
Supplement of Geosci. Model Dev., 13, 2925–2944, 2020
https://doi.org/10.5194/gmd-13-2925-2020-supplement
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Supplement of

A multiphase CMAQ version 5.0 adjoint
Shunliu Zhao et al.

Correspondence to: Amir Hakami (amir.hakami@carleton.ca)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.



CMAQ v5.0 Adjoint User’s Manual

The Adjoint Development Team

May 22, 2020

Contents

1 Introduction 2

2 Installation 2
2.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Retrieve the adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Build the builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Build CMAQ libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.5 Build the forward model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.6 Build backward sweep executable . . . . . . . . . . . . . . . . . . . . . . . 4

3 Benchmark the adjoint 4
3.1 Run the forward model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Create adjoint forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Run the backward model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Finite difference test 5
4.1 The finite difference module . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Compare with the adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Strategies to implement the adjoint 6
5.1 About checkpointing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.2 About forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.3 About adjoint sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

References 10

1



1 Introduction

The CMAQ adjoint is an active open-source development project of academic collabora-
tors that augments CMAQ model development by the U.S. EPA to estimate sensitivities
of functions of modeled concentrations with respect to initial concentrations or emissions
parameters.

The adjoint model is comprised of three major components:

• the forward model, which generates checkpointing files for the science processes and
average concentrations needed for forcing calculation

• the forcing generator, which creates forcing files

• the backward model, which reads the checkpointing and forcing files to calculate
the sensitivity parameters.

To run the adjoint model, you need to

• prepare your system with the required libraries

• compile the adjoint source code with your favorite compilers

• run sequentially the forward model, the forcing generator, and the backward model.

This document is to provide a general guidance on building and running the adjoint
model. For a detailed description of the adjoint, please refer to [Shunliu Zhao, 2019].

The latest version of this document comes with the model.

2 Installation

2.1 Prerequisites

To retrieve, compile, and run the adjoint model, the following software are required.

• Git

• netCDF 3.6.3 or later

• I/O API 3.0 or later

• MPI, e.g. OpenMPI. MPICH2, or MVAPICH2

• PGI/Intel/GCC Fortran and C compilers

2.2 Retrieve the adjoint

A copy of the CMAQ adjoint code can be obtained using Git.

git clone ssh://git@adjoint.colorado.edu/yanko.davila/cmaq_adj.git

To create a local Git branch for testing, change into the model directory and execute
the following command.

git checkout -b test origin/5.0

2



2.3 Build the builder

The adjoint uses the CMAQ model builder to assemble and/or compile the code ([CMASWIKI, 2015]);
To build the builder from source, change directory to $ADJHOME/BLDMAKE git,

customize the Makefile if necessary, and then make:

cd $ADJHOME/BLDMAKE_git

make |& tee make.bld.log

Here, $ADJHOME is your work directory for the adjoint.
Ensure that bldmake is created.

2.4 Build CMAQ libraries

The STENEX and PARIO libraries from CMAQ are required for the adjoint for parallel
job management and parallel input/output. Serial jobs needs only the NOOP version
of STENEX and not PARIO. More details about the two libraries could be found at
[CMASWIKI, 2015].

To compile STENEX, change directory to the corresponding directory, revise the
Makefile, and then make:

cd $ADJHOME/stenex/se

make |& tee make.stenex.se.log

Check the log file for errors and the target directory for libse snl.a and module files
(.mod).

To compile pario,

cd $ADJHOME/pario

##Revise the Makefile

make |& tee make.pario.log

Check the log for errors and the target directory for libpario.a and module files (.mod).

2.5 Build the forward model

Change directory to scripts/

cd $ADJHOME/scripts

Using the build script as a template, cmaq adj/scripts/bldit.adjoint.fwd.sample, create
an executable for the forward sweep (comparable to CMAQ).

To configure a specific build, copy bldit.adjoint.fwd.sample to a file specific to your
system and then customize the new file.

Execute the script (as exemplified with the sample script below).

