced and Filled;
Loeb et al., 2014). PRECT is from GPCP (Global Precip-
itation Climatology Project; Adler et al., 2003), and Q850
and T850 are from ERA-Interim, which was produced by the
ECMWF (Dee et al., 2011).

In this study, we use 1.9◦ latitude × 2.5◦ longitude res-
olution CAM5 with 30 vertical layers. Each simulation is a
5-year atmospheric model intercomparison project (AMIP)
from 2000 to 2004 with the observed climatological sea sur-
face temperature (SST) and sea ice (Rayner et al., 2003). The
simulations in the last 3 years are used to evaluate the syn-
thesized performance metric and constraint.

3 Method

A constrained automatic optimization method is proposed
based on Zhang et al. (2015). The synthesized metrics used
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to evaluate the performance of overall simulation skills are
shown in Eq. (3):(
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(σFm )
2 represents a criterion for the simulation skill of the

models with modified parameters; (σFr )
2 is an evaluation of

the default experiment simulation skill. If the indicator χ2 is
less than 1, this means that the simulation with tuned param-
eters is better than the control run (CNTL). The smaller the
index, the better performance of model. The model outputs
are represented by xFm(i), and xFo (i) denotes the correspond-
ing reanalysis or observation data. The expression xFr (i) rep-
resents model outputs from the CNTL. The weight of the dif-
ferent grids on the sphere is represented by ω. I denotes the
total number of grids in the model. The number of the output
variables in the performance index is represented by NF .

The radiation balance is defined as the absolute value of
the difference between net solar flux (FSNT) and net long-
wave flux (FLNT) in climatology at the top of the model of
less than 1 W m−2, which is the maximum deviation of ra-
diation observations in the decade before 2014 (Trenberth et
al., 2014).

Coupled with the radiation balance constraint, the opti-
mization problem of this study can be expressed as Eqs. (4)
and (5):

minχ2, (4)
subject to ABS(FSNTm−FLNTm) < 1. (5)

Converting the unconstrained problem into a constrained
problem using the penalty function method, it can be trans-
formed into the augmentation function as Eq. (6):

F(x)= χ2
+β ×ABS(FSNTm−FLNTm) . (6)

The penalty factor β for the constraint in Eq. (6) is chosen
to be 10 000 if the constraint in Eq. (5) is not satisfied; oth-
erwise it is equal to 0. The purpose of this choice is to op-
timize the search space to avoid the possibility of radiation
imbalance. This penalty function method is easy and effec-
tive when dealing with this tightly constrained optimization.

We use the improved simplex downhill method, proposed
by Zhang et al. (2015), to optimize the augment function.
Firstly, the single-parameter perturbation sample method
(SPP) is used to obtain several better initial values, while en-
suring that the initial geometry of simplex downhill is well-
conditioned. The initial value preprocessing mechanism en-
sures that the algorithm starts from a good basis. This is im-
portant for the simplex algorithm, which may easily fall into

Figure 1. The change in augmentation function F(x) across the
optimization iterations. The x axis is the number of iterations. The
y axis is the value of F(x) in Eq. (6). The black line shows the value
of F(x) in a given iteration step, while the red line shows the best
F(x) value up to the current iteration step.

Figure 2. Comparison of results between the constrained optimiza-
tion algorithm and the unconstrained optimization algorithm. The
15 red squares and 15 black triangles are optimized solutions found
by the unconstrained optimization algorithm and constrained algo-
rithms, respectively. The blue diamond is the result of the CNTL
experiment. The x axis is the synthesized metric index in Eq. (3).
The y axis is the radiation bias at the top of the model.

local optimum. Next, the simplex downhill algorithm is ap-
plied to search for better performance.
F(x) gradually converges as shown in Fig. 1. There are

some cases in which the radiation balance is not satisfied at
the beginning of optimization. However, as the iteration step
increases, the search space of the algorithm is constrained
within the feasible range. The goal is then to make the syn-
thesized performance metric smaller. In addition, a compara-
tive experiment with unconstrained algorithms is done to ver-
ify our doubts about unconstrained methods. Figure 2 shows
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Figure 3. Taylor diagram of the climate mean state of each output variable from 2002 to 2004 between the model run with optimal parameters
and the CNTL run. The number (1) in the diagram stands for EXP, and (2) stands for CNTL.

the performance indices and radiation deviations correspond-
ing to the first 15 solutions after the two algorithms con-
verge. The constrained optimization algorithm can find so-
lutions that are more radiation-balanced; however, the final
solution metrics are not as good as the unconstrained opti-
mization algorithm. Compared to the CNTL experiment, we
can find quite a few solutions with better metrics and smaller
radiation biases.

