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Abstract. In this study, we evaluate the performance of
the Nanjing University of Information Science and Tech-
nology (NUIST) Earth System Model version 3 (hereafter
NESM v3) in simulating the marine biogeochemical cycle
and carbon dioxide (CO2) uptake. Compared with observa-
tions, the NESM v3 reproduces the large-scale patterns of
biogeochemical fields reasonably well in the upper ocean,
including nutrients, alkalinity, dissolved inorganic, chloro-
phyll, and net primary production. Some discrepancies be-
tween model simulations and observations are identified and
the possible causes are investigated. In the upper ocean, the
simulated biases in biogeochemical fields are mainly asso-
ciated with shortcomings in the simulated ocean circula-
tion. Weak upwelling in the Indian Ocean suppresses the
nutrient entrainment to the upper ocean, thus reducing bi-
ological activities and resulting in an underestimation of
net primary production and the chlorophyll concentration.
In the Pacific and the Southern Ocean, nutrients are over-
estimated as a result of strong iron limitation and exces-
sive vertical mixing. Alkalinity is also overestimated in high-
latitude oceans due to excessive convective mixing. The ma-
jor discrepancy in biogeochemical fields is that the model
overestimates nutrients, alkalinity, and dissolved inorganic
carbon in the deep North Pacific, which is caused by the
excessive deep ocean remineralization. The model reason-
ably reproduces present-day oceanic CO2 uptake. Model-
simulated cumulative oceanic CO2 uptake is 149 PgC be-
tween 1850 and 2016, which compares well with data-based

estimates of 150± 20 PgC. In the 1 % yr−1 CO2 increase
(1ptCO2) experiment, the diagnosed carbon-climate (γ =
−7.9 PgC K−1) and carbon-concentration sensitivity param-
eters (β = 0.88 PgC ppm−1) in the NESM v3 are comparable
with those in Coupled Model Intercomparison Project phase
5 (CMIP5) models (β: 0.69 to 0.91 PgC ppm−1; γ : −2.4 to
−12.1 PgC K−1). The nonlinear interaction between carbon-
concentration and carbon-climate sensitivity in the NESM
v3 accounts for 10.3 % of the total carbon uptake, which
is within the range of CMIP5 model results (3.6 %–10.6 %).
Overall, the NESM v3 can be employed as a useful modeling
tool to investigate large-scale interactions between the ocean
carbon cycle and climate change.

1 Introduction

The global carbon cycle plays an important role in the cli-
mate system. The increase in atmospheric CO2 is respon-
sible for a large part of the observed increase in global
mean surface temperature (Ciais et al., 2013). From 1750
to 2016, about 645± 80 PgC (1 PgC= 1015 g carbon) of an-
thropogenic carbon was emitted to the atmosphere, including
420±20 PgC from fossil fuels and industry and 225±75 PgC
from land use change (Le Quéré et al., 2018). This CO2
emission caused atmospheric CO2 concentration to increase
by 48 % from an annual mean preindustrial (PI) value of
∼ 277 parts per million (ppm) (Joos and Spahni, 2008) to
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409.8 ppm in 2019 (Dlugokencky and Tans, 2020). As a large
carbon reservoir, the global ocean contains more than 50
times the amount of carbon in the atmosphere (Denman et
al., 2007) and plays a key role in anthropogenic CO2 uptake
(Ballantyne et al., 2012; Wanninkhof et al., 2013). From the
year 1870 to 2016, about 25 % of anthropogenic CO2 (about
150± 20 PgC) was absorbed by the ocean (Le Quéré et al.,
2018).

An increase in atmospheric CO2 perturbs the atmospheric
radiative balance and leads to climate change. Changes in at-
mospheric temperature, precipitation, evaporation, and wind
induce changes in ocean physical properties, including tem-
perature, salinity, and ocean circulation (Gregory et al., 2005;
Pierce et al., 2012). These changes in ocean physical proper-
ties, in turn, affect the ocean carbon cycle (Sarmiento and
Gruber, 2006). Friedlingstein et al. (2006) proposed that the
response of the oceanic uptake of atmospheric CO2 can be
represented by the linear sum of two components: (1) carbon-
concentration sensitivity, which refers to the response of
oceanic CO2 uptake to increasing atmospheric CO2; and
(2) carbon-climate sensitivity, which refers to the response
of oceanic CO2 uptake to global warming. Adopting this
conceptual framework, a number of studies have analyzed
the effect of increasing atmospheric CO2 concentration and
global warming on the carbon cycle in terms of the carbon-
concentration and carbon-climate sensitivity parameters un-
der different CO2 emission and concentration scenarios (Gre-
gory et al., 2009; Boer and Arora, 2009; Tjiputra et al., 2010;
Roy et al., 2011; Arora et al., 2013; Schwinger and Tjiputra,
2018).

Given the importance of carbon cycle feedback in current
and future global climate change, it is necessary to include
the representation of the global carbon cycle in climate sys-
tem models (Denman et al., 2007). The first and second gen-
erations of the NUIST climate system model show good skill
in simulating internal climate modes and the global monsoon
(Li et al., 2018; Yang and Wang, 2019; Yang et al., 2018).
However, the previous generations of the NESM do not in-
clude an active ocean biogeochemical model and cannot be
used to study the ocean carbon cycle (Cao et al., 2015). Re-
cently, the third version of the NUIST Earth System Model
(NESM v3) was developed as a newly registered model to the
Coupled Model Intercomparison Project phase 6 (CMIP6;
Cao et al., 2018; Eyring et al., 2016). The NESM v3 couples
the Pelagic Interactions Scheme for Carbon and Ecosystem
Studies version 2 (PISCES v2; Aumont et al., 2015) to rep-
resent the ocean biogeochemical processes.

The objective of this paper is to evaluate the performance
of the NESM v3 in simulating marine carbon-related bio-
geochemical tracers and oceanic anthropogenic CO2 uptake.
As a newly developed Earth system model and a new mem-
ber of the CMIP community, it is essential to evaluate the
model’s ability against observational data. First, we analyze
the present-day distributions of macronutrients, chlorophyll,
net primary production (NPP), sea–air CO2 flux, dissolved

inorganic carbon (DIC), and alkalinity against available ob-
servations and observation-based estimates. Then, we eval-
uate the model-simulated anthropogenic CO2 uptake. The
amount and spatial distribution of oceanic anthropogenic
CO2 uptake during the historical period and under future sce-
narios are compared with observations and CMIP5 model re-
sults. The carbon-concentration and carbon-climate sensitiv-
ities of oceanic CO2 uptake diagnosed from the NESM v3
are compared with those from CMIP5 models. We also pro-
vide a Supplement that compares biogeochemical fields sim-
ulated by the NESM v3 with that by IPSL-CM5A-LR (here-
after IPSL), which shares the same marine biogeochemical
component (PISCES) as used in the NESM v3.

In Sect. 2, we describe the NESM v3 with a focus on the
ocean carbon cycle component, as well as the setup of model
simulations. The results of model simulations are analyzed in
Sect. 3. Conclusions and a discussion are presented in Sect. 4.

2 Methods

2.1 Model

2.1.1 Framework of the NESM v3

Detailed descriptions of the physical components, major im-
provements, and model tuning procedures of the NESM v3
are documented in Cao et al. (2018). Here we give a brief
review.

The NESM v3 consists of three main model components,
including European Centre Hamburg Atmospheric Model
version 6.3 (ECHAM v6.3) (Stevens et al., 2012; Giorgetta
et al., 2013), Nucleus for European Modeling of the Ocean
version 3.4 (NEMO v3.4, revision 3814) (Madec, 2012), and
Los Alamos sea ice model version 4.1 (CICE v4.1) (Hunke
et al., 2010).

In this study, we use the low-resolution version of the
NESM v3. The atmospheric resolution is T31L31 that has
a horizontal resolution of ∼ 3.75◦ latitude by 3.75◦ longi-
tude and 31 layers. The atmospheric model and land surface
model are originally adopted from ECHAM v6.3. A detailed
description is provided in Stevens et al. (2012) and Giorgetta
et al. (2013). The sea ice model includes four ice layers and
one snow layer with a multi-layer thermodynamic scheme
(Hunke et al., 2010; Cao et al., 2018). The ocean model has
the ORCA2 global ocean configuration that is a type of tripo-
lar grid. It is based on a 2◦ Mercator mesh and has 31 layers
with the thickness of the ocean layer increasing from 10 m in
the upper ocean to 500 at 5000 m of depth. A local transfor-
mation is applied in the tropics to refine the resolution to up
to 0.5◦ at the Equator. In the ocean model, the incoming solar
radiation can penetrate to the upper-ocean layers as deep as
391 m, and a bio-model penetration parameterization scheme
is used to calculate the vertical distribution of solar radia-
tion (Lengaigne et al., 2009). The ocean background vertical
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Table 1. Global ocean anthropogenic CO2 uptake simulated by the NESM v3 during different periods compared against data-based estimates
(Ciais et al., 2013). (The uncertainty ranges are given after±, and it is noted that the preindustrial time in this study represents the year 1850,
while it represents 1750 in IPCC AR5.)

