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Abstract. More than half of the Earth’s population de-
pends largely or entirely on fractured or karst aquifers for
their drinking water supply. Both the characterization and
modeling of these groundwater reservoirs are therefore of
worldwide concern. Artificial tracer testing is a widely used
method for the characterization of solute (including contami-
nant) transport in groundwater. Tracer experiments consist of
a two-step procedure: (1) introducing a conservative tracer-
labeled solution into an aquifer, usually through a sinkhole
or a well, and (2) measuring the concentration breakthrough
curve (BTC) response(s) at one or several downstream moni-
toring locations, usually spring(s) or pumping well(s). How-
ever, the modeling and interpretation of tracer test responses
can be a challenging task in some cases, notably when the
BTCs exhibit multiple local peaks and/or extensive back-
ward tailing. MFIT (Multi-Flow Inversion of Tracer break-
through curves) is a new open-source Windows-based com-
puter package for the analytical modeling of tracer BTCs.
This software integrates four transport models that are all ca-
pable of simulating single- or multiple-peak and/or heavy-
tailed BTCs. The four transport models are encapsulated in a
general multiflow modeling framework, which assumes that
the spatial heterogeneity of an aquifer can be approximated
by a combination of independent one-dimensional channels.
Two of the MFIT transport models are believed to be new,
as they combine the multiflow approach and the double-
porosity concept, which is applied at the scale of the indi-
vidual channels. Another salient feature of MFIT is its com-
patibility and interface with the advanced optimization tools
of the PEST suite of programs. Hence, MFIT is the first BTC
fitting tool that allows for regularized inversion and nonlinear
analysis of the postcalibration uncertainty of model parame-
ters.

1 Introduction

Artificial tracer testing is one of the most valuable meth-
ods for the characterization of flow and solute transport in
groundwater. Tracer experiments consist of a two-step pro-
cedure: (1) introducing a known mass of a tracer species
into an aquifer, usually through a sinkhole or well, and
(2) measuring the concentration breakthrough curve (BTC)
response(s) at one or several downstream monitoring lo-
cations, usually spring(s) or pumping well(s). The anal-
ysis of a tracer BTC is best done by fitting a model-
computed time–concentration curve to the measured values.
Although spatially distributed numerical models (e.g., MOD-
FLOW/MT3DMS or FEFLOW) can be used for this purpose,
simpler (i.e., spatially lumped) models are generally used, at
least in the early stages of tracer studies, either because of
time constraints or because of a lack of model input data. A
number of computer codes for BTC fitting have been devel-
oped in recent decades: CATTI (Sauty et al., 1992), TRACI
(Käss, 1998, 2004), OTIS (Runkel, 1998), STANMOD (van
Genuchten et al., 2012), TRAC (Gutierrez et al., 2013), OM-
MADE (Tinet et al., 2019), and OptSFDM (Gharasoo et al.,
2019). Note that STANMOD integrates a number of former
codes, including the widely used CXTFIT code developed by
Parker and van Genuchten (1984) and Toride et al. (1999).
Despite the range of possibilities offered by these programs,
the fitting and interpretation of tracer BTCs remains a chal-
lenging task in some cases, notably for BTCs exhibiting mul-
tiple local peaks and extensive backward tailing. Such BTC
shapes, which fall in the general category of non-Fickian (or
anomalous) transport (Berkowitz et al., 2006; Neuman and
Tartakovsky, 2009), are frequently observed in fractured and
karst aquifers (Tsang and Neretnieks, 1998; Streetly et al.,
2002; Massei et al., 2006; Loefgren et al., 2007; Goldschei-
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der et al., 2008; Field and Leij, 2012; Bertrand et al., 2015;
Yang et al., 2019).

To the best of the author’s knowledge, only the TRACI
and OM-MADE programs are able to simulate multimodal
BTCs. Unfortunately, these two programs suffer from some
limitations both in terms of ease of use and with respect to
their modeling and calibration capabilities. For instance, the
TRACI software has not been maintained since 2004 and can
only be used on physical or virtual computers running Win-
dows operating system versions from Windows 98 to Win-
dows 7. Another drawback of TRACI is the inability of the
inversion (automated calibration) algorithm included in the
software to handle multimodal BTCs. Each local concentra-
tion peak must be sequentially fitted through a manual (trial-
and-error) calibration procedure. The OM-MADE program
was written as a Python script and has neither a graphical
user interface (GUI) nor inverse modeling functionality. The
purpose of this paper is to present a new open-source GUI-
based software, named MFIT, that aims to help in the in-
terpretation of single- or multiple-peak and/or heavy-tailed
BTCs. MFIT stands for “Multi-Flow Inversion of Tracer
breakthrough curves”. The MFIT software integrates four
transport models that can be tested against field and labo-
ratory tracer BTCs with the assistance of the PEST auto-
mated calibration and uncertainty analysis routines (Doherty,
2019a). In its current version, the scope of the software is
limited to tracer tests involving nonreactive tracer species
and performed in steady flow conditions. These assumptions
are maintained throughout the paper.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the possible origins of multiple peaks and
long tails in tracer BTCs and presents the conceptual and
mathematical framework of the transport models integrated
in MFIT. The code implementation and coupling with PEST
for automated BTC fitting are discussed in Sect. 3. In Sect. 4,
the accuracy of MFIT-computed BTCs is verified against
CXTFIT and TRACI simulations for five test cases. An addi-
tional test is presented in Sect. 5 to assess the reliability of a
new multistart method that was specifically developed to im-
prove the automatic optimization of the model parameters.
In Sect. 6, we illustrate the use of the software by analyz-
ing tracer BTCs obtained in the karst aquifer of the Hydro-
geological Experimental Site (HES) in Poitiers, France. The
summary and conclusions are presented in Sect. 7. A number
of acronyms, model abbreviations, and model parameters are
employed throughout this paper. Two glossaries, Tables A1
and A2, are provided in Appendix A for easy reference.

2 Multimodal and heavy-tailed BTCs: causes and
modeling

Under the already mentioned assumptions (nonreactive
tracer, steady-state flow), multimodal BTCs unequivocally
indicate that a number of tracer-plume splittings occurred

Figure 1. Conceptual sketch of the (generic) multiflow modeling
approach, modified from Leibundgut et al. (2009).

somewhere between the injection site and the monitoring
point. Although injection artifacts may be involved in some
cases (see Guvanasen and Guvanasen, 1987), tracer splitting
most commonly originates from the spreading (transverse
dispersion) of the solute into areas of contrasting flow ve-
locities; see Moreno and Tsang (1991), Siirila-Woodburn et
al. (2015), and Boon et al. (2017). More precisely, assuming
a single-pulse tracer injection signal, multimodal BTCs re-
flect a three-step process: (1) tracer spreading into different
flowing or nonflowing aquifer subdomains characterized by
different transit or residence times, (2) tracer motion within
each subdomain with little or no exchange between the dif-
ferent subdomains, and (3) convergence (mixing) of the sub-
tracer fluxes somewhere upstream from, or at, the monitor-
ing point. The different models that have been proposed in
the literature for simulating multimodal tracer BTCs share
a common “multiflow” approach initially proposed by Zu-
ber (1974) for the modeling of layered aquifers. In this ap-
proach, which is depicted in Fig. 1, the flow system is de-
scribed as a juxtaposition of a number of one-dimensional
(1-D) channels that are connected by a single common di-
verging (splitting) node at the entrance to the system and a
single common converging (mixing) node at the outlet.

