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Abstract. We present the development of a multiphase ad-
joint for the Community Multiscale Air Quality (CMAQ)
model, a widely used chemical transport model. The adjoint
model provides location- and time-specific gradients that can
be used in various applications such as backward sensitivity
analysis, source attribution, optimal pollution control, data
assimilation, and inverse modeling. The science processes of
the CMAQ model include gas-phase chemistry, aerosol dy-
namics and thermodynamics, cloud chemistry and dynamics,
diffusion, and advection. Discrete adjoints are implemented
for all the science processes, with an additional continuous
adjoint for advection. The development of discrete adjoints
is assisted with algorithmic differentiation (AD) tools. Par-
ticularly, the Kinetic PreProcessor (KPP) is implemented for
gas-phase and aqueous chemistry, and two different auto-
matic differentiation tools are used for other processes such
as clouds, aerosols, diffusion, and advection. The continu-
ous adjoint of advection is developed manually. For adjoint

validation, the brute-force or finite-difference method (FDM)
is implemented process by process with box- or column-
model simulations. Due to the inherent limitations of the
FDM caused by numerical round-off errors, the complex
variable method (CVM) is adopted where necessary. The ad-
joint model often shows better agreement with the CVM than
with the FDM. The adjoints of all science processes compare
favorably with the FDM and CVM. In an example applica-
tion of the full multiphase adjoint model, we provide the first
estimates of how emissions of particulate matter (PM2.5) af-
fect public health across the US.

1 Introduction

Adjoint models generate gradients that can be used directly
for backward sensitivity analysis or to provide directions for
gradient-based optimization in four-dimensional variational

Published by Copernicus Publications on behalf of the European Geosciences Union.



2926 S. Zhao et al.: A multiphase CMAQ version 5.0 adjoint

data assimilation (4D-Var) or other inverse problems (Errico,
1997; Navon, 1997; Giles and Pierce, 2000; Wang et al.,
2001; Sandu et al., 2005; Griewank, 2012). Applications of
adjoint models for data assimilation have a long success-
ful history in meteorology and oceanography (Errico, 1997;
Navon, 1997). For atmospheric chemistry, adjoint model-
ing was used as early as the 1990s (Fisher and Lary, 1995;
Elbern et al., 1997). More recently the methods were ap-
plied to aerosols in 1D models (Henze et al., 2004; Sandu
et al., 2005), 3D models of inert aerosol mass concentrations
(Hakami et al., 2005), and 3D models of chemically active
aerosol mass concentrations (Henze et al., 2007).

Due to omnipresent uncertainties in emissions, initial and
boundary conditions, and the underlying complex physical
and chemical processes, predicting or accurately simulat-
ing air quality poses great challenges; the assimilation of
chemical data is thus a promising approach in improving
the model skill (Carmichael et al., 2008). While applica-
tions in data assimilation and inverse modeling form the tra-
ditional niche for adjoint applications in atmospheric mod-
eling, adjoint models can also be used to conduct sensitiv-
ity analysis. Sensitivity analyses are often performed in air
quality studies to estimate the impact of various model in-
puts, in particular emissions, on model predictions (Dunker
et al., 2002; Hakami et al., 2003; Sandu et al., 2005; Co-
han et al., 2005; Napelenok et al., 2006; Martien and Harley,
2006; Koo et al., 2007). Among various methods for sensi-
tivity analysis, two general categories are more commonly
used: forward and adjoint (Hakami et al., 2007). In the for-
ward approach, sensitivity information is propagated forward
in time. The most common forward sensitivity approach is
the brute-force or finite-difference method (FDM). The FDM
requires minimal effort to implement, but the search for a
proper step and perturbation size might be needed to pro-
duce accurate sensitivities (Iott et al., 1985). The step size
selection process could be resource-demanding and repeat-
edly required, especially when the numerical model contains
highly nonlinear processes that are routinely encountered in
atmospheric models. Another forward approach is the com-
plex variable method (CVM) (Squire and Trapp, 1998; An-
derson and Nielsen, 2001). Unlike the FDM, the CVM is not
subject to subtraction errors and can provide accurate sen-
sitivities by using a perturbation size as small as allowed in
floating-point calculations, but this approach has only been
implemented in one atmospheric chemical transport model
(Giles et al., 2003; Constantin and Barrett, 2014). A third for-
ward approach is the decoupled direct method (DDM) or the
tangent linear model (TLM), in which differentiation is di-
rectly applied to the governing equations or algorithmically
to the primal computer model. DDM can generate exact sen-
sitivities (i.e., subject to numerical errors, with no perturba-
tions required) at the cost of a significant amount of model
development (Dunker et al., 2002; Napelenok et al., 2006).

In the adjoint approach, the sensitivity information is prop-
agated backward in time and a single model run generates

sensitivities of a metric of model outputs with respect to all
model inputs (Errico, 1997; Giles and Pierce, 2000). The
adjoint and the forward sensitivity approaches complement
each other in the sense that the forward approach calculates
sensitivities of all model outputs to a single model input,
combined or individual, in one model run (an extra baseline
run required for the FDM), while the adjoint method pro-
vides sensitivities of a single model output (individual or in-
tegrated) to all model inputs (Hakami et al., 2007).

In addition to 4D-Var and sensitivity analysis, adjoint
models have been implemented for source attribution of air
pollutants (Zhang et al., 2015; Qi et al., 2017). Compared
to the zero-out method, which computes contributions by
switching an emission sector on and off, the adjoint approach
has the advantage of not changing the chemical environ-
ment, which could lead to inaccuracies in estimates (Koo et
al., 2009). Furthermore, the adjoint approach can be read-
ily extended to include more emission sectors for investiga-
tion with a marginal increase in computational cost; as men-
tioned earlier, the computational cost of adjoint models is
practically independent of the number of input parameters.
Source attribution by adjoint models has its own limitation
due to the inherent linear assumption in adjoint formulation.
Koo et al. (2009) found that the linear assumption held for
a 20 % emission reduction in general for secondary inor-
ganic aerosols; for secondary organic aerosols, the linearity
assumption was valid for up to 100 % reductions in anthro-
pogenic emissions. Although these bounds are based on the
DDM of the three-dimensional Comprehensive Air quality
Model with extensions (CAMx; ENVIRON, 2020; Koo et al.,
2007), they are applicable to the bounds for adjoint models
for source attribution, as both the DDM and the adjoint are
tangent estimations based on the same assumption of linear-
ity.

The U.S. Environmental Protection Agency’s Commu-
nity Multiscale Air Quality (CMAQ) model is a regional-
to-hemispheric air quality model, which is widely used due
to its community-driven development and state-of-the-art
science components (Byun and Schere, 2006; Foley et al.,
2010). Limited adjoint versions of CMAQ have been devel-
oped before; a gas-phase adjoint model was previously de-
veloped for CMAQ 4.5.1 (Hakami et al., 2007) and has been
used in several applications related to ozone (Resler et al.,
2010; Mesbah et al., 2012; Pappin and Hakami, 2013; Zhao
et al., 2013; Pappin et al., 2015, 2016; Park et al., 2016).
Turner et al. (2015a, b) developed and applied the adjoint of
black carbon (BC) aerosol for CMAQ 4.7.1 but did not in-
clude other aerosol species or gas-phase chemistry.