./bldit.adjoint.fwd.[system-specific-name] |& tee bldit.fwd.log

A new directory should be made in $ADJHOME named BLD fwd bnmk. Change to
it.

cd ../BLD_fwd_bnmk

Edit the Makefile to ensure compatibility with your system. Then, make the forward
sweep executable.

make |& tee make.fwd.log

Check that the executable ADJOINT FWD is created.

3



2.6 Build backward sweep executable

Follow the same procedure for the backward sweep of the model. To configure a specific
build, copy bldit.adjoint.bwd.sample to a file specific to your system and then customize
the new file.

Execute the script (as exemplified with the sample script below).

./bldit.adjoint.bwd.[system-specific-name] |& tee bldit.bwd.log

A new directory should be made in $ADJHOME named BLD bwd bnmk. Change to
it.

cd ../BLD_bwd_bnmk

Edit the Makefile to ensure compatibility with your system. Then, make the forward
sweep executable.

make |& tee make.bwd.log

Check that the executable ADJOINT BWD is created.

3 Benchmark the adjoint

In this section, we will go through the steps listed in the introduction section about
running the adjoint. The output files from each stage of the run could be compared with
the ones we provide for benchmark.

3.1 Run the forward model

Running the forward sweep for the benchmark episode should be feasible after making
modifications to the sample run script.

Change directory back to $ADJHOME/scripts.
Make a copy of the sample run script to modify it for your system.

cp run.adj.fwd.bnmk run.adj.fwd.bnmk.[system-specific-name]

Find all the instances of CHANGE to edit the run.adj.fwd.bnmk.[system-specific-
name] to direct the model to the location of the unzipped CMAQ adjoint benchmark
data.

Successful completion of the run will produce ctm log files for each date (20070610
- 20070613) and will be indicated by Normal Completion of program DRIVER FWD in
the last log file.

The intermediate values of CMAQ state variables are saved to the checkpointing files
at each synchronization time step for each science process, if necessary. In the output
directory, the following checkpointing files should be present for each day ($WDATE):

• CHEM CHK $WDATE

• VDIFF CHK $WDATE

• HA RHOJ CHK $WDATE

• VA RHOJ CHK $WDATE

• AERO CHK $WDATE

• CLD CHK $WDATE.

Comparisons can be made to the reference results provided in the benchmark data
set.

4



3.2 Create adjoint forcing

The backward sweep requires an adjoint forcing file, which can be thought of as similar to
the emissions input of the forward sweep. The forcing file must be an IOAPI-compatible
netCDF file for the purposes of being read accurately. The layer and species being forced
should be indicated in the backward run script through environment variables ADJN-
LAYS FRC and ADJNSPC FRC.

Python is an efficient scripting tool for creating an adjoint forcing file from the concen-
tration files output by the forward sweep. If your system does not have Python installed,
consider using the free Anaconda distribution, which will make package management
easy. To use the provided script, ensure that you have the netCDF4 and numpy packages
installed.

To create an adjoint forcing to test the backward sweep, please modify scripts/BnmkAdjForcCalc.py
where CHANGE indicates the need. Then, execute it.

python BnmkAdjForcCalc.py

Four files entitled ADJ FORCE.20070610, etc. should be added to your output direc-
tory.

3.3 Run the backward model

In the same way the forward sweep run script template was configured for your system,
refine the backward sweep run template.

cp run.adj.bwd.bnmk run.adj.bwd.bnmk.[system-specific-name]

For the sample adjoint forcing script, set the following specifications:

setenv ADJNLAYS\_FRC 1

# Species forced (see /ICL/mech/cb05cl_ae5_aq_noaero/GC_EMIS.EXT

# for number of species)

# examples: 1 is NO2, 2 is NO, 4 is O3

setenv ADJNSPC_FRC 4

#> finite difference perturbation selection

### CHANGE

# conduct finite difference test (T) or not (F)

setenv FDM_TEST F

Execute the run script.
Comparisons can be made to the reference results provided in the benchmark data

set.

4 Finite difference test

4.1 The finite difference module

A Fortran module (ADJ FDM TEST.F) comes with the forward model of the adjoint for
finite difference test. The perturbation parameters such as perturbation species, types
and locations can be specified via environment variables.

Below is an example in BASH.