Preindustrial–2011 1980–1989 1990–1999 2000–2009 2002–2011
Cumulative PgC PgC yr−1 PgC yr−1 PgC yr−1 PgC yr−1

IPCC AR5 155± 30 2.0± 0.7 2.2± 0.7 2.3± 0.7 2.4± 0.7
NESM v3 137.2 1.7 2.0 2.3 2.3

diffusivity is modified in the NESM v3, whereby the con-
stant value is replaced by latitude-dependent values (Jochum,
2009). The parameterization scheme of vertical diffusivity is
detailed in the Supplement, with the global distribution of
vertical diffusivity shown in Fig. S1. Compared to the orig-
inal vertical diffusivity coefficient constant of 0.12 cm2 s−1,
the coefficients in the tropical ocean are reduced and those in
the subtropical and high-latitude oceans are enhanced. Also,
the NESM v3 incorporates the parameterization of brine re-
jection in the ocean model, and the reference sea ice salinity
is set as 4 PSU as suggested by Smith et al. (2010).

2.1.2 Ocean biogeochemical component

The NESM v3 employs the standard PISCES v2 to
represent the ocean biogeochemical cycle. The PISCES
model is developed from a simple nutrient–phytoplankton–
zooplankton–detritus (NPZD) model (Aumont et al., 2002).
It can be used for both regional and global simulations of
lower trophic levels of the marine ecosystem and ocean car-
bon cycle (Bopp et al., 2005; Resplandy et al., 2012; Séférian
et al., 2013). In the current version, there are 24 prognos-
tic tracers in total, including dissolved inorganic and organic
carbon, alkalinity, chlorophyll, and nutrients. We use the
same biogeochemical parameters as those used in Aumont
et al. (2015). The only exception is the advection scheme
for passive tracers. Here we use the total variance dissipa-
tion (TVD) formulation instead of the Monotone upstream
scheme for conservative law (MUSCL) formulation to keep
the advection scheme consistent with the one used in the
physical ocean model. Both the TVD and MUSCL schemes
have a good performance in biogeochemical modeling. The
MUSCL scheme has a better performance in resolving the
small-scale processes, while TVD scheme minimizes sys-
tematic error through numerical diffusion and is a better op-
tion for coarse-resolution models (Lévy et al., 2001a).

Two different types of phytoplankton (nanophytoplankton
and diatoms) and two size classes of zooplankton (mesozoo-
plankton and microzooplankton) are presented in the model.
The life cycle of phytoplankton is regulated by processes of
growth, mortality, aggregation, and grazing by zooplankton
(Aumont et al., 2015). The growth rate of phytoplankton is
determined by temperature, photosynthetically active radi-
ation (PAR), and availability of nutrients, including phos-
phate, nitrate, silicate, iron, and ammonium. The mortal-

ity rate of phytoplankton is set as a constant and is identi-
cal for nanophytoplankton and diatoms. The aggregations of
nanophytoplankton, which transform dissolved organic car-
bon (DOC) to particular organic matter (POM), only depend
on the shear rate because the main driver of aggregation is
local turbulence. In the NESM v3, this shear rate is set to
1 s−1 in the mixed layer and 0.01 s−1 below. The same is
assumed for diatoms, while the aggregations of diatoms are
further enhanced by nutrient co-limitation. For all species,
phosphate, nitrate, and carbon are linked by a constant Red-
field ratio. In the NESM v3, the Redfield ratio of C : N : P
is set to 122 : 16 : 1 (Takahashi et al., 1985), and the O/C
ratio is set to 1.34 (Körtzinger et al., 2001). In contrast, the
Fe/C, chlorophyll/C, and silicon/C ratios are prognostically
simulated by the model based on the external concentrations
of the limiting nutrients as in the quota approach (McCarthy,
1980; Droop, 1983; Aumont et al., 2015).

The remineralization of semi-labile DOC can occur in ei-
ther oxic water or anoxic water depending on the local oxy-
gen concentration, and their degradation rates are specified
and identical for oxic respiration and denitrification. Detri-
tus is represented by different types, including POM, calcite,
iron particles, and biogenic silica. The POM is partitioned
into two size classes: a smaller class (POC: 1–100 µm) and a
larger class (GOC: 100–500 µm). The sinking speed of GOC
(50–200 m d−1) increases with depth and is much faster than
that of POC (3 m d−1). A fraction of phytoplankton would be
turned to POM through the processes of mortality and aggre-
gation. The fate of the mortality and aggregation of nanophy-
toplankton depends on the proportion of the calcifying or-
ganisms. For nanophytoplankton, it is assumed that half of
the dying calcifiers are routed to the fast-sinking particles.
The same is assumed for the mortality of diatoms, and 50 %
of the dying diatoms are turned to POM due to the larger
density of biogenic silica compared to that of organic matter.
The degradation rate of POM depends on the local tempera-
ture with aQ10 factor (temperature dependence ratio) of 1.9.

The geochemical boundary condition accounts for the ex-
ternal nutrient supply from five different sources, includ-
ing atmospheric dust deposition of iron and silicon, river
recharge of nutrients, dissolved carbon, alkalinity, atmo-
spheric deposition of nitrogen, and sediment mobilization
of sedimentary iron. In the NESM v3, atmospheric deposi-
tion and river recharge are prescribed, and sediment mobi-
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lization is parameterized. At the bottom of the ocean, differ-
ent sediment parameterization schemes are applied to bio-
genic silica, POM, and particulate iron. The amount of per-
manently buried biogenic silica is assumed to balance the ex-
ternal source, and the burial efficiency of POM is determined
by the organic carbon sinking rate at the bottom following the
algorithm proposed by Dunne et al. (2007). All the particu-
late iron would be buried into the sediment once it reaches
the ocean bottom. The amount of unburied calcite and bio-
genic silica would dissolve back into the ocean water instan-
taneously. In this study, the initial conditions of the biogeo-
chemical model have been adopted from the World Ocean
Atlas 2009 (WOA09; Garcia et al., 2010) and the Global
Ocean Data Analysis Project (GLODAP; Key et al., 2004;
Sabine et al., 2004) datasets.

Carbonate chemistry is formulated based on the Ocean
Carbon-Cycle Model Intercomparison Project (OCMIP-2)
protocol (more information can be accessed at http://
ocmip5.ipsl.jussieu.fr/OCMIP/, last access: 7 July 2020).
The quadratic wind speed formulation proposed by Wan-
ninkhof (1992) is used to compute the air–sea exchange of
carbon and oxygen.

2.2 Simulations

In total, there are eight different simulations in this study, in-
cluding one fully coupled spin-up simulation for 2000 years,
one PI-control run (CTRL) for 251 years, three transient
runs driven by forcing conditions from historical observa-
tional data and Shared Socioeconomic Pathway scenarios
(SSP5–8.5) from 1850 to 2100 (hereafter HistSSP), i.e., fully
coupled HistSSP (FC-HistSSP), biogeochemically coupled
HistSSP (BC-HistSSP), and radiatively coupled HistSSP
(RC-HistSSP), and three idealized 1ptCO2 runs for 140
years, i.e., FC-1ptCO2, BC-1ptCO2, and RC-1ptCO2. The
detailed experimental designs are as follows.

First, the NESM v3 was spun up for 2000 years with all re-
lated parameters set to preindustrial values (the year 1850),
including orbital parameters, land use, aerosol, and green-
house gas (GHG) concentration (284 ppm for CO2, 790 ppb
for CH4, 275 ppb for N2O). During the last 100 years of the
spin-up simulation, the average globally integrated sea–air
flux is 1.0 PgC yr−1. The large positive sea–air flux is a result
of the three-dimensional correction of nutrients and alkalin-
ity in the PISCES model (Séférian et al., 2013). The three-
dimensional correction refers to the fact that the global inven-
tories of nutrients and alkalinity are restored toward the ob-
servations on 1 January of every year (Aumont et al., 2015).
The linear drift of globally integrated sea–air flux during the
last 100 years of the spin-up simulation is 0.0006 PgC yr−2,
indicating that a quasi-equilibrium state has been reached for
the global ocean carbon cycle. Global mean sea surface tem-
perature (SST) averaged over the last 100 years of the spin-up
simulation is 13.1◦C, with a linear drift of −0.0001 ◦C yr−1,
and ocean mean temperature is 3.5 ◦C, with a linear drift of

0.00016 ◦C yr−1, indicating that the dynamic ocean compo-
nent has also reached a quasi-equilibrium state.

Following the protocol of the CMIP6 historical and SSP5–
8.5 experiment design (Eyring et al., 2016; Jones et al.,
2016), starting from the end of the spin-up simulation, the
model is further integrated with time-changing external forc-
ings, including GHGs, ozone, aerosol, land use, and solar
forcing from 1850 to 2100. For the years 1850 to 2014, GHG
concentrations and other forcing conditions are taken from
observations, and for the years 2015 to 2100, GHG concen-
trations and forcing conditions follow the SSP5–8.5 scenario.
Also, we conducted a 251-year (1850–2100) PI-control sim-
ulation with all forcing conditions kept at preindustrial lev-
els. Meanwhile, to have a direct comparison with CMIP5 re-
sults, we conducted idealized 1ptCO2 simulations, in which
the atmospheric CO2 concentration increases at a rate of
1 % yr−1 starting from the end state of the spin-up simula-
tion with other forcings remaining at the preindustrial level.
These 1ptCO2 simulations lasted for 140 years until the at-
mospheric CO2 concentration had quadrupled.

Following Friedlingstein et al. (2006) and Arora et
al. (2013), we performed three types of experiments (biogeo-
chemically coupled, radiatively coupled, and fully coupled)
for HistSSP and 1ptCO2 to separate the effect of atmospheric
CO2 and CO2-induced global warming on the ocean carbon
cycle.

1. BC simulations were performed in which the code of the
ocean carbon cycle sees changing atmospheric CO2, but
the code of atmospheric radiation sees a constant prein-
dustrial concentration of CO2. In this way, the ocean
carbon cycle is only affected by changing atmospheric
CO2, but there is no direct effect of CO2-induced warm-
ing.

