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Abstract. The cloud liquid water path (LWP), ice water
path (IWP), and precipitation simulated with uniform- and
variable-resolution numerical experiments using the Model
for Prediction Across Scales (MPAS) are compared against
Clouds and the Earth’s Radiant Energy System (CERES)
and Tropical Rainfall Measuring Mission data. Our compar-
ison between monthly-mean model diagnostics and satellite
data focuses on the convective activity regions of the tropical
Pacific Ocean, extending from the Tropical Eastern Pacific
Basin where trade wind boundary layer clouds develop to the
Western Pacific Warm Pool characterized by deep convec-
tive updrafts capped with extended upper-tropospheric ice
clouds. Using the scale-aware Grell–Freitas (GF) and Multi-
scale Kain–Fritsch (MSKF) convection schemes in con-
junction with the Thompson cloud microphysics, uniform-
resolution experiments produce large biases between sim-
ulated and satellite-retrieved LWP, IWP, and precipitation.
Differences in the treatment of shallow convection lead
the LWP to be strongly overestimated when using GF,
while being in relatively good agreement when using MSKF
compared to CERES data. Over areas of deep convection,
uniform- and variable-resolution experiments overestimate
the IWP with both MSKF and GF, leading to strong bi-
ases in the top-of-the-atmosphere longwave and shortwave
radiation relative to satellite-retrieved data. Mesh refine-
ment over the Western Pacific Warm Pool does not lead
to significant improvement in the LWP, IWP, and precip-
itation due to increased grid-scale condensation and up-
ward vertical motions. Results underscore the importance of
evaluating clouds, their optical properties, and the top-of-

the-atmosphere radiation budget in addition to precipitation
when performing mesh refinement global simulations.

1 Introduction

Comparing simulated against observed global cloud liquid
and ice water paths (LWP and IWP) remains challenging be-
cause of uncertainties in parameterizing moist processes and
cloudiness in global climate and numerical weather predic-
tion (NWP) models and errors in retrieving the LWP and
IWP from satellite measurements. Cloud simulations from
general circulation models (GCMs) involved in Phase 3 and
5 of the Coupled Model Intercomparison Project (CMIP3;
CMIP5; Meehl et al., 2007; Taylor et al., 2012) display a
strong disparity in the simulated LWP (Jiang et al., 2012;
Li et al., 2018) and IWP (Li et al., 2012), producing an-
nual mean LWP and IWP overestimated by factors of 2
to 10 compared to satellite data. Satellite observations of
the LWP and IWP from passive nadir-viewing instruments
such as the Moderate-resolution Imaging Spectroradiometer
(MODIS; Minnis et al., 2011) and profiling radar such as the
94 GHz instrument on the CloudSat satellite (Stephens et al.,
2002) also display major differences among themselves, as
discussed in Li et al. (2008) and Waliser et al. (2009). While
models and satellite retrievals agree that the LWP and IWP
should be defined as the vertically integrated liquid and ice
water content, including all non-precipitating and precipitat-
ing hydrometeors, this is not always the case in practice,
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further challenging a clearly posed data–data and model–
data comparison. Defining the LWP and IWP varies between
models, depending on the complexity of the parameteriza-
tion of cloud microphysics processes and prognostic versus
diagnostic treatment of falling hydrometeors. Defining the
measured LWP and IWP varies between satellite products,
depending on the sensitivity of the observing systems to de-
tect large precipitating particles. While comparing simulated
and observed LWP and IWP may not be as straightforward as
comparing the top-of-the-atmosphere (TOA) radiation bud-
get (Dolinar et al., 2015; Stanfield et al., 2015), it offers a
different way to directly diagnose biases in simulated total
cloud liquid and ice water mass as a first step to help correct
deficiencies in parameterizing global-scale moist processes
and precipitation.

Before the launch of the CloudSat and Cloud-Aerosol Li-
dar and Infrared Pathfinder Satellite Observation mission
(Stephens et al., 2002), global estimates of the LWP and IWP
were retrieved principally from satellite radiance measure-
ments over different spectral intervals (e.g., Alishouse et al.,
1990; Greenwald et al., 1993; Minnis et al., 1995; Platnick
et al., 2003). In their critical review of most common meth-
ods developed to retrieve cloud and precipitation properties
from satellite radiances, Stephens and Kummerow (2007)
identify two main sources of errors. The first source of er-
rors originates from the mandatory classification between
cloudy and cloud-free scenes and between precipitating and
non-precipitating cloudy scenes. The second source of errors
stems from using forward radiative transfer models that lack
details of the vertical distribution of cloudiness and precip-
itation as well as complexity in specifying the optical prop-
erties of liquid water and ice particles. Estimating the LWP
and IWP from CloudSat radar reflectivity alone presents its
own set of challenges for scenes that include precipitating
cloud systems due to the high sensitivity of radar reflectiv-
ity to the presence of large particles, for scenes that include
mixed-phase and deep convective clouds, and close to the
surface due to ground clutter. Li et al. (2018) showed that
annual mean maps of MODIS- and CloudSat-based LWP
agree relatively well in tropical and subtropical regions if
both data sets exclude LWP observations for deep convec-
tive/precipitating clouds since MODIS is quite insensitive
to precipitation. Stephens and Kummerow (2007) advocate
combining satellite-retrieved radar and radiance measure-
ments to help validate simulated cloud properties and precip-
itation. In addition to considering the impact of precipitating
particles, Waliser et al. (2009) demonstrate that a well-posed
model–data comparison must include a consistent sampling
between model outputs and satellite data to reduce diurnal
sampling biases and sensitivity of the sensor and retrieval al-
gorithm to the particle size when computing the simulated
LWP and IWP.