The lack of chemically comprehensive aerosol and cloud
processes in the adjoint model has so far prevented appli-
cations related to aerosols, which in turn has imposed sig-
nificant limitations on adjoint-based multi-pollutant studies
on topics such as human health and climate. Analogous to
ozone, exposure to fine particulate matter (PM2.5) poses risks
to human health (Brook et al., 2010; Crouse et al., 2012,
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2015; West et al., 2016; Turner et al., 2016; Di et al., 2017;
Pinault et al., 2017; Burnett et al., 2018). Particulate matter
also plays a significant role in climate change by influencing
the radiative budget of the atmosphere (Tai et al., 2010, 2012;
Fiore et al., 2012; Fuzzi et al., 2015). A multiphase adjoint
model has been shown to better delineate the influence of
model inputs such as emissions on human health (Lee et al.,
2015; Koplitz et al., 2016) and climate (Henze et al., 2012;
Karydis et al., 2012; Lacey et al., 2017).

Adjoints of air quality models have been developed be-
fore, but many of these adjoint models were for gas-phase
chemistry and/or contained a less detailed treatment (lack-
ing microphysics or thermodynamics) of aerosols than that
of CMAQ (Elbern et al., 2000; Henze et al., 2004; Sandu et
al., 2005; Hakami et al., 2005; Martien and Harley, 2006;
Dubovik et al., 2008; Huneeus et al., 2009), or they were
developed for a global model with coarser resolution and
varying levels of detail in the representation of some atmo-
spheric processes (Henze et al., 2007). This work aims to fill
in these gaps by developing a full adjoint for a widely used
regional air quality model with detailed, multiphase, size-
resolved treatment of aerosols and to modify the adjoint to
reflect more recent science process updates present in CMAQ
version 5.0.

2 Adjoint model development

The CMAQ modeling system solves the atmospheric diffu-
sion equations (ADEs; Byun, 1999; Jacobson, 2005; Seinfeld
and Pandis, 2006):

∂ci

∂t
=−u · ∇ci +

1
ρ
∇ · (ρK∇ci)+ ri + ei + si, (1)

where ci is the mixing ratio of species i, u is the wind veloc-
ity, ρ is the air density, K is the diffusivity tensor, and ri , ei ,
and si represent the change rates from chemical and thermo-
dynamic transformations, emissions, and the loss process for
species i, respectively. The first two terms on the right-hand
side represent the transport process, namely advection and
diffusion. Given the proper initial conditions and boundary
conditions, the CMAQ model simulates the fate of air pollu-
tants and their precursors emitted to or produced via chemi-
cal reactions in the atmosphere.

Integration of the ADE in CMAQ is accomplished through
operator splitting, which facilitates the modular structure of
the model (Byun and Schere, 2006; McRae et al., 1982).
CMAQ includes sub-modules implemented for all the sci-
ence processes:

– VDIFF for vertical diffusion,

– HADV for horizontal advection,

– ZADV for vertical advection,

– HDIFF for horizontal diffusion,

– CLDPROC for cloud dynamics and aqueous chemistry,

– CHEM for gas-phase chemistry, and

– AERO for aerosol dynamics and thermodynamics.

In the CMAQ model, the science processes are executed one
after another at every synchronization time step that is dic-
tated by the stability criteria for horizontal advection (Byun
and Schere, 2006). To guarantee accuracy and to meet sta-
bility criteria, internal time steps specific to each process are
also employed.

The adjoint equations corresponding to the ADEs can be
written as

−
∂λi

∂t
=∇ · (uλi)+∇ ·

(
ρK∇

λi

ρ

)
+ r̃i +ϕi, (2)

where λi represents the adjoint variable of species i; r̃i repre-
sents the contributions from ri , ei , and si ; and ϕi denotes ad-
joint forcing (Elbern et al., 2000; Sandu et al., 2005; Martien
and Harley, 2006; Henze et al., 2007; Hakami et al., 2005,
2007). In the following subsections, the adjoint model devel-
opment techniques and strategies are introduced, and the de-
tails of the challenges and treatment for each science module
are discussed.

2.1 Continuous and discrete adjoints

There are two approaches in developing an adjoint model:
discrete and the continuous (Giles and Pierce, 2000). The
discrete approach starts with a numerical model of the primal
equation and differentiates it directly line by line, or it differ-
entiates the numerical algorithm used to solve the continuous
primal equation. One significant advantage of the discrete ap-
proach is that the model-building process can be automated,
at least partially (Giering and Kaminski, 1998; Griewank,
2003). A variety of automatic differentiation (AD; also re-
ferred to as algorithmic differentiation) tools for various pro-
gramming languages are available (e.g., http://www.autodiff.
org/, last access: 23 June 2020). It should be noted that the
sensitivities from the discrete adjoint model are exact in the
sense that they are the exact (to machine precision) first-order
derivatives of the forward model unless approximations are
made (Errico, 1997). It is expected that the sensitivities are
comparable with those from the FDM (with properly chosen
perturbation sizes) or the CVM as the FDM and the CVM
are both based on the same forward model (see Sect. 3 for
the details of the CVM).

The continuous approach takes a governing equation, de-
rives its adjoint equation, and numerically solves the adjoint
equation. The continuous adjoint model is not constrained to
using the same numerical scheme as the forward or the dis-
crete adjoint model (Sirkes and Tziperman, 1997). Take hor-
izontal advection as an example. The forward equation and
the adjoint equation share the same form; the only difference
is that the adjoint equation runs backward in time (Hakami et
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al., 2007; Gou and Sandu, 2011). Implemented for advection
in CMAQ is the piecewise parabolic method (PPM), which
is a higher-order Godunov-type method and uses intrinsic
dissipation to improve stability and accuracy (Colella and
Woodward, 1984; Byun and Schere, 2006). With the PPM
employed for the adjoint equation, the corresponding contin-
uous adjoint model bears the same desirable numerical fea-
tures.

2.2 The backward nature of an adjoint

Adjoint models are integrated backward in time. The nature
of the backward propagation of adjoint sensitivities could be
best demonstrated from a discrete perspective, which is de-
tailed in Wang et al. (2001). Suppose we have the forward
primal model written as

ct =Gt−1(ct−1), (3)

where c is the vector of state variables (e.g., concentrations),
the subscript t indicates time, and G denotes the primal
model.

Linearizing the above equation, one can obtain the corre-
sponding TLM (Talagrand and Courtier, 1987) as

δct =G′t−1δct−1, (4)

where δc represents perturbations to the state variables, and
G′t−1 is the Jacobian matrix. The Jacobian matrix is the first
derivative of Gt−1 with respect to the input vector and has
the following form (Wang et al., 2001):

G′t−1 =


∂G11
∂c1

∂G12
∂c2

∂G21
∂c1

∂G22
∂c2

· · ·
∂G1n
∂cn

· · ·
∂G2n
∂cn

...
...

∂Gn1
∂c1

∂Gn1
∂c2

. . .
...

· · ·
∂Gnn
∂cn


t−1

. (5)

The Jacobian matrix is not readily explicit in the model; by
perturbing any one of the elements of the input vector c0,
one can obtain the values of the corresponding column of the
Jacobian matrix. (Depending on the problem at hand, a com-
bination of perturbations could be useful and feasible.) The
obtained sensitivities are with respect to the perturbed input
of all output variables or a metric defined over the output
variables.

To resolve the values of a row of the Jacobian matrix, the
Jacobian matrix can be transposed to construct the following
adjoint model:

λt−1 =G′t−1
T
λt , (6)

where λ is the vector of adjoint variables. The row of the Ja-
cobian matrix holds the sensitivities with respect to all input
variables.