2. RC simulations were performed in which the code of
the ocean carbon cycle sees preindustrial atmospheric
CO2, but the code of atmospheric radiation sees chang-
ing concentrations of atmospheric CO2. In this way, the
ocean carbon cycle is only affected by CO2-induced
warming, but there is no direct effect of changing at-
mospheric CO2.

3. FC simulations were performed in which both the codes
of the ocean carbon cycle and atmospheric radiation see
changing concentrations of atmospheric CO2. In this
way, the ocean carbon cycle is affected by changes in
both atmospheric CO2 and CO2-induced warming.

It is noted that, in the FC-HistSSP, RC-HistSSP, and
BC-HistSSP simulations, other forcings (non-CO2 GHGs,
aerosols, and land use change) still change with time for both
the atmospheric and ocean models.
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2.3 Evaluation data

Global ocean distribution data for nutrient concentrations, in-
cluding nitrate, phosphate, and silicate, are taken from the
World Ocean Atlas 2018 (WOA18; Garcia et al., 2018). Ge-
ographic distributions of DIC, alkalinity, and anthropogenic
carbon are taken from the GLODAP v2 (Key et al., 2015;
Lauvset et al., 2016). Both WOA18 and GLODAP v2 data
have a horizontal resolution of 1◦× 1◦ with 33 levels and
represent the climatology in recent decades. In this study, we
assume that the densities of seawater in the model and ob-
servations are the same, and then the unit of observations is
converted (µmolkg−1 to mmolm−3) by multiplying the mod-
eled density (kg m−3). We compared modeled chlorophyll in
recent decades with the SeaWiFS dataset (NASA Goddard
Space Flight Center, 2014), GlobColour merged data (Mari-
torena et al., 2010), and Ocean Colour Climate Change Ini-
tiative (OCCCI) merged data (http://www.oceancolour.org/,
last access: 7 July 2020). OCCCI and GlobColour incorpo-
rate the same datasets, while their uncertainty information
and algorithms are not the same.

Model-simulated NPP is compared with Moderate Reso-
lution Imaging Spectroradiometer (MODIS) estimated ma-
rine NPP based on three different algorithms, including the
Standard Vertically Generalized Production Model (VGPM),
Eppley-VGPM, and the Carbon-based Production Model
(CbPM). The datasets can be accessed at http://www.science.
oregonstate.edu/ocean.productivity/index.php (last access:
7 July 2020). In the VGPM and Eppley-VGPM, NPP is
estimated as the product of chlorophyll and photosynthetic
efficiencies (Behrenfeld and Falkowski, 1997a, b). Eppley-
VGPM emphasizes the photo-acclimation effect at high
SSTs; i.e., the growth rate is higher in high-temperature re-
gions (Eppley, 1972; Morel, 1991). In the CbPM, NPP is es-
timated as the product of carbon biomass and the growth rate
(Behrenfeld et al., 2005; Westberry et al., 2008). All three
datasets have a horizontal resolution of 1/12◦× 1/12◦ and
cover the period from 2003 to 2014. The distribution of ob-
served surface ocean sea–air CO2 flux is taken from Taka-
hashi et al. (2009), which applies to the reference year of
2000 and has a spatial resolution of 4◦ latitude by 5◦ longi-
tude.

To have a direct comparison between the NESM v3 output
and corresponding observations, we interpolated all modeled
results and observations to a common 1◦× 1◦ grid using the
distance-weighted average remapping method, except for the
sea–air CO2 flux. Due to the low resolution of observational
sea–air flux, we interpolated the modeled sea–air CO2 flux to
the 4◦× 5◦ grid used by Takahashi et al. (2009).

2.4 Analysis method

2.4.1 Nutrient decomposition

To examine the contribution of ocean dynamics and bio-
geochemical processes to the mismatch between model re-
sults and observations, we decomposed phosphate to its pre-
formed and regenerated components following the method of
Weiss (1970) and Duteil et al. (2012). The regenerated phos-
phate is released through the remineralization processes of
organic matter, and the preformed phosphate is the remaining
biotically unutilized surface phosphate, which is transported
into the ocean interior by ocean circulation. The regenerated
and preformed phosphate is computed as

Pregenerated = RP :−O2 ×AOU, (1)
Ppreformed = P − Pregenerated, (2)

where AOU is the apparent oxygen utilization, which repre-
sents the biological consumption of oxygen. It is computed
as the difference between oxygen saturation and simulated
oxygen concentration. RP :−O2 represents the oxidation ratio
of phosphate and oxygen, which is set to 1/163 in the NESM
v3. P represents the simulated phosphate concentration.

2.4.2 Nutrient limitation

In the NESM v3, the nutrient limitation coefficient (0–1) is
computed from the Michaelis–Menten equation as follows:

MM=N/(K +N), (3)

where MM is the Michaelis–Menten coefficient, N is the nu-
trient concentration, and K is the half-saturation coefficient,
which is parameterized based on the half-saturation constant
and concentrations of nutrients, phytoplankton, and diatoms
(Aumont et al., 2015).

We calculated the annual mean nutrient limitation coeffi-
cient for each nutrient (phosphate, nitrate, silicate, and iron)
and then considered the nutrient with the smallest limitation
coefficient to be the most limiting factor. Temperature and
light are assumed to be the most limiting factors when the
annual mean nutrient coefficients are greater than 0.9 (Moore
et al., 2013).

2.4.3 Carbon-concentration and carbon-climate
sensitivity parameters

Following Arora et al. (2013), we diagnosed the carbon-
climate and carbon-concentration sensitivity parameters
from two types of experiments performed by a subset of
CMIP5 models, i.e., BC simulations and RC simulations.

In the BC simulations, the relationship between the atmo-
spheric CO2 concentration and sea–air CO2 flux can be sim-
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plified as

t∫
0

F ′dt ≈ β1CA+ γ1T, (4)

where F ′ represents oceanic carbon uptake change in the BC
simulation, 1CA represents atmospheric CO2 concentration
change, β represents the carbon-concentration sensitivity pa-
rameter, γ represents the carbon-climate sensitivity parame-
ter, and 1T represents surface air temperature change in the
BC simulation.

In the RC simulations in which the oceanic carbon uptake
is only affected by climate change, the relationship between
temperature and sea–air CO2 flux can be simplified as

t∫
0

F ′dt ≈ γ1T, (5)

where F ′ represents oceanic carbon uptake change in the RC
simulation and1T represents surface air temperature change
in the RC simulation.

3 Results

3.1 Nutrients

Nutrients play vital roles in the ocean biogeochemical cycle.
A lack of nutrients would limit the growth of phytoplankton.
Figure 1 compares the model-simulated annual mean spa-
tial distributions of nutrient concentrations averaged over the
top 100 m ocean with the WOA18 observations from 1985
to 2014, including phosphate (PO3−

4 ), nitrate (NO−3 ), and
silicate (SiO2−

4 ). The model reproduces the observed large-
scale patterns of upper-ocean mean nutrients concentrations
reasonably well, with pattern correlation coefficients (PCCs)
larger than 0.8 and normalized standard deviations (NSDs;
model simulations are normalized by stand deviations of cor-
responding observations) close to 1.0. The PCCs of nitrate,
phosphate, and silicate between the model simulation and
WOA18 are 0.93, 0.91, and 0.83, respectively, and the NSDs
of nitrate, phosphate, and silicate are 1.05, 1.06, and 1.22,
respectively. For both the NESM v3 simulation and observa-
tions, the largest concentrations of phosphate, nitrate, and sil-
icate are observed in the Southern Ocean as a result of strong
vertical mixing and upwelling that bring nutrient-rich deep
water to the surface (Whitney, 2011). Also, the strong iron
limitation that reduces the biological uptake of macronutri-
ents is one of the main causes of the high macronutrient level
in the Southern Ocean (de Baar et al., 1990). Relatively high
concentrations of nutrients are also simulated in the subarctic
Pacific Ocean and the mid-eastern Pacific Ocean. Relatively
low concentrations of nutrients are simulated in subtropical
regions. The spatial distributions of nutrients in the NESM

v3, with high concentrations in the Southern Ocean and low
concentrations in the subtropical Pacific, are generally con-
sistent with both observations and CMIP5 model results (Ily-
ina et al., 2013; Moore et al., 2013; Séférian et al., 2013;
Tjiputra et al., 2013).

Some noticeable discrepancies between model simulations
and observations are also found (Fig. 1a3, b3, c3). Phosphate
and nitrate are overestimated in the Southern Ocean and the
Pacific Ocean but underestimated in the Indian Ocean, sub-
arctic Pacific, and tropical Atlantic. Silicate is overestimated
over all of the global ocean except for the Indian Ocean and
subarctic Pacific. Averaged over the global upper ocean, the
model-simulated silicate concentration is about 50 % greater
than that in the WOA18 observations.

Figure 2 shows the latitudinal–depth distributions of nutri-
ents from the FC-HistSSP simulation and WOA18 observa-
tions in the Pacific, the Atlantic, and the global ocean. Nu-
trient distributions are reproduced well in the Atlantic by the
NESM v3. The deepest penetration of relatively low-nutrient
water to a 1000 m depth is simulated in the middle-latitude
regions. The observed high concentration of nutrients is sim-
ulated in the Atlantic south of 45◦ S. Also, the equatorward
transport of phosphate and nitrate by Antarctic Intermediate
Water near 1000 m of depth is simulated by the model. In the
Pacific, the latitude–depth distributions of nutrients broadly
agree with observations but with noticeable positive biases in
the deep North Pacific.