Contemporary climate and NWP GCMs (Giorgetta et al.,
2018; Molod et al., 2012; Kay et al., 2015; Skamarock et al.,
2012) categorize moist processes into three distinct param-

eterizations, one to simulate turbulent mixing in the plane-
tary boundary layer (PBL) in response to surface forcing and
forcing in the free troposphere, one to simulate subgrid-scale
shallow and deep convection, and one to include grid-scale
cloud microphysics. While coupling between parameteriza-
tions varies between GCMs, it is an established practice to
let detrained condensates from convective updrafts serve as
sources for non-convective grid-scale clouds, as precipitat-
ing anvils and cirrus outflow. We suggest that uncertainties
in parameterizing moist convection and impact on grid-scale
clouds may explain a major part of the differences in the
LWP and IWP simulated between the CMIP3 and CMIP5
GCMs. In recent years, efforts have been made to develop
unified cloud parameterizations to represent all cloud types
and alleviate the need to parameterize complex interactions
between stratiform, shallow convective, and deep convective
clouds (Guo et al., 2015; Storer et al., 2015; Thayer et al.,
2015). Using the global Model for Prediction Across Scales
(MPAS; Skamarock et al., 2012), Fowler et al. (2016) discuss
the sensitivity of simulated precipitation as spatial resolution
increases from hydrostatic to nonhydrostatic scales and sug-
gest to further analyze the associated sensitivity of simulated
clouds and TOA radiation. Results show that as subgrid-
scale convective motions are increasingly resolved, diag-
nostic precipitation from the scale-aware Grell–Freitas (GF;
Grell and Freitas, 2014) deep convection scheme decreases,
while prognostic precipitation from the WSM6 (Hong and
Lim, 2006) cloud microphysics scheme increases over the
refined area of the variable-resolution mesh. Vertical profiles
of the cloud liquid and ice water mixing ratios and cloud
fraction highlight the redistribution of cloud condensates and
relative humidity with height in the refined area in response
to decreased contribution of convective detrainment of cloud
liquid water and ice. However, Fowler et al. (2016) do not
further address if variations in the vertical profiles of cloud
condensates lead to improved LWP, IWP, and cloud optical
properties against satellite-derived data.

The objectives of our research are 3-fold. First, we want
to assert that our suite of PBL, deep and shallow convection,
and cloud microphysics parameterizations tested in MPAS
at hydrostatic and nonhydrostatic scales for medium-range
spring forecasts over the continental United States (Schwarz,
2019; Wong and Skamarock, 2016) can also be used to pro-
duce month-long simulations of tropical convection, narrow-
ing our analysis on the tropical Pacific Ocean. In order to
broaden our research and possibly generalize our results, we
also implemented the scale-aware Multi-scale Kain–Fritsch
(MSKF; Glotfelty et al., 2019; Zheng et al., 2016) parame-
terization of deep and shallow convection in addition to GF.
Second, we want to evaluate the ability of MPAS to simulate
the LWP, IWP, cloudiness, and TOA longwave and shortwave
radiation against the Clouds and the Earth’s Radiant Energy
System (CERES; Wielicki et al., 1996) Single Scanner Foot-
Print (SSF; Minnis et al., 2011) data set and precipitation
against the Tropical Rainfall Measuring Mission (TRMM)
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Multisatellite Precipitation Analysis (TMPA; Huffman et al.,
2007). Our third goal aims at understanding differences in
the LWP, IWP, precipitation, and cloud radiative effects as
functions of horizontal resolution with GF and MSKF using
the capability of local mesh refinement developed for MPAS.

In Sect. 2, we summarize the characteristics of the GF and
MSKF parameterizations of deep and shallow convection. In
Sect. 3, we provide a short description of MPAS, including
physics parameterizations used with both convective parame-
terizations, the design of our experiments using the uniform-
and variable-resolution meshes, and description of the satel-
lite data sets used to validate our results. In Sect. 4, we an-
alyze our results in terms of precipitation and varying con-
tribution of the convective and grid-scale precipitation to the
total precipitation as a function of horizontal resolution. In
Sect. 5, we compare the LWP, IWP, and TOA longwave and
shortwave radiation against satellite data. In Sect. 6, we dis-
cuss some of our findings. Finally, in Sect. 7, we summarize
our results and propose areas of future research.

2 Description of the convective parameterizations

Mass-flux-based convective parameterizations distinguish
themselves through the use of different triggering func-
tions to initiate convection, the details of their entraining-
detraining cloud models, and formulation of their closures
that control the intensity of convection and computation of
the cloud-base mass flux. For convective parameterizations
that include deep and shallow convection, criteria that char-
acterize the two kinds of convection strongly vary. Further-
more, how convective parameterizations account for the de-
pendence of convection on the horizontal resolution differs
in complexity. In this section, we summarize the chief char-
acteristics of GF and MSKF, including differences in their
treatment of deep and shallow convection, and horizontal-
scale dependence.