For simulations from time 0 to t , the adjoint could be writ-
ten

λ0 =G′T λt = (G′t−1
◦G′t−2

◦
· · ·
◦G′0)

T λt

=G′0
T ◦G′1

T ◦
· · ·
◦G′t−1

T
λt , (7)

where the subscript t indicates the last time step used in cal-
culating the Jacobian matrix. Because of the transposition,
the order of the composition of the Jacobian matrices for dif-
ferent time steps is reversed. The Jacobian matrix at the last
time step is applied first, instead of the one at the first time
step. In other words, the adjoint sensitivities are propagated
backward in time. A description from the continuous adjoint
perspective of the backward propagation nature is found in
Giles and Pierce (2000), Hakami et al. (2007), or Henze et
al. (2007).

Propagating backward in time introduces another promi-
nent challenge for the adjoint model, i.e., the checkpointing
of intermediate values of state variables for nonlinear pro-
cesses. Unless the forward primal model is linear, the inter-
mediate values of the state variables are needed to calculate
the transposed Jacobian matrix at each time step. Strategies
of checkpointing are discussed in Sect. 2.4.

2.3 Automatic differentiation for the CMAQ science
processes

Adjoint model development has been assisted with several
AD tools. As mentioned at the beginning of Sect. 2, the
science processes in CMAQ include advection, horizontal
and vertical diffusion (including dry deposition), gas-phase
chemistry, aerosols (including thermodynamics and dynam-
ics), and clouds (including aqueous chemistry and wet de-
position). For the transport processes, TAMC (Tangent lin-
ear and Adjoint Model Compiler) was employed for the ad-
joint (Giering, 1999). The Kinetic PreProcessor (KPP) was
adopted for the gas-phase chemistry and the aqueous chem-
istry of clouds (Damian et al., 2002). For aerosols and cloud
dynamics, Tapenade was used to generate the adjoint (Has-
coët and Pascual, 2013).

The AD approach is used for all the CMAQ science pro-
cesses. The CMAQ code is written in Fortran 77/90 and is
not ready for AD in general; significant modifications are re-
quired to process the original CMAQ code. For Tapenade
3.10, those modifications include preprocessing directives
and macros, defining a proper cost function, constructing a
root subroutine, and dealing with pointers and black-box sub-
routines, to name a few. Without the revisions, the AD tool
either fails to generate the adjoint files or produces one that
requires excessive manual intervention.

In addition to the changes mentioned above, an important
numerical procedure, the bisection method, needs some spe-
cial treatment for the adjoint. The bisection procedure does
not provide a passage for the propagation of sensitivity in-
formation. In the current work, the post-differentiation tech-
nique (Bartholomew-Biggs, 1998) is implemented before the
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adjoint is derived to obtain sensitivity information in a man-
ner consistent with the underlying algorithm. The extensively
used bisection procedure remains in the CMAQ code; af-
ter the solution is converged, an extra step of the Newton–
Raphson method is attached to the bisection procedure to fa-
cilitate the calculation of the gradient of the equation at the
root (Capps et al., 2012).

The adjoint models generated by AD tools do not run right
out of the box. A post-processing step is necessary to pre-
pare the code for testing, including modifications based on
the error and/or warning messages issued by the tools and
checking against the original CMAQ code, for example, for
missing code parts. In general, the full cycle of development
involves code preparation, AD, post-processing, and valida-
tion, and it is repeated as many times as needed.

2.3.1 Aerosols

The CMAQ model uses the modal approach to treat aerosols
(Binkowski and Roselle, 2003). Specifically, the size range
of an aerosol species is divided into three modes: the Aitken
mode of aerosols with a geometric diameter less than 0.1 µm,
the accumulation mode with a geometric diameter between
0.1 and 2.5 µm, and the coarse mode with a geometric di-
ameter greater than 2.5 µm. Fine particles include those with
a geometric diameter less than 2.5 µm, which include all
particles in the Aitken and accumulation modes. Although
the geometric diameter is important for distinguishing the
modes, it is a derived quantity in CMAQ. The aerosols are
represented by mass, number, and surface area by design;
all the other quantities required for simulation are derived
from these three representative moments based on the log-
normal assumption of the size distributions (Binkowski and
Roselle, 2003).

The key components of the CMAQ aerosol module include
the production of secondary organic aerosol (SOA), new
particle formation from nucleation, particle coagulation and
condensational growth, heterogeneous chemical reactions to
generate nitric acid, mode merging, and aerosol thermody-
namics (see Subsect. 2.3.2 for cloud-related aerosol pro-
cesses). Aerosol thermodynamics are treated with the ISOR-
ROPIA thermodynamic equilibrium model (Nenes et al.,
1998; http://isorropia.epfl.ch/, last access: 23 June 2020), for
which the adjoint, ANISORROPIA, has been developed and
documented in Capps et al. (2012). Bisection procedures are
extensively used in ISORROPIA, and the post-differentiation
technique mentioned in Sect. 2.3 was employed to ensure the
propagation of sensitivity information. Capps et al. (2012)
discuss how challenges posed by the nonlinearity and solu-
tion discontinuity in ISORROPIA were handled in the ad-
joint development.

To generate the adjoint by AD, the rest of the processes in
the aerosol module are lumped into a box model. The cor-
responding Fortran code is preprocessed for the AD tool.
Although a Newton-type iterative procedure, instead of a

bisection method, is used in the SOA process, the post-
differentiation technique is implemented to improve compu-
tational efficiency. In other words, the original Newton rou-
tines are used to obtain a converged solution, which is then
used to propagate the sensitivity information through the cor-
responding adjoint routine generated from the one-step New-
ton method. It is worth noting that post-differentiation is ap-
plied when post-processing the adjoint code; for AD, the
original Newton routine is revised to iterate only once.

2.3.2 Clouds

The cloud module in CMAQ deals with cloud dynamics and
aqueous chemistry. Depending on the cloud size, one of two
solution techniques is employed. The resolved cloud sub-
module (RESCLD) is invoked when the cloud size is larger
than the grid size. Under this circumstance, cloud dynam-
ics become part of the transport process and need not be
treated separately in the cloud module. When clouds partially
exist in a cell, the sub-grid module for convective clouds
(CONVCLD) is invoked, which resolves the vertical convec-
tive mixing in the boundary layer based on the Asymmetri-
cal Convective Model (Pleim and Chang, 1992). The mixing
process computes mixing ratios for each individual species
inside and outside a cloud. The obtained mixing ratios are
then redistributed to each layer according to the initial value
using a weighting function. The nonlinearity introduced by
the weighting function has proven be problematic in differ-
entiation as discussed in Sect. 3 during testing. Both sub-
modules, RESCLD and CONVCLD, simulate in-cloud scav-
enging, wet deposition, and aqueous chemical reactions. An
exponential decay formulation is used for the in-cloud scav-
enging processes. For cloud dynamics, the same AD tool and
procedure as for the aerosol module are employed for the ad-
joint development.

For aqueous chemistry, KPP version 2.2.3 is used (Damian
et al., 2002). Unlike the other AD tools used in this study, the
KPP operates on the algorithmic level instead of directly on
the code; given a chemical mechanism, the KPP can gen-
erate the corresponding computer code in several languages
including Fortran 77/90. The KPP has the capability to gen-
erate the forward model, the DDM or TLM, and the adjoint
through separate runs. A detailed treatment of cloud chem-
istry with the KPP can be found elsewhere (Fahey et al.,
2017). The species treated in aqueous chemistry are con-
sistent with the CB05 chemical mechanism and the AERO5
aerosol module in the current adjoint implementation.