To further analyze the possible reasons for discrepancies in
nutrient distributions between the model simulation and ob-
servations, we decomposed phosphate to its preformed and
regenerated components (Weiss, 1970; Duteil et al., 2012) to
compare the results with the WOA18 observations (Fig. 3).
For the global ocean, Atlantic Ocean, and Pacific Ocean, the
preformed phosphate diagnosed from the model accounts for
51 %, 47 %, and 57 % of the total phosphate inventory, and
the result diagnosed from the WOA18 is 57 %, 55 %, and
64 %, respectively. A relatively small fraction of the pre-
formed phosphate indicates stronger biological activities in
the model. Compared to the observations, in the North At-
lantic, the model underestimated the preformed phosphate,
indicating that biological uptake in the upper North Atlantic
is overestimated by the model. The NESM v3 overestimates
the preformed phosphate above ∼ 500 m of depth but un-
derestimates the preformed phosphate at the depth of 500 to
1500 m. This dipole pattern of preformed phosphate biases is
associated with the overestimated vertical mixing that brings
excessive nutrient-rich water from the intermediate ocean to
the surface (Fig. 3a2, a4, and a6). In the deep Pacific Ocean,
the preformed phosphate concentrations are between 1.3 and
1.5 mmol m−3 for both the model simulation and observa-
tions.

The most noticeable biases of regenerated phosphate are
found in the deep North Pacific. In the model simulation,
the regenerated phosphate in the deep North Pacific is sig-
nificantly overestimated, and the biases resemble the dif-
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Figure 1. Annual mean (from the year 1985 to 2004) upper-ocean (averaged in the upper 100 m) distribution of phosphate (a1, a2), nitrate (b1,
b2), and silicate (c1, c2) from the NESM v3 simulations (FC-HistSSP) and the WOA18 observation dataset (mmol m−3). The difference
between the model simulation and observations is also shown (a3, b3, c3).

ference found in latitudinal–depth distributions of nutrients.
In the deep ocean, preformed phosphate is only affected by
ocean circulation, whereas regenerated phosphate is affected
by both circulation and remineralization. In the deep ocean,
the NESM v3 simulates the preformed phosphate well but
overestimates the regenerated phosphate, indicating that the
overestimated nutrients in the North Pacific deep ocean are
mainly caused by biological processes.

Next, we present the NESM v3 simulated patterns of nu-
trient limitation. As shown in Fig. 4, the limiting patterns of
nanophytoplankton and diatoms are similar in the tropical-
and temperate-latitude oceans. Iron is the most limiting nu-
trient for both nanophytoplankton and diatoms in the east-
ern Pacific and the Southern Ocean. Nitrate and phosphate
are the most limiting factors in the Indian Ocean, subtropi-
cal western Pacific, and the tropical Atlantic. In high-latitude
oceans, nanophytoplankton is mostly limited by the available
light and temperature, whereas diatoms are mostly limited
by silicate. The NESM v3 simulated limiting pattern broadly
agrees with the results diagnosed from the IPSL-CM4A-
LOOP (Schneider et al., 2008) and the Community Earth
System Model-Biogeochemistry (CESM1-BGC; Moore et
al., 2013), except that the iron limitation diagnosed from the
NESM v3 is stronger in the Pacific and the Southern Ocean.

3.2 Biological production

Figure 5 compares the modeled spatial distributions of
the annual mean surface chlorophyll concentration from

1998 to 2014 with that in SeaWiFS observational data,
GlobColour merged data, and OCCCI merged data. In the
NESM v3, chlorophyll in both nanophytoplankton and di-
atoms is parameterized based on the photo-adaptive model
(Geider et al., 1997) in which chlorophyll is regulated
by the chlorophyll-to-carbon ratio, growth of phytoplank-
ton biomass, mortality, aggregation, and zooplankton graz-
ing. The large-scale pattern of the simulated ocean chloro-
phyll concentration broadly agrees with observations, with
high levels of chlorophyll in the subarctic Pacific Ocean
and North Atlantic (> 1 mg Chl m3) and intermediate lev-
els of chlorophyll in the Southern Ocean (∼ 0.5 mg Chl m3).
Also, the observed relatively high chlorophyll concentra-
tion in the equatorial Pacific (∼ 0.3 mg Chl m3) surrounded
by low-chlorophyll-concentration seawater over the subtrop-
ical oceans (< 0.1 mg Chl m3) is reproduced by the model.
The high chlorophyll concentrations along the extratropical
coastal regions are broadly captured by the NESM v3. How-
ever, the model underestimates the chlorophyll concentration
in the tropical coastal regions, especially in the tropical In-
dian Ocean, Maritime Continent, and the tropical Atlantic.
This underestimation is partly associated with the deficien-
cies in modeled coastal dynamics, which are usually not rep-
resented well by coarse global ocean models (Aumont et al.,
2015). It is reported that the observed chlorophyll distribu-
tion in the coastal region is better reproduced when PISCES
is coupled to a higher-resolution ocean circulation model
(Lee et al., 2000; Hood et al., 2003; Koné et al., 2009). Also,
the model underestimates the chlorophyll concentration in
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Figure 2. The latitude–depth distributions of silicate (a), phosphate (b), and nitrate (c) averaged over the years 1985 to 2014 from the NESM
v3 simulation (FC-HistSSP) and the WOA18 observation dataset (mmol m−3). Panels (a), (b), and (c) represent silicate, phosphate, and
nitrate, respectively. The labels (a1), (a2), (b1), (b2), (c1), and (c2) represent the distributions in the Pacific Ocean, labels (a3), (a4), (b3),
(b4), (c3), and (c4) represent the distributions in the Atlantic Ocean, and labels (a5), (a6), (b5), (b6), (c5), and (c6) represent the distributions
in the global ocean.

the northern Indian Ocean. This underestimation of chloro-
phyll is associated with the underestimation of nutrients over
the Indian Ocean (Fig. 1) that inhibits phytoplankton growth.

In the Southern Ocean where the seawater is typically
characterized by high nutrient and low chlorophyll lev-
els (Lin et al., 2016), noticeable discrepancies in chloro-
phyll concentrations are seen among different observation-
ally based datasets, which are associated with different algo-
rithms used for these products. For example, in the South-
ern Ocean, the chlorophyll concentration derived from re-
flectance by standard algorithms tends to be underestimated

by a factor of about 2 to 2.5 (Kahru and Mitchell, 2010).
Compared to the three observational data-based estimates,
the NESM v3 overestimates the chlorophyll concentration in
the Pacific and Indian parts of the Southern Ocean. In the At-
lantic part of the Southern Ocean, the modeled chlorophyll
concentration is within the range of observational estimates,
higher than the SeaWiFS but lower than the GlobColour and
OCCCI.

Figure 6 shows the annual mean spatial distributions of
vertically integrated NPP from 2003 to 2014. Three different
algorithms, including VGPM, Eppley-VGPM, and CbPM,
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Figure 3. Latitude–depth distributions of the preformed and regenerated phosphate concentration (mmol m−3) in the Pacific, Atlantic, and
global ocean averaged over 1985 to 2014. The results diagnosed from the WOA18 observation dataset are shown in the first and third rows
(a1, a3, a5, b1, b3, b5). The differences (model minus observation) between NESM v3 simulations and observations are shown in the second
and the last rows (a2, a4, a6, b2, b4, b6). The panels from (a1) to (a6) show the preformed component, and the panels from (b1) to (b6)
show the regenerated component.

Figure 4. Diagnosed patterns of nutrient limitation from the NESM v3 simulation (FC-HistSSP). The limitation maps are shown over the
annual timescale averaged over the years 1985 to 2014 for phytoplankton (a) and diatoms (b). Different colors represent different factors that
most limit phytoplankton growth. Replete means nutrient concentrations are sufficient for phytoplankton growth (the growth rate is greater
than 90 % of their maximal growth rate).
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Figure 5. Annual mean surface chlorophyll concentration (mg Chl m−3) from the NESM v3 FC-HistSSP simulations (a; averaged over 1998
to 2014), the SeaWiFS dataset (b; averaged over 1998 to 2010), the GlobColour merged dataset (c; averaged over 1998 to 2014), and the
OCCCI merged dataset (d; averaged over 1998 to 2014). The biases between the NESM v3 simulation and observations are shown in the (e),
(f), and (g).

are used to estimate the NPP based on MODIS observations.
Similar to the CbPM, the NESM v3 simulates NPP as the
product of phytoplankton biomass and the growth rate, while
the VGPM and Eppley-VGPM describe NPP as the product
of chlorophyll and photosynthetic efficiencies. However, the
formulation of the growth rate in the NESM v3 is more com-
plex than that in CbPM, which involves chlorophyll, nutrient
availability, temperature, respiration, and PAR.