2.1 The Grell–Freitas (GF) parameterization

The version of GF used in our numerical experiments is
that implemented in version 3.8.1 of the Advanced Research
Weather Research Forecast model (Skamarock et al., 2008),
as described in Grell and Freitas (2014). Its properties are
first discussed in Grell (1993) and later expanded in Grell
and Devenyi (2002) to include stochasticism. GF treats deep
and shallow convection separately by using different ini-
tial entrainment rates (7× 10−5 and 1× 10−2 m−1 for deep
and shallow convection, respectively) to control the depth
of convective layers and different closures to calculate the
cloud-base mass flux. GF includes an ensemble of closures
from well-known convective parameterizations to compute a
mean cloud-base mass flux. For deep convection, these four
closures are the AS closure (Arakawa and Schubert, 1974)
that assumes instantaneous equilibrium between the large-

scale forcing and subgrid-scale convection; the W closure
(Brown, 1979; Frank and Cohen, 1987) that relates the cloud-
base mass flux to the grid-scale upward vertical velocity; the
MC closure (Krishnamurti et al., 1983) that calculates the
cloud-base mass flux as a function of the vertically integrated
vertical moisture advection; and the KF closure (Kain and
Fritsch, 1993) that reduces the convective available poten-
tial energy over a prescribed convective timescale. Qiao and
Liang (2015) analyze the separate and combined impacts of
the four closures on the simulated summer precipitation over
the United States coastal oceans. On the one hand, they find
that computing the cloud-base mass flux using the W and
MC closures leads to precipitation patterns and amounts that
are in better agreement against TMPA data than those using
the AS and KF closures. On the other hand, they find that
the AS and KF closures yield improved diurnal cycle of pre-
cipitation relative to the other two closures. In our numerical
experiments, GF gives an equal weight to each closure to cal-
culate the mean cloud-base mass flux for deep convection. As
for deep convection, GF includes different closures for shal-
low convection. In our numerical experiments using GF, we
choose the boundary layer quasi-equilibrium (BLQE) closure
of Raymond (1995) for shallow convection.

Both types of convection transport total water and moist
static energy in a conservative manner but neglect to include
ice-phase processes in updrafts and downdrafts. In this ver-
sion of GF, the only feedback between shallow convection
and the large-scale environment is lateral and cloud-top de-
trainment of water vapor and corresponding heating, as liq-
uid water formed in shallow updrafts evaporates immedi-
ately. Deep convection returns potential temperature, water
vapor, and condensed water tendencies to the environment.
Detrained condensed water acts as a source of liquid wa-
ter (ice) if the large-scale temperature is warmer (colder)
than the prescribed 258 K threshold. While GF assumes that
shallow convective plumes are not deep enough to produce
precipitation, the conversion of liquid water to rain water
in deep convective plumes depends on a simple Kessler-
type (Kessler, 1969) conversion threshold, and precipitation
reaches the surface instantaneously.

As discussed in Grell and Freitas (2014), deep convec-
tion includes a simplified representation of the unified pa-
rameterization of deep convection described in Arakawa and
Wu (2013). Arakawa and Wu (2013) demonstrate that mass-
flux-based convective parameterizations can be modified to
work at all resolutions spanning between hydrostatic and
nonhydrostatic scales through the reduction of the convec-
tive vertical eddy transport as a quadratic function of the
horizontal fraction of the grid box occupied by convective
updrafts. In GF, the convective updraft fraction (σ ) is com-
puted as a simple function of the initial entrainment rate
(ε = 7× 10−5 m−1) and half-width radius (R) of convective
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Figure 1. (a) Convective updraft fraction as a function of the
mesh resolution used to scale the cloud-base mass flux in GF; and
(b) scaling factor as a function of the mesh resolution used to scale
the convective timescale in MSKF.

updrafts following Simpson and Wiggert (1969), or

σ =
πR2

A

and

R =
0.2
ε
, (1)

where A is the area of the grid box. In Eq. (1), σ is not al-
lowed to exceed 0.7, based on the discussion of Grell and
Freitas (2014). As discussed in Fowler et al. (2016), when σ
becomes greater than 0.7, σ is set to 0.7 and ε is recalculated
using Eq. (1), leading to increased entrainment and decreased
convective cloud tops as A becomes smaller. Another option
would be to turn off deep convection when σ reaches values
close to 1, in which case a better choice for its maximum
value may be between 0.9 and 1 (Grell and Freitas, 2014).
Figure 1a highlights the rapid decrease in σ from 0.7 to 0.3
as spatial resolution decreases from 6 to 9 km. σ further de-
creases from 0.3 to 0.1 for resolutions between 9 and 16 km
and from 0.1 to 0.05 for resolutions between 16 and 30 km.
The (1− σ)2 quadratic function used to scale the mass flux
starts to be significant at resolutions greater than 20 km and
decreases rapidly to a minimum value of 0.1 for horizontal
grid spacing smaller than 6 km. Using a maximum value for

σ ensures that over the most refined area of the mesh, param-
eterized deep convection is not completely turned off since
deep convection is not explicitly resolved. Using a variable-
resolution mesh varying between 50 km over the coarse area
of the mesh down to 3 km over the refined area of the mesh
centered over South America, Fowler et al. (2016) show that
the impact of parameterized deep convection weakens and
that of grid-scale cloud microphysics strengthens as horizon-
tal grid spacing increases from hydrostatic to nonhydrostatic
scales.

