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Abstract. This paper describes a new satellite simulator for
the CLARA-A2 climate data record (CDR). This simulator
takes into account the variable skill in cloud detection in the
CLARA-A2 CDR by using a different approach to other sim-
ilar satellite simulators to emulate the ability to detect clouds.

In particular, the paper describes three methods to fil-
ter out clouds from climate models undetectable by ob-
servations. The first method is comparable to the current
simulators in the Cloud Feedback Model Intercomparison
Project (CFMIP) Observation Simulator Package (COSP),
since it relies on a single visible cloud optical depth at
550 nm (τc) threshold applied globally to delineate cloudy
and cloud-free conditions. Methods two and three apply
long/lat-gridded values separated by daytime and nighttime
conditions. Method two uses gridded varying τc as opposed
to method one, which uses just a τc threshold, and method
three uses a cloud probability of detection (POD) depend-
ing on the model τc. The gridded POD values are from the
CLARA-A2 validation study by Karlsson and Håkansson
(2018).

Methods two and three replicate the relative ease or diffi-
culty for cloud retrievals depending on the region and illumi-
nation. They increase the cloud sensitivity where the cloud
retrievals are relatively straightforward, such as over midlat-
itude oceans, and they decrease the sensitivity where cloud
retrievals are notoriously tricky, such as where thick clouds
may be inseparable from cold snow-covered surfaces, as well
as in areas with an abundance of broken and small-scale cu-
mulus clouds such as the atmospheric subsidence regions
over the ocean.

The simulator, together with the International Satellite
Cloud Climatology Project (ISCCP) simulator of the COSP,
is used to assess Arctic clouds in the EC-Earth climate model

compared to the CLARA-A2 and ISCCP H-Series (ISCCP-
H) CDRs. Compared to CLARA-A2, EC-Earth generally un-
derestimates cloudiness in the Arctic. However, compared to
ISCCP and its simulator, the opposite conclusion is reached.
Based on EC-Earth, this paper shows that the simulated cloud
mask of CLARA-A2, using method three, is more represen-
tative of the CDR than method one used for the ISCCP sim-
ulator.

The simulator substantially improves the simulation of the
CLARA-A2-detected clouds, especially in the polar regions,
by accounting for the variable cloud detection skill over the
year. The approach to cloud simulation based on the POD
of clouds depending on their τc, location, and illumination
is the preferred one as it reduces cloudiness over a range
of cloud optical depths. Climate model comparisons with
satellite-derived information can be significantly improved
by this approach, mainly by reducing the risk of misinterpret-
ing problems with satellite retrievals as cloudiness features.
Since previous studies found that the CLARA-A2 CDR per-
forms well in the Arctic during the summer months, and that
method three is more representative than method one, the
conclusion is that EC-Earth likely underestimates clouds in
the Arctic summer.

1 Introduction

Clouds constitute one of the most significant sources of un-
certainties for projecting the future climate (IPCC, 2014).
Therefore, countless studies have been made testing and im-
proving the skill of climate models in this regard over the
years (e.g., Waliser et al., 2009). As more and more informa-
tion on cloud climatologies from satellite sensors are avail-
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able in climate data records (CDRs), climate models have
been able to improve their representation of clouds continu-
ously, and hence their description of the climate system itself.

Currently, there are only a few CDRs derived from imag-
ing sensors that span more than 30 years. The International
Satellite Cloud Climatology Project (ISCCP) CDR (Young
et al., 2018) was the first such dataset and was mainly
based on geostationary satellite data, complemented with
data from polar-orbiting satellites at high latitudes. The three
other CDRs are based on data from the polar-orbiting me-
teorological satellites from the National Oceanic and Atmo-
spheric Administration (NOAA) and Meteorological Opera-
tional (MetOp) satellite series. They are the Pathfinder Atmo-
spheres Extended (PATMOS-x) (Heidinger et al., 2014), the
Cloud_cci (Stengel et al., 2017), and the Satellite Application
Facility on Climate Monitoring (CMSAF) cLoud, Albedo
and RAdiation (CLARA) dataset from Advanced Very High
Resolution Radiometer (AVHRR) data version 2 (CLARA-
A2) (Karlsson et al., 2017a) CDRs. The long lengths of these
CDRs make them ideal for assessing the cloud climatologies
of climate models.

However, to directly compare model clouds to cloud ob-
servations from satellites is akin to comparing “apples to or-
anges” as is explained in Waliser et al. (2009), Eliasson et al.
(2011), and many others. Two of the primary considerations
to make when comparing climate models to satellite observa-
tions is their very different horizontal and vertical scales, as
well as the finite sensitivity of observations to clouds. There-
fore, nowadays, in order to utilize the CDRs from satellite
data, the CDRs usually need to be simulated from the model
atmosphere with these attributes and limitations in mind.

In general, satellite simulators create cloud products or
brightness temperatures that would have been made from
satellite measurements if the model atmosphere was the real
atmosphere. The simulator’s objective is to emulate the in-
herent limitations, sensitivity, and geometry of the real re-
trievals. One of the main tasks for these simulators, among
others, is to filter out model clouds that would not be de-
tected by the instrument behind the cloud CDR. These simu-
lated satellite products can then be compared directly to the
observations.

Satellite simulators are primarily used to validate Earth
system models (ESMs), such as climate models. Although
satellite simulators bridge the gap between models and ob-
servations by significantly reducing the comparison uncer-
tainties, they do not eliminate them, and this should be taken
into account when comparing satellite product simulations to
the observations (Pincus et al., 2012). This paper introduces
the CLARA-A2 satellite simulator v1.0 for use in model val-
idations compared to the CLARA-A2 CDR.

The Cloud Feedback Model Intercomparison Project
(CFMIP) Observation Simulator Package (COSP) (Bodas-
Salcedo et al., 2011; Swales et al., 2018) was developed to
gather and provide a suite of satellite simulators. These sim-
ulators provide column-integrated cloud retrievals, just as the

datasets they represent, and therefore they need the cloud av-
erages on the coarse grid of climate models to be translated
into many smaller subcolumns for each model long/lat grid
box (Jakob and Klein, 1999; Pincus et al., 2006). The number
of subcolumns per grid depends on the host model’s resolu-
tion and typically number around 100 times the model res-
olution in degrees. Therefore, if a model has a resolution of
0.7◦, the simulator will generate 70 subcolumns per horizon-
tal grid. The cloud retrieval simulations are further carried
out on each of these subcolumns.

The ISCCP (Jakob and Klein, 1999), the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) (Pincus et al.,
2012), and the Multi-angle Imaging SpectroRadiometer
(MISR) simulators are the visible/infrared (VIS/IR) satellite
dataset simulators in the COSP. The CLARA-A2 cloud prod-
ucts are also retrieved using an instrument that measures in
this frequency range, and hence the CLARA-A2 simulator
has many similarities with these. Other VIS/IR satellite sim-
ulators not included in the COSP to date are the Spinning
Enhanced Visible Infrared Imager (SEVIRI) (Bugliaro et al.,
2011) and the Cloud_cci (Eliasson et al., 2019) simulators.