2.3.3 Gas-phase chemistry

As done for the previous version of CMAQ-ADJ (Hakami
et al., 2007), the KPP is used to generate the subroutines
required for constructing the adjoint. The chemical kinetic
mechanism implemented is updated to CB05 from CB-IV
for the previous adjoint (Yarwood et al., 2005).
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2.3.4 Transport

The transport module in CMAQ 5.0 consists of four com-
ponents including horizontal advection, vertical advection,
horizontal diffusion, and vertical diffusion. Horizontal ad-
vection is further divided into two x- and y-direction com-
ponents with the order of the two advection steps alternating
to maintain a symmetric form (Byun and Schere, 2006). As
discussed in Subsect. 2.1, the PPM scheme is implemented
for the advection process. PPM is monotonic and enforces
positivity (Byun and Schere, 2006). As the sensitivity values
could be either positive or negative, the positivity-enforcing
feature should be disabled when the method is applied for the
adjoint equation to develop a continuous version of the ad-
joint (Gou and Sandu, 2011). The discrete adjoints of all the
four components of transport were developed using TAMC
version 5.3.2, which is an AD tool for Fortran 77 programs
with partial Fortran 90 support (Giering, 1999).

2.4 Manual interventions

Manual interventions are necessary to revise and assem-
ble the adjoint source code generated by AD tools. First,
the warning and error messages issued by AD tools are
checked. Once the code is successfully compiled, the forward
sweep of the adjoint routines is checked against the orig-
inal CMAQ for completeness. For post-differentiation, the
iterative Newton–Raphson method originally implemented
for SOA is added back to the forward sweep to replace the
one-step version created specifically for AD. The solution
is saved (pushed into stack) after convergence and restored
(popped out of stack) for the one-step adjoint routine of the
Newton–Raphson method. Last, but not least, the adjoint
code is refined according to the coding guidelines of CMAQ
including indentation styles and the usage of macros and di-
rectives.

As mentioned in Sect. 2.2, the adjoint model is integrated
backward in time, and checkpointing is required for active
variables used in the propagation of sensitivity information
through nonlinear processes. There are two strategies to re-
trieve intermediate values: repeatedly run the forward model
or run the forward model once and store all the intermedi-
ate values. In practice, a trade-off between the two strate-
gies is employed, as repeatedly running the forward model is
prohibitively expensive, and saving all intermediate values is
impractical due to limited storage space (Wang et al., 2009).
Intermediate values can be saved to memory, allowing for
faster access, but subject to physical memory constraints.

The AD tools automatically employ a combined strategy
of rerunning and checkpointing for intermediate values of ac-
tive variables. For example, Tapenade performs a live anal-
ysis to determine if a variable is active and automatically
applies a strategy that combines checkpointing and rerun-
ning for those active variables at the subroutine level. Ev-
ery adjoint routine contains a forward sweep and a backward

sweep. During the forward sweep (rerunning), the values of
active variables (including control variables) are pushed into
a stack (checkpointing) and are then popped out and used
during the backward sweep. There are different stacks for
different data types such as integer (for conditional and/or
branch control), real, and double-precision variables. The
values of active variables are checkpointed to a stack of its
own type accordingly. Stacks operate on the last-in first-out
principle and are well-suited for the checkpointing purpose.
Attention should be paid to the live analysis process; the
“save” attribute or a bug in the AD tool could unexpectedly
cause corrupted checkpointing of an active variable.

This implementation of internal checkpointing entails sav-
ing numerous intermediate variables and requires far more
computer memory than available for a typical regional air
quality application with all the science processes involved
for a multiple-day simulation. The strategy adopted for the
current full adjoint model is the same as the one used for
the previous version (Hakami et al., 2007). A forward run is
carried out with the original CMAQ model revised to check-
point to files the values of active variables for each nonlinear
science process at every synchronization time step (i.e., the
external time step for horizontal advection). The backward
adjoint run then reads the checkpointing file at the beginning
of the corresponding science process.

2.5 Adjoint forcing preprocessor

The adjoint model calculates the sensitivity of a cost func-
tion, J , with respect to model parameters. The adjoint forc-
ing, ϕi , in Eq. (2) corresponds to ∂J

∂ci
. Like emissions in

the forward sweep, the adjoint forcing is applied at ev-
ery time step in the backward sweep and may be applied
in any grid cell. Typically, the cost function depends on
the concentration-based results of the forward sweep. The
derivative of the cost function with respect to the concen-
tration of interest must be calculated for each time step and
added to a compliant NetCDF file. To ease the burden of in-
troducing different cost functions for users, a Python-based
adjoint forcing preprocessor has been developed. As a model,
the preprocessor includes the calculation of the local maxi-
mum daily 8 h average ozone concentration, which is a reg-
ulatory metric in the US. This example addresses issues of
shifting to local time and a forcing dependent on an av-
erage in every grid cell. The example produces an adjoint
forcing file corresponding to this cost function ready for use
in the backward sweep. The Python-based preprocessor will
make the implementation of additional cost functions, such
as 24 h average aerosol constituents or observation operators
for satellite-based atmospheric composition, straightforward.
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3 Model evaluation

The adjoint model is evaluated on a process-by-process ba-
sis against the brute-force finite-difference method (FDM)
and the complex variable method (CVM) (Squire and Trapp,
1998). Box or column models are used when applicable to
maximize the number of comparison pairs from the back-
ward and forward sensitivity test runs (Hakami et al., 2007).
The finite-difference method is straightforward to implement
and has been used for evaluating other sensitivity methods
(Dunker et al., 2002; Napelenok et al., 2006; Hakami et
al., 2007; Henze et al., 2007), but in some cases it requires
finding optimal step sizes to obtain accurate results. The
searching process is time-consuming and could be imprac-
tical when a large dataset such as that of a three-dimensional
atmospheric model is involved. With the CVM, the results
are practically insensitive to the perturbation size with the ex-
ception of some rare circumstances discussed in Sect. 3.2.1.

The air quality simulation scenario used for the evaluation
is for the contiguous US domain with a 36 km horizontal res-
olution and 24 vertical layers for the first 7 d of April 2008,
with the first 6 d used for spin-up. More details about mete-
orological inputs, initial and boundary conditions, and emis-
sions are provided in Turner et al. (2015a), where a version
of the dataset with 12 km horizontal resolution was used. Un-
less otherwise noted, evaluations are done for daylong ad-
joint simulations, with single forcing at the last time step.

3.1 The complex variable method

The CVM for the first-order sensitivities is formulated as fol-
lows, which is a Taylor series expansion about an imaginary
perturbation step:

J (p+ ih)= J (p)+ J ′ (p)(ih)− J ′′ (p)h2/2+ . . ., (8)

where J is the cost function, p is the parameter to which the
gradient is evaluated, i is the imaginary unit, and h is the
perturbation step.

Extracting only the imaginary part and rearranging,

J ′ (p)= I (J (p+ ih))/h+O(h2), (9)

where I represents the operator to extract the imaginary
part of a complex number. As seen in Eq. (8), the CVM
has second-order accuracy, which is the same as the central
finite-difference formulation. The CVM, however, is not sub-
ject to subtractive errors and therefore permits the use of as
small a step size as allowed in floating-point calculations to
achieve much better accuracy, which helps in situations when
the brute-force FDM fails or proves inaccurate.