The formulation of the growth rate in the NESM v3 fol-
lows Eppley (1972), i.e., the growth rate is higher in high-
temperature regions, while there is no temperature depen-

dence in the VGPM. Therefore, compared to VGPM, the
NESM v3 estimates more NPP in low-latitude oceans and
less NPP in high-latitude oceans (Fig. 6e). The spatial distri-
bution of the NESM v3 simulated vertically integrated NPP
resembles Eppley-VGPM and CbPM estimates (Fig. 6a, c,
d). The NESM v3 broadly reproduces the observed spatial
pattern of NPP distribution, with high NPP in the eastern
equatorial Pacific and Maritime Continent and low NPP in
the subtropical Pacific and high-latitude oceans. Also, the
NESM v3 broadly captures the high concentrations of NPP
in low-latitude coastal regions. Although the global pattern
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Figure 6. Annual mean distributions of vertically integrated net primary production (g C m−2 yr−1) averaged from 2003 to 2014 from the
NESM v3 FC-HistSSP simulations (a) and MODIS observation-based estimates (b: VGPM-MODIS; c: CBPM-MODIS; d: Eppley-MODIS).
The biases of model simulations and observations are shown in panels (e, f, g).

of NPP broadly agrees with the observation-based estimates,
the PCC between model simulations and Eppley-VGPM is
only 0.5, indicating that some local features are not well de-
scribed in the NESM v3. Compared to CbPM and Eppley-
VGPM, the NESM v3 significantly underestimates NPP in
the Indian Ocean. The NESM v3 also underestimates NPP in
the eastern coastal areas of the United States and the Arctic
coastal areas.

Averaged from 2003 to 2014, the globally integrated
ocean NPP from the NESM v3 simulation is 45.1 PgC yr−1

compared with data-based estimates of 38 to 65 PgC yr−1

(Buitenhuis et al., 2013). The large range of data-based es-
timates of global NPP is a result of different satellite ob-

servations and different algorithms for the NPP estimation
(Longhurst et al., 1995; Antoine et al., 1996; Behrenfeld and
Falkowski, 1997b; Behrenfeld et al., 2005). Global NPP sim-
ulated by CMIP5 models also shows a wide range of values
from 30.9 to 78.7 PgC yr−1 (Bopp et al., 2013). The NESM
v3 simulated global NPP is within the range of data-based es-
timates and current CMIP5 model estimates. Of the NESM
v3 simulated global ocean NPP, 20 % is contributed by di-
atoms, and 80 % is contributed by nanophytoplankton. For
comparison, from the data-based estimates, 7 % to 32 % of
the total NPP is associated with diatoms (Uitz et al., 2010;
Hirata et al., 2011), while ocean biogeochemical models es-
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timate that 15 % to 30 % of global NPP is from diatoms (Au-
mont et al., 2003; Dutkiewicz et al., 2005; Yool et al., 2011).

3.3 Dissolved inorganic carbon and alkalinity

Figures 7 and 8 display the modeled and observed spatial
distributions of alkalinity and DIC averaged over the upper
ocean (0–100 m) and the zonally averaged section in the Pa-
cific Ocean, Atlantic Ocean, and the global ocean during the
period from 1985 to 2014. The model’s skill in simulating
upper-ocean alkalinity is moderate (PCC= 0.56). The model
reproduced the observed high alkalinity in the subtropical
surface oceans, and the modeled global upper-ocean mean
alkalinity has a minor negative bias of 0.45 %. The major
discrepancies are seen in the Southern Ocean and the subarc-
tic Pacific, with a positive bias of more than 80 mmol m−3.
In high-latitude oceans, convective mixing of alkalinity-rich
deep water is an important factor controlling upper-ocean al-
kalinity, and SST can be used as a proxy for convective mix-
ing (Lee et al., 2006). An underestimation of SST of 1 ◦C
is simulated in high-latitude oceans (figures not shown), in-
dicating a stronger convective mixing, which may explain
the overestimated alkalinity in high-latitude oceans. The al-
kalinity has a negative bias of more than 60 mmol m−3 near
the Maritime Continent, where the alkalinity concentration is
usually related to salinity (Lee et al., 2006). Cao et al. (2018)
found that the NESM v3 simulates excessive precipitation
over the Maritime Continent, which results in the underesti-
mation of salinity by 2 PSU.

NESM v3 simulates the large-scale pattern of the ob-
served DIC well (PCC = 0.78), with a high DIC concen-
tration in the middle- to high-latitude Atlantic and a low
DIC concentration in the middle- to low-latitude Pacific and
the Indian Ocean. The model-simulated global mean upper-
ocean DIC has a minor positive bias of 0.27 %. Although
the global pattern of DIC is different from alkalinity, their
model–observation bias patterns are similar (Fig. 7e, f). The
largest positive DIC bias of more than 80 mmol C m−3 is sim-
ulated in the Southern Ocean and subarctic Pacific, while a
negative bias of more than 80 mmol C m−3 is simulated in
the Maritime Continent.

In the Atlantic, the large-scale patterns of the latitudinal–
depth distributions of DIC and alkalinity simulated by the
model broadly agree with observations. Both alkalinity and
DIC are slightly overestimated in the South Atlantic and un-
derestimated in the North Atlantic. Apparent biases of DIC
and alkalinity are seen in the deep North Pacific. One no-
ticeable pattern of the observed DIC and alkalinity is that
their maximum concentrations are around 2000–3000 m in
the North Pacific Ocean, which the model fails to reproduce.
The model also overestimates DIC storage in the deep Pacific
Ocean. The mismatches between the model simulation and
observations, i.e., an underestimation of DIC and alkalinity
concentrations in the upper 1000 m of depth and an overes-
timation of their concentrations in the deep ocean, resemble

those of nutrients. It indicates that modeled discrepancies of
alkalinity and DIC may also be attributed to excessive deep
and active remineralization processes, which release a large
amount of dissolved carbon in the deep ocean.

3.4 Assessment of biogeochemical fields by Taylor
diagram

Figure 9 compares the spatial patterns of the NESM v3
and IPSL simulated biogeochemistry-related fields with cor-
responding observations using a Taylor diagram (Taylor,
2001). In summary, model-simulated statistical patterns of
the nutrients in the upper ocean compare well with observa-
tions, whereas the simulated spatial patterns of chlorophyll,
primary production, and alkalinity show larger discrepancies
from observations. It is noted that chlorophyll and NPP are
not directly observed but diagnosed from the observation-
based data, and thus their estimations are subject to consider-
able uncertainties. Compared with biogeochemical fields in
IPSL, which shares the same marine biogeochemical cycle
component with NESM v3, the NESM v3 has comparable
skill in reproducing the spatial distributions of nutrients and
chlorophyll but less skill in reproducing DIC and alkalinity,
with relatively larger NSDs.

We also examine other CMIP5 model results documented
in previous studies (Moore et al., 2013; Anav et al., 2013;
Tjiputra et al., 2013; Séférian et al., 2013). For different bio-
geochemical fields, different models show different skills.
For example, PCCs between nutrients and observations in
CESM1-BGC are about 0.8, which is lower than in the
NESM v3, but CESM has a better representation of chloro-
phyll (Moore et al., 2013). Nevertheless, the NESM v3 shows
comparable skill in simulating upper-ocean biogeochemical
fields with other CMIP5 models.

3.5 Oceanic anthropogenic CO2 uptake during the
historical period

In this section, we compare the NESM v3 simulated an-
thropogenic carbon uptake (FC-HistSSP simulation) during
the historical period against available observation-based es-
timates.

First, we compared the NESM v3 simulated sea–air CO2
flux against available observations for the reference year of
2000 (Takahashi et al., 2009). As shown in Fig. 10, the
NESM v3 realistically reproduces the large-scale pattern of
the observed sea–air CO2 flux with CO2 outgassing in the
equatorial oceans and uptake in the middle- to high-latitude
oceans (PCC = 0.71 and NSDs = 1.04). For both obser-
vations and model results, strong CO2 uptake is found in
the northern Atlantic where sea surface temperature is low
and the formation of deep water is active. Compared to
the data-based estimates, the modeled sea–air CO2 flux is
overestimated in the tropical Pacific, the Southern Ocean,
and the North Pacific (near 30◦ N). Also, the model under-
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Figure 7. Annual mean distributions of upper-ocean mean (0–100 m) alkalinity (mmol m−3) (a, b) and DIC (mmol C m−3) (c, d) averaged
from 1985 to 2014 from the NESM v3 simulations (a, c) and GLODAP v2 (b, d). The biases of the NESM v3 simulations and observations
are shown in panels (e, f).

estimates the sea–air CO2 flux in the high-latitude oceans
(Fig. 9c and d). The globally integrated ocean uptake flux
from observations is 1.6± 0.9 PgC yr−1 for the reference
year of 2000 (Takahashi et al., 2009), whereas the value is
2.8 PgC yr−1 from the model simulation. The difference be-
tween the model and observations mainly originates from
the model-simulated positive bias in the preindustrial steady-
state oceanic CO2. In the NESM v3, the preindustrial steady
state of total oceanic CO2 uptake is 1.0 PgC yr−1 compared
with the data-based value of 0.4±0.2 PgC yr−1 (Takahashi et
al., 2009). Taking the preindustrial steady state into consider-
ation, the total oceanic anthropogenic CO2 uptake flux in the
year 2000 is 1.8 PgC from the model simulation compared to
the value of 2.0± 1.0 PgC from the observation (Takahashi
et al., 2009).

Then, we compared the NESM v3 simulated anthro-
pogenic CO2 budget with the data-based estimates provided
by the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC AR5) (Table 1). The model-

simulated ocean uptake of anthropogenic CO2 is slightly
lower than that from the IPCC AR5 but within the esti-
mated uncertainty range. From the preindustrial era to the
year 2011, the NESM v3 simulated cumulative oceanic CO2
uptake is 137.2 PgC compared with IPCC data-based esti-
mates of 155±30 PgC (Ciais et al., 2013). The decadal mean
oceanic anthropogenic CO2 uptake diagnosed from the FC-
HistSSP run increased from 1.7 to 2.3 PgC yr−1 from the
1980s to the 2000s, whereas the observation ranges from
2.0±0.7 to 2.4±0.7 PgC yr−1. From the year 1870 to 2016,
the modeled cumulative CO2 uptake is 149 PgC compared to
the recent estimate of 150± 20 PgC (Le Quéré et al., 2018).