In the Multi-Dispersion Model (MDM) proposed by Mal-
oszewski et al. (1992) and implemented in the TRACI soft-
ware, the transport along each channel is assumed to obey
the one-dimensional (1-D) advection–dispersion equation
(ADE), and no mass exchange is allowed between different
channels. In the dual-advection dispersion equation (DADE)
proposed by Field and Leij (2012), only two channels are
considered. The tracer is transported by advection and dis-
persion along each channel, and mass exchanges between the
two domains are possible. These exchanges are assumed to
be governed by a first-order process. The transport model im-
plemented in the OM-MADE code can be viewed as a gen-
eralization of the DADE model, where (i) a larger number of
channels can be used, (ii) each channel can be discretized to
a number of subelements with different hydraulic and trans-
port properties, and (iii) some channels can be specified as
nonflowing (stagnant) water volumes. Mass exchanges be-
tween the different channels (either flowing or nonflowing)
are likewise modeled as a first-order process. As pointed
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out above, the production of a multimodal BTC requires lit-
tle or no exchange between the subtransport domains; oth-
erwise, the mixing of the mass fluxes would rehomoge-
nize the subtracer plumes. In accordance with this principle,
small exchange coefficient values must be used in the DADE
and OM-MADE models for simulating multimodal BTCs,
and this approach makes these models converge toward the
MDM.

The interpretation of the long-tail behavior of a BTC may
be more difficult than that of multiple peaks, as different
mechanisms can be involved. The possible sources of ex-
tensive BTC tailing can be listed as follows: (i) tracer re-
tention that produces a decaying boundary condition at the
injection site; (ii) tracer splitting into well-separated flow
paths and then downstream convergence, mixing, and over-
lapping of the individual pathway responses; and (iii) mass
exchanges between flow domains characterized by differ-
ent transit or residence times. The above-listed processes are
referred to below as “injection decay”, “multiflow overlap-
ping”, and “multiflow exchanges”, respectively. The MDM
can simulate long-tailed BTCs as a result of multiflow over-
lapping. Multiflow exchanges are the core of the DADE
model, and both multiflow overlapping and multiflow ex-
changes can be combined in the OM-MADE model. A num-
ber of other models have been proposed in the literature for
simulating unimodal long-tailed BTCs; see reviews in Bodin
et al. (2003b), Neuman and Tartakovsky (2009), Zhang et
al. (2009), and Dentz et al. (2011) and examples of recent
works in Field and Leij (2014) and Labat and Mangin (2015).
The two most commonly used models for the analysis of arti-
ficial tracer tests are the two-region nonequilibrium (2RNE)
model by Toride et al. (1993), implemented in the CXTFIT
code, and the Single-Fracture Dispersion Model (SFDM) by
Maloszewski and Zuber (1990), implemented in TRACI and
OptSFDM software. Both the 2RNE model and SFDM as-
sume mass exchange between a single mobile (flowing) do-
main and a single immobile domain. A key distinction be-
tween the 2RNE model and SFDM is the formulation of mass
exchange, which is described as a first-order process in the
2RNE model (as in the DADE and OM-MADE models) and
as a second-order (diffusion) process in the SFDM.

As already noted, multimodal and long-tailed BTCs are
typical of tracer tests performed in fractured and karst
aquifers. A common feature of both aquifer types is the exis-
tence of low-hydraulic-resistance pathways provided by the
fractures and karst conduits (Tsang and Neretnieks, 1998;
Worthington and Ford, 2009). A generic multiflow modeling
approach is therefore intuitively appealing for the interpreta-
tion of tracer tests in fractured and karst aquifers. Of course,
the actual (and generally unknown) geometry of the discrete
flow network experienced by the tracer is likely more com-
plex than that depicted in Fig. 1. The channels are therefore
not assumed to represent individual fractures or karst con-
duits but are lumped submodels of the main flow routes used
by the tracer through the fractures or karst conduit network.

The four transport models integrated in the MFIT software
are based on the multiflow approach. The first model is a
reimplementation of the MDM. The second model is a vari-
ant of the MDM that assumes an exponentially decaying in-
jection of the tracer concentration at the inlet of the flow sys-
tem. In the third and fourth models, the double-porosity con-
cept (2RNE model and SFDM) is applied at the scale of the
individual channels. It is unclear whether this idea of com-
bining multiflow and double-porosity systems is new. In the
TRACI software, it is technically possible to fit a series of
SFDM curves to a multimodal tracer BTC and then calcu-
late the mean combined model curve, but to the best of the
author’s knowledge, this method has never been discussed
or applied in the literature. A possible reason is the increas-
ing number of fitting parameters, which makes the inverse
problem more complicated. Among the challenges related to
the inversion of a multiflow model is the inherent problem
of nonuniqueness (or equifinality). A variety of parameter
sets can yield nearly identical simulated BTCs, because the
change in the value of a parameter of a given channel can be
compensated by modifying at least one other parameter that
pertains to this same channel or the parameters of the other
channels. This nonuniqueness causes the inverse problem to
be ill-posed in the sense of Hadamard (1902) and requires
the use of advanced optimization methods, such as regular-
ization, to make the inverse problem tractable (Tikhonov and
Arsenin, 1977; Moore and Doherty, 2006; Zhou et al., 2014).

In this article, the combination of multiflow and double-
porosity systems is referred to as the multi-double poros-
ity (MDP). The immobile domain that is assigned to each
flow channel is assumed to describe the porous rock ma-
trix in contact with the fractures or karst conduits and/or any
other stagnant water zones (e.g., pool volumes) adjacent to
the main tracer pathways. For each of the four MFIT models,
the channels are assumed to be independent of each other,
i.e., no mass exchange is allowed between the channels. Ac-
tually, this assumption is mathematically convenient rather
than physically motivated. As already indicated, the chan-
nels are abstractions of the real main tracer pathways, which
may cross (and therefore exchange between) each other be-
tween the injection site and the monitoring point. Assuming
fully separated channels allows for analytical modeling of
mass fluxes in the multiflow system, and this approach makes
the inversion of model parameters computationally more ef-
ficient (see discussion in Sect. 3).

The governing equations of the transport models are given
as follows. The concentration at the outlet of a multiflow sys-
tem as depicted in Fig. 1 can be calculated from the mass flux
balance as follows:

QC =
∑N

j=1
QjCj , (1)

where Q [L3 T−1] is the total system flow rate; C [M L−3]
is the outflow concentration; N is the number of flow chan-
nels; the subscript j denotes the flow channel index; and Qj
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[L3 T−1] and Cj [M L−3] are the flow rate and concentration
in the j th channel, respectively.

The mathematical equations that have been used by Mal-
oszewski et al. (1992) in the MDM to describe the solute
transport in each flow channel are the 1-D ADE as follows:

∂Cj

∂t
=−uj

∂Cj

∂xj
+Dj

∂2Cj

∂x2
j

, (2)

and its analytical solution for the case of an instantaneous
solute injection in a semi-infinite medium with both injection
and detection in flux, which is expressed as (Kreft and Zuber,
1978)

Cj =
mj

2QjT0j

√
π

Pej

(
t
T0j

)3
exp

(
−

PejT0j

4t

(
1−

t

T0j

)2
)
,

(3)

where t [T] is the time variable; xj [L] is the spatial coordi-
nate along the j th flow channel; uj [L T−1] andDj [L2 T−1]
are the advection velocity and the dispersion coefficient, re-
spectively; mj [M] is the part of the solute mass that flows
through the j th channel; and T0j [T] and Pej [–] are the mean
transit time and Péclet number, respectively, which are ex-
pressed as

T0j =
Lj

uj
, (4)

Pej =
ujLj

Dj
, (5)

where Lj [L] is the length of the j th pathway. Substituting
Eq. (3) into Eq. (1) yields

C =

1
Q
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mj
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t
T0j

)3
exp

(
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t
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)
.