All satellite datasets based on VIS/IR data have region-
ally varying skill in detecting clouds, and all retrievals suffer
when clouds are too tenuous to detect or obscured. The re-
moval of would-be undetectable clouds from the model is an
essential feature of satellite simulators and to date is carried
out by comparing the τc of a subcolumn to some threshold
value. To date, the simulators in the COSP and the Cloud_cci
simulator rely on a global static τc value to reclassify sub-
columns, with an optical depth less than this threshold as
cloud free. It is well established that all cloud masks based on
the AVHRR channels have a variable skill, mainly depend-
ing on the underlying surface and the illumination conditions
(e.g., Karlsson and Håkansson, 2018). Karlsson and Håkans-
son (2018) studied the performance of the CLARA-A2 cloud
mask against Cloud-Aerosol LIdar with Orthogonal Polar-
ization (CALIOP) measurements in detail. They produced
global statistics for different τc thresholds, the probability
of cloud detection, and the rate of falsely detected clouds
(false alarm rate) on a global and regional basis. For instance,
they showed that the general likelihood of detecting clouds is
much higher over warm ocean surfaces than over perpetually
ice-covered regions and likewise that in some regions, e.g.,
deserts and other dry surfaces, retrievals are relatively sus-
ceptible to producing false clouds.

It is clear that the use of a fixed τc threshold, applied glob-
ally to modeled cloud fields in order to simulate satellite-
based cloud detection limitations, is a substantial simplifica-
tion of the actual observation conditions. Therefore, a com-
pletely new approach is introduced in this paper describ-
ing a simulator for the CLARA-A2 CDR applying spatially
and temporally varying cloud detection thresholds. Employ-
ing this novel approach to simulating observed cloud cover,
should place further confidence in cloud cover comparisons
between the climate models and the CLARA-A2 CDR. The
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CLARA-A2 simulator also incorporates a method of model
temporal sampling in order to reduce errors potentially in-
troduced by not taking the different and changing equatorial
overpass times of the satellites used in the CLARA-A2 CDR
into account. This approach is also used in the Cloud_cci
simulator and is motivated and described in Eliasson et al.
(2019).

The article structure is as follows: subsections 2.1, 2.2, and
2.3 describe the CLARA-A2 CDR, ISCCP H-Series (ISCCP-
H) CDR, and the EC-Earth climate model (Hazeleger et al.,
2010), respectively. Section 3 describes the CLARA-A2 sim-
ulator and the simulated variables, and Sect. 3.1 offers a de-
scription and demonstration of the simulated cloud masks.
The CLARA-A2 simulator approach is demonstrated and
tested over the Arctic region by investigating trends in po-
lar summer cloudiness using simulations from the EC-Earth
climate model in Sect. 4. The summary and conclusion are
given in Sect. 5.

2 Data

2.1 The CLARA-A2 climate data record

The CLARA-A2 CDR (Karlsson et al., 2017a) is based on
a long series of measurements from the AVHRR instrument
operated aboard polar-orbiting NOAA satellites as well as
aboard the MetOp polar orbiters operated by the European
Organisation for the Exploitation of Meteorological Satel-
lites (EUMETSAT) since 2006. AVHRR measures in five
spectral channels (two visible and three infrared channels)
with an original horizontal field of view (FOV) resolution
at the nadir of 1.1 km. However, the data used in CLARA-
A2 are of a reduced resolution (5 km): a resampled version
of these measurements called global area coverage (GAC),
where three consecutive scan lines made up of 3× 5 origi-
nal FOVs make one GAC pixel. Saving the data on a GAC
pixel resolution was a compromise to reduce the data amount
drastically, a necessity due to limited bandwidth and onboard
storage capacity.

The GAC measurement is the average radiance from four
out of five pixels from the first scan line and none from the
next two scan lines. Thus, only about 27 % of the nomi-
nal GAC FOV is used (see Fig. 1 in Karlsson and Håkans-
son, 2018). Only GAC data are available globally (i.e., being
archived) over the full period since the introduction of the
AVHRR sensor in space.

The visible radiances were intercalibrated and homoge-
nized using MODIS data as a reference before applying the
multiple parameter retrievals. The intercalibration uses the
method introduced by Heidinger et al. (2010), which is now
updated using MODIS Collection 6 and extended by 6 years.
The calibration of infrared AVHRR channels is based on
the standard NOAA calibration methodology utilizing an on-
board blackbody reference (Rao et al., 1993). CLARA-A2

is an improved and extended follow-up of the first version,
CLARA-A1, of the record (Karlsson et al., 2013) and is ex-
tended to cover 34 years (1982–2015).

CLARA-A2 features a range of cloud products: cloud
mask (cloud amount); cloud top temperature, pressure, and
height; cloud thermodynamic phase; and for liquid and ice
clouds separately cloud optical thickness, particle effective
radius, and cloud water path. Cloud products are available
as monthly and daily averages in a 0.25◦ latitude–longitude
grid and also as daily resampled global products (Level 2b)
on a 0.05◦ grid for individual satellites. The CDR also in-
cludes multiparameter distributions (i.e., joint frequency his-
tograms of cloud optical thickness, cloud top pressure, and
cloud phase) for daytime conditions. Besides cloud products,
CLARA-A2 also includes surface radiation budget and sur-
face albedo products. Karlsson et al. (2017a) provide exam-
ples of CLARA-A2 products.

In this study, we focus exclusively on the AVHRR GAC
cloud mask because of its central importance for the qual-
ity of all other CLARA-A2 products. Karlsson et al. (2017a)
and Karlsson et al. (2017d) provide validation results for
other CLARA-A2 products. The method for generating the
CLARA-A2 cloud mask originates from Dybbroe et al.
(2005), but significant improvements and adaptations were
made since then to enable reliable processing of the historic
AVHRR GAC record (Karlsson et al., 2017c).

The skill of the CLARA-A2 CDR

As mentioned earlier, Karlsson and Håkansson (2018) per-
formed an extensive validation of the CLARA-A2 cloud
mask against simultaneous nadir observations of CALIOP
retrievals, and the following is a recap of their main re-
sults. The goal was to find out at which optical depth thin
clouds were thick enough to have a 50 % probability of be-
ing detected. They investigated the global performance of the
CLARA-A2 cloud mask on a global equal-area grid with a
300 km resolution, covering different surface types, and sep-
arately for daytime and nighttime conditions. This detection
level can be considered the baseline for any cloud mask, i.e.,
the smallest τc threshold where the cloud mask detects more
clouds than it misses. They found that the global mean min-
imum cloud optical thickness was τc = 0.225. However, im-
portantly, their results showed that the global mean is far
from being representative of all local conditions. For in-
stance, a τc threshold value of 0.07 is a better approximation
over ice-free oceanic regions at midlatitudes, whereas a τc
threshold value as high as 4.5 is suitable for some ice-capped
regions such as over Greenland and Antarctica. By compar-
ison, the reference dataset, CALIOP, can detect clouds with
τc > 0.01 (Winker et al., 2009) and is generally stable across
any surface.