To construct a CVM version of CMAQ, several guidelines
are followed that include changing the data types of all the
active variables from real or double-precision to the corre-
sponding complex type, creating a complex version of intrin-
sic functions, such as MAX, MIN, and ABS, and evaluating

only the real part of complex variables used in conditionals
(Giles and Piece, 2000). The original 3D CMAQ framework
is set up for testing with the processes or subprocesses un-
der investigation enabled and the rest commented out. To run
the CVM, a perturbation is added to the imaginary part of a
source variable at a time step of interest, and then the imagi-
nary part of a receptor is extracted and divided by the pertur-
bation size to obtain the CVM sensitivity.

3.2 Process-by-process model evaluation

3.2.1 Aerosols

As mentioned before, the CMAQ aerosol module incorpo-
rates the following science processes: SOA formation, nucle-
ation, condensation, coagulation, heterogeneous chemistry,
mode merging, and aerosol thermodynamics. The subpro-
cesses are evaluated individually and eventually as a whole
in simulations in which processes other than aerosols (e.g.,
advection) are turned off. Adjoint sensitivities are first com-
pared with those from the FDM, and if a mismatch persists,
the CVM is implemented (if feasible) for that process for fur-
ther evaluation.

Figure 1 shows the adjoint (ADJ) and CVM sensitivities
of an example SOA process. The sensitivities are of the fi-
nal concentrations of an accumulation-mode aerosol species,
AALKJ (µg m−3), with respect to the initial concentrations
of a semi-volatile species, SV_ALK (ppmV), from a 1 d test
run. For this process, the FDM behaved well for most of the
test cases (results not shown); in the few cases when the ADJ
and FDM did not agree and tuning with the perturbation sizes
did not help, the use of the CVM demonstrated good ac-
curacy of adjoint results (i.e., agreement along one-on-one
line). It should be noted that the adopted perturbation size for
the CVM is generally 10−12; a smaller perturbation size usu-
ally does not improve the accuracy of the obtained sensitivi-
ties but risks diminishing the sensitivity information through
propagation due to the single-precision nature of some of the
variables within CMAQ. A smaller perturbation size could
be used if double-precision data types were adopted for the
whole code. For the SOA process, however, a smaller pertur-
bation size of 10−24 does improve the accuracy. Test results
of the other organic aerosol species show similar accuracy.

The example given above is one of numerous cases in
which FDM was found to be inaccurate or inadequate in eval-
uating adjoint sensitivities. The inadequacy of FDM in pro-
ducing accurate sensitivity estimates is due to process non-
linearities and discontinuities that exist throughout CMAQ.
This is the case in a number of CMAQ processes such as
SOA formation, inorganic thermodynamics, clouds, aque-
ous chemistry, and advection. This issue is not limited to
CMAQ alone and exists in all air quality models, as pro-
viding a smooth solution for the governing equations may
be lost in trade-offs for added computational efficiency, im-
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Figure 1. Evaluation of the SOA (secondary organic aerosol) process with the ADJ (adjoint) against the CVM (complex variable method)
sensitivities of the final concentrations of an accumulation-mode aerosol species AALKJ (µg m−3) with respect to the initial concentrations
of a semi-volatile species SV_ALK (ppmV) from a 1 d test run. The perturbation size for the CVM is 1.E-24.

Figure 2. Evaluation of all aerosol subprocesses but thermodynamics with the ADJ (adjoint) against the CVM (complex variable method)
sensitivities of the final concentrations of an accumulation-mode aerosol species ASO4J (µg m−3) with respect to the initial concentrations
of another Aitken-mode aerosol species ASO4I (µg m−3) from a 1 d test run. The perturbation size for the CVM is 1.E-12.

proving stability, or reducing numerical artifacts in the devel-
opment stage.

Generally good spatial agreement is observed between
the ADJ and the CVM when all aerosol subprocesses ex-
cept thermodynamics (ISORROPIA) are included in a 1 d
run (Fig. 2). The cost function is the final concentrations of
an accumulation-mode aerosol species ASO4J (µg m−3), and
the perturbation variable is the initial concentrations of an
Aitken-mode aerosol species ASO4I (µg m−3) with a pertur-
bation of 10−12 for the CVM. One of the reasons to choose
the two model species for testing was that sulfate aerosol is
a crucial component of fine aerosols. The other reason was
that the pathway from ASO4I to ASO4J covers the size range
for the important processes of coagulation and the numerical
mode merging that handles interactions between the Aitken
and accumulation modes.

With the addition of the aerosol thermodynamics (ISOR-
ROPIA/ANISORROPIA), the degree of agreement is de-
graded for a few points across the domain (Fig. 3, left panel).
The disagreement is likely caused by inherent nonlinearities
and discontinuities in the solution surfaces of ISORROPIA,
which at the code level is manifested as a series of execu-
tive branches (Capps et al., 2012). As shown in Eq. (8), the
introduction of the imaginary part, ih, changes the value of

the real part of a complex variable. Although the change is
of O (h2), different executive branches can be invoked as a
result. When extra care is taken for the ADJ and CVM calcu-
lations to follow consistent branches, the agreement is much
improved (Fig. 3, right panel).

As an example for the full aerosol model application, the
sensitivities of final ASO4J (µg m−3) with respect to initial
NH3 (ppmV) from a 1 d simulation are evaluated against
CVM estimates (Fig. 4). Although the branches in ISOR-
ROPIA are made identical between the ADJ and the CVM,
the agreement, while still good, deteriorates for a few points
when compared to Fig. 3; reducing the perturbation size does
not improve the agreement. One possible explanation is the
high nonlinearity associated with the aerosol thermodynam-
ics (which increases as the relative humidity drops) that ren-
ders the CVM with a finite perturbation size ineffective in
producing accurate sensitivities. A more detailed discussion
of the discontinuities and nonlinearity of ISORROPIA is
given in Capps et al. (2012). Overall, our testing confirms the
findings in Capps et al. (2012) that the CVM implementation
of ISORROPIA produces approximations that agree with the
adjoint results.
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Figure 3. Evaluation of all aerosol subprocesses with the ADJ (adjoint) against the CVM (complex variable method) sensitivities of the
final concentrations of an accumulation-mode aerosol species ASO4J (µg m−3) with respect to the initial concentrations of the Aitken-mode
aerosol species ASO4I (µg m−3) from a 1 d test run: left, original results; right, ISORROPIA branches set consistent between the CVM and
the ADJ. The perturbation size for the CVM is 1.E-12.

Figure 4. Evaluation of all aerosol subprocesses with the ADJ (adjoint) against the CVM (complex variable method) sensitivities of the final
concentrations of an accumulation-mode aerosol species ASO4J (µg m−3) with respect to the initial concentrations of NH3 (ppmV) from a
1 d test run. The perturbation size is 1.E-12.