(6)

The calibration of Eq. (6) against a tracer test BTC requires
determination of the total system flow rate Q; the number N
of flow channels; and for each flow channel, the values ofmj ,
T0j , and Pej . In this work, we generalize the above-described
method by considering alternative models for the transport in
individual channels and substituting the related analytical ex-
pressions of Cj into Eq. (1). The analytical transport models
that are considered are (i) the solution of Eq. (2) for the case
of a decaying injection boundary condition, (ii) the SFDM,
and (iii) the 2RNE model.

The analytical solution of Eq. (2) for the case of a decaying
injection boundary condition Cj (xj = 0, t)= C0 exp(−λj t)

was derived by Marino (1974) and can be written in the fol-
lowing form:

Cj =

C0

2
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 , (7)

where C0 [M L−3] is the initial (maximum) injection con-
centration at the inflow boundary, λj [T−1] is the time decay
constant, and

γj =

√
1−

4Djλj
u2
j

. (8)

The SFDM developed by Maloszewski and Zuber (1990) de-
scribes solute transport in a double-porosity fracture-matrix
system. The considered transport mechanisms are advection–
dispersion in the fracture and diffusion in the surrounding
rock matrix. The fracture is idealized as a parallel-plate chan-
nel, and the matrix diffusion is assumed to be unlimited, i.e.,
not influenced by the fluxes from other fractures. The trans-
port equations can be written as follows:

∂Cj

∂t
=−uj

∂Cj

∂xj
+Dj

∂2Cj

∂x2
j

+
θpjDpj

bj

∂Cpj

∂yj

∣∣∣∣
yj=bj

for 0≤ yj ≤ bj , (9)

∂Cpj

∂t
=Dpj

∂2Cpj

∂y2
j

for bj ≤ yj ≤∞, (10)

whereCj [M L−3] andCpj [M L−3] are the solute concentra-
tions in the flow channel and in the rock matrix, respectively;
θpj [–] is the matrix porosity; Dpj [L2 T−1] is the molecular
diffusion coefficient in the matrix; bj [L] is the half-aperture
of the flow channel; and yj [L] is the spatial coordinate per-
pendicular to the channel extension. The solution to Eqs. (9)
and (10) for the case of an instantaneous injection is

Cj =
mjβj

√
PejT0j

2πQj

t∫
0

exp
(
−

Pej (T0j−ξ)
2

4T0j ξ
−
β2
j ξ

2

t−ξ

)
√
ξ(t − ξ)3

dξ,

(11)

where ξ [T] is the integration variable and βj [T−1/2] is the
so-called diffusion parameter defined as

βj =
θpj
√
Dpj

2bj
. (12)
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Coats and Smith (1964) proposed a different mathematical
formulation of solute mass exchange between flowing and
stagnant water regions in double-porosity media, which is
well known in the literature either as the mobile–immobile
(MIM) model or the 2RNE model as

θj
∂Cj

∂t
+ θimj

∂Cimj

∂t
= θj

(
−uj

∂Cj

∂xj
+Dj

∂2Cj

∂x2
j

)
, (13)

θimj
∂Cimj

∂t
= αj

(
Cj −Cimj

)
, (14)

where θj [–] and θimj [–] are the mobile and immobile volu-
metric water contents, respectively; Cimj [M L−3] is the con-
centration in the immobile domain; and αj [T−1] is a first-
order mass transfer coefficient. The two main differences
with respect to the SFDM are (i) the dual-domain formula-
tion of the problem (mobile and immobile regions are as-
sumed to coexist at each point in space, and this assump-
tion differs from the parallel-plate channel geometry in the
SFDM) and that (ii) the solute mass exchange between mo-
bile and immobile domains is assumed to be governed by a
first-order process, whereas the SFDM refers to the second-
order diffusion Eq. (10). Building on a general set of analyt-
ical solutions developed by Toride et al. (1993), the solution
of the 2RNE model for the case of an instantaneous injection
can be written as follows:

Cj =
mj

Qj

1

T0j

√
4π
Pej

(
t
T0j

)3
exp

−Pej
(

1− t
T0j

)2

4 t
T0j

−ωjLj
t
T0j


+
ωjψj
T0j

√
L3
jPej

4π(1−ψj )

∫ ψjLj t
T0j

0
1

τ
√
ψjLj

t
T0j
−τ

exp

−Pej (ψjLj−τ)2

4ψjLj τ
−
ωj τ

ψj
−

ωj

(
ψjLj

t
T0j
−τ

)
1−ψj


I1

2ωj

√
τ

(
ψjLj

t
T0j
−τ

)
ψj (1−ψj )

dτ



,

(15)

where I1 is the modified Bessel function of the first kind, τ
[L] is the integration variable,

ψj =
θj

θj + θimj
, and (16)

ωj =
αj

θjuj
. (17)

It is notable that whenψj = 1 andωj = 0, Eq. (15) simplifies
to Eq. (3). Table 1 summarizes the parameters of the four
MFIT transport models.

3 Code implementation and inversion

The four analytical models described in the previous
section have been implemented in C++ and compiled
as executable Windows programs named MDMi.exe (for
MDM, instantaneous injection), MDMed.exe (for MDM,
exponentially decaying injection), MDP_SFDM.exe,
and MDP_2RNE.exe. The code and executable files
are freely available on the public Zenodo reposi-
tory: https://doi.org/10.5281/zenodo.3470751. In the
MDP_SFDM and MDP_2RNE programs, the numerical
evaluation of the integrals in Eqs. (11) and (15) is performed
using the QAG adaptive integration routine from the GNU
Scientific Library with a 61-point Gauss–Kronrod rule
and a relative error convergence criterion of 10−2. These
four programs can be run as console applications to solve
a direct (forward) problem, i.e., computing a series of
time–concentration values for a given set of model param-
eters. Both the input and output files are in ASCII format
and can be edited with any text editor program for pre-
and/or postprocessing. A convenient alternative is to use
the MFIT software as a GUI for these applications. The
MFIT software has been developed using the C++ Builder
environment (Embarcadero RAD Studio 10.1 Berlin) and
provides a GUI for (i) importation and graphic visualization
of user-provided BTC data; (ii) parameterization, direct
running, and graphical output of the analytical transport
models; (iii) inversion (automatic calibration) of model
parameters for optimal curve fitting; and (iv) assessment of
the uncertainty of calibrated parameter values.

The optimization and uncertainty analysis of the model
parameters for a given number of flow channels are carried
out using PEST routines (Doherty, 2019a, b). The influence
of the number of channels on the model fitting performance
can be analyzed once a series of calibrations has been per-
formed for a variety of channel numbers, as illustrated below.
PEST is a public-domain model-independent program suite
that has been widely used over the past 2 decades, notably
in the field of surface and subsurface hydrology (e.g., Long,
2015; Woodward et al., 2016; Gaudard et al., 2017; Wang et
al., 2019). The theoretical framework and full range of capa-
bilities of the PEST software are well documented (Doherty
et al., 2010; Doherty, 2015, 2019a, b) and are not repeated
here. Only the concepts and methods that were deemed to
be the most relevant to the multiflow modeling approach and
that have been made accessible through the MFIT GUI soft-
ware are briefly reviewed below.