However, the probability of detection (POD) of clouds,
rather than an optical depth threshold, better describes the
CLARA-A2 cloud mask. Karlsson and Håkansson (2018)
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showed that even if all thin clouds with a τc less than 0.225
are removed from the comparison, i.e., by reclassifying such
CALIOP reference clouds as cloud free, the POD varies con-
siderably per region. Additionally, they showed that for most
regions in the world, the probability of detecting clouds with
a τc near the average of 0.225 is higher than 50 % (see Fig. 9
in Karlsson and Håkansson, 2018).

Through their validation studies, they calculated POD for
τc intervals (or bins) based on these simultaneous nadir ob-
servation validations on an equal-area Fibonacci grid with
about a 300 km radius. A Fibonacci grid is a type of grid
where each grid box is nearly equal area (see Karlsson and
Håkansson, 2018, and references therein for more informa-
tion). Figure 1 shows the different POD for clouds that have
an optical depth that falls in the optical depth interval cen-
tered around 0.225 (0.2< τc < 0.25) for daytime, nighttime,
and all conditions. The figure shows that the POD of clouds
in this optical depth range is dependent on whether clouds
are sunlit1 or not, especially in the polar regions. The global
average POD in this interval, but also all POD intervals (not
shown), is somewhat skewed towards lower values due to the
poor performance in the polar regions during nighttime.

Another significant result in Fig. 1 is the high POD in the
Arctic and Antarctic during the summer months. CLARA-
A2 has nearly comparable skill in detecting clouds in these
regions during the sunlit months as it has over nonpolar land
regions. Additionally, in the summer, for a somewhat higher
COT interval than shown here (e.g., 0.5–0.6), the POD in
polar regions increases more than over most continental sur-
faces. This increase is due to high skill in detecting liquid
water clouds in the polar summer. The POD shown in Fig. 1
is somewhat lower here since clouds in the τc interval 0.20–
0.25 mostly consist of thin ice clouds, which are still difficult
to detect over ice and snow surfaces. Overall though, this re-
sult further establishes the CLARA-A2 CDR as very suitable
for cloud studies in the polar summer.

2.2 ISCCP-H

The ISCCP-H CDR (Young et al., 2018) is a recently released
high-resolution version of the ISCCP CDR (Rossow and
Schiffer, 1999) that starts in July 1983 and ends in June 2015
due to data availability at the time of this study. The ISCCP
CDR comprises of geostationary and polar-orbiting satel-
lites, where data from the geostationary satellites have prece-
dence at low latitudes and midlatitudes (absolute latitude
< 55◦). The main improvement of ISCCP-H CDR is that it
is on a higher-resolution spatial grid compared to its prede-
cessor, and it covers a more extended period. Otherwise, the
ISCCP-H CDR is quite similar to previous ISCCP versions.
The CDR uses bispectral radiances, with one channel in the
visible (0.6 µm) and one in the infrared (11 µm). Karlsson

1Sunlit refers to when the solar zenith angle is less than 84◦.

and Devasthale (2018) and Tzallas et al. (2019) describe this
CDR at length.

2.3 The EC-Earth model

The EC-Earth climate model (Hazeleger et al., 2010, 2012)
is an ESM with its atmospheric component based on the In-
tegrated Forecast System (IFS) of the European Centre for
Medium-Range Weather Forecasts (ECMWF). The version
used for this study is 3.3, based on IFS cycle 36r4 and on
a horizontal resolution of T255 with 91 vertical layers. The
variant used in this study is the EC-Earth-Veg3 Atmospheric
Model Intercomparison Project (AMIP) simulation with pre-
scribed monthly sea surface temperatures and sea ice condi-
tions to enable comparisons with atmospheric observations.
The temporal range used to demonstrate the simulator cov-
ers 1982 to 2015 when compared only to the CLARA-A2
CDR and covers July 1983 to June 2015 when ISCCP-H is
involved in the comparison. EC-Earth produces simulated
ISCCP clouds at run time through the COSP. In terms of
cloudiness, EC-Earth has no lower or upper limit to cloud
optical thickness aside from numerical precision. Therefore,
any satellite simulator should always produce less cloudiness
than the direct model output.

3 Description of the CLARA-A2 simulator

Table 1 lists the variables simulated by the CLARA simula-
tor, and this section provides an overview of them. As briefly
described in the introduction and detailed in Bodas-Salcedo
et al. (2011) and Jakob and Klein (1999), the CLARA-A2
simulator relies on subcolumns within the climate model
grid, as all the COSP simulators do, to simulate the obser-
vational dataset cloud variables. The subcolumns created in
each model grid together produce the horizontal and verti-
cal cloud structure that preserves the internal cloud overlap
assumption of the host model. Each subcolumn has the same
number of layers as the model, and each layer in a subcolumn
is either completely cloudy or clear.

The next stage in the simulation is to map the average
model layer in-cloud2 optical depth, water content, and effec-
tive radius, both liquid and ice phase, to the cloudy layers of
each subcolumn. Every subcolumn is determined to be either
cloud-free or cloudy, and the simulator performs cloud re-
trievals on each “cloudy” subcolumn, and these represent the
column-integrated retrievals of CLARA-A2. Finally, the sim-
ulated cloud parameters are averaged to the climate model
grid so that they are ready to be directly compared to ob-
servations. Table 1 provides an overview of the simulated
variables included in this simulator. The CLARA-A2 satel-
lite simulator can currently only be run in an offline mode,

2The climate model provides the combined cloud-free and
cloudy component average for cloud variables. The simulator needs
the in-cloud amounts, i.e., average/cloud fraction.
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Figure 1. Probability of detection of clouds having an optical depth between 0.2≤ τc < 0.25. The τc in the center of this interval, 0.225, is
the global average of the smallest τc threshold where the CLARA-A2 cloud mask detects more clouds than it misses according to CALIOP
(see text).

Table 1. The cloud variables produced by the simulator. The middle column specifies the separate categories available for each variable, and
the third column indicates under which illumination conditions the variables are available.