2.2 The Multi-scale Kain–Fritsch (MSKF)
parameterization

MSKF is the scale-aware version of the Kain–Fritsch (KF)
convective parameterization, first developed by Kain and
Fritsch (1990, 1993) and later updated by Kain (2004) to
include, among other improvements, non-precipitating shal-
low convection. The trigger function is that used in Fritsch
and Chappell (1980), originally tested in Kain and Fritsch
(1992) and recently in Suhas and Zhang (2014). In MSKF,
convection may be triggered if the temperature of a mixed
layer is greater than that of the environment. The pressure
thickness of that mixed layer must be at least 50 hPa thick
and is computed as the sum of adjacent layer depths starting
at the layer next to the surface. The mixed layer tempera-
ture is a pressure-weighted function of the temperatures in
those adjacent layers after being lifted to the lifting conden-
sation level (LCL) plus a perturbation temperature linked to
the magnitude of the grid-scale vertical motion at the LCL.
Once the base of a potential updraft source layer is found,
convection remains activated if the vertical velocity of an
air parcel lifted using the Lagrangian parcel method remains
positive for a minimum cloud depth of 3 km, as a test that
the convective instability is strong enough for the air parcel
to reach the level of free convection (LFC). If not, the proce-
dure is repeated by moving up to the next model layer until a
new updraft source layer is found or until the search reaches
above the lowest 300 hPa of the atmosphere. Further details
on the equations used to compute the perturbation tempera-
ture and parcel vertical velocity are found in Kain (2004).

In MSKF, the closure assumption assumes that the con-
vective available potential energy in a cloud layer is re-
moved within a time adjustment period following Bechtold
et al. (2001). The convective timescale is defined as the ad-
vective timescale in the cloud layer with maximum values of
1 h and 40 min for deep and shallow convection, respectively.
In contrast to GF, the thermodynamics inside the cloud model
includes the ice phase. The condensed water formed in each
cloudy layer is partitioned between liquid water and ice, as-
suming a linear transition of the cloud temperature between
268 and 248 K. A fraction of the condensed water converts
to rain, following Ogura and Cho (1973), and reaches the
ground instantaneously. As discussed in Kain (2004), when
an updraft source layer is identified, the classification of a
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convective cloud layer as deep or shallow depends on the
cloud depth. Shallow convection is activated when all the
criteria for deep convection are met, but the depth of the up-
draft is shallower than the minimum cloud depth (3 km). This
definition implies that shallow and deep convection are not
allowed to coexist. In the case of shallow convection, pre-
cipitation formed in updrafts is detrained to the environment
as rain or snow, providing an additional moisture source to
the large-scale environment. As in GF, MSKF provides ten-
dencies of temperature, water vapor, and cloud liquid wa-
ter/ice to the environment and tendencies of rain and snow
from shallow convection.

MSKF contains many improvements over KF, as summa-
rized in the Supplement of Glotfelty et al. (2019). These im-
provements include subgrid-scale cloud feedbacks to radia-
tion from both shallow and deep convection leading to more
realistic surface downward radiation, as described in Alap-
aty et al. (2012), and the scale dependence of fundamental
parameters so that MSKF can be used at spatial resolutions
varying between hydrostatic and nonhydrostatic scales. As
detailed in Glotfelty et al. (2019) and Zheng et al. (2016),
MSKF uses a scale-dependent formulation (β) to the adjust-
ment timescale (τ ) for deep and shallow convection based on
Bechtold et al. (2008), or

τ =
H

Wcl
β

and

β = 1+ ln
(

25
1x

)
, (2)

where H and Wcl are the depth of the convective cloud and
cloud-averaged vertical velocity, and 1x is the grid spacing.
Figure 1b highlights the dependence of the β scaling parame-
ter as a function of horizontal resolution. As many MSKF pa-
rameters are optimized for a resolution around 25 km (Kain,
2004), β is equal to 1 at 25 km, ramping up to values greater
than 2.4 for resolutions higher than 6 km. Because the adjust-
ment timescale is proportional to β (Zheng et al., 2016), it
increases as horizontal resolution increases, leading to scale-
aware stabilization of the atmosphere by MSKF. In addition,
MSKF includes a new scale-aware formulation of the min-
imum entrainment rate using the LCL as a function of the
scale-dependent Tokioka parameter (Tokioka et al., 1988),
a scale-dependent conversion rate for liquid water and ice
condensates to precipitation, an increased grid-scale veloc-
ity expressed in terms of the subgrid-scale updraft mass flux,
and elimination of double counting of precipitation in cloudy
layers. The separate and combined impacts of the devel-
opment of MSKF on high-resolution weather forecasts and
regional climate simulations are discussed in Herwehe et
al. (2014), Mahoney (2016), He and Alapaty (2018), Zheng
et al. (2016), and Glotfelty et al. (2019).