PEST is based on a gradient optimization method and, as
such, requires the derivatives of model outputs with respect
to the adjustable model parameters to be calculated in each
iteration for implementing the Jacobian (sensitivity) matrix.
As pointed out by Doherty (2015), the accuracy of these
derivative calculations is critical to the performance of the
PEST optimization algorithm. In the MFIT program suite,
most of the model partial derivatives are calculated analyti-

https://doi.org/10.5194/gmd-13-2905-2020 Geosci. Model Dev., 13, 2905–2924, 2020

https://doi.org/10.5281/zenodo.3470751


2910 J. Bodin: MFIT 1.0.0

Table 1. Parameters of the transport models integrated in the MFIT software. The subscript j denotes a parameter that must be defined for
each flow channel. The parameters without this subscript are common to all channels.

Maximum number of
calibration parameters for

Model Parameters an n-channel solution

MDMi (ADE, Q, mj , T0j , Pej 3n+ 1
instantaneous injection)

MDMed (ADE, exponentially C0, Qj /Q, T0j , Pej , γj 4n+ 1
decaying injection)

MDP-SFDM Q, mj , T0j , Pej , βj 4n+ 1

MDP-2RNE Q, mj , Lj , T0j , Pej , ψj , ωj 6n+ 1

cally and externally provided to PEST. This approach ensures
both the accuracy and speed of this part of the optimiza-
tion process. Less straightforward partial derivative expres-
sions were derived using MAPLE and exported as C code us-
ing the MAPLE code generation routine. The partial deriva-
tive functions were implemented in the MDMi, MDMed,
MDP_SFDM, and MDP_2RNE programs and are processed
during the PEST system calls to these programs by provid-
ing an optional “/d” command-line argument to the program
name. In a few cases, however, the partial derivatives cannot
be calculated analytically, as they involve undefined limits.
Such is the case for the derivatives of Eq. (15) with respect
to the parameters ψj , Lj , and T0j . In these cases, the partial
derivatives are computed by PEST using finite differences.

The calibration of a multiflow transport model against a
tracer BTC is hampered by two well-known issues in inverse
modeling: (i) model nonlinearity and (ii) solution nonunique-
ness. Both issues may cause numerical instabilities that can
prevent the inversion algorithm from converging to the op-
timal solution. PEST includes two regularization methods
that can be used either individually or together to guide
the optimization process. The singular value decomposition
(SVD) method subtracts parameter combinations for which
the tracer BTC is uninformative. The inversion is conducted
on the basis of a reduced set of orthogonal linear combina-
tions of the model parameters rather than attempting to esti-
mate the parameters individually. The Tikhonov regulariza-
tion method provides a different but complementary strategy,
where the information content of the tracer BTC is supple-
mented with expert knowledge pertaining to the model pa-
rameters. When using Tikhonov regularization, the objec-
tive function that is minimized by PEST is defined as the
sum of two terms. The first term is the “measurement ob-
jective function” and is defined as the sum of the squared
weighted differences between the real tracer BTC and the
model-simulated curve. The second term is referred to as
the “regularization objective function” and acts as a penalty
function for deviations from some preferred parameter con-
ditions. Two Tikhonov regularization options have been im-

plemented in MFIT. The first option, referred to as “preferred
homogeneity”, promotes a solution of minimum variance for
the model parameters pertaining to the different channels. In
the second option, referred to as “preferred value”, the opti-
mization process seeks the solution that is the closest to some
prior estimates of the model parameters.

Unfortunately, neither SVD nor Tikhonov regularization
can guarantee that the PEST optimization algorithm will con-
verge to the global optimal solution in the parameter space.
Where local minima exist in the objective function, which
is the rule rather than the exception with nonlinear mod-
els, the optimization process may become trapped and fail
to identify existing better solutions (Singh et al., 2012; Es-
pinet and Shoemaker, 2013; Abdelaziz et al., 2019). A cen-
tral issue in this case is the sensitivity to initial parameter
values, i.e., different initial parameter sets may lead to differ-
ent optimized solutions. Global optimization methods have
been proposed in the literature to overcome this issue; see
Arsenault et al. (2014) for a review and comparison of vari-
ous algorithms. The PEST program suite includes two such
global optimizers based on the SCE-UA method (Duan et
al., 1992) and the CMA-ES method (Hansen and Ostermeier,
2001). The corresponding programs are named SCEUA_P
and CMAES_P, respectively. It must be noted, however, that
global optimization methods suffer from their own draw-
backs, including sensitivity to tuning parameters and low
computational efficiency. An alternative strategy to improve
the chances of convergence toward the global optimum with
gradient-based methods is the “multistart” approach, which
consists of repeating the optimization process starting from
different initial parameter value sets (Skahill and Doherty,
2006; Piotrowski and Napiorkowski, 2011). Such a strategy
has been implemented in the MFIT software. The key princi-
ple of the proposed algorithm is that rather than conducting
the optimization for a fixed number N of channels only, a
series of automatic tracer BTC fittings is performed for a de-
creasing number of channels ranging from Nmax to 1. The
main steps of the MFIT multistart algorithm are detailed as
follows:
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1. The first optimization is performed by considering the
maximum number of flow channels Nmax. The initial
transport parameters are automatically tuned by MFIT
to obtain Nmax well-separated concentration peaks. For
this goal, the tracer BTC is first analyzed to determine
the times T5 and T95, which are defined as

T5 =max(T5th,1.1× Tmin) , (18)

T95 =min(T95th,0.9× Tmax) , (19)

where T5th and T95th are the earliest and latest times at
which the concentration values are above and below 5 %
of the maximum concentration value, respectively, and
Tmin and Tmax are the minimum and maximum time val-
ues of the user-provided BTC, respectively. The mean
travel times, T0j , are then uniformly distributed between
the times T5 and T95. Next, the initial Péclet number,
Pej , of each channel is calculated as

Pej =
(

15
NmaxT0j

T95− T5

)2

. (20)

Equation (20) is based on a semiempirical relationship
between the standard deviation of travel times for trans-
port by advection and dispersion, σj = T0j

√
2/Pej (see

Bodin et al., 2003a; Eq. 10), and the time span of the j th
concentration peak, which is on the order of 6σj . The
constraint of well-separated concentration peaks may
be formulated as 6σjNmax� (T95− T5), which is ver-
ified by Eq. (20). The initial values of the other trans-
port parameters in Eqs. (7), (11), and (15) are chosen
to minimize the tailing effect due to noninstantaneous
injection or solute mass exchange between flowing and
stagnant water regions as follows: γj = 0.1, βj = 0.001,
ψj = 0.9, and ωj = 0.05.

2. Once the optimization has been performed for the Nmax
channel model, the next step is to optimize the trans-
port parameters for Nmax− 1 channels. The multistart
optimization approach begins here as not only one but
Nmax optimizations are performed in this step. The ini-
tial parameter values for the Nmax− 1 channels are ini-
tialized from the previously optimizedNmax channel so-
lution by sequentially removing one of the channels.
Only the solution corresponding to the lowest sum of the
squared weighted differences between the tracer BTC
and model-simulated curve is retained.

3. This procedure is repeated up to the single-channel
solution. The total number of PEST optimizations is
Nmax(Nmax+ 1)/2.

Calling the multistart algorithm has been made optional in
MFIT, as this algorithm significantly increases the compu-
tational cost and running time of the optimization process.

However, experience has shown that the multistart approach
can truly improve the model fit results and can be worth the
effort in many circumstances. A comparison between opti-
mizations conducted by the PEST multistart algorithm and
the global SCE-UA and CMA-ES methods was conducted in
this study and is discussed in Sect. 6.