Cloud variable Categories Day and/or night

Cloud fraction total, ice, liquid, low, mid and high day and night
Cloud top height, temperature, pressure day and night
τc liquid, ice day only
re liquid, ice day only
CWP liquid, ice day only
CTP–τc 2-D histograms liquid, ice day only

meaning that it relies on access to preprocessed model out-
put files. Following is a short description of the simulated
cloud retrieval simulation:

– Cloud microphysics. The cloud microphysical retrievals
τc, cloud particle effective radius (re), cloud water path
(CWP), and cloud phase are simulated using the same
method described in Eliasson et al. (2019), which very
closely resembles the method described in Pincus et al.
(2012). The dominant cloud water phase of the top op-
tical depth of the cloud determines the simulated cloud
water phase. The simulation of the effective radius, re,
is calculated by comparing the top of the atmosphere re-
flectance, calculated by the adding–doubling technique,
to lookup tables of reflectance versus cloud effective
radius. The lookup tables for the effective radius sim-

ulation rely on the same microphysical model as the
CLARA-A2 CDR (see details in Karlsson et al., 2017a).
The simulated optical depth and cloud water path is the
sum in the column. For consistency with observations,
if a cloud parameter requires sunlight for its retrieval, it
will only be simulated if the calculated solar zenith an-
gle is less then 84◦. These include the cloud microphys-
ical retrievals τc, re, CWP, and the cloud top pressure
(CTP)–τc histograms.

– Cloud top. The simulated CTP, cloud top height (CTH),
and cloud top temperature are calculated by two meth-
ods depending on if the clouds are optically thick or
not. If a subcolumn has a simulated cloud optical depth,
τc ≥ 5, it is considered opaque, and finding the cloud top
is achieved by matching a calculated brightness temper-
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ature to the model temperature profile, i.e., precisely the
same approach to simulate cloud top as used by the IS-
CCP simulator (Jakob and Klein, 1999).

However, acknowledging that accurately determining
the cloud top of optically thin, i.e., semitransparent
clouds, is more complicated than for opaque clouds
(Håkansson et al., 2018), the CLARA simulator has a
different method for simulating thin clouds. As a first
step, the simulator finds the height that is one optical
depth down from the top of the model cloud. This first
step corresponds to how the MODIS simulator (Pincus
et al., 2012) and Cloud_cci simulator (Eliasson et al.,
2019) calculate the CTH. The CLARA-A2 simulator
then offsets this height using the median error in CTH
for semitransparent clouds in the CLARA-A2 CDR
(Table 13 in SMHI, 2018). This approach emulates
the real-world performance of the CLARA-A2 cloud
top retrievals more closely for semitransparent clouds
than treating all clouds as opaque. The offsets used
are 257, −145, and −3336 m for low (CTP≥ 680 hPa);
middle (440 hPa≤CTP> 680 hPa); and high clouds
(CTP< 440 hPa), respectively.

3.1 Simulating CLARA-A2 cloud masks

As mentioned in Sect. 1, the main feature of the CLARA-A2
simulator is a more sophisticated simulation of the observa-
tional dataset’s cloud mask. It is possible to choose between
one of the three methods of cloud mask simulation described
below.

3.1.1 A globally static optical depth threshold

Method one is to simulate the cloud mask using one global
minimum cloud optical depth value. Method one is also the
classical approach used by the ISCCP, MODIS, MISR, and
the Cloud_cci simulators. For the ISCCP, MODIS, and MISR
simulators, this global limit is τc = 0.3 (Pincus et al., 2012);
for the Cloud_cci simulator (Eliasson et al., 2019), it is 0.2.
As mentioned earlier, the global average τc threshold for the
CLARA-A2 CDR is 0.225, and thus the threshold used in
method one of the CLARA-A2 simulator.

By the approach used in this method, all cloudy sub-
columns with an optical thickness less than the global av-
erage τc limit are treated as being cloud free and all sub-
columns above this threshold as cloudy. Since the threshold
is a global average, this method does not consider the illu-
mination conditions or the geographical location of the re-
trieval. The advantage of this approach is its robustness and
simplicity. However, as mentioned in Sect. 2.1, this approach
can lead to very misrepresentative cloud mask simulations in
some geographical regions.

The cloud retrieval simulations in the COSP are only car-
ried out during sunlit conditions. However, the next two ap-
proaches described below also simulate the cloud amount

and also the cloud top retrievals during nighttime conditions.
However, the variables re, τc, CWP, and the CTP–τc 2D his-
tograms are only simulated during daytime conditions.

3.1.2 Gridded optical depth thresholds

The second method uses varying gridded optical depth
thresholds. This method also relies on the robust and straight-
forward approach of reclassifying subcolumns with a small
optical depth as cloud free, while keeping those above this
threshold cloudy. However, this method takes into account
that the τc threshold, or cloud detection limit, varies ge-
ographically and depends on the solar illumination. This
method relies on the gridded data used in Fig. 12 in Karlsson
and Håkansson (2018) that shows the smallest τc threshold
where the CLARA-A2 cloud mask detects more clouds than
it misses (see Sect. 2.1).

Figure 2 shows the detection limits used in the simula-
tor according to this method. As shown by the figure, the τc
threshold varies quite strongly regionally and also depends
on if the CLARA-A2 cloud mask can make use of solar chan-
nels or not. The global average τc threshold, included for ref-
erence in the figure, clearly shows that during sunlit condi-
tions the cloud mask is much more sensitive to thin clouds
than a global average value of τc = 0.225 suggests.

During sunlit conditions, the regions with the least cloud
sensitivity are over the Arctic, the desert regions of the Sa-
hara and Arabia and as a large patch in the central Pacific.
During nighttime conditions, especially over the oceans, the
cloud mask is generally less sensitive and is particularly de-
graded in the ice-covered regions. However, there is an im-
provement in cloud sensitivity in some regions during night-
time conditions. For instance, in the desert regions of north-
ern Africa and the Arabian Peninsula, as well as the worst-
performing areas in the central Pacific, the cloud mask is
somewhat surprisingly better than when these regions are
sunlit. Karlsson et al. (2017a) and Karlsson and Håkansson
(2018) provide a more in-depth validation study on CLARA-
A2.

Their results demonstrate that using two sets of gridded
detection limits gives a more realistic cloud mask, one for
sunlit and one for nighttime conditions. Method two is more
realistic than the global static minimum optical depth ap-
proach of method one (Sect. 3.1.1). However, the authors
of this paper advocate the further-improved simulated cloud
mask, based on the use of PODs described in the next sec-
tion, that also emulates some of the expected variability in
cloud detection over a range of cloud optical depths.

3.1.3 Probability of cloud detection

The third method is an approach to simulate the CLARA-A2
cloud mask using the PODs, provided on a roughly 300 km
grid, as a function of the cloud’s optical thickness. These
POD, discussed in Sect. 2.1, are treated as the likelihood that
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Figure 2. The gridded cloud detection limit, i.e., the smallest τc threshold where the CLARA-A2 cloud mask detects more clouds than it
misses according to CALIOP for sunlit (a) and nighttime (b) conditions. For reference, the global average τc threshold equal to 0.225 is
shown as contour lines. These results are based on the results from the Karlsson and Håkansson (2018) study.

the cloud mask would detect the model cloud given its opti-
cal thickness, geographical location, and whether or not it is
sunlit.