3.2.2 Cloud dynamics and chemistry

The adjoint of mixing due to the formation of sub-grid con-
vective clouds was tested by comparing FDM sensitivities
(CVM was not available for all cloud processes) to adjoint-
calculated sensitivities in a 1 d test run. The test, shown in
Fig. 5 for a perturbation of 0.01 µg m−3 in initial ASO4J, was
successful but exhibited sensitivity to the type and size of the
perturbation as discussed below. For the FDM, either a per-
centage perturbation or a perturbation with an absolute small
value can be used. For test cases with small initial concentra-
tion values, however, percentage perturbations are sometimes
not detectable at the end of a run (due to round-off errors),
which leads to diminished sensitivity values. The nonlinear-
ity introduced by the weighting functions implemented for
the redistribution of gas and aerosol concentrations in con-
vective mixing made this issue stand out; although not ap-
parent in Fig. 5, the FDM constantly failed to produce some
larger values observed in the adjoint sensitivity field. On the

other hand, perturbations with an absolute value tend to un-
dermine the accuracy of the FDM sensitivities by causing
truncation errors that are comparable to the size of pertur-
bation. Absolute perturbations have been generally favored
and used in the evaluations of cloud processes. The adjoint
of the resolved clouds module shows better agreement with
the FDM (not shown) than that of the convective clouds.

The adjoint of the aqueous chemistry science process was
tested similarly, with a 0.01 µg m−3 perturbation in initial
ASO4J. Figure 6 shows a successful test, with close agree-
ment between the ADJ and the FDM sensitivities. Aqueous
chemistry was further tested by examining the sensitivity of
final ASO4J to small (0.01, 0.001, 0.0001 ppb) perturbations
in gas-phase SO2, and the results are shown in Fig. 7. Mis-
matches were apparent in all three plots between the ADJ and
the FDM, especially the column with high values of FDM
sensitivities and zero ADJ sensitivities. As discussed above,
small initial values could render the FDM approximation dif-
ficult. A way to quickly check whether these small values
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Figure 5. Evaluation of sub-grid cloud mixing with the ADJ (adjoint) against the FDM (finite-difference method) sensitivities of the final
concentrations of an accumulation-mode aerosol species ASO4J (µg m−3) with respect to the initial ASO4J (µg m−3) from a 1 d test run.
The perturbation size for the FDM is 0.01 µg m−3.

Figure 6. Evaluation of cloud dynamics and aqueous chemistry with the ADJ (adjoint) against the FDM (finite-difference method) sensitiv-
ities of the final concentrations of an accumulation-mode aerosol species ASO4J (µg m−3) with respect to the initial ASO4J (µg m−3) from
a 1 d test run. The perturbation size for the FDM is 0.01 µg m−3.

are causing disagreement is to semi-normalize the sensitivi-
ties by multiplying with the initial values. The results from
semi-normalization with initial SO2 concentrations confirm
that the deviations were caused by small initial values (Fig. 7,
bottom).

3.2.3 Gas-phase chemistry

ADJ and FDM sensitivities of the final O3 concentra-
tions (ppmV) with respect to the initial NO2 concentrations
(ppmV) from a 1 d test with the updated CB05 chemical
mechanism show good agreement, depending on the choice
of appropriate perturbation size (Fig. 8). Results of the three
perturbation sizes 0.1, 0.01, and 0.001 ppb are shown for the
FDM, which demonstrate the impact of perturbation sizes on
accuracy.

Mismatches in some test cases led to the development of
a CVM for the gas-phase chemistry. During the testing, Ja-
cobians of ADJ and CVM sensitivities were created to pro-
vide a means for visual examination of all gas-phase species.
An example is shown in Fig. 9, where the x and y axes rep-
resent all species involved in gas-phase chemical reactions,
and each point represents the sensitivity of an x-axis species
with respect to a y-axis species. Presented in Fig. 10 is the

corresponding scatter plot, which compares the ADJ with the
CVM and shows an excellent match between the two meth-
ods. The absolute sensitivity values are used in the tile plot
in Fig. 9 for better visualization.

3.2.4 Transport

The transport module of CMAQ comprises the advection and
diffusion processes. For the advection process, the nonlin-
ear PPM scheme is implemented in CMAQ as discussed in
Sect. 2.3.4.

The adjoint of the advection equation could be written as

−
∂λi

∂t
=∇ · (uλi). (10)

Compared to the corresponding terms in Eq. (1), the signs
of the two terms in the above equation are reversed, which
implies that the adjoint values are propagated in an opposite
direction (Giles and Piece, 2000). With a reversal in wind di-
rection, the PPM could be used to integrate the adjoint equa-
tion backward in time and solve for continuous adjoint sen-
sitivities.

The discrete adjoint of advection is the result of the direct
differentiation of the numerical model and can be validated
against the FDM and CVM component by component. Fig-

Geosci. Model Dev., 13, 2925–2944, 2020 https://doi.org/10.5194/gmd-13-2925-2020



S. Zhao et al.: A multiphase CMAQ version 5.0 adjoint 2935

Figure 7. Evaluation of cloud dynamics and aqueous chemistry with the ADJ (adjoint) against the FDM (finite-difference method) sensitiv-
ities of the final concentrations of an accumulation-mode aerosol species ASO4J (µg m−3) with respect to the initial SO2 (ppmV) from a 1 d
test run. The perturbation size for the FDM is 0.01, 0.001, and 0.0001 ppb for the top three panels (from top to bottom). The bottom panel
represents sensitivities semi-normalized by the initial conditions of SO2, and the perturbation size for the FDM is 0.001 ppb.

ure 11 for horizontal advection in the x direction shows good
agreement between the discrete adjoint and the CVM of the
sensitivities of final ASO4J (µg m−3) with respect to initial
ASO4J (µg m−3). However, numerical noises are clearly in
sight; unfortunately, such spurious oscillations from discrete
adjoints derived from a nonoscillatory advection scheme are
not uncommon, and a desirable fix does not appear possible
(Thuburn and Haine, 2001).

For the continuous adjoint (CADJ), the horizontal and ver-
tical advection processes were tested as a whole, as in for-
ward CMAQ these processes are linked together for mass

conservation and consistency between transport processes in
CMAQ and the underlying meteorological model. One issue
with testing the advection processes altogether is that point-
wise comparison of sensitivities becomes much more com-
putationally expensive as the models are not row or column
models anymore, and running the adjoint and the FDM and
CVM once would generate only one pair of sensitivities for
comparison. To partially mediate this situation, we defined
the cost function for the adjoint as the final average ASO4J
concentration across the entire surface layer (instead of the
concentration at a single cell, which would lead to a small
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Figure 8. Evaluation of gas-phase chemistry with the ADJ (adjoint) against the FDM (finite-difference method) sensitivities of the final O3
concentrations (ppmV) with respect to the initial NO2 concentrations (ppmV) from a 1 d test run. The perturbation sizes are 0.1, 0.01, and
0.001 ppb for the FDM in the plots from the top to the bottom.

number of cells with sensitivity signals over time and is not
sufficient for validation) and then randomly selected a num-
ber of cells at the surface for the CVM runs. The CADJ and
the CVM agree well, as shown in Fig. 12 where the regres-
sion line has a slope close to unity and a y intercept close to
zero, and the value of R2 is 0.957.

The choice between the continuous and discrete adjoint
would depend on the type of problem at hand. For instance,
the continuous adjoint is generally desirable when perform-
ing backward sensitivity analysis as an oscillating sensitiv-
ity field (visible in Fig. 11) may defy physical justification
(Hakami et al., 2007; Henze et al., 2007). For optimization
problems, the discrete adjoint would be preferable as it pro-
duces exact gradients (subject to round-off errors) that could
help the optimization process converge (Giles and Pierce,
2000). However, it was reported that the noisy gradient field
obtained from the discrete adjoint could cause the optimiza-
tion to converge to local minimums (Vukićević et al., 2001).
The continuous adjoint may outperform the discrete in terms
of computational efficiency and accuracy, as found by Gou
and Sandu (2011) with their 4D-Var experiments.