Because of the nonuniqueness of the inverse problem,
some uncertainties may be associated with the PEST-
optimized model parameter values. A nonlinear analysis
method has been implemented in MFIT for the assessment
of postcalibration parameter uncertainty. The method is es-
sentially similar to that described by Fang et al. (2019) and
relies on the use of the PREDUNC7 and RANDPAR utili-
ties documented in the PEST manual (Doherty, 2019b). The
algorithm can be described by the following steps: (1) com-
pute a linear approximation to the posterior parameter covari-
ance matrix using PREDUNC7; (2) sample the posterior pa-
rameter covariance matrix and generate multiple calibration-
constrained random parameter sets with RANDPAR; (3) re-
calibrate each parameter set with PEST up to achieving a
level of fit fairly similar to the original calibration result (a
tolerance of +5 % for the measurement objective function is
allowed by MFIT); and (4) compute histograms of the recali-
brated parameter values. The following two assumptions un-
derlie this method: (i) the upper and lower parameter bounds
specified by the user for the PEST inversion reflect the prior
(expert knowledge) parameter uncertainty, and (ii) the model
parameters are statistically independent from a prior point of
view. This second assumption is relaxed through the recali-
bration process.

4 Code verification

The robustness of the PEST inversion program has been
demonstrated in a number of studies (see Anderson et
al., 2015; and Hunt et al., 2019) and is not reassessed here.
The purpose of this section is to assess the accuracy of MFIT
direct simulations through five synthetic test cases. Tests 1
and 2 address the case of a single flow channel described
as a single-porosity medium in which the transport is gov-
erned by advection–dispersion. An instantaneous injection of
the tracer is assumed in test 1, whereas test 2 addresses the
case of an exponentially decaying concentration at the inlet.
A double-porosity medium and single flow channel are as-
sumed in tests 3 and 4, which conform to the assumptions of
the SFDM and 2RNE model, respectively. In test 5, the tracer
is transported by advection–dispersion in a multiflow system
composed of two channels. This scenario corresponds to the
MDM. The input parameters for the five test cases are listed
in Table 2. The BTCs simulated by MFIT for tests 1, 2, and 4
are compared to those obtained by CXTFIT. The MFIT simu-
lations for tests 3 and 5 are compared against those obtained
by TRACI. As shown in Fig. 2, very good agreement was
obtained in each case.
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Table 2. Input parameters for the five verification tests.

Test Parameters Values

1 (single flow channel, Flow rate Q 10 m3 h−1

ADE, instantaneous Injected mass m 20 g
injection) Mean transit time T0 200 h

Péclet number Pe 2

2 (single flow channel, Mean transit time T0 70 h
ADE, exponentially Péclet number Pe 10
decaying injection) Initial (maximum) injection concentration C0 8.0× 10−3 mg L−1

Gamma coefficient γ 0.9

3 (single flow channel, Q, m, T0, Pe Same as test 1
SFDM) Diffusion parameter β 0.04 h−1/2

4 (single flow channel, Q, m, T0, Pe same as test 1
2RNE) Length of the flow channel L 1000 m

Fraction of mobile water ψ 0.7
Omega coefficient ω 0.1 m−1

5 (two channels, Total system flow rate Q 10 m3 h−1

MDM-ADE) Mass flowing through the first channel m1 12 g
Mass flowing through the second channel m2 8 g
Mean transit time in the first channel T01 170 h
Mean transit time in the second channel T02 300 h
Péclet number in the first channel Pe1 15
Péclet number in the second channel Pe2 80

Figure 2. Comparison among MFIT, CXTFIT, and TRACI simula-
tions for test 1 (single flow channel, ADE, instantaneous injection),
test 2 (single flow channel, ADE, exponentially decaying injection),
test 3 (single flow channel, SFDM), test 4 (single flow channel,
2RNE), and test 5 (two channels, MDM-ADE).

5 Assessment of the multistart optimization method

The purpose of this section is to assess the automatic multi-
start method described in Sect. 3 using a new synthetic test

case. A multimodal BTC that corresponds to three channels
has been simulated using the MDMi program with the pa-
rameters listed in Table 3. A “blind” inversion of this BTC
has been performed using the automatic multistart method
with a maximum number of flow channels Nmax = 6. The
only model parameter that has been fixed prior to the in-
version process was the total flow rate Q to simplify the
post-comparison of the inverted mass values in each chan-
nel with the “true” mass values. Otherwise, a degree of free-
dom would persist for the pairs of the optimized Q and mj
values, i.e., multiplying or dividing these parameters by the
same constant would yield the same BTCs; refer to Eq. (6).
The parameters mj , T0j , and Pej of the different flow chan-
nels were optimized with virtually no upper and lower bound
constraints (minimum and maximum allowed parameter val-
ues of 1.0× 10−10 and 1.0× 10+10, respectively). As shown
in Fig. 3, the inverted BTCs that correspond to N = 3, 4, 5,
and 6 channels overlap perfectly with each other and with
the original simulated BTC; as shown in Table 4, the opti-
mized values for the parameters of the three-channel model
are equal to the true parameter values.
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Table 3. Model parameters that correspond to the multimodal sim-
ulated BTC in Fig. 3.

Parameters Values

Q 10 m3 h−1

m1 10 g
m2 6 g
m3 4 g
T01 150 h
T02 250 h
T03 350 h
Pe1 20
Pe2 50
Pe3 100

Figure 3. Inversion of the three-channel-simulated BTC using the
automatic multistart method with Nmax = 6. The inverted BTCs
that correspond to N = 3, 4, 5, and 6 channels overlap perfectly
with each other and the original simulated BTC.

6 Application example: analysis of tracer BTCs from
the Hydrogeological Experimental Site in Poitiers,
France

The HES is a field research facility operated by the Uni-
versity of Poitiers, France. The facility consists of 32 wells
that have been drilled within an overall area of 0.2 km2

(Fig. 4) and fully penetrate a 100 m thick confined limestone
aquifer. The interwell flow and transport connectivity have
been shown to be mainly related to karst conduits, 0.01–3 m
in diameter, that develop preferentially within specific lithos-
tratigraphic horizons interbedded with nonkarstified lime-
stone units. The karstified layers may contribute to the con-
nectivity from one well to another either directly (e.g., the
wells intersect with the same karst network in a single layer)
or indirectly (e.g., the wells intersect with different karst net-
work layers that are interconnected by either a third well or a

Table 4. Optimized model parameters that correspond to the in-
verted BTCs in Fig. 3.

N 1 2 3 4 5 6

m1 (g) 21.11 10.79 10.00 2.79 2.66 2.66
m2 (g) – 9.54 6.00 7.19 7.35 7.35
m3 (g) – – 4.00 6.02 5.99 5.91
m4 (g) – – – 4.00 2.58 2.62
m5 (g) – – – – 1.42 1.45
m6 (g) – – – – – 0.02
T01 (h) 239.36 155.82 150.00 126.17 151.55 151.31
T02 (h) – 302.91 250.00 158.91 149.47 149.60
T03 (h) – – 350.00 250.00 249.97 249.30
T04 (h) – – – 350.01 349.48 347.68
T05 (h) – – – – 350.84 351.08
T06 (h) – – – – – 405.58
Pe1 6.72 17.52 20.00 24.22 19.80 19.92
Pe2 – 27.55 50.00 22.18 20.07 20.01
Pe3 – – 100.00 49.94 50.04 50.62
Pe4 – – – 100.00 98.45 88.42
Pe5 – – – – 102.68 120.27
Pe6 – – – – – 442.13

subvertical fracture); see Audouin et al. (2008) and Chatelier
et al. (2011).