5



export FDM_TEST=N ##Y

export PTB_SPC_NAME=SO2

export PTB_ABS=N ##N - percentage perturbation; Y - absolute perturbation

export PTB_SIZE=0.1 ##10% perturbation or absolute change,

## depending on perturbation type

export PTB_TIME=230000 ##perturbation at the hours

## so that the CONC file (instantaneous conc)

## can be used for sens calc

export PTB_CRL1="107 68 1" ##starting col/row/lay

export PTB_CRL2="107 68 1" ##ending col/row/lay

4.2 Compare with the adjoint

A perturbation introduced in the finite difference test would propagate over time across
the computational domain and through other species. In other words, the finite difference
comprises one perturbation source and multiple receptors. The finite difference test thus
provides results that can be used to calculate the sensitivities of the affected apecies at
all locations at all times to the perturbed species at the specic perturbation location at
the specific perturbation time.

The adjoint, on the contrary, involes one receptor and multiple sources. One compa-
rable sensitivity pair is generated from a single run of the models. In practice, a single
receptor, which could be in the form of a function of several concentrations, might be used
and the less computationally expensive finite difference test is then repeated to produce
a desirable number of sensitivity pairs for comparison.

Another way is to reduce the full models to column/box models by turning off, for
example, the transport and cloud mixing processes. This can be done by commenting out
the corresponding science processes in sciproc.F. It is important that the science processes
for the forward/backward models of the adjoint, and the finite difference test have to be
consistent.

5 Strategies to implement the adjoint

5.1 About checkpointing

To generate the checkpointing files, a fixed synchronization time step is required. This can
be achieved by assigning the same value to the environment variables, CTM MAXSYNC
and CTM MINSYNC.

It is recommended to perform a test forward run with the default values of CTM MAXSYNC
(720 seconds) and CTM MINSYNC (60 seconds) and then adopt the minimum value of
the synchronization time step present in the log files for checkpointing files.

The checkpointing files could take gigantic storage space for long-period simulations
with large domains and fine resolutions. To reduce the storage requirement, one might
split the entire modeling period into smaller intervals, and only start generating for the
last interal the checkpointing files which are required for the following backward model
runs. The checkpointing files are then regenerated when needed for the other intervals.
The environment variable, CREATE CHK, can be used to switch on/off checkpointing
generation.

6



5.2 About forcing

Subroutine RD FORCE FILE in ADJOINT FILES.F reads the forcing files and then
applies the forcing to the corresponding species in your customized cost function.

Below is the piece of code that performs the forcing application. The names and indices
of the species to be forced can be referred to Table 1. A DO loop, as demonstrated in the
commented-out lines, can be used if multiple species are involved.

DO R = 1, LENROW

DO C = 1, LENCOL

!slz-pm25 DO CNT = 1,N_PM25_SPC

!slz-pm25 V = PM25_SPC(CNT)

!slz-pm25 ARRAY(C, R, 1, V) = ARRAY(C, R, 1, V)