Model-simulated vertically integrated column inventories
of anthropogenic DIC (FC-HistSSP relative to the CTRL
simulation) from 2000 to 2004 and from 1992 to 1996 are
compared with GLODAP v2 and GLODAP v1 (Fig. 11),
respectively. Compared with GLODAP v2, the NESM v3
reasonably captures the large-scale distribution of observed
anthropogenic DIC. The largest inventory in the 2000s of
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Figure 8. The latitude–depth distributions of alkalinity (a; mmol m−3) and DIC (b; mmol C m−3) averaged from 1985 to 2014 from the
FC-HistSSP simulation are compared with GLODAP v2 observations. The observations are shown in the first and third rows (a1, a3, a5, b1,
b3, b5), whereas the biases (model minus observation) are shown in the second and last rows (a2, a4, a6, b2, b4, b6).

more than 100 mol C m−2 is simulated in the northern At-
lantic where SST is low and deepwater formation is active.
In the model simulation from 2000 to 2004, the North At-
lantic stores 20.8 % of the global oceanic anthropogenic car-
bon, whereas it is 17.6 % in the GLODAP v2. In other ocean
basins, the large inventory is mainly found in the middle-
latitude areas near 30◦ N and 30◦ S for both model simula-
tions and observations. In the NESM v3 simulations, from
2000 to 2004, 58.9 % of the global oceanic anthropogenic
carbon is stored in the Southern Ocean compared to the value
of 62.6 % in the GLODAP v2.

One noticeable discrepancy between the GLODAP v2 and
model simulation is found south of 50◦ S. Only 8.3 % of
the global oceanic anthropogenic DIC inventory is simulated
by the model in this region, whereas the value is 15.5 %
in the GLODAP v2. However, the vertically integrated an-
thropogenic DIC concentration is also low in the Southern
Ocean (south of 50◦ S) in the GLODAP v1, accounting for
only 9.9 % of the global inventory. Anthropogenic DIC in the
GLODAP is diagnosed by a crude application of the transit
time distribution method, and thus the results are subject to
considerable uncertainties (Lauvset et al., 2016).

Figure 12 shows the latitudinal–depth distributions of the
anthropogenic DIC concentration (FC-HistSSP relative to
the CTRL simulation) in the Atlantic, Pacific, and the global
ocean from the model simulation and GLODAP v2. The
observed high concentrations (more than 51 mmol C m−3)
in near-surface waters and low concentrations (less than
3 mmol C m−3) in most of the deep ocean (the Pacific and the
middle- to low-latitude Atlantic) are simulated by the NESM
v3. For both data-based estimates and model simulations,
a substantial amount of anthropogenic CO2 has penetrated
down to the ocean interior as deep as 1000 m of depth, with
two penetration tongues near 30◦ N and 40◦ S, and the deep-
est penetration of anthropogenic DIC is found in the north-
ern Atlantic. Deep penetration of anthropogenic DIC is typ-
ically associated with convergence zones in temperate and
high-latitude oceans where vertical mixing is strong (Sabine
et al., 2004). Similar to the vertically integrated inventory
of anthropogenic DIC (Fig. 11), the major discrepancy of
anthropogenic DIC in the latitudinal–depth distribution is
also found in the southern Atlantic south of 50◦ S where the
model greatly underestimates the anthropogenic DIC in the
entire ocean column.
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Figure 9. The Taylor diagram compares the statistical patterns of
annual mean biogeochemical fields averaged over the upper 100 m
ocean between the NESM v3 simulation (FC-HistSSP) and corre-
sponding observations, including nitrate, phosphate, silicate, alka-
linity, chlorophyll concentration, and vertically integrated net pri-
mary production. Nutrient concentrations are compared with WOA
18; the DIC and alkalinity concentrations are compared with GLO-
DAP v2; NPP is compared with the CbPM; chlorophyll is compared
with SeaWiFS. All fields are normalized by the standard deviation
of corresponding observations. Thus, observation fields have a stan-
dard deviation of 1, which is represented by REF. The distance be-
tween the model points and the reference point indicates the root
mean square (RMS) difference between the model simulation and
observations. The solid cycle represents the results diagnosed from
the NESM v3, and the triangle represents the results from the IPSL,
which shares the same marine biogeochemical model as the NESM
v3. The NPP of IPSL is not shown here.

3.6 Sensitivity of the oceanic CO2 uptake to increasing
atmospheric CO2 and global warming

The ocean carbon cycle is regulated by changes in atmo-
spheric CO2 and the physical climate (Doney et al., 2004).
Increasing atmospheric CO2 affects oceanic CO2 uptake di-
rectly. Meanwhile, global warming also affects the ocean car-
bon cycle via changes in climate and biological rates (Gre-
gory et al., 2005; Steinacher et al., 2010; Pierce et al., 2012;
Olonscheck et al., 2013; Lewandowska et al., 2014). In this
section, we first present the NESM v3 simulated physical
climate change and oceanic CO2 uptake under the histori-
cal and SSP5–8.5 scenarios. Then, we present the NESM v3
simulated response of the ocean carbon uptake to increasing
atmospheric CO2 and global warming in the SSP5–8.5 and
1ptCO2 runs.

3.6.1 NESM v3 simulated physical climate change
under historical and SSP5–8.5 scenarios

Figure 13 shows the NESM v3 simulated changes (relative
to the control simulation) in the global annual mean sur-
face air temperature (SAT), mixed layer depth (MLD), and
intensity of the Atlantic meridional overturning circulation
(AMOC) from 1850 to 2100 under the historical and SSP5–
8.5 scenarios. Changes in SAT, MLD, and AMOC in the RC-
HistSSP and FC-HistSSP simulations are almost the same,
while those changes in the BC-HistSSP simulation are rather
small. In the FC-HistSSP simulation, the annual mean SAT
anomaly averaged over the years from 2080 to 2100 (rela-
tive to the period of 1986–2005) is 4.6 K, which is at the
higher end of the CMIP5 model results (2.6–4.7 K) under the
RCP8.5 scenario (Collins et al., 2013; Knutti and Sedláček,
2013). It is noted that the CMIP6 input forcing is used in this
study, and the atmospheric CO2 concentration at the end of
the 21st century in the SSP5–8.5 is about 10 % higher than
that in the RCP8.5 scenario. Also, we can see a slight in-
crease in SAT in BC-HistSSP (Fig. 13a), which is caused by
the non-CO2 GHG change. Compared with the preindustrial
era, by the end of the 21st century (averaged over the years
2091 to 2100), the SAT in the FC-HistSSP, RC-HistSSP, and
BC-HistSSP simulations increased by 6.0, 6.0, and 0.8 K, re-
spectively.

Modeled MLD decreases from the 1980s. Compared with
the preindustrial era, by the end of the 21st century, MLD
in the FC-HistSSP, RC-HistSSP, and BC-HistSSP simula-
tion decreased by 7.9, 8.0, and 1.4 m, respectively. The re-
duction of the mixed layer depth indicates a more stratified
upper ocean. A substantial weakening of AMOC intensity
in the FC-HistSSP simulation is projected for the 21st cen-
tury, which is associated with ocean surface warming and
increased freshwater input into the North Atlantic (Gregory
et al., 2005). In the preindustrial period, the model-simulated
AMOC index at 30◦ N is 17.5 Sv (1 Sv= 106 m3 s−1), which
is within the range of 14 to 31 Sv from CMIP5 models
(Weaver et al., 2012). In the FC-HistSSP simulation, the
modeled annual mean AMOC transport at 30◦ N averaged
over the years 2004 to 2011 is 17.1 Sv, whereas the obser-
vation record during the same period from RAPID/MOCHA
(Rapid Climate Change–Meridional Overturning Circulation
and Heatflux Array) is 17.5± 3.8 Sv (Rhein et al., 2013). By
the end of the 21st century, the NESM v3 simulates a 54 %
reduction of the AMOC (from 17.5 Sv to 8.0 Sv) from the
FC-HistSSP simulation, whereas the AMOC reduction under
the RCP8.5 scenario from CMIP5 models ranges from 15 %
to 60 % (Cheng et al., 2013). The higher atmospheric CO2
concentration at the end of 2100 in SSP5–8.5 may partly ex-
plain the larger AMOC change in this study. Also, Cao et
al. (2018) pointed out that the equilibrium climate sensitivity
to CO2 forcing in the NESM v3 is about 10 % higher than
that of the CMIP5 ensemble.
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Figure 10. Model-simulated sea–air CO2 flux (g C m−2 yr−1) in the year 2000 compared with data-based observational estimates (Takahashi
et al., 2009). Spatial distributions of the model simulation (a), observation (b), zonal mean pattern of model simulation and observation (c),
and the difference between the model and observation (d). Positive values represent CO2 flux out of the ocean, and negative values represent
CO2 flux into the ocean.

Figure 11. Vertically integrated column inventory of anthropogenic DIC (mol C m−2) from the simulation (a, c), GLODAP v2 (b), and
GLODAP v1 (d). Model simulation results are averaged from 2000 to 2004 (a, represent the period around 2002) and from 1992 to 1996 (c,
represent the period around 1994). The anthropogenic DIC from GLODAP v2 is normalized to the year 2002 (b), while that from GLODAP
v1 is normalized to the year 1994 (d).
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Figure 12. Zonal mean latitude–depth distributions of anthropogenic DIC (mmol C m−3) from the model simulation (a1: Atlantic, a2: Pacific,
and a3: Global) and data-based estimates (GLODAP v2) (b1: Atlantic, b2: Pacific, and b3: Global). Model simulation results are averaged
from the year 2000 to 2004 (a), while the observation is normalized to the year 2002 (b).