A large number of pumping test experiments have been
conducted at the HES since 2002. As discussed in a number
of studies (Delay et al., 2007, 2011; Riva et al., 2009; Bodin
et al., 2012; Sanchez-Vila et al., 2016; Le Coz et al., 2017),
the drawdown responses exhibit complex behaviors, which
are likely due to the strong aquifer heterogeneity induced
predominantly by the presence of karst features. In addition
to the pumping test experiments, a number of cross-borehole
tracer tests have been performed at the HES since 2011. The
standard experimental protocol of HES tracer experiments
can be summarized as follows:

1. Starting a pumping experiment and waiting for the es-
tablishment of a pseudo-steady-state flow regime (i.e.,
stabilization of interwell piezometric head gradients) is
the first step, which typically takes approximately 6 h at
the HES.

2. Performing flow log measurements in the candidate in-
jection well to identify the main inflow and outflow lev-
els along the well bore is the second step.

3. Connecting a series of 2.5 m length and 1.5 cm inner di-
ameter PVC pipes in the injection well, from the ground
down to the tracer injection depth (usually chosen to
be as close as possible to a main outflow level) is the
third step. The pipeline is terminated by a 5 cm length
screened cap that ensures a horizontal outflow of the
tracer solution in the injection well.

4. Injecting a tracer solution (typically 2 L of Uranine so-
lution at 1 g L−1) in the pipe and flushing with 40 L of
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Figure 4. Locations of wells at the HES in Poitiers, France. Map
data are from © Google.

clean groundwater is the fourth step. The total duration
of an injection is typically less than 3 min.

5. Monitoring the tracer BTC at the pumped well using a
flow-through fluorometer (Albillia GGUN-FL22) con-
nected to a branch pipe extending from the discharge
line at ground level is the last step. The fluorometer is
periodically calibrated in the laboratory with solutions
of 10 and 100 µg L−1.

To date, more than 70 cross-well tracer experiments have
been performed at the HES. The purpose here is not to in-
terpret each of these experiments but to pick a few examples
for illustrating the application of the MFIT software. The se-
lected data correspond to three tracer experiments that were
performed in 2016 and 2017 using well M22 as the pumped
well and M16, MP6, and P2 as injection wells. Figure 5
shows the experimental BTCs and a collection of calibrated
MFIT curves for different numbers of channels. The selected
experiments were chosen for their representativeness of the
BTC shapes observed at the HES, which exhibit either a
single peak followed by a more or less pronounced tailing,
e.g., P2-M22; overlapping double-peak responses, e.g., M16-

M22; or well-marked multimodal responses, e.g., MP6-M22.
The mass recovery ratios for these three tracer experiments
were 58 %, 79 %, and 60 %, respectively. Note that these re-
covery data cannot be included in the model, because the
flow structure assumption that underlies the multiflow ap-
proach (Fig. 1) implies that all the mass that enters the sys-
tem flows out after a certain lapse of time. The same holds
for any single- or double-porosity modeling approach based
on a 1-D flow assumption. For tracer tests that are performed
in steady state conditions and involve nonreactive tracers, an
incomplete recovery of the injected mass indicates a diverg-
ing flow structure between the injection site and the moni-
toring point. Unfortunately, no additional information can be
obtained about this flow divergence from the tracer data only.
Therefore, the total mass in a multiflow model must be con-
sistent with the recovered tracer mass rather than the injected
mass.

The model fit results shown in Fig. 5 were obtained using
the multistart method discussed in Sect. 3 and only SVD as
a regularization tool for the inversion. None of the model pa-
rameters were fixed, and all were optimized within realistic
upper and lower limits. The optimized parameter values and
their composite sensitivities at the end of the optimization
process are provided in the Supplement (Table S1). Unsur-
prisingly, the model parameters that influence the spreading
of transit or residence times in the individual flow channels,
while accounting for different processes (Pe, γ , β, ψ , and ω)
are sensitive to the number of channels. For instance, when
comparing single- with multiple-channel models, the former
requires lower Pe values to compensate for the coarser de-
scription of the flow system heterogeneity (recall that the
dispersion coefficient integrated in the Péclet number reflects
the unresolved variability of the flow velocity below the mod-
eling scale). The same observation holds when comparing
single- and double-porosity models with the same number of
flow channels, i.e., the Pe values of single-porosity models
are lower than the Pe values of double-porosity models, be-
cause part of the spreading of transit or residence times in the
latter case is implicitly captured by solute mass exchanges
between the mobile and immobile domains. A noticeable ex-
ception is the diffusion parameter β of the SFDM model,
whose values are mostly around 1.0×10−3 h−1/2. This value
corresponds to the upper bound of the optimization range set
for this parameter, which is based on a matrix porosity of
30 %, a molecular diffusion coefficient of 1.0×10−9 m2 s−1,
and a flow-channel aperture of 1.0× 10−2 m. Beta values
larger than 1.0×10−3 h−1/2 would be physically unrealistic.
The fact that the beta value is limited by its upper bound dur-
ing the optimization process indicates that the SFDM model
is not suitable for describing the HES tracer experiments, as
further discussed below. All other parameters have converged
to values far from their optimization bounds.

Beyond what can be visually inferred from Fig. 5, the
assessment of the relative fitting performance of the differ-
ent models can be analyzed through the evolution of the
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Figure 5. Inversion solutions of three tracer BTCs for different numbers of channels. Some model curves are hardly distinguishable, as they
perfectly overlap (refer to the text and Fig. 6).

measurement objective function, hereafter named PHI, with
respect to the number, N , of channels and/or the number,
P , of optimized model parameters. Figure 6 displays the
PHI(N ) and PHI(P ) curves summarizing the best-fitting re-
sults achieved with the multistart PEST optimization and the
SCEUA_P and CMAES_P global optimization routines. A
number of observations can be made from this figure. As a
first remark, the SCEUA curves for the two MDP models are
missing in Fig. 6. The reason is that the SCEUA_P program
has no “forgive error” capability, i.e., if a set of trial parame-
ters causes the numerical evaluation of Eq. (11) or Eq. (15) to
crash, the optimization process is stopped instead of moving

to a new set of parameter values. Such a forgiveness option is
available in the PEST and CMAES_P programs. The next ob-
servations that can be made from Fig. 6 are that the CMAES
and SCEUA curves are (i) more irregular, (ii) always above
or equal to their PEST-computed counterparts, and (iii) do
not always follow the expected decreasing trend in the PHI
value (meaning a better model fit) as the number of channels
rises, as depicted by the PEST curves. However, it must be
mentioned that the number of optimization runs was much
greater for the CMAES_P and SCEUA_P programs, and
various optimization options were tested (e.g., changing the
upper and lower parameter bounds and log-transformation
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Figure 6. Best-fitting performance of the multiflow models achieved using PEST with the multistart optimization approach and using global
optimizers.N is the number of channels in the models, P is the number of optimized parameters, and PHI is the sum of the squared weighted
differences between the tracer BTCs and the model-fitted curves.

of parameters). The CMAES and SCEUA curves shown in
Fig. 6 are actually the “best results” obtained after several
days of computation time. It is clear that the multistart PEST
optimization method performs better in each case.