!slz-pm25 & + BUFFER(C, R, 1) * FRCFAC

!slz-pm25 END DO

ARRAY(C, R, 1, 4) = ARRAY(C, R, 1, 4) !slz layer 1; spc#4, o3

& + BUFFER(C, R, 1) * FRCFAC

! ARRAY(C, R, 1, 1) = ARRAY(C, R, 1, 1) !slz layer 1; spc#1, no2

! & + BUFFER(C, R, 1) * FRCFAC

END DO

END DO

7



Index Name Index Name Index Name Index Name

1 NO2 36 ETH 71 SESQ 106 NUMCOR

2 NO 37 IOLE 72 SESQRXN 107 SRFATKN

3 O 38 TOL 73 RHOJ 108 SRFACC

4 O3 39 CRES 74 ASO4J 109 SRFCOR

5 NO3 40 TO2 75 ASO4I 110 AH2OJ

6 O1D 41 TOLRO2 76 ANH4J 111 AH2OI

7 OH 42 OPEN 77 ANH4I 112 ANAJ

8 HO2 43 CRO 78 ANO3J 113 ANAI

9 N2O5 44 MGLY 79 ANO3I 114 ACLJ

10 HNO3 45 XYL 80 AALKJ 115 ACLI

11 HONO 46 XYLRO2 81 AXYL1J 116 ANAK

12 PNA 47 ISOP 82 AXYL2J 117 ACLK

13 H2O2 48 ISPD 83 AXYL3J 118 ASO4K

14 XO2 49 ISOPRXN 84 ATOL1J 119 ANH4K

15 XO2N 50 TERP 85 ATOL2J 120 ANO3K

16 NTR 51 TRPRXN 86 ATOL3J 121 AH2OK

17 ROOH 52 SO2 87 ABNZ1J 122 AISO3J

18 FORM 53 SULF 88 ABNZ2J 123 AOLGAJ

19 ALD2 54 SULRXN 89 ABNZ3J 124 AOLGBJ

20 ALDX 55 ETOH 90 ATRP1J 125 NH3

21 PAR 56 ETHA 91 ATRP2J 126 SV ALK

22 CO 57 CL2 92 AISO1J 127 SV XYL1

23 MEO2 58 CL 93 AISO2J 128 SV XYL2

24 MEPX 59 HOCL 94 ASQTJ 129 SV TOL1

25 MEOH 60 CLO 95 AORGCJ 130 SV TOL2

26 HCO3 61 FMCL 96 AORGPAJ 131 SV BNZ1

27 FACD 62 HCL 97 AORGPAI 132 SV BNZ2

28 C2O3 63 TOLNRXN 98 AECJ 133 SV TRP1

29 PAN 64 TOLHRXN 99 AECI 134 SV TRP2

30 PACD 65 XYLNRXN 100 A25J 135 SV ISO1

31 AACD 66 XYLHRXN 101 A25I 136 SV ISO2

32 CXO3 67 BENZENE 102 ACORS 137 SV SQT

33 PANX 68 BENZRO2 103 ASOIL

34 ROR 69 BNZNRXN 104 NUMATKN

35 OLE 70 BNZHRXN 105 NUMACC

Table 1: List of CGRID species of the cb05cl ae5 aq mechanism.

8



5.3 About adjoint sensitivities

The adjoint model produces two sensitivity files for each simulation day, i.e, the ’lgrid’
file for sensitivities to concentrations and the ’lgrid em’ file for sensitivities to emissions.

The frequency of writing sensitivities to file can be controlled by the environment
variable of ADJ LGRID FREQ. The value of ’OUTPUT STEP’ indicates that writing
occurs at each output time step (hourly by default), which is defined by the environment
variable of CTM TSTEP; the value of ’SYNC STEP’ suggests writing at each synchro-
nization time step. The latter produces times larger sensitivity files than the former and
should be used with caution, especially for long-term simulations with large domain and
fine resolution.

9



References

[CMASWIKI, 2015] CMASWIKI (2015). Cmaq version 5.0 (february 2010 release)
ogd — cmaswiki,. https://www.airqualitymodeling.org/index.php?title=CMAQ_

version_5.0_(February_2010_release)_OGD&oldid=682. [Online; accessed 26-
September-2019].

[Shunliu Zhao, 2019] Shunliu Zhao, Amir Hakami, S. L. N. J. O. B. K. M. F. S. L. C. M.
D. T. D. K. H. P. B. P. J. R. A. G. R. A. N. J. B. G. R. C. C. O. S. A. S. T. C. (2019).
A multiphase cmaq version 5.0 adjoint. Geoscientific Model Development Discussions,
2019:1–37. doi:10.5194/gmd-2019-287.

10

https://www.airqualitymodeling.org/index.php?title=CMAQ_version_5.0_(February_2010_release)_OGD&oldid=682
https://www.airqualitymodeling.org/index.php?title=CMAQ_version_5.0_(February_2010_release)_OGD&oldid=682

	Introduction
	Installation
	Prerequisites
	Retrieve the adjoint
	Build the builder
	Build CMAQ libraries
	Build the forward model
	Build backward sweep executable

	Benchmark the adjoint
	Run the forward model
	Create adjoint forcing
	Run the backward model

	Finite difference test
	The finite difference module
	Compare with the adjoint

	Strategies to implement the adjoint
	About checkpointing
	About forcing
	About adjoint sensitivities

	References