The simulator uses computer-generated random numbers
for comparison to the gridded POD value found in a lookup
table, where one set of optical-depth-dependent PODs is for
sunlit and another is for nighttime conditions. The simulator
assigns a random number between 0–1 to each subcolumn at
the initiation. After simulating the τc, the column-integrated
τc, latitude and longitude are used to find the POD value from
the lookup table for comparison. A subcolumn is cloudy only
if its assigned random number is less than the POD. There-
fore, if the probability of detection of a cloud with a specific
optical depth is 0.05, even though it is very transparent, there

is still a 5 % chance the subcolumn will be considered cloudy.
Conversely, regardless of how optically thick a cloud is in a
subcolumn, there is a nonzero chance this subcolumn will not
be flagged as cloudy, and hence not included in any further
cloud simulations.

The lookup table of gridded POD used by the simulator
contains separate values for each of the τc intervals listed in
Table 2. The primary purpose of Table 2 is to list all of the
POD intervals used to simulate the cloud mask, but it also
provides a summary of average POD separated into global,
ocean, land outside the polar regions, and the polar regions
during sunlit conditions (nighttime in parenthesis). As is en-
tirely intuitive, the POD increases for optically thicker clouds
for all regions, and, in general, the cloud mask is more sen-
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Table 2. The probability of cloud detection for the CLARA-A2 cloud mask separated by intervals of CALIOP cloud optical thickness. This
table shows the regional averages based on the POD values used in the simulator of large geographical regions. Note that the simulator makes
use of gridded POD values on a 300 km equal-area grid (see Fig. 3) and not the POD regional averages provided here for reference. The polar
region here refers to latitudes > 75◦ (north and south). The values apply to daytime (nighttime) conditions. These results are based on the
results from the Karlsson and Håkansson (2018) study.

τc centers τc range Global Ocean Land Polar

0.025 0.00< τc ≤ 0.05 0.31 (0.23) 0.34 (0.32) 0.30 (0.14) 0.22 (0.08)
0.075 0.05< τc ≤ 0.10 0.44 (0.29) 0.49 (0.38) 0.40 (0.22) 0.33 (0.11)
0.125 0.10< τc ≤ 0.15 0.49 (0.36) 0.56 (0.47) 0.43 (0.30) 0.38 (0.13)
0.175 0.15< τc ≤ 0.20 0.55 (0.43) 0.62 (0.55) 0.48 (0.38) 0.43 (0.17)
0.225 0.20< τc ≤ 0.25 0.59 (0.50) 0.67 (0.63) 0.51 (0.46) 0.46 (0.20)
0.275 0.25< τc ≤ 0.30 0.62 (0.56) 0.70 (0.70) 0.54 (0.52) 0.49 (0.23)
0.325 0.30< τc ≤ 0.35 0.64 (0.60) 0.73 (0.75) 0.57 (0.57) 0.51 (0.25)
0.375 0.35< τc ≤ 0.40 0.67 (0.64) 0.75 (0.78) 0.59 (0.61) 0.53 (0.28)
0.425 0.40< τc ≤ 0.45 0.69 (0.66) 0.78 (0.81) 0.62 (0.64) 0.55 (0.30)
0.475 0.45< τc ≤ 0.50 0.72 (0.68) 0.80 (0.82) 0.65 (0.66) 0.58 (0.32)
0.550 0.50< τc ≤ 0.60 0.74 (0.70) 0.83 (0.84) 0.68 (0.68) 0.60 (0.34)
0.650 0.60< τc ≤ 0.70 0.77 (0.72) 0.85 (0.85) 0.71 (0.70) 0.62 (0.37)
0.750 0.70< τc ≤ 0.80 0.79 (0.73) 0.87 (0.85) 0.74 (0.72) 0.65 (0.39)
0.850 0.80< τc ≤ 0.90 0.82 (0.74) 0.89 (0.86) 0.77 (0.74) 0.67 (0.42)
0.950 0.90< τc ≤ 1.00 0.84 (0.76) 0.90 (0.86) 0.80 (0.76) 0.71 (0.47)
1.500 1.00< τc ≤ 2.00 0.87 (0.78) 0.92 (0.87) 0.83 (0.79) 0.76 (0.53)
2.500 2.00< τc ≤ 3.00 0.90 (0.81) 0.94 (0.89) 0.87 (0.82) 0.82 (0.59)
3.500 3.00< τc ≤ 4.00 0.94 (0.84) 0.97 (0.91) 0.93 (0.86) 0.88 (0.66)
4.500 4.00< τc ≤ 5.00 0.97 (0.88) 0.98 (0.93) 0.96 (0.90) 0.92 (0.70)

sitive to clouds over ice-free oceans. Additionally, nowhere,
and not even for the thickest clouds, does the POD reach 1.
Karlsson and Håkansson (2018) discuss this apparent para-
dox at length, and here is a summary:

1. Thick clouds are likely undetectable if they have the
same temperature as the underlying surface during
nighttime conditions when solar reflectivity measure-
ments are not available.

2. Colocation errors between CALIOP and AVHRR can
cause a mismatch between the datasets. Some coloca-
tion error is unavoidable due to the maximum time dif-
ference of 3 min and because sometimes the geolocation
data for AVHRR itself may not be sufficiently accurate.

3. Even if the data are ideally colocated, the FOVs of the
measurements most likely differ somewhat due to how
the GAC footprint is made (see Fig. 1 in Karlsson and
Håkansson, 2018, and Sect. 2.1 here).

In fairness, only the first point directly has to do with the
skill of the CLARA-A2 cloud mask, and thus it should be
simulated. The next two points have to do with imperfec-
tions in the validation process, and therefore they should not
be simulated. Unfortunately, currently, all three points reduce
the POD. In the future, it could make sense to estimate and
take into account the impact of all three of these considera-
tions in the simulator.

On the other hand, results from Table 2 indicate that the
impact of points two and three may not be that strong af-
ter all. Over global oceans during the daytime, i.e., the ar-
eas with the highest POD values, the detection rate for the
most optically thick clouds is 98 %. Therefore, on average,
the combined error from points two and three is probably
less than 2 %. However, in some oceanic regions where rela-
tively thick inhomogeneous clouds are prevalent, such as the
stratocumulus-dominated regions off the west coast of South
America and southern Africa, POD values are slightly below
0.9, hence the impact of points two and three may not be
negligible in these regions.

To illustrate the global distribution of POD, Fig. 3 con-
trasts two τc intervals used by the simulator. Clouds that
fall in the interval centered at τc = 0.125, which are translu-
cent clouds at only half the global average τc limit (see
Sect. 3.1.1), generally have a low POD. The POD is par-
ticularly low in this interval over land and during nighttime
conditions. However, take notice that, especially over ocean
areas and especially during sunlit hours, there is at least a
50 % POD despite the clouds being so thin.