The PHI curves obtained by PEST can be viewed as Pareto
curves, illustrating the trade-off between the model fitting
quality and the number of channels or the number of calibra-
tion parameters. It must be noted that since no Tikhonov reg-
ularization was used in this illustration example, the model
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Figure 7. Postcalibration uncertainty of model parameter values for the inversion of the M16-M22 tracer BTC by the MDMi model with 1,
2, and 3 flow channels.

inversion results for higher N values are likely affected by
overfitting. More reliable parameter values could be obtained
by adding Tikhonov regularization constraints to the opti-
mization process.

According to the PHI(N ) curves shown in Fig. 6, the
MDMi model and MDP-SFDM perform similarly for the
three tracer tests, and the related PHI(N ) curves are hardly
differentiable. This result was expected, as the short dura-
tion of the HES tracer tests, typically from a few hours to
a few days, makes the matrix diffusion process unlikely to
be significant. Assuming exponential decaying (MDMed) in-
stead of instantaneous (MDMi) injection gives slightly bet-
ter fitting results for a low number of channels but provides
no benefit for a moderate-to-high number of channels. Ac-
cording to the PHI(N ) curves, the fitting performance of the
MDP-2RNE model seems significantly better than that of the
three other models. However, this observation must be coun-
terbalanced by the larger number of calibration parameters in
the MDP-2RNE model (see Table 1). A two-channel MDP-
2RNE model involves 13 parameters, which corresponds to
the number of parameters in a four-channel MDMi model.
The PHI(P ) curves shown in Fig. 6 provide a fairer assess-
ment of the fitting performance of the different models. Ac-
cording to these curves, the MDP-2RNE model performs
slightly better than the MDMi model for the P2-M22 tracer
test (single peak slightly tailed BTC), almost equally well
for the M16-M22 tracer test (overlapping double peaks), and
worse for the MP6-M22 tracer test (well-marked multimodal
BTC). It must be appreciated that these two models should
not be opposed to each other. Both models likely provide an
equally valid description of the tracer transport in the HES

aquifer while relying on different conceptualizations of the
medium heterogeneity.

The Pareto curves in Fig. 6 indicate that the final choice of
a model, if one is to be made, relies on a trade-off between the
desired fitting accuracy and the desired degree of simplifica-
tion or complexity with respect to the model structure (num-
ber of channels and/or number of model parameters). Beyond
this subjective (expert) decision, which may depend on the
goal of the study, and therefore will not be discussed further
in the present application case, uncertainty remains in the in-
verted model parameters as a consequence of the nonunique-
ness of the inverse problem. This uncertainty is related to
both the equifinality of the model parameters, which is partly
due to the multiflow framework structure, and the measure-
ment noise in the tracer BTCs. Figures 7 and 8 illustrate the
postcalibration uncertainty analysis capabilities of MFIT via
an assessment of the MDMi and MDP-2RNE model fittings
of the M16-M22 tracer BTC with 1, 2, and 3 flow channels.
Owing to the balance between the Q and mj terms in the
model equation (Eqs. 6 and 15), at least one of these param-
eters must be fixed to assess the uncertainty of the other pa-
rameters. Here, the value of Q was set to 25 m3 h−1, which
ensures the consistency of the model against the recovered
tracer mass that was independently calculated from the ex-
perimental data (refer to Table S1). Following the PEST op-
timization of the different model parameters, 500 calibration-
constrained parameter fields were stochastically generated
and recalibrated by PEST. Depending on the model (MDMi
or MDP-2RNE) and number of flow channels, between 483
and 500 recalibration runs successfully achieved a level of
fit that is fairly similar (i.e., within a tolerance of +5 % for
the PHI value; refer to Sect. 3) to that associated with the
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Figure 8. Postcalibration uncertainty of model parameter values for the inversion of the M16-M22 tracer BTC by the MDP-2RNE model
with 1, 2, and 3 flow channels. A logarithmic scale has been employed for Pe due to a wider range of values than shown in Fig. 7.

original calibration parameter field. The histograms shown
in Figs. 7 and 8 were constructed from these recalibrated pa-
rameter sets and illustrate the multitude of parameter com-
binations that are equally good for a given number of flow
channels, in terms of fitting the M16-M22 tracer BTC. As
shown in these figures, the confidence intervals are quite nar-
row for most parameters but tend to widen as the number of
channels increases, which reflects the equifinality of the mul-
tiflow modeling approach. Although not shown here, it has
been established that the tailed behaviors of the parameters
Lj and ωj in Fig. 8 are due to a partial correlation between
these two parameters (refer to Eq. 15), i.e., fixing the value
of one parameter prior to the inversion drastically reduces the
uncertainty of the other parameter. As previously discussed,
the higher Pe values in Fig. 8 compared to Fig. 7 are due to

the fact that the distribution of the transit or residence times
with the 2RNE model is primarily controlled by the solute
mass exchanges between the mobile and immobile domains.

7 Summary and conclusions

Multiple flow path transport is likely the rule rather than the
exception in most transport problems in fractured and karst
aquifers. The main aim of this paper was to present a new
curve-fitting tool for the analytical modeling of BTCs from
tracer tests performed in such media. The MFIT software is
a free open-source Windows-based GUI that provides access
to four multiflow transport models. The multiflow approach
assumes that the transport from the injection site to the mon-
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itoring point takes place in a number of independent 1-D
channels. The channels are not assumed to represent individ-
ual fractures or karst conduits but are lumped submodels of
the main flow routes used by the tracer through the fractures
or karst conduit network. The multiflow modeling framework
allows for the simulation of multimodal BTCs, which are fre-
quently observed in fractured and karst aquifers. Two of the
MFIT transport models combine the multiflow framework
and the double-porosity concept, which is applied at the scale
of the individual channels. This modeling approach, which
has been named MDP, is believed to be new and versatile for
the fitting of BTCs with multiple local peaks and/or extensive
backward tailing. The accuracy of the MFIT-computed BTCs
was verified against two other well-accepted simulation tools
for five synthetic test cases.

An important feature of MFIT is its compatibility and in-
terface with the advanced calibration tools of the PEST suite
of programs. Hence, MFIT is the first BTC fitting tool that
allows for regularized inversion and nonlinear analysis of the
postcalibration uncertainty of model parameters. Given the
nonlinearity of the MFIT model equations, an original mul-
tistart algorithm was implemented to maximize the chances
for PEST to converge to the global optimal solution in the
parameter space during a BTC fitting procedure. The main
drawback of the multistart optimization method is that the
processing time can be long (up to a few hours) if a large
number of channels is assumed in the model. Time reduction
for this method is one of the development perspectives of
the MFIT code, as the multistart process is computationally
parallelizable. Other development perspectives are the man-
agement of more complex injection signals, e.g., described as
multiple steps, and the implementation of additional analyt-
ical transport models for the simulation of reactive transport
processes.

Three tracer test BTCs from the HES in Poitiers, France,
were used for illustrating the application of the MFIT soft-
ware. An analysis of the Pareto curves between the model
fitting quality and the number of model calibration parame-
ters suggests that the MDMi and MDP-2RNE models are the
most appropriate for the interpretation of HES tracer tests.
This preliminary result needs to be refined or confirmed by
the analysis of additional HES tracer BTCs.

https://doi.org/10.5194/gmd-13-2905-2020 Geosci. Model Dev., 13, 2905–2924, 2020



2920 J. Bodin: MFIT 1.0.0

Appendix A: Glossary

Table A1. Acronyms and model abbreviations utilized in the text.