3 Methodology

3.1 Numerical experiments

We discuss differences in our MPAS results between GF
and MSKF configurations on precipitation, cloud properties,
and TOA radiation using 30 d long numerical experiments
in MPAS (Skamarock et al., 2012). MPAS is a global non-
hydrostatic atmospheric model developed for NWP and cli-
mate studies. The horizontal discretization uses an unstruc-
tured spherical centroidal Voronoi tessellation with a C-grid
staggering, as described in Ju et al. (2011), while the verti-
cal discretization is the height-based hybrid terrain-following
coordinate of Klemp (2011). The dynamical solver integrates
the prognostic equations (cast in flux form) for the horizon-
tal momentum, vertical velocity, potential temperature, dry
air density, and scalars using the split-explicit technique of
Klemp et al. (2007). The temporal discretization uses a third-
order Runge-Kutta scheme and the explicit time-splitting
technique described in Wicker and Skamarock (2002). We
use the monotonic option of the scalar transport scheme of
Skamarock and Gassmann (2011) for horizontal and vertical
advection of all moist scalars on the unstructured Voronoi
mesh. Finally, horizontal filtering of the state variables is
based on Smagorinsky (1963), as described in Skamarock
et al. (2012). For variable-resolution meshes, the eddy vis-
cosity coefficient is scaled as a function of the inverse mesh
density so that horizontal diffusion is increased in the coarse
area relative to the refined area of the mesh.

In MPAS, the computational flow includes three distinct
steps. The first step calls the physics parameterizations that
update the surface energy budget and calculate the tenden-
cies of potential temperature, moist species, and zonal and
meridional wind due to longwave and shortwave radiation,
subgrid-scale convection, condensation and mixing in the
PBL and free troposphere, and gravity wave drag due to
orography. The physics parameterizations use the same in-
put surface boundary conditions and soundings to compute
their respective tendencies. Besides GF and MSKF, these pa-
rameterizations are

– the Noah land surface parameterization described by
Chen and Dudhia (2001),

– the longwave and shortwave Rapid Radiative Transfer
Model for GCMs (RRTMG) described by Mlawer et
al. (1997) and Iacono et al. (2000),

– the semiempirical parameterization of the cloud frac-
tion of grid-scale clouds from Xu and Randall (1996)
and convective clouds from Xu and Krueger (1991) for
use in the longwave and shortwave RRTMG schemes
(following Xu and Randall, 1996, the fractional amount
of grid-scale clouds is a function of the relative humid-
ity and grid-averaged condensate mixing ratio of cloud
liquid water, ice, and snow; in MSKF, the fractional
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amount of shallow and deep convective clouds depends
on the convective mass flux),

– the Mellor–Yamada–Nakanishi–Niino (MYNN) plane-
tary boundary layer (PBL) and surface layer scheme de-
scribed by Nakanishi and Niino (2009) with many up-
dates described in Olson et al. (2019), and

– the gravity wave drag parameterization of Hong et
al. (2008).

The second step calls the dynamical solver, which updates
the state variables with their respective diabatic tendencies
in conjunction to applying horizontal and vertical advection.
Finally, the third step calls the grid-scale cloud microphysics
parameterization so that at the end of the model time step,
supersaturation has been entirely removed or the relative hu-
midity does not exceed 100 %. Unlike the physics parameter-
izations listed in step one, the grid-scale cloud microphysics
scheme updates the potential temperature and moist species
for the next time step instead of providing individual ten-
dencies. The bulk cloud microphysics parameterization of
Thompson et al. (THOM; 2004, 2008) is used in all our nu-
merical experiments. THOM includes prognostic equations
for temperature, mass mixing ratio of water vapor, cloud
liquid water, rain, cloud ice, snow, and graupel and number
concentration of cloud ice and rain. We set the number con-
centration of cloud droplets to 300× 106 m−3 over land and
100×106 m−3 over oceans. In RRTMG, we diagnose the ra-
diative effective radii of cloud liquid water, cloud ice, and
snow as functions of the THOM cloud particle assumptions
to add coupling between the cloud microphysics and cloud
optical properties, as discussed in Thompson et al. (2016).

To compare the two convective parameterizations against
satellite-derived data at hydrostatic scales, we use a uniform-
resolution mesh for which the mean distance between cell
centers is 30 km, corresponding to 655 362 cells. The verti-
cal scale includes 55 layers with monotonically increasing
thicknesses varying from 50 m next to the surface to 700 m
below 10 km to 1000 m below the model top over ocean cells.
The model top is set at 30 km. The dynamics and physics
time steps are both set to 150 s, and the horizontal diffusion
length scale is set to 30 km. Longwave and shortwave radia-
tion is called every 15 min, and THOM is cycled twice so that
the cloud microphysics time step is less than 90 s to ensure
computational stability (Greg Thompson, personal commu-
nication, 2017). With each convection scheme, we have per-
formed a 1-month long experiment preceded by a 2 d spin-
up to simulate Northern Hemisphere early-winter, initializing
our experiments with ERA-Interim (Dee et al., 2011) reanal-
yses for 00:00 UTC on 29 November 2015. ERA-Interim sea-
surface temperatures and sea ice fractions are used to update
ocean cells daily. We refer to uniform-resolution experiments
run with GF and MSKF as GFu and MSKFu, respectively.

Figure 2. (a) Initial sea-surface temperature and refined variable-
resolution mesh depicted using isolines of the mean distance be-
tween grid-cell centers (km) over the tropical Pacific Ocean; and
(b) histogram of the number of cells as a function of the mean dis-
tance between grid-cell centers.