4 Result

4.1 The optimal model

The best uncertainty parameters obtained by the uncon-
strained optimization method optimize the overall perfor-
mance of the simulation by 10.1 %, but they have a radiation
deviation of up to 3.8 W m−2. When considering the con-
verged constrained optimization algorithm, the optimal pa-
rameters can improve the model performance by 6.3 %, and
the radiation imbalance is as low as 0.1 W m−2. The corre-
sponding results of the optimal solutions with the two meth-

Table 3. Synthesized performance metric index and radiation bias
in the CNTL run and the optimal model run with unconstrained and
constrained methods.

Unconstrained Constrained
CNTL tune tune

Metric index 1 0.890 0.937
Radiation bias 0.601 3.796 0.100

ods are shown in Table 3. Both unconstrained optimization
and constrained optimization can further improve the simu-
lation performance, but unconstrained optimization may en-
counter an optimal solution that does not satisfy the radiation
balance, thus leading to meaningless optimization. The opti-
mization results discussed below are based on the proposed
constrained optimization method.

The optimization of each output variable is shown in Ta-
ble 4. In addition, a Taylor diagram is used to estimate the
model performance through the standard deviation and corre-
lation (Fig. 3). By combining the results of Table 4 and Fig. 3,
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Figure 4. Meridional distribution of the difference between EXP/CNTL and observed data of (a) LWCF, (b) SWCF, (c) PRECT, (d) Q850,
and (e) T850. The position of the dark blue line is 0; the red and black solid lines represent the difference between EXP /CNTL and the
observations.

Table 4. Performance metric index of each variable in the optimal
model run with unconstrained and constrained methods.

Variable Constrained tune

LWCF 1.072
SWCF 0.841
PRECT 1.080
Q850 0.754
T850 0.936

it can be concluded that SWCF and Q850 receive most opti-
mization, as they achieve a better performance index. Also,
compared to the default experiment, their standard deviations
have improved. Table 5 shows the standard deviations of the
variables, which are important for the model but not used as
evaluation criteria. It is noteworthy that they are also close to
the default experiment.

For a more comprehensive analysis of the spatial variation
of the output variables, the zonal distribution of the differ-
ence between the control (labeled as CNTL)/the optimized
(labeled as EXP) simulations and observations of all metric
variables are shown in Fig. 4. SWCF and Q850 have been
obviously improved over low and middle latitudes, but the
changes in PRECT and T850 are not particularly notable.

Table 5. The percentage of standard deviation of the eight fields
between the CNTL run and the optimal model run with constrained
optimization according to the corresponding observations.

Constrained
Standard deviation (%) Default optimization

Sea level pressure (ERA-Interim) 1.124 1.053
Land rainfall (30◦ N–30◦ S, GPCP) 0.954 0.896
Ocean rainfall (30◦ N–30◦ S, GPCP) 1.283 1.236
Land 2 m temperature (Willmott) 1.071 1.055
Pacific surface stress (5◦ N–5◦ S, 1.391 1.397
European Remote Sensing)
Zonal wind (300 mb, ERA-Interim) 1.042 1.037
Relative humidity (ERA-Interim) 1.217 1.219
Temperature (ERA-Interim) 1.158 1.141

Further, LWCF only showed significant improvement near
the Equator, and it slightly deteriorated over the middle and
high latitudes.

4.2 Interpretation of the results

The optimized parameters values are provided in the “Con-
strained tune” column of Table 1. The deep-convection pre-
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Figure 5. The spatial distribution of TOA SW cloud forcing of (a) observation, (b) CNTL–observation, (c) EXP, (d) EXP–observation,
(e) CNTL, and (f) EXP–CNTL.

cipitation efficiency over land and ocean is reduced rela-
tive to the default values. The timescale for the consump-
tion rate of CAPE for deep convection is smaller than the
default value, and both relative humidity thresholds for high
and low clouds are increased. Additionally, the sedimenta-
tion velocity of cloud ice is larger. Next, we will explain how
the changes in these parameters are related to the results of
the simulations.