3.6.2 NESM v3 simulated oceanic CO2 uptakes under
historical and SSP5–8.5 scenarios

Figure 14 shows the time evolution of the oceanic CO2 up-
take from BC-HistSSP, RC-HistSSP, FC-HistSSP, and the
linear sum of BC-HistSSP and RC-HistSSP. In the BC-
HistSSP simulation, the global ocean absorbed a total of
662 PgC of anthropogenic CO2 from the atmosphere by
the year 2100. In the RC-HistSSP simulation, the increased
sea surface temperature, enhanced ocean stratification, and
weakened AMOC all act to decrease CO2 uptake (Cox et
al., 2000; Zickfeld et al., 2008; Roy et al., 2011; Goris et
al., 2015; Cao and Zhang, 2017). By the year 2100, the
modeled cumulative CO2 uptake is −35.9 PgC in the RC-
HistSSP simulation. In the FC-HistSSP simulation, oceanic
CO2 uptake is affected by both the increase in atmospheric
CO2 and global warming. By the end of the 21st century
in FC-HistSSP, simulated cumulative oceanic CO2 uptake
since the preindustrial era is 567 PgC, which is within the
ranges of 420 to 600 PgC from CMIP5 model results under
the RCP8.5 scenario (Jones et al., 2013). The sum of the sim-
ulated oceanic CO2 uptake from the BC-HistSSP and RC-
HistSSP simulations (626 PgC) is larger than that from the
FC-HistSSP run (567 PgC), indicating that the effect of in-
creasing atmospheric CO2 (carbon-concentration sensitivity)
and the effect of global warming (carbon-climate sensitivity)
on the oceanic CO2 uptake are not perfectly additive. This
nonlinearity was also found in previous studies (Boer and
Arora, 2009; Gregory et al., 2009; Schwinger et al., 2014).
The NESM v3 simulated nonlinearity (i.e., BC+RC−FC) is
59 PgC by the end of the 21st century, which is larger than
the absolute value of the radiative effect on oceanic carbon
uptake (−35.9 PgC).

To better understand oceanic CO2 uptake in response to
changing atmospheric CO2 and global warming, Fig. 15
shows the spatial distribution of anthropogenic sea–air CO2
flux at the end of the 21st century (averaged over the years
2091 to 2100) from the FC-HistSSP, RC-HistSSP, and BC-
HistSSP simulations, as well as the difference between the
FC-HistSSP simulation and the sum of the RC-HistSSP and
BC-HistSSP simulations.

In the BC-HistSSP simulation, the oceanic anthropogenic
CO2 uptake is 8.0 PgC yr−1 at the end of the 21st cen-
tury. The ocean absorbs atmospheric CO2 in most regions
except for a few scattered grid points at the midlatitudes
with slight CO2 outgassing. The strongest CO2 uptake of
about 150 g C m−2 yr−1 is found in the North Atlantic, sub-
arctic Pacific, and the Southern Ocean. Results from the
RC-HistSSP simulation show CO2 outgassing in large parts
of the global ocean as a result of global warming. In the
Arctic Ocean, warming induces a net uptake of CO2 of
0.07 PgC yr−1 because of the reduced sea ice extent under
global warming that allows more open seawater to absorb
atmospheric CO2. In the North Atlantic, the capacity of the
ocean to uptake CO2 is significantly suppressed due to the
reduced AMOC. The FC-HistSSP simulation shows the joint
effects of increasing atmospheric CO2 and global warming
(Fig. 15c). Net oceanic CO2 uptake is simulated in most re-
gions, with the strongest uptake in the Southern Ocean, indi-
cating the dominant role of the increasing atmospheric CO2.
CO2 outgassing is seen in the subtropical Pacific, indicating
that the radiative effect dominates the response of oceanic
CO2 uptake in this region.

The nonlinearity of oceanic carbon uptake sensitivity dur-
ing the 2090s is shown in Fig. 15d. In the NESM v3, the
oceanic carbon uptake in the FC-HistSSP simulation is lower
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Figure 13. Time series of changes in climate fields (relative to
the control simulation) from 1850 to 2100 for BC-HistSSP, FC-
HistSSP, and RC-HistSSP. (a) Global and annual mean surface air
temperature (K), (b) global and annual mean mixed layer depth (in
meters; the mixed layer depth is defined to be the depth at which
the difference in potential density is 0.01 kg m−3 relative to the sea
surface), and (c) Atlantic meridional overturning circulation index
(Sv; maximum zonal mean stream function in the Atlantic Ocean at
30◦ N).

than the sum of that in the BC-HistSSP and RC-HistSSP
simulations. A relatively large nonlinearity is simulated in
the Atlantic north of 45◦ N (19.8 % of the total nonlinearity)
and the Southern Ocean south of 40◦ S (35.3 % of the total
nonlinearity), which is consistent with the findings of previ-
ous studies (Zickfeld et al., 2011; Schwinger et al., 2014).
The interactions between different background oceanic CO2
content and global warming can partly explain the nonlinear-
ity. Compared with the RC-HistSSP simulation, in the FC-
HistSSP simulation, there is much more carbon in the ocean

Figure 14. The NESM v3 simulated annual anthropogenic oceanic
CO2 uptake (a; PgC yr−1) and cumulative oceanic CO2 uptake (b;
PgC) for the simulations RC-HistSSP, BC-HistSSP, FC-HistSSP, as
well as the linear sum of BC-HistSSP and RC-HistSSP from 1850
to 2100.

that is subject to the impact of climate change. As a con-
sequence, in the FC-HistSSP simulation, the increased tem-
perature would have a larger effect on CO2 solubility and
a buffer factor that reduces the ocean’s capacity to absorb
CO2 (Yi et al., 2001). Also, reduced ocean circulation and in-
creased ocean stratification would slow down the transport of
anthropogenic CO2 from the surface to the deep ocean. Thus,
compared to the BC-HistSSP simulation, slowing ocean ven-
tilation in the FC-HistSSP simulation would cause a larger
reduction in oceanic CO2 uptake.

The above results also indicate that oceanic CO2 uptake
in high-latitude oceans is more sensitive to both the increas-
ing atmospheric CO2 concentration and global warming than
low-latitude oceans, as well as their nonlinear interactions.

3.6.3 Carbon-concentration and carbon-climate
sensitivity parameters diagnosed under SSP5–8.5

In this section, we investigate oceanic CO2 uptake under the
framework of the carbon-concentration and carbon-climate
sensitivity parameters. Figure 16 shows the change in ocean
carbon storage against the change in the atmospheric CO2
concentration (Fig. 16a) and the global annual mean surface
temperature (Fig. 16b). The derived evolution of the carbon-
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Figure 15. Spatial distributions of anthropogenic sea–air CO2 flux (g C m−2 yr−1) at the end of the 21st century (mean of 2091–2100) from
the BC-HistSSP (a), RC-HistSSP (b), and FC-HistSSP (c) simulations. Also shown is the difference between the FC-HistSSP simulation and
the sum of the RC-HistSSP and BC-HistSSP simulations (FC-RC-BC). Positive values represent CO2 flux out of the ocean, and negative
values represent CO2 flux into the ocean.

concentration sensitivity parameter β as a function of atmo-
spheric CO2 concentration and carbon-climate sensitivity pa-
rameter γ as a function of the change in temperature is shown
in Fig. 16c and d, respectively.

As shown in Fig. 16, in the BC-HistSSP and RC-
HistSSP simulations, the modeled ocean storage of anthro-
pogenic CO2 scales roughly linearly with atmospheric CO2
and changes in global mean surface temperature. Increas-
ing atmospheric CO2 alone increases oceanic CO2 uptake,
whereas increasing temperature alone decreases CO2 uptake.
In the year 2100, the carbon-climate sensitivity parameter γ
is −5.4 PgC K−1, while the carbon-concentration sensitivity
parameter β is 0.79 PgC ppm−1. The carbon-concentration
parameter initially increases with atmospheric CO2 and then
decreases (Fig. 16c). The decreasing trend of β is consistent
with the slowdown of the increasing trend of the oceanic CO2
uptake at the end of the 21st century as a result of decreased
oceanic buffer ability (Fig. 16a and c). From 1850 to 2100,
the carbon-climate parameter becomes more negative with
increasing temperature, indicating that the increase in sur-
face temperature would induce more CO2 outgassing from
the ocean in a warmer world (Fig. 16d). Similar changes in
the carbon-climate and carbon-concentration sensitivity pa-
rameters are also found in CMIP5 model simulations (Arora
et al., 2013). The increased sensitivity of CO2 outgassing to
temperature and the decreased sensitivity of CO2 uptake to
the atmospheric CO2 concentration indicate that the ocean’s
ability to absorb atmospheric CO2 would be weakened with
increasing atmospheric CO2 and global warming.