For clouds centered at τc = 0.55, which is about twice
the global average detection limit, the PODs are predictably
quite high in general. However, again, this is not true glob-
ally. Even though the clouds are relatively thick, in areas such
as northern Africa, the Arabian peninsula, and the polar re-
gions, the POD is only around 50 %. Another striking fea-
ture is that for these semitransparent clouds, the POD over
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Figure 3. The probability of detection at two τc intervals centered at 0.125 and 0.55 for day and night conditions. These results are based on
the results from the Karlsson and Håkansson (2018) study.

nearly all regions, except the poles, are higher for cloud
retrievals made during nighttime conditions. This result is
demonstrated further in Fig. 4. Outside the polar regions,
clouds in the τc intervals from 0.2 to 0.6 have a higher POD
during nighttime conditions overall (especially in the trop-
ics), whereas for clouds thinner or thicker than this interval,
the daytime cloud masks have better success.

The fact that this slightly improved detectability at night
for clouds in the τc range 0.5–1.0 is a robust feature is sup-
ported by intercomparisons made between CLARA-A2 and
other AVHRR-based datasets (e.g., Karlsson et al., 2017a;
Karlsson and Devasthale, 2018). They found (although not
explicitly reported in the papers) the same behavior for re-
sults from PATMOS-x and Cloud-cci compared to CALIOP
observations. Whether to interpret this as an indeed improved
nighttime detectability for AVHRR-based methods or some-
thing caused by the CALIOP observation reference (e.g., en-
hanced daytime problems due to lower signal-to-noise ratios)
is currently unclear. However, this feature is not critical to the
CLARA-A2 simulator, but it merits a more in-depth investi-
gation in the future.

3.2 The choice of the simulated cloud mask

In this section, we refer to Figs. 5 and 6 to illustrate how the
choice of cloud mask simulation method affects the compar-
ison of cloud cover of EC-Earth to CLARA-A2. The results
are separated into seasons here since it is essential to un-
derstand the seasonal impact of choosing one method over

another. Figures 5a and 6a show the cloud cover accord-
ing to CLARA-A2 for 1982–2015 during Southern Hemi-
sphere summers and the Northern Hemisphere summers, re-
spectively. EC-Earth minus CLARA-A2 based on the first
method (Sect. 3.1.1) is panel (b), based on the second method
(Sect. 3.1.2) is panel (c), and based on the third method
(Sect. 3.1.3) is panel (d). Panel (e) shows the difference be-
tween the simulated cloud mask based on method one, a
global static τc threshold, and method three, based on POD
thresholds (first method minus the third method).

Globally, the overall impression is that EC-Earth underes-
timates cloud fraction. In most regions of the world, within
a few percent, this is the conclusion one would reach regard-
less of which of the three methods was used to simulate the
CLARA-A2 cloud mask. However, as described in Sect. 2.1,
the CLARA-A2 CDR is systematically and substantially less
skillful under certain conditions than on average.

As discussed in Sect. 2, CLARA-A2 is skillful at detecting
clouds in the polar regions during sunlit conditions but not so
during the polar winter. For this reason, the apparent overes-
timation of clouds in these regions by EC-Earth (Figs. 5b and
6b) is likely strongly exaggerated. Without prior knowledge
of the retrieval difficulties in cold dark locations, i.e., when
only passive infrared channels are available, if using method
one to simulate clouds, one could erroneously conclude that
EC-Earth places too many clouds in polar regions. This prob-
lem is especially salient during winter months, but it also has
a considerable impact on cumulative averages over these re-
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Figure 4. The difference in the POD of the cloud mask during sunlit and nighttime conditions for selected cloud optical depth intervals.
These results are based on the results from the Karlsson and Håkansson (2018) study.

gions. Therefore cloud mask simulations based on method
one are notably unsuitable in the polar regions and, to a lesser
extent, desert areas.

However, and what is the main point of this innovation,
if one uses the second or third method to simulate clouds,
the apparent bias in cloudiness in these regions is mostly
removed in the problematic regions. The second and third
methods do a much better job at reproducing the limitations
of cloud datasets than the first method, and the size of the
difference between method three and method one is sub-
stantial and seasonally dependent in the problematic regions
(Figs. 5e and 6e).

Notice also from Figs. 5c and d and 6c and d that the sec-
ond and third methods produce similar results, and hence
both do well in this regard. However, there are some sub-
tle differences. One is that during the Northern Hemisphere
summer months, a model validation based on the second
method leads to the conclusion that EC-Earth overestimates
clouds in the Arctic, yet if the comparison were made based
on the third method, one would conclude that only a slight
overestimation occurs here.

The third method gives the most accurate description of
the cloud detection limitations since it describes the like-
lihood of detecting or missing clouds over the full range
of cloud optical thicknesses for day and night conditions.

Also, method three can emulate the nonzero probability that
even thick clouds might be undetectable under certain con-
ditions. This approach better describes the skill of the cloud
retrievals of a satellite dataset than using gridded static values
of τmin in method two, and especially instead of using a sin-
gle global τmin value used by method one. Overall, therefore,
the recommendation is to choose method three to simulate
the cloud mask.

However, the advantage of tying statistics to geographi-
cal regions may also be a weakness in some situations. If a
model’s cloud distribution is systematically misplaced, the
model clouds may be subject to (potentially) other PODs
than what they should have been in the CLARA-A2 sim-
ulator. The consequences here should not be large, except
for the extreme cases when a model places clouds over ice-
and snow-covered areas in the polar night (with very low
PODs) instead of over adjacent ice-free ocean areas (with
very high PODs). Another factor to consider is that the un-
derlying statistics used in methods two and three derive from
colocations from the period 2006–2015 (see Sect. 2). There-
fore, in some regions, such as where there is marginal ice, the
conditions for cloud detection may have changed appreciably
from those during the validation period, for instance, due to a
changing climate, rendering the statistics less representative
than in more climatically stable regions.
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Figure 5. Total cloud cover during the DJF seasons of 1982–2015. This figure shows a comparison of EC-Earth to CLARA-A2 using three
different methods of cloud mask simulation. The reference figure at the top (a) is the cloud fraction from CLARA-A2. Panel (b) shows the
simulated observations using method one, based on a global static τc limit minus CLARA-A2. Panel (c) shows the same comparison using
method two, based on gridded τc limits, and (d) shows the same using method three, based on POD. Panel (e) shows the difference between
the simulated CF based on method one minus method three. See Sect. 3.2 for a wider description of the figure.