Acronym or
model name Description Reference

ADE Advection–dispersion equation Zheng and Bennett (2002)
BTC Breakthrough curve
CATTI Computer Aided Tracer Test Interpretation: a computer program for tracer BTC fitting Sauty et al. (1992)
CMA-ES Covariance Matrix Adaptation – Evolution Strategy: a global optimization algorithm Hansen and Ostermeier (2001)
CMAES_P PEST-compatible program that implements the CMA-ES method Doherty (2019a)
CXTFIT Computer program for tracer BTC fitting Toride et al. (1999)
DADE Dual-advection dispersion equation Field and Leij (2012)
FEFLOW Finite Element FLOW model; a simulation package for flow, heat, and mass transport

in groundwater
Diersch (2014)

GUI Graphical user interface
HES Hydrogeological Experimental Site in Poitiers, France Audouin et al. (2008)
MDM Multi-Dispersion Model Maloszewski et al. (1992)
MDMed Computer program that implements the Multi-Dispersion Model and assumes a non-

instantaneous injection (exponentially decaying concentration) at the inlet of the flow
system

This article

MDMi Computer program that implements the Multi-Dispersion Model and assumes an instan-
taneous injection of tracer at the inlet of the flow system

This article

MDP Multi-double porosity: a combination of multiflow and double-porosity models This article
MDP_SFDM Computer program that implements the MDP approach, where the mass exchanges be-

tween the mobile and immobile domains are modeled as a second-order (diffusion)
process

This article

MDP_2RNE Computer program that implements the MDP approach, where the mass exchanges be-
tween the mobile and immobile domains are modeled as a first-order process

This article

MFIT Multi-Flow Inversion of Tracer breakthrough curves: a GUI for the MDMi, MDMed,
MDP_SFDM, MDP_2RNE, and PEST programs.

This article

MIM Mobile-Immobile Model Coats and Smith (1964)
MODFLOW MODular three-dimensional groundwater FLOW model: a computer code developed by

the U.S. Geological Survey that numerically solves the groundwater flow equation
Langevin et al. (2017)

MT3DMS Modular Three-Dimensional MultiSpecies transport model: a numerical code to simu-
late solute transport in groundwater

Zheng et al. (2012)

OM-MADE One-dimensional Model for Multiple Advection, Dispersion, and storage in Exchanging
zones: a Python script to simulate solute transport in multiflow systems with possible
mass exchanges between the flow channels

Tinet et al. (2019)

OptSFDM Computer program for tracer BTC fitting based on the SFDM model Gharasoo et al. (2019)
OTIS One-dimensional Transport with Inflow and Storage: a numerical code to simulate so-

lute transport in streams and rivers
Runkel (1998)

PEST Parameter ESTimation: a collection of computer programs for model-independent pa-
rameter estimation and uncertainty analysis

Doherty (2019a)

SCE-UA Shuffled Complex Evolution method – University of Arizona: a global optimization
algorithm

Duan et al. (1992)

SCEUA_P PEST compatible program that implements the SCE-UA method Doherty (2019a)
SFDM Single-Fracture Dispersion Model Maloszewski and Zuber (1990)
STANMOD STudio of ANalytical MODels: a collection of computer programs for tracer BTC fitting van Genuchten et al. (2012)
SVD Singular value decomposition Doherty (2015)
TRAC Computer program for tracer BTC fitting Gutierrez et al. (2013)
TRACI Computer program for tracer BTC fitting Käss (2004)
1-D One-dimensional
2RNE Two-region nonequilibrium equation Toride et al. (1993)
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Table A2. List of model parameters.

Parameter Description Dimension Specific model∗

bj Half-aperture of the j th flow channel L MDP-SFDM
Cj Concentration in the j th flow channel M L−3

Cpj Concentration in the immobile domain assigned to the j th channel M L−3 MDP-SFDM
Cimj Concentration in the immobile domain assigned to the j th channel M L−3 MDP-2RNE
C0 Initial (maximum) concentration at the inflow boundary for an expo-

nentially decaying injection concentration
M L−3 MDMed

Dj Dispersion coefficient in the j th flow channel L2 T−1

Dpj Molecular diffusion coefficient in the immobile domain assigned to the
j th channel

L2 T−1 MDP-SFDM

Lj Length of the j th flow channel L
mj Part of the solute mass flowing through the j th channel M MDMi, MDP-SFDM, MDP-2RNE
N Number of flow channels –
Nmax Maximum number of flow channels –
Pej Péclet number in the j th channel –
P Number of optimized model parameters –
PHI Measurement objective function (sum of the squared weighted differ-

ences between the tracer BTCs and the model-fitted curves)
M2 L−6

Q Total system flow rate L3 T−1

Qj Flow rate in the j th channel L3 T−1

t Time variable T
Tmin Minimum time value of the user-provided BTC T
Tmax Maximum time value of the user-provided BTC T
T5 T5 time, Eq. (18) T
T5th Earliest time at which the concentration values exceed 5 % of the max-

imum concentration value
T

T95 T95 time, Eq. (19) T
T95th Latest time at which the concentration values exceed 5 % of the maxi-

mum concentration value
T

T0j Mean transit time in the j th channel T
uj Advection velocity in the j th flow channel L T−1

xj Spatial coordinate along the j th flow channel L
yj Spatial coordinate perpendicular to the j th flow channel L
αj First-order mass transfer coefficient between the mobile and immobile

domains assigned to the j th channel
T−1 MDP-2RNE

βj Diffusion parameter in the j th flow channel, Eq. (12) T−1/2 MDP-SFDM
γj Gamma coefficient in the j th flow channel, Eq. (8) – MDMed
θj Volumetric water content of the mobile domain assigned to the j th

channel
– MDP-2RNE

θimj Volumetric water content of the immobile domain assigned to the j th
channel

– MDP-2RNE

λj Time decay constant that controls the exponentially decaying release of
tracer in the j th channel

T−1 MDMed

ξ Integration variable, Eq. (11) T MDP-SFDM
σj Standard deviation of travel times for transport by advection and disper-

sion in the j th channel
T

τ Integration variable, Eq. (15) L MDP-2RNE
ψj Fraction of mobile water in the j th channel, Eq. (16) – MDP-2RNE
ωj Omega coefficient in the j th flow channel, Eq. (17) L−1 MDP-2RNE

∗ An empty box means that the parameter is employed in all the models.
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Code and data availability. The source codes of the MFIT pro-
gram suite version 1.0.0 are available from https://doi.org/10.
5281/zenodo.3470751 (Bodin, 2020) under the terms of the
CeCILL Free Software License Agreement v2.1 (https://spdx.
org/licenses/CECILL-2.1.html, last access: 24 June 2020). An
“EXE” installation package compiled with Inno Setup (http://
www.jrsoftware.org/isinfo.php, last access: 24 June 2020) and a
user’s guide are provided along with the source codes. The fol-
lowing numerical libraries are required for the compilation of the
MFIT suite of codes: Boost (https://www.boost.org/, last access:
24 June 2020), GSL-GNU (https://www.gnu.org/software/gsl/, last
access: 24 June 2020) and Spline (https://github.com/ttk592/spline,
last access: 24 June 2020). The PEST program package is also
required for running MFIT. PEST is distributed by default using
the MFIT software installer or can be independently downloaded
from http://www.pesthomepage.org/Downloads.php (last access:
24 June 2020). The data of the HES tracer experiments processed
in Sect. 6 of this study are available from the H+ database (http:
//hplus.ore.fr/en/poitiers/data-poitiers, last access: 24 June 2020, de
Dreuzy et al., 2020) with registration of a free account.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-13-2905-2020-supplement.
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