3.2 Sensitivity experiments

Using a variable-resolution mesh spanning between 50
and 3 km in MPAS, Fowler et al. (2016) demonstrate
that subgrid-scale convection parameterized with GF weak-
ens and grid-scale cloud microphysics parameterized with
WSM6 (Hong and Lim, 2006) strengthens as resolution in-
creases from the coarse to the most refined area of the mesh.
Over the most refined area, grid-scale precipitation con-
tributes a major part to total precipitation, and vertical pro-
files of subgrid-scale deep convective heating and drying re-
semble those obtained with a precipitating shallow convec-
tion scheme. Fowler et al. (2016) suggest investigating the
effect of variable resolution on cloud macrophysical proper-
ties and TOA radiation, as grid-scale cloud microphysics pa-
rameterizations provide a more physically based description
of condensation and precipitation over the refined area of the
mesh, compared to simpler entraining-detraining cloud mod-
els used in parameterized convection schemes. With the aim
to quantify changes in cloud properties and radiation across
scales using GF and MSKF, we repeat the early-winter ex-
periments but with a variable-resolution mesh that spans be-
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tween 30 and 6 km and includes 1 622 018 cells. As shown in
Fig. 2a, we center the refined area of the mesh over the Pacific
warm pool defined as the area of the western Pacific Ocean
where sea-surface temperatures (SSTs) exceed 28.5 ◦C, or
between 170◦ E and 140◦W. East of 140◦W, the north–south
width of warmest SSTs across the transition zone between
the refined and coarse mesh narrows to delineate the loca-
tion of the Inter-Tropical Convergence Zone (ITCZ) in the
Tropical Eastern Pacific. West of 170◦ E, the end of mesh re-
finement borders the eastern tip of Papua New Guinea. Along
the Equator, the transition zone between nonhydrostatic and
hydrostatic scales spans 20◦ in the meridional direction on
either side of the most refined area of the mesh.

Figure 2b displays a histogram of the mean distance be-
tween grid-cell centers. Differences between the initializa-
tion of the variable- and uniform-resolution experiments in-
clude a reduced time step from 150 to 30 s and a reduced
minimum horizontal diffusion length scale from 30 to 6 km.
Also, THOM is called only once per physics time step. We
refer to our variable-resolution experiments run with GF and
MSKF as GFv and MSKFv, respectively. Differences be-
tween GFu, GFv, MSKFu, and MSKFv are listed in Ta-
ble 1. We acknowledge that running single 30 d long exper-
iments is a nontraditional way to assess the performance of
convective parameterizations in an NWP framework but is
needed to provide increased satellite sampling when com-
paring simulated clouds and precipitation against observa-
tions. Judt (2020) computed the predictability of the atmo-
sphere using global convection-permitting simulations with
the same version of MPAS as in this study but with a global
uniform mesh with a 4 km cell spacing. Results show that
the predictability of the tropics (> 20 d) is longer than that
of the extratropics and polar regions (∼ 2 weeks) when deep
convection is mostly resolved. Using the Center for Ocean-
Land-Atmosphere Studies GCM with a triangular T63 trun-
cation and the relaxed Arakawa–Schubert parameterization
of deep convection (Moorthi and Suarez, 1992), Strauss and
Paolino (2008) demonstrate greater predictability in the trop-
ics than in the extratropics at hydrostatic scales. As our com-
parison between experiments and satellite data focuses on the
tropical Pacific Ocean, we are confident that biases arising
during the first 2 weeks persist at longer timescales and re-
main clearly depicted in their monthly means. In order to fur-
ther assess the robustness of our results, we also compare the
30 d versus 10 d mean LWP, IWP, and precipitation to ensure
that biases discussed in Sects. 4 and 5 are qualitatively sim-
ilar as those observed at shorter timescales (not shown for
brevity).

3.3 Satellite data sets

We compare the cloud liquid water path (LWP) and ice wa-
ter path (IWP), cloud area fraction (CF), and the top-of-the-
atmosphere longwave upward (TOALW) and shortwave net
(TOASW) radiation simulated in our numerical experiments

Table 1. Horizontal mesh resolution, minimum and maximum dis-
tance between grid-cell centers, time step, horizontal diffusion
length scale, and convective parameterization (CP) for numerical
experiments with the uniform- and variable-resolution meshes.

GFu MSKFu GFv MSKFv

No. of cells 655 362 655 362 1 622 018 1 622 018
Min. cell distance (km) 22.8 22.8 4.4 4.4
Max. cell distance (km) 31.8 31.8 37.8 37.8
Time step (s) 150 150 30 30
Minimum diffusion 30 30 6 6
length scale (km)
CP GF MSKF GF MSKF

against the Edition 4 Single Scanner Footprint (SSF) prod-
ucts from the Clouds and the Earth’s Radiant Energy Sys-
tem (CERES; Wielicki et al., 1996). Minnis et al. (2011) de-
scribe in great detail the retrieval of simultaneous and collo-
cated radiation fluxes and cloud properties from the CERES
radiometers and the Moderate-resolution Imaging Spectro-
radiometer (MODIS) using consistent algorithms and cali-
bration across satellite platforms and shared auxiliary input
(temperature and humidity profiles). SSF data are available in
two different formats. The first data file format contains 1 h
of radiation fluxes and cloud properties at the instantaneous
CERES 20 km footprint level from the sun-synchronous af-
ternoon (morning) equatorial crossing time Aqua (Terra)
satellites. As illustrated in Minnis et al. (2011; their Fig. 15),
the CF in each SSF is given in terms of a clear fraction, a
fraction for an upper and lower cloud layer separately, and a
fraction for an upper layer over a lower layer, although the
overlap CF is not available and set to zero in the Edition 4 re-
lease version that we are using. The LWP, IWP, and all other
cloud fields are provided for the lower and upper layers, sep-
arately.