4 Application of the simulator to Arctic case studies

4.1 Average cloudiness during summer months

Karlsson et al. (2017a) asserted, and the POD maps in Fig. 4
suggest, that the CLARA-A2 CDR is reasonably skillful
at detecting clouds in the Arctic during sunlit conditions.
Therefore, to demonstrate the utility of the CLARA-A2 sim-
ulator, we assessed the cloud cover in these conditions over
the full length of the datasets. We added the ISCCP-H CDR

(Young et al., 2018) to the comparison since it is an equiva-
lent CDR with a well-established satellite simulator used in
many previous model studies (e.g., Webb et al., 2001; Nor-
ris et al., 2016; Terai et al., 2016; Tan et al., 2018). How-
ever, Karlsson and Devasthale (2018) found the cloud cover
of ISCCP-H too low in the polar summer and early autumn.

The cloudiness from ISCCP-H should be compared to the
simulated cloudiness using the ISCCP simulator (Jakob and
Klein, 1999), and the cloudiness, according to CLARA-A2,
is compared to the CLARA-A2 simulator. Figure 7 shows
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Figure 6. Total cloud cover during the JJA seasons of 1982–2015. See the description in Fig. 5 for a description of the layout in this figure.

the average cloudiness in Arctic summer months according
to CLARA-A2 (Fig. 7a) and ISCCP-H (Fig. 7b). Figure 7c
and d show assessments of the overall cloudiness during the
Arctic summer by EC-Earth using the simulated CLARA-
A2 and simulated ISCCP-H, respectively. As mentioned in
Sect. 3.1.1, the simulated cloud mask for ISCCP-H uses a
global τc threshold (τc = 0.3) for the simulated cloud mask
(method one, different threshold), and the CLARA-A2 sim-
ulator uses the POD-based approach for the simulated cloud
mask (method three). The two satellite datasets and the cli-
mate model are limited to July 1983 to June 2015 to match
the availability of the ISCCP-H period to date.

Figure 7 demonstrates that using simulators that do not
take the variable skill of the cloud mask into account, such
as the ISCCP simulator, could easily lead to false conclusions
about EC-Earth cloud cover in the Arctic summer. Compared
to the ISCCP-H observations, the simulated ISCCP-H ob-
servations indicate that EC-Earth has a robust positive cloud
bias in the Arctic of more than 30 %. However, CLARA-A2,
shown to have a high skill in the polar summer (see Fig. 5b in
Karlsson et al., 2017a), indicates that EC-Earth underpredicts
the cloudiness in large parts of this region by more than 10 %.

The substantial differences between the simulated ISCCP-
H and CLARA-A2 are mainly due to the ISCCP simulator
being too sensitive to thin clouds here. As shown in Fig. 2,
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Figure 7. The total cloud fraction in the Arctic summer. The top row contains the observations from two equivalent CDRs, CLARA-A2
(a) and ISCCP-H (b). The bottom row contains the difference between the simulated CDR minus the CDR for CLARA-A2 (c) and ISCCP-H
(d). The period is July 1983 to June 2015.

during daytime conditions in the Arctic, a more appropri-
ate daytime τc limit would be around 0.5 or more, which is
higher than the global average of 0.3 assumed by the ISCCP
simulator. Therefore, in the Arctic summer, the ISCCP sim-
ulator retrieves clouds in between these cloud optical thick-
nesses that the CLARA-A2 simulator, and most likely the
observations, do not. As a consequence, anyone assessing
cloudiness in the Arctic will reach the opposite conclusion
using the CLARA-A2 CDR and simulator compared to the
ISCCP-H counterpart.

Overall, based on CLARA-A2 as the reference, EC-Earth
has a smaller average cloud fraction over most of the region
between 50–90◦ N during the summer months. The differ-
ence is more substantial over ocean areas than over land, with
the largest underrepresentation of cloudiness at these lati-
tudes over the North Atlantic and following the Gulf Stream
north of Norway. However, globally, the most considerable
negative cloud biases between the model and observations
are in the tropics and subtropics (see Fig. 6).
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Figure 8. The average trend in cloudiness over the entire record (%
per decade) in the Arctic from the illuminated months of April to
August according to CLARA-A2. Negative trends correspond to an
average decrease in cloudiness over time. The trends are from all
months in the period 1982–2015.

4.2 Trends in cloudiness

The CLARA-A2 CDR is particularly suitable for cloud trend
analysis in the Arctic summer due to its length and high cloud
detection skills there (Karlsson and Devasthale, 2018). Here
is an assessment of the cloud trends from the months that
have enough sunlight, i.e., where the solar zenith angle is
less than 84◦ in the Arctic, above 70◦ N for CLARA-A2 and
EC-Earth. These trends are based on the linear regression of
cloudiness from all data in 1982–2015 and expressed here as
the absolute change in cloudiness (% per decade).

Figure 8 shows the distribution of cloudiness trends, ac-
cording to CLARA-A2. From this figure, some distinct pat-
terns emerge; in the spring months, there is an increase in
cloudiness by more than 5 % in large parts of the Arctic and
upwards of 10 % north of Novaya Zemlya, and in the sum-
mer to Autumn months the Arctic is dominated by a decrease
in cloudiness. The increase in cloudiness reaffirms observa-
tions previously reported in Kapsch et al. (2013, 2019). Kap-
sch et al. (2013) asserted that the increase in cloudiness is
likely due to an increased intrusion of water vapor into these

Figure 9. As for Fig. 8 but for the EC-Earth climate model.

regions during the spring months. The most substantial de-
crease in cloudiness seen in July and August is in the Beau-
fort Sea, and especially the Lincoln Sea, north of the Cana-
dian Arctic Archipelago and Greenland. However, it is out-
side the scope of this study, where the primary purpose is
to describe the CLARA-A2 simulator, to further assess the
possible reasons for the changing cloudiness seen in these
observations.

Figure 9 shows the average change in cloudiness from EC-
Earth, over the same period used in Fig. 8, using method
three to simulate the cloud mask. The cloud trends in the
model differ from the observations. In particular, the trends
are much smaller and differently distributed (except in May)
than the observations indicate. However, there are some crit-
ical limiting factors to consider for this model evaluation.

EC-Earth is represented here by only one model run, and,
although it employs prescribed sea surface temperatures and
sea ice extent, the model atmosphere is free to meander. In
order to assess if the model cloud trends agree with the ob-
servations, ideally several ensemble model runs are required
to find a general trend to assess whether or not the natural
variability produced by the model is accurate (Koenigk et al.,
2019).

Figure 10 illustrates how the choice of cloud mask simula-
tion affects the model cloud trend. Fig. 10 shows the average

Geosci. Model Dev., 13, 297–314, 2020 www.geosci-model-dev.net/13/297/2020/



S. Eliasson et al.: CLARA-A2 simulator 311

Figure 10. The average decadal cloudiness trend in the Arctic from
the illuminated months of April to August only over the ocean
(ice-free or ice-covered). The figure shows the reference dataset,
CLARA-A2, the CLARA-A2 simulator, one line for each method,
and the total cloud cover from the EC-Earth model without using
any simulator. The trends are from all months in the period 1982–
2015.

cloudiness trends for the same conditions, aside from exclud-
ing land areas, as in Fig. 8, for CLARA-A2, the three meth-
ods of simulated CLARA-A2 cloud mask from the EC-Earth
atmosphere, and the total cloudiness directly from EC-Earth
without any simulator.