3.6.4 Carbon-concentration and carbon-climate
sensitivity parameters from 1ptCO2 runs

In this section, we compare the carbon sensitivity parameters
diagnosed from the 1ptCO2 experiments between the NESM
v3 and CMIP5 models. The total CO2 uptake during the
140 years in FC-1ptCO2 is 636 PgC, while the results from
CMIP5 models range from 533 to 676 PgC. The sum of the
total CO2 uptake in RC-1ptCO2 and BC-1ptCO2 is 702 PgC,
which is larger than that in FC-1ptCO2. The simulated non-
linearity (i.e., BC-1ptCO2 + RC-1ptCO2 − FC-1ptCO2) is
about 10.3 % of the total CO2 uptake in FC-1ptCO2, which
is at the higher end of the nonlinearity estimated for CMIP5
models (3.6 %–10.6 %; Schwinger et al., 2014). Figure 17
shows the simulated β and γ in the 1ptCO2 experiments. At
the end of the 1ptCO2 experiments, the diagnosed value of
β from CMIP5 models ranges from 0.69 to 0.91 PgC ppm−1,
with a multi-model mean value of 0.80 PgC ppm−1. For com-
parison, the β diagnosed from the NESM v3 simulations is
0.88 PgC ppm−1. In the 1ptCO2 experiment, the β simulated
by the NESM v3 tends to decrease when the atmospheric
CO2 concentration increases to ∼ 550 ppm, which is consis-
tent with that in CMIP5 models. At the end of the 1ptCO2
experiments, the diagnosed value of γ from CMIP5 models
ranges from −2.4 to −12.1 PgC K−1. The larger spread of
γ is associated with the spread of the model-simulated cli-
mate change and the dependency of carbon cycle processes
on climate change. For comparison, the diagnosed γ param-
eter from the NESM v3 simulation is −7.9 PgC K−1.
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Figure 16. The cumulative oceanic CO2 uptake against the atmospheric CO2 in the BC-HistSSP simulation (a) and the global mean surface
air temperature change in the RC-HistSSP simulation (b). Also shown is the time evolution of the diagnosed carbon-concentration sensitivity
parameter as a function of atmospheric CO2 (c) and the carbon-climate sensitivity parameter as a function of global mean surface air
temperature change (d). All the parameters in this figure are diagnosed from HistSSP scenarios

4 Discussion and conclusion

In this study, we evaluated the performance of NESM v3 in
simulating the present-day ocean biogeochemical cycle and
historical and future oceanic carbon uptake. We also inves-
tigated the response of oceanic CO2 uptake to the individ-
ual and combined effect of increasing atmospheric CO2 and
CO2-induced warming under the SSP5–8.5 and 1ptCO2 sce-
narios. The strengths and limitations of the NESM v3 are
analyzed and documented.

The NESM v3 simulates the large-scale patterns of ob-
served upper-ocean nutrients reasonably well, with PCCs
larger than 0.8 and NSDs close to 1.0 (Figs. 1 and 9). The
high nutrient concentrations in the eastern Pacific, subarctic
Pacific, and the Southern Ocean are reproduced in the model
(Fig. 1). Also, the simulated global patterns of alkalinity,
DIC, chlorophyll, and NPP broadly agree with observations
and data-based estimates (PCCs: 0.5–0.8; NSDs: 0.5–1.6).
For example, the high alkalinity concentration in the middle-
latitude oceans, high DIC and chlorophyll concentration in
the high-latitude oceans, and high NPP concentration in the
low-latitude oceans are reproduced by the NESM v3 (Figs. 5,

6, 7). The model-simulated global ocean NPP averaged over
the years from 2003 to 2014 is 45.1 PgC yr−1, which is com-
parable with observation-based estimates of 38–65 PgC yr−1.
Compared with observation-based estimates, the NESM v3
also does a good job in simulating oceanic CO2 uptake. The
observed global pattern of sea–air CO2 flux is reproduced by
the model (Fig. 10). In the year 2000, the oceanic anthro-
pogenic CO2 uptake flux is 1.8 PgC in the NESM v3 simu-
lation, whereas it is 2.0± 1.0 PgC in the observation (Taka-
hashi et al., 2009). The model-simulated cumulative oceanic
anthropogenic CO2 uptake from the year 1870 to 2016 is
149 PgC, which compares well with data-based estimates of
150± 20 PgC (Le Quéré et al., 2018).

Compared with observations, the NESM v3 captures many
aspects of the spatial structures of biogeochemical fields and
their responses to climate change. However, some discrep-
ancies between model simulations and observations remain.
Our analysis shows that the simulated biases in biogeochem-
ical fields in the upper ocean are primarily associated with
shortcomings in the simulated ocean circulation, while the
discrepancies in the deep ocean are primarily attributed to
excessive remineralization.
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Figure 17. Same as Fig. 16, but for the 1ptCO2 runs.

In the upper ocean, slight overestimations of nutrients are
found in the Pacific and the Southern Ocean (Fig. 1). In our
simulations, the regions of overestimated nutrients (Fig.1)
in general correspond to regions with strong iron limitation
(Fig. 4). The strong iron limitation in these areas limits bi-
ological activities, therefore reducing the uptake of nutrients
by phytoplankton. Also, the overestimated nutrients are asso-
ciated with strong vertical mixing in the Pacific and the At-
lantic, which is indicated by the dipole pattern of preformed
phosphate bias above the depth of about 1500 m (Fig. 3).
In the Indian Ocean, the underestimation of nutrients is as-
sociated with the weak upwelling (figures not shown) that
suppresses nutrient entrainment to surface water. Then, the
low nutrient concentration in the Indian Ocean (Fig. 1) re-
duces biological activities and results in underestimations of
NPP and chlorophyll (Figs. 5 and 6). Also, in a relatively
coarse-resolution model, the underestimation of NPP and
chlorophyll in the Indian Ocean could be associated with
the poor descriptions of mesoscale and submesoscale pro-
cesses (McGillicuddy Jr. et al., 1998; Lévy et al., 2001b).
Alkalinity is underestimated near the Maritime Continent
(Fig. 7), which is related to the underestimation of surface
salinity due to excessive precipitation (Cao et al., 2018). In
the high-latitude ocean, the model underestimates SST by

about 1 ◦C (Cao et al., 2018), indicating strong convective
mixing, which leads to the overestimation of alkalinity.

As for the vertical profiles of biogeochemical fields,
the simulated latitudinal–depth distributions of nutrients
broadly agree with observations, but the simulated high-
concentration centers in the North Pacific are too deep
(Fig. 2). Excessive remineralization is the main cause of the
overestimated nutrients in the deep North Pacific, as indi-
cated by the analysis of preformed and regenerated nutrients
(Fig. 3). Similar to the vertical distributions of nutrients, the
model also significantly overestimates alkalinity and DIC in
the deep North Pacific (Fig. 8). Excessive remineralization in
the deep ocean consumes a large amount of oxygen and re-
leases dissolved organic carbon and nutrients. To better eval-
uate the NESM v3 simulated ocean dynamics and the ocean
carbon cycle, simulations of natural and bomb 14C, which
are often used to diagnose the behavior of ocean circulation
and the carbon cycle model (Levin and Hesshaimer, 2000;
Skinner et al., 2017), will be implemented in future versions
of NESM.

The behavior of the NESM v3 is also comparable with
CMIP5 models in terms of simulated marine biogeochem-
ical fields and oceanic carbon uptake. As for biogeochem-
ical fields, the skills of models are different for different
variables. For example, compared with IPSL, which shares
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the same ocean biogeochemical model (PISCES) with the
NESM v3, the NESM v3 has comparable skill in repro-
ducing the spatial distributions of upper-ocean nutrients and
chlorophyll but less skill in reproducing DIC and alkalin-
ity (Fig. 9). The integrated global ocean NPP simulated by
the NESM v3 (45.1 PgC) is within the range of CMIP5
models of 30.9 to 78.7 PgC yr−1 (Bopp et al., 2013). Also,
oceanic carbon uptake simulated by the NESM v3 compares
well with that diagnosed from CMIP5 models. During the
historical period from 1850 to 2005, the NESM v3 simu-
lated cumulative ocean carbon uptake is 123 PgC compared
to the CMIP5 model average of 124± 30 PgC (Friedling-
stein et al., 2014). By the end of the 21st century, cumu-
lative oceanic CO2 uptake simulated by the NESM v3 un-
der the SSP5–8.5 scenario is 567 PgC. For comparison, un-
der the RCP8.5 scenario, cumulative oceanic CO2 uptake
simulated by CMIP5 models ranges from 420 to 600 PgC
(Jones et al., 2013). The sensitivity of oceanic CO2 uptake
strongly depends on CO2 scenarios. In the 1ptCO2 experi-
ment, the NESM v3 simulated carbon-concentration sensitiv-
ity (β = 0.88 PgC ppm−1), carbon-climate sensitivity (γ =
−7.9 PgC K−1), and the nonlinearity of oceanic carbon up-
take sensitivities (10.3 %) compare well with those diag-
nosed from CMIP5 models (β: 0.69 to 0.91 PgC ppm−1, γ :
−2.4 to −12.1 PgC K−1, and nonlinearity: 3.6 % to 10.6 %).

Overall, compared with both observations and CMIP5
models, the NESM v3 shows skill in simulating ocean bio-
geochemical fields and oceanic carbon uptake. With the on-
going CMIP6 project (Eyring et al., 2016), it is a reasonable
next step to evaluate NESM v3 with CMIP6 models. The cur-
rent version of NESM v3 can be used as a useful modeling
tool to study interactive feedbacks between the ocean carbon
cycle and climate change as well as the underlying mecha-
nisms.

Code and data availability. The source code of NESM v3 together
with all input data are saved in one compressed file, which can
be downloaded from https://doi.org/10.5281/zenodo.3524938 (Dai,
2019) after registration. Also, a user guide describing the installa-
tion instructions, driver scripts, and software dependencies can be
found in the repository at the same link. The simulation results il-
lustrated in this study can be made available upon request to the
authors.
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