Figure 3 illustrates two orbits of the Aqua satellite, one
between 00:00 and 01:00 GMT and one between 14:00 and
15:00 GMT, showing the TOALW (a) and CF (b), after grid-
ding the hourly orbital data to a 0.2◦×0.2◦ latitude–longitude
grid. Gridded radiation fluxes and cloud data are means over
all SSF data contained inside each rectangular grid, after ap-
plying a linear interpolation to reduce the number of missing
values. Missing values, highlighted in gray in all figures, de-
pict rectangular grids that did not contain radiation and cloud
data in any of the SSF inside the 0.2◦× 0.2◦ grid. As seen in
Fig. 3, our gridding of the orbital data removes most of the
missing data along each orbit, providing a clear depiction of
the relationship between the TOALW and CF for cloudy and
cloud-free grid cells. Areas of high (low) TOALW coincide
with areas of small (large) cloudy areas, but it is also inter-
esting to note that some areas in each orbit are characterized
as overcast in conjunction with areas that are not as spatially
uniform in TOALW as in CF.

The second data file format (SSF1deg) includes daily and
monthly averages of the original SSF orbital data but in-
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Figure 3. Orbital paths of the Aqua satellite between 00:00 and 01:00 and 14:00 and 15:00 GMT after binning the SSF data onto a 0.2◦×0.2◦

rectangular grid for (a) the TOA all-sky upward longwave radiation and (b) the cloudy percent area coverage for 1 December 2015.

terpolated on a 1◦× 1◦ latitude–longitude grid. The diffi-
culty in using hourly higher-resolution orbital data instead
of monthly-mean lower-resolution 1◦×1◦ latitude–longitude
gridded product is that the former are available in two distinct
dynamic layers, while the latter is provided at fixed pressure
levels and for the atmospheric column. The lower and upper
layers are referred to as dynamic layers because the cloud-top
(base) pressure of each layer varies between SSFs along each
orbit. The advantage of using orbital hourly data is that they
can be gridded and interpolated to a spatial resolution close to
that of our uniform- and variable-resolution numerical exper-
iments prior to computing monthly-mean radiation and cloud

fields. We choose the 0.2◦× 0.2◦ latitude–longitude gridded
hourly data derived from the first data file format through the
entire paper.

In order to best compare the simulated against satellite-
derived LWP and IWP, we need to understand the partition-
ing of the SSF LWP and IWP between the two cloud layers.
In brief, a lower and an upper cloud layer can be detected si-
multaneously if they lie adjacent to each other inside an SSF.
In that case, the cloud properties for each layer are reported
separately. In the case when an opaque upper cloud layer is
detected to be above a lower cloud layer, it is impossible to
identify the two layers separately. Then, only one cloud layer
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Figure 4. (a, b) Monthly-mean cloud liquid water path (LWP), (c, d) cloud ice water path (IWP), and (e, f) cloud fraction (CLD) over the
tropical Pacific Ocean for December 2015 from the Aqua satellite. Panels (a), (c), and (e) are for the lower cloud layer; panels (b), (d), and (f)
are for the upper cloud layer.

is reported and always classified as the lower cloud layer,
regardless of its cloud-base (top) pressure (Norman Loeb,
personal communication, 2019). Further details on the cloud
classification, including determination of the cloud phase, are
found in Geier et al. (2003) and Minnis et al. (2011). Figure 4
shows the monthly-mean LWP, IWP, and CF for the lower
(a, c, e) and upper (b, d, f) layer measured by Aqua for De-
cember 2015 over the tropical Pacific Ocean. Figure S1 is as
Fig. 4 but for the Terra satellite (see the Supplement). LWP
and IWP are in-cloud values meaning that they have not been
weighted by CF. The lower cloud layer includes stratiform
clouds that form over colder sea-surface temperatures along
the coast of Peru and off the Baja California Peninsula. Over
these areas of CF greater than 72 % for the lower cloud layer,
CF for the upper cloud layer is less than 8 %, highlighting
that a single layer of low-level clouds fills a major fraction of
the SSF. Increased values of CF are seen in conjunction with

increased (decreased) values for the LWP (IWP) in the lower
cloud layer indicative of warm-phase clouds, as well seen as
off the coast of Peru. High values for the CF and IWP jux-
taposed with lower values for the LWP in the lower cloud
layer depict clearly deep convection over the eastern Pacific
Ocean, ITCZ, and warm pool region. Over areas of deep con-
vection, upper cloud layers are often detected in conjunction
with lower cloud layers within the same SSF but are defined
by decreased values for the CF and IWP. For the LWP, the
coexistence of a lower and upper cloud layer is quite infre-
quent, as seen by the number of missing grid points in Fig. 4b
(Fig. S1b). Where detected, the LWP in the upper layer ex-
ceeds that in the lower layer, indicative of warm-phase ma-
ture thicker cumulus clouds coexisting with developing thin-
ner cumulus clouds in the lower layer. Finally, outside of the
typical stratus cloud regions and either sides of the ITCZ
and warm pool region, SSF data reveal extended regions of
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Figure 5. (a, b) Monthly-mean cloudy area-weighted cloud liquid water path (LWP), (c, d) cloud area-weighted cloud ice water path (IWP),
and (e, f) cloud fraction (CLD) over the tropical Pacific Ocean for December 2015. Panels (a), (c), and (e) are SSF data; panels (b), (d),
and (f) are SSF1deg climatological data.

warm-phase thinner clouds characteristic of widespread shal-
low convection over tropical oceans.