The relative humidity threshold for low clouds is larger in
optimization experiments than the default value, which will
obviously lead to the decrease in low-cloud fraction. The de-
creased low-cloud fraction is consistent with the increase in
SWCF. The CNTL experiment has excelled at simulating the
spatial distribution of SWCF (Fig. 5c), but it has a negative
bias over the ocean in the low latitudes, where the improve-
ment is significant in the optimal experiment.

The zonal mean specific humidity at 850 hPa is signifi-
cantly improved, and its spatial distribution is presented in

Fig. 6. In the optimal experiment, the atmosphere is drier in
the tropics and middle latitudes, which is closer to the ob-
servation than the CNTL experiment. Meanwhile, the mid-
dle to low troposphere is also slightly drier in these ar-
eas (Fig. 7), which may be related to the increased convec-
tive precipitation. A quasi-equilibrium closure is used in the
deep-convection scheme in CAM5, which is based on CAPE.
The adjustment timescale represents the denominator of the
cloud bottom convective mass flux. When the timescale is
shorter with less changed CAPE, the increased cloud-base
mass flux would help to enhance the convective precipita-
tion. Additionally, compared to the CNTL experiment, the
lower troposphere gets warmer and the middle troposphere
is colder, which exacerbates the instability of the tempera-
ture structure (Fig. 8) and leads to more convective precipita-
tion. The spatial distribution of convective precipitation over
the tropics where convection occurs most frequently can be
seen in Fig. 9. The increase in convective precipitation may
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Figure 6. The spatial distribution of specific humidity at 850 hPa of (a) observation, (b) CNTL–observation, (c) EXP, (d) EXP–observation,
(e) CNTL, and (f) EXP–CNTL.

be related to the decrease in specific humidity at 850 hPa.
However, the increase in total precipitation is not particularly
significant and is dominated by the changes in convective
precipitation. The main reason is likely associated with the
decreased precipitation efficiency parameters, which could
reduce the convective precipitation as compensation. There-
fore, the decreases in precipitation efficiency partially offset
the precipitation change caused by tau and temperature struc-
ture.

It is difficult for all variables to be optimized, due to the
strong interaction among parameters and the complex rela-
tionship among output variables. The simulations of T850
between optimal and CNTL experiments are very similar. It
is likely the result of the combined effects of all relevant pa-
rameterizations. In the optimal experiment, LWCF is closer
to the observation in the tropics, but it becomes slightly
smaller at middle to high latitudes compared to the CNTL

experiment, which implies the larger bias. The relative hu-
midity threshold for high clouds and the sedimentation ve-
locity of ice crystals are correspondingly increased, and both
of them would lead to the reduction in high clouds. High-
cloud fraction changes compared to the CNTL experiment
can be seen in Fig. 10c. The reduced high cloud is consistent
with the reduction in LWCF. Cloud changes also inevitably
affect SWCF. It can be seen that the middle cloud has in-
creased relative to the default experiment (Fig. 10c), and the
increase in the middle cloud may be related to the decrease
in precipitation efficiency over the ocean.

Note that three of six parameters hit their lowest allow-
able limit with the TOA balance constraint. We found that
the incoming shortwave radiation flux is more sensitive to
tuning parameters than the outgoing longwave radiation flux.
Thus, to reduce the TOA imbalance and keep the reasonable
model performance, the shortwave radiation flux should be
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Figure 7. Pressure–latitude distributions of specific humidity of (a) EXP–OBS, (b) CNTL–OBS, and (c) EXP–CNTL.

Figure 8. Pressure–latitude distributions of temperature of (a) EXP–OBS, (b) CNTL–OBS, and (c) EXP–CNTL.

reduced largely via increasing low-cloud fraction and liquid
water content. These three variables can help achieve this by
setting to the lowest bounds. This suggests that getting both
the TOA balance and reasonable model performance is a rel-
atively complex and difficult problem due to model structure
problems, as pointed out by Qian et al. (2018) and Yang et
al. (2019). Meanwhile, finding out how to pick parameters
with a similar sensitivity to both longwave and shortwave ra-
diation flux might be a potential approach to overcome the
bound limit and it warrants further studies.