Air pollutant emissions are processed in vertical diffu-
sion in CMAQ. As shown in Fig. 13a, the adjoint of verti-
cal diffusion compares well with the finite-difference method
(Fig. 13a). The adjoint of emissions also works well as
demonstrated in Fig. 13b, where the adjoint sensitivities of
final NO2 concentrations (ppmV) to initial NO2 emissions
(mol s−1) compare favorably with the FDM.

3.3 Full-model evaluation

For the full adjoint model, interactions between cells through
transport make it prohibitively costly to generate sufficient
sensitivity pairs for an extensive comparison as conducted for
the process-by-process evaluation with box or column mod-
els. Presented in Table 1 are the FDM, CVM, adjoint with
continuous treatment for transport, and adjoint with discrete
treatment for transport (DADJ) sensitivities obtained for a
few grid cells.

In general, the adjoint models, particularly DADJ, agree
well with the CVM, while in the case of CADJ a larger rel-
ative error exists in comparison with the CVM. The FDM
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Figure 9. The Jacobians of absolute sensitivities from the ADJ of
gas-phase chemistry at a grid cell from a one-step run. The x and y
axes represent all species involved in gas-phase chemistry.

Figure 10. Evaluation of gas-phase chemistry with the Jacobians of
absolute sensitivities from the ADJ (adjoint) and the CVM (com-
plex variable method) at a grid cell from a one-step run. A circle
represents a pair of absolute sensitivities from the ADJ (shown in
Fig. 9) and the CVM.

sensitivities with a 10 % perturbation size, on the other hand,
are not quite in accordance, which is why a full CVM was
created. The problem with the FDM has been discussed at
the beginning of Sect. 3 and is not repeated here.

Results shown in Table 1 suggest that the discrete adjoint
has better agreement with CVM than the continuous adjoint.
However, it is important to note that better agreement be-
tween the discrete adjoint and CVM should not be under-
stood as better accuracy of the discrete adjoint in comparison
with the continuous adjoint. The numerical solution to the ad-

Table 1. Evaluation of the full adjoint model with the CADJ (con-
tinuous adjoint) and DADJ (discrete adjoint) against the CVM
(complex variable method) and FDM(finite-difference method) sen-
sitivities of the concentrations of an accumulation-mode aerosol
species ASO4J (µg m−3) at hour 24 with respect to the concentra-
tions of a gas species SO2 (ppmV) at hour 23. The cells are arbi-
trarily picked. The perturbation size for the CVM is 1.E-12 and the
one for the FDM 10 %. The relation of FDM and CVM sensitivities
with CADJ and DADJ results has been discussed in Sect. 3.3.

Cell No. 1 No. 2 No. 3 No. 4 No. 5 No. 6

CADJ 0.63 5.63 0.65 0.51 0.40 0.92
DADJ 0.45 5.86 0.47 0.93 0.71 0.88
CVM 0.42 5.96 0.47 0.95 0.77 0.85
FDM 0.17 6.70 21.21 −8.87 −23.20 0.54

vection equation entails inherent truncation errors from dis-
cretization schemes. These errors exist in solving the forward
or adjoint advection equations; however, the discrete adjoint
by design remains loyal to and consistent with the errors in
the forward application (CVM in this case), while the numer-
ical solution to the continuous adjoint will result in different
and inconsistent errors. The continuous adjoint is a different
representation of the impacts on the adjoint cost function but
of similar mathematical accuracy when compared to the for-
ward or tangent linear model. Therefore, the numerical solu-
tion to the continuous adjoint should be considered as accu-
rate as the discrete adjoint, regardless of the agreement with
forward-based benchmarks such as CVM.

3.4 Computational system requirement

Adjoint simulations entail a significantly higher computa-
tional demand than forward CMAQ. First, the checkpoint-
ing files required for the adjoint simulations need a signifi-
cant amount of storage space. For each science process the
amount of storage can be estimated as Nc×Nr×Nl×Ns×

Nt×Nb bytes, where Nc, Nr, Nl, Ns, Nt, and Nb repre-
sent the numbers of columns, rows, layers, chemical species,
synchronization time steps, and bytes for a single-precision
number (Nb = 4), respectively. For our computational do-
main with 148 columns, 112 rows, 24 vertical layers, and
12 min synchronization (i.e., 120 time steps per day), the
checkpointing file for each adjoint simulation for aerosols
with 137 chemical species takes approximately 24 GB of
storage space for a day. For the other science processes the
sizes of checkpointing files are approximately as follows:
clouds, 24 GB; chemistry with 96 species, 17 GB; vertical
diffusion with one layer, 1 GB; the continuous adjoint of
horizontal and vertical advections with one species, 0.2 GB
for each process. A summary of the checkpointing file sizes
is provided in Table 2. For a 1-month adjoint simulation,
the checkpointing files occupy about 2 TB of storage space,
which is about 10 times the storage needed for typical CMAQ
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Figure 11. Evaluation of horizontal advection in the x direction with the DADJ (discrete adjoint) against the CVM (complex variable
method) sensitivities of the final concentrations of an accumulation-mode aerosol species ASO4J (µg m−3) with respect to the initial ASO4J
(µg m−3) from a 1 d test run. For the tile plots, the x and y axes represent the horizontal y direction and the vertical layers, respectively. The
perturbation size for the CVM is 1.E-12.

Figure 12. Evaluation of advection with the CADJ (continuous ad-
joint) against the CVM (complex variable method) sensitivities of
the final concentrations of an accumulation-mode aerosol species
ASO4J (µg m−3) with respect to the initial ASO4J (µg m−3) from
a 1 d test run. The perturbation size for the CVM is 1.E-12.

simulations. For higher-resolution simulations, the storage
needs would increase significantly due to the number of grid
cells but also due to increasingly smaller time steps dictated
by the Courant number for smaller horizontal grid sizes. For
very high-resolution simulations (e.g., 1 km horizontal reso-
lution), the required checkpoint storage space can be as large
as 1 TB d−1. To mitigate the burden on storage, it is plausible
to run the adjoint segment by segment, i.e., by generating the
checkpointing files only for a few days at a time when run-
ning the forward CMAQ model. Since the adjoint runs back-
ward in time, this strategy works at the expense of computing
time as the forward model must be repeated.

Adjoint simulations also require significantly higher com-
puting times, as the recomputation of intermediate values
of adjoint simulations as discussed in Sect. 2.4 is an addi-

tional computational overhead. Furthermore, the significant
amount of input/output (I/O) operation associated with the
checkpointing leads to additional computing time and can
result in a noticeable loss of computational efficiency in sys-
tems. Typically, the adjoint simulation takes approximately 4
times as long as the forward CMAQ. Intensive I/O for check-
pointing files can also result in reduced scalability of the ad-
joint model, as the I/O libraries currently implemented are
serial.