Figure 10 illustrates that regardless of which method is
used to simulate cloudiness, or even using no simulator at
all, the simulators do not appear to alter the cloud trends in
the Arctic summer. These results may indicate that the clouds
in the model are not changing the average range and distribu-
tion of optical thicknesses over time, even if the actual cloud
amounts may change.

In summary, no definitive conclusions on model cloud
trends in the Arctic can be drawn here for the reasons listed
above, and a more thorough examination of whether or not
EC-Earth reproduces realistic cloud trends is also outside the
scope of this study. Although the choice of method does not
appear at first glance to impact the model cloudiness trends,
it still makes sense, in this case, to use method three to sim-
ulate clouds, since it more closely reflects the skill of the
CLARA-A2 dataset.

5 Conclusions

This article describes a satellite simulator designed to enable
comparisons between climate models and the CLARA-A2
CDR. Typically, satellite simulators simulate the satellite-
retrieved cloud fraction using one global cloud optical depth
threshold to remove thin model clouds that are presumed
undetectable by the instruments used to generate the CDR.

There are more factors to consider that influence the ability
to retrieve thin clouds. These include the following:

– the optical thickness of the cloud,

– how illuminated the clouds are,

– the underlying surface properties, and

– the temperature difference between the cloud and the
surface.

In this paper, we show that using one optical depth threshold
for all conditions to emulate cloud sensitivity, denoted here
as method one, is inappropriate since the cloud detection skill
of satellite retrievals may vary considerably. Method one is
the method used in the COSP simulators on which many pre-
vious studies have relied. Therefore, to avoid the most sub-
stantial uncertainties, many studies are limited to between
±60◦ latitude. There is a need for a more realistic simulated
cloud mask that better reflects the actual cloud detection abil-
ity of the CDR. We, therefore, propose two other methods
that are both based on validations of the CLARA-A2 CDR
using colocated cloud retrievals from CALIOP by Karlsson
and Håkansson (2018).

Method two uses two maps of cloud detection thresh-
olds on a 300 km grid, one for day and one for night con-
ditions. These thresholds refer to the smallest cloud optical
depth where there is a 50 % success rate in detecting clouds.
Method three, the recommended approach to simulating the
cloud mask, is based on the POD of clouds depending on
their τc. Instead of using a τc threshold to determine whether
or not a model cloud would have been detected, with this
approach any model cloud could potentially be detected or
missed. Maps of POD valid for separate optical depth ranges
(see Table 2) are used together with a random number gen-
erated at run time for every model subcolumn to determine
cloudiness. These are also provided on a 300 km grid and
separated by day and night.

The main improvements for methods two and three are the
following:

1. The cloud sensitivity generally increases, i.e., with
lower cloud optical thresholds (method two) and higher
PODs (method three), in areas where the cloud re-
trievals are relatively straightforward, such as over mid-
latitude oceans.

2. More suitable, higher optical depth thresholds (method
two) and lower PODs (method three) apply in areas and
conditions where cloud retrievals are notoriously tricky.

3. Method three indirectly takes into account that retrievals
in some regions are more likely than others to miss
thick clouds. This situation is common in cold regions
where thick clouds may be inseparable from cold, snow-
covered surfaces and also in regions with an abundance
of broken and small-scale cumulus clouds such as the
atmospheric subsidence regions over the ocean.
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Compared to method one, methods two and three allow
for analyses to be carried out at high latitudes and during
nighttime conditions. Although the most significant improve-
ments are at high latitudes, these new methods also account
for the modestly improved cloud detection of CLARA-A2
over the global oceans compared to, in particular, desert ar-
eas. Therefore, with these methods, model studies may also
be improved for regions outside the polar regions.

This paper illustrates that these new approaches to cloud
mask simulation bring the model and observations much
closer to each other compared to using a fixed optical depth
threshold globally to filter out clouds. They allow for a
more realistic model to satellite comparison, and thus re-
duces the likelihood that incorrect conclusions from model
assessments are reached simply due to cloud simulations not
correctly representing the cloud retrievals of the CDR. Al-
though methods two and three both significantly improve
cloud mask simulations, method three, using the POD ap-
proach, is better since it realistically mimics the performance
of the cloud mask of the CLARA-A2 CDR over the full range
of cloud optical thicknesses.

The overall cloudiness in the Arctic during summer
months from 1984–2014 is used to demonstrate the useful-
ness of the simulator and the new approach to cloud mask
simulation. The ISCCP-H CDR here complemented the com-
parison as a second independent satellite dataset. Therefore,
EC-Earth was assessed using both the ISCCP and CLARA-
A2 simulators and compared to the corresponding CDR. This
comparison shows that EC-Earth seems to produce too few
clouds in and around the Arctic compared to CLARA-A2.

However, despite the ISCCP-H CDR having more clouds
than CLARA-A2 in the Arctic summer months, compared to
ISCCP-H and using the ISCCP simulator, the assessment on
EC-Earth cloudiness would lead to quite the opposite con-
clusion in some regions in the Arctic. The simulated ISCCP
cloudiness is substantially higher than the ISCCP observa-
tions. This overrepresentation of clouds is mostly due to the
ISCCP simulator using a global optical depth threshold that,
in the Arctic, is too generous. This example demonstrates the
advantage of using the CLARA-A2 approach to cloud mask
simulation compared to the traditional approach used by the
ISCCP simulator and others. Although only demonstrated in
the Arctic summer in this paper, the POD approach, method
3, is also the most appropriate globally.

In terms of trends in overall cloudiness in the Arctic for all
months with sunlit conditions from 1982–2015, the observa-
tions from CLARA-A2 show a sharp increase in cloudiness
over the years, especially in the ocean areas north of western
Russia, in the spring months of April and May. In the summer
and early autumn months, there is a large area of decreasing
cloudiness in the seas just north of Canada and Greenland.
Although only based on one model run, and therefore clear
statements about cloud trends in the model cannot be made,
one can deduce that the average cloudiness trends from the

model are very similar using any simulator method, or no
simulator at all.

In summary, the authors advocate an approach to cloud
mask simulation based on the probability of detection of
clouds depending on their optical depth, location, and il-
lumination. This study suggests that evaluations of climate
model simulations of cloudiness parameters would benefit
substantially from using more advanced satellite simulators,
which, in a better way than today, accounts for weaknesses
and strengths of satellite retrievals.

Data availability. The CLARA-A2 CDR can be downloaded
from https://wui.cmsaf.eu (last access: 30 July 2019, Karls-
son et al., 2017d). Data from the EC-Earth global cli-
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uuid/526ec947ec2d4467b128749e9fe46f1a (EC Earth consortium,
2017). The ISCCP-H products and other ISCCP products are
available from https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.
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