In conclusion, the increase in SWCF is consistent with the
decrease in cloud fraction for the sake of a larger relative hu-
midity threshold of low clouds. Changes in the Q850 are re-
lated to increased convective precipitation. Precipitation only
slightly increases in the tropics, and the global total precip-
itation has changed very little, which is related to the com-
prehensive effect of the changes in the convection adjustment
timescale, the precipitation efficiency parameter, and the ver-
tical temperature structure. T850 simulated by the optimiza-
tion experiment is similar to the default experiment. The re-
duced LWCF is related to the decreased high clouds caused
by the increased relative humidity threshold for high clouds
and the increased sedimentation velocity of ice crystals.

5 Conclusion and discussion

Radiation balance is a crucial factor for the long-term en-
ergy balance of GCMs, but it has not received enough at-
tention in automatic parameter optimization. First of all, this
paper points out that the previous parameter optimization al-
gorithms do not consider radiation balance a necessary con-
dition, and the obtained optimization parameters are likely to
break this important physical constraint, which may lead to
unacceptable calibrated parameters. Thus we propose an ef-
ficient constrained automatic optimization algorithm to cal-
ibrate the uncertainty parameters in CAM5 with the con-
straint of the absolute value of the difference of net solar
flux and net longwave flux at the top of the model (less than
1 W m−2). In the parameter calibration, we use the compre-
hensive performance with the five fields of LWCF, SWCF,
PRECT, Q850, and T850 as the performance indicators. We
choose the uncertain parameters in cloud and convection pa-
rameterizations, including the deep-convection precipitation
efficiency over land and ocean, thresholds of relative humid-
ity for stable high and low clouds, the timescale for consump-
tion rate deep CAPE, and the ice falling speed. Each simu-
lation in our optimization experiments is a 5-year AMIP ex-
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Figure 9. The spatial distribution of convective precipitation over the tropics of EXP (a), CNTL (b), and EXP–CNTL (c).

Figure 10. Pressure–latitude distributions of cloud fraction of EXP (a), CNTL (b), and EXP–CNTL (c).

periment forced with prescribed seasonal climatology of SST
and sea ice.

The optimal parameters found by our method can increase
the overall performance of the model by 6.3 %, and the ra-
diation imbalance is as low as 0.1 W m−2. The most opti-
mized variables are SWCF and Q850. The increase in SWCF

is consistent with the decrease in cloud water due to a larger
relative humidity threshold value for low clouds. The reduc-
tion in the Q850 in the troposphere may be related to the
increase in convective precipitation. The change in global to-
tal precipitation is not particularly obvious, which is likely
the comprehensive effect of the changes in the convection
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adjustment timescale, the precipitation efficiency parameter,
and the structure of temperature over the troposphere. The
change in T850 is very small, and the result is slightly bet-
ter than that of the default experiment. Meanwhile, under the
constraint of energy balance, LWCF has deteriorated in the
middle and high latitudes. This also reflects some issues that
may exist in the structure of the model.

The unconstrained optimization methods calibrate the un-
certain parameters in climate models without a consideration
of the principles that model have to hold, this creates chal-
lenges in maintaining the physics constraints and improving
the structure of models. Perhaps a more physics-guided op-
timization is a better way to understand the principles of cli-
mate systems and to best use these principles in tuning pro-
cesses. In the future, we will apply this method to coupled
models, where the radiation imbalance has a more significant
impact on long-term simulation stability. In addition, we will
also try to introduce more constraints, such as the surface en-
ergy balance, into automatic parameter calibration.

Code and data availability. The code of our algo-
rithm, the observations, and the related scripts can be
found at https://doi.org/10.5281/zenodo.3405619 (Wu,
2019). The source code of CAM5.3 is available from
http://www.cesm.ucar.edu/models/cesm1.2/ (last access: 14 De-
cember 2019, NCAR, 2018). If you have any problems, please feel
free to contact us (wulitianyi@gmail.com).
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