4 Model application: backward sensitivity analysis

To demonstrate a policy-relevant application of the multi-
phase adjoint of CMAQ, we present the marginal benefits
(MBs) or benefits per ton (BPTs) of emission sources. MBs
or BPTs are a commonly used measure of source impacts
on population health and are defined as the monetized soci-
etal health benefits associated with the reduction of one met-
ric ton of precursor or primary emissions. More details on
the use of adjoint models in the source attribution of health
impacts can be found elsewhere (Pappin et al., 2013, 2016;
Turner et al., 2015a, b). Mortality counts, or the nationwide
valuation of mortality induced by air pollution, is a scalar
well-suited for formulating the adjoint cost function. We de-
fine an adjoint cost function, J , which represents the mone-
tized valuation of annual deaths due to long-term PM2.5 ex-
posure within the US, as below, using the Global Exposure
Mortality Model (GEMM; Burnett et al., 2018):

J =
∑
x,y

VSLM0,x,yPx,y

(
1− e−θ T (z)

)

T (z) =
log

(
1+ z

α

)
1+ exp(−(z−µ)/ν)

(11)

z=max(0,Cx,y − cf),
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Figure 13. Evaluation of vertical diffusion with the ADJ (adjoint) against the FDM (finite-difference method) from a 1 d test run: (a) sensi-
tivities of the final ozone (ppmV) with respect to the initial ozone (ppmV) with a 1 ppb perturbation size for the FDM; (b) sensitivities of the
final nitrogen dioxide (ppmV) with respect to the initial nitrogen dioxide emissions (mol s−1) with a perturbation size of 0.1 mol s−1. The
values in (b) are multiplied by 105.

Table 2. Sizes of checkpoint files for the science processes in CMAQ for a single day. The computational domain has 148 columns, 112 rows,
and 24 vertical layers. The synchronization time step of CMAQ is 12 min. Shown for horizontal and vertical advections are checkpointing
file sizes from the continuous version of the adjoint.

Vertical Horizontal Vertical
Process Aerosols Clouds Chemistry diffusion advection advection

File size (GB) 24 24 17 1 0.2 0.2

where J (USD per year) is calculated using the location-
specific baseline mortality rate (M0,x,y ; yr−1) and population
(Px,y); 2 is the risk estimate that represents the slope of the
nonlinear concentration–mortality curve; the time-averaged
and location-specific PM2.5 concentration is Cx,y (µg m−3);
cf is the counterfactual PM2.5 concentration; and the value
of a statistical life is VSL for monetizing outcomes. We use
the following values for the parameters of GEMM for adults
aged 25–99 and for deaths due to noncommunicable dis-
eases and lower respiratory infections: θ = 0.1231, α = 1.5,
µ= 10.4, ν = 2.5.9, and cf= 2.4 µg m3.

For the backward sensitivity analysis, we run the adjoint
for the year 2016 for the contiguous US domain with 36 km
resolution inputs from the Intermountain West Data Ware-
house (National Emissions Inventory Collaborative, 2019).
The computational domain contains 172 columns and 148

rows with 35 vertical layers. The average PM2.5 concentra-
tion is obtained from the 1-year forward run. Backward runs
are conducted for two full seasons of winter and summer
(January–March and July–September, respectively).

The use of this cost function results in gradient estimates
that can be presented as location-specific BPTs (USD per
year). BPTs for primary PM2.5 emitted across source loca-
tions in the US estimated from the two seasons are shown in
Fig. 14, as are those for the PM2.5 inorganic precursors NH3,
SO2, and NOx . The seasonal differences in BPTs, particu-
larly for precursor emissions such as ammonia, are apparent
and significant. NOx sensitivities are negative in some re-
gions with more frequent NOx-inhibited regimes, mainly due
to the role that ozone plays in nighttime nitrate formation.
BPTs show a great deal of spatial variability but generally
follow the population distribution for primary PM2.5 emis-
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sions, while for inorganic precursor emissions areas of higher
influence are dictated by transport patterns, secondary (inor-
ganic) aerosol formation dynamics, and the lifetime of sec-
ondary particles. In other words, BPTs are generally highest
in emission locations that have large potential for affecting
downwind population centers. While the adjoint cost func-
tion is defined based on PM2.5 long-term mortality in the
US alone, location-specific BPTs also provide a measure of
cross-border impact, in this case from Canada and Mexico.
Finally, we note that BPTs are measures of marginal rather
than total societal impact across the US, and as such, even
areas with little or no emissions may show sizable BPT esti-
mates.

BPT values such as those shown in Fig. 14 have the poten-
tial to form important quantitative decision metrics, as they
provide a means to squarely compare the societal benefits of
emission reductions with control costs associated with those
reductions. It is worth emphasizing that given the length and
the coarse resolution of the simulations, these results should
not be regarded as BPT values applicable in policy develop-
ment and benefit assessment; instead they are meant to serve
as a demonstration of the utility and efficacy of the adjoint
model to attribute health impacts to individual sources.

5 Conclusions

In this work, we develop a multiphase adjoint of CMAQ.
A rigorous point-to-point evaluation against the brute-force
FDM and CVM is conducted for each individual process and
the full model with all processes included. Overall, the ad-
joint modules appear to produce sensitivities comparable to
those generated by either the FDM or the CVM. The choice
of the discrete or continuous version of the advection adjoint
would depend on the type of problem to be solved. The con-
tinuous adjoint is preferred if the sensitivity field itself is of
interest, as spurious oscillations would create intricate obsta-
cles for exploring the underlying physical significances. For
gradient-based optimization and data assimilation, the dis-
crete adjoint might be advantageous for faster convergence
but could risk the minimization settling upon some local min-
ima. Some components of CMAQ that do not yet have an ad-
joint include the bidirectional dry deposition in vertical diffu-
sion and photolysis rate calculations in gas-phase chemistry.
The development of an adjoint for these two components is
not considered essential. The CMAQ adjoint provides back-
ward sensitivity analysis capabilities for a widely used model
with detailed aerosol treatment and enables a range of appli-
cations such as data assimilation, emission inversions, policy
analysis, and source attribution of health impacts.

We find that the development of adjoint versions of air
quality and atmospheric models is often complicated by the
abundance of discontinuities throughout these models that
make differentiation challenging. Historically, these mod-
els have not been developed with differentiability in mind

Figure 14. Application of the adjoint model for adjoint sensitiv-
ity analysis to estimate the benefits per ton (BPTs) related to long-
term PM2.5 exposure for primary PM2.5 emissions in the US and
its precursors NH3, SO2, and NOx . The BPT is time-integrated
and location-specific; i.e., each value in the figures represents the
BPT for the specific emissions at the specific location. For exam-
ple, a value of USD 30 000 per ton for SO2 emissions at a loca-
tion suggests that reducing emissions of SO2 at that location entails
USD 30 000 in valuated benefits across the US. The left and right
columns show BPTs from 3-month simulations for winter and sum-
mer, respectively.

Geosci. Model Dev., 13, 2925–2944, 2020 https://doi.org/10.5194/gmd-13-2925-2020



S. Zhao et al.: A multiphase CMAQ version 5.0 adjoint 2941

but with accuracy and computational efficiency as the main
drivers. As the development and applications of formal sen-
sitivity analysis tools (such as adjoint models) become more
prevalent, there is a need for a gradual but sustained effort by
the modeling community to consider differentiability as an
additional design constraint in future developments.

Code availability. The source code for CMAQ Adjoint is available
from the US EPA’s CMAQ Adjoint repository (Zhao et al., 2020).
Inputs for the evaluation of CMAQ Adjoint as presented in this work
are available from Zenodo (Zhao et al., 2019). The CMAQ version
5.0 adjoint user manual is available in the Supplement.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-13-2925-2020-supplement.
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