Calculating the satellite-retrieved LWP and IWP in an at-
mospheric column for validation of those from our numer-
ical simulations is a two-step process. Because simulated
LWPs and IWPs are grid-cell mean values and not local val-
ues, we first multiply the SSF LWP and IWP by CF to get
their mean values in the lower and upper cloud layers sepa-
rately, prior to gridding the hourly orbital data. Second, be-
cause the lower and upper layers are defined as adjacent to
each other and never overlap in an SSF, we simply add the
grid-cell mean LWP and IWP in the lower layer to that in
the upper layer to compute the total LWP and IWP. Our pro-
cessing method is simpler than the processing steps taken
by the CERES Science Team to spatially grid and tempo-
rally average SSF hourly orbital data to SSF1deg gridded
monthly-mean data. Figure 5 compares the monthly-mean

0.2◦× 0.2◦ latitude–longitude CF-weighted LWP and IWP
and CF (a, c, e) against the SSF1deg products (b, d, f) for
December 2015 over the tropical Pacific Ocean. Figure 5a
and b show that our method reproduces successfully the geo-
graphical patterns and magnitude of the LWP over the tropi-
cal Pacific when compared against the SSF1deg data for both
months. In contrast, because our method does not weigh the
IWP as a function of height, it systematically overestimates
the SSF IWP when compared against the SSF1deg data, as
seen over the ITCZ and South Pacific Convergence Zone
(SPCZ) in both months.

Using ice water content data from the ascending (day-
time) and descending (nighttime) portion of CloudSat orbits,
Waliser et al. (2009; Fig. 7) estimate that day–night fluctua-
tions in the ice water content at 215 hPa account for as much
as 13 % (20 %) of the annual mean ice water content over the
warm pool (Tropical Eastern Pacific), in response to the diur-
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Figure 6. Monthly-mean incidence of shallow convection (SHALC) over the tropical Pacific Ocean simulated in (a, b) GFu and MSKFu and
(c, d) GFv and MSKFv and difference in the incidence of shallow convection between (e) GFv and GFu and (f) MSKFv and MSKFu for
December 2015.

nal cycle of deep convection over the tropical oceans. There-
fore, when computing the monthly-mean CF, LWP, IWP,
TOALW, and TOASW produced with GFu, GFv, MSKFu,
and MSKFv, we first sample the hourly model diagnostics
in accordance with the Aqua and Terra satellite orbits in or-
der to reduce biases from different diurnal sampling between
our experiments and SSF data. Because the MODIS-based
retrieval of the LWP and IWP is insensitive to precipitation,
and the rain, snow, and graupel mixing ratios are prognostic
variables in THOM and fall through the atmosphere at finite
velocities, we infer that the LWP and IWP must include all
precipitating and non-precipitating condensates.

In addition to CERES SSF data, we use the monthly-mean
precipitation rates from the TRMM Multisatellite Precipita-
tion Analysis (TMPA Version 7; Huffman et al., 2007) to
compare simulated versus observed precipitation rates, and

monthly-mean ERA-Interim reanalyses (Dee et al., 2011) to
compare simulated versus observed precipitable water in the
lower troposphere.

4 Simulated versus satellite-retrieved precipitation

4.1 Incidence of subgrid-scale shallow and deep
convection

Differences in the treatment of interactions between shal-
low and deep convection in GF and MSKF, as described in
Sect. 2, are bound to modify the partitioning between shal-
low and deep convection as spatial resolution increases over
the refined area of the mesh. A useful diagnostic to analyze
the response of shallow and deep convection to local mesh
refinement is the incidence of convection. Because shallow
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Figure 7. As Fig. 6 but for the monthly-mean incidence of deep convection (DEEPC).

convection in both GF and MSKF is non-precipitating, we
set the incidence of shallow convection to 100 % when cloud
tops of shallow convective updrafts are detected and 0 % oth-
erwise. We set the incidence of deep convection to 100 %
when convective precipitation occurs and 0 % otherwise. Fig-
ures 6 and 7 highlight the impact of the horizontal scale de-
pendence of convection on the monthly-mean incidence of
subgrid-scale shallow and deep convection in our uniform-
and variable-resolution experiments for December 2015.

Figure 6 shows that simulated shallow convection occurs
over the entire tropical Pacific and that its incidence is about
twice as large in GFu and GFv as in MSKFu and MSKFv. In
GFu and GFv, incidence in excess of 48 % covers most of the
tropical Pacific, including the ITCZ and warm pool where GF
allows shallow and deep convection to occur simultaneously.
GFu and GFv exhibit highest incidence of shallow convec-
tion off the coast of Peru where persistent low-level strati-
form clouds are formed. In contrast, the incidence of shal-

low convection in MSKFu and MSKFv never exceeds 32 %
over the entire domain and is less than 16 % over the ITCZ
and warm pool where shallow and deep convection are not
allowed to coexist in MSKF. Figure 6e and f highlight differ-
ences in the incidence of shallow convection between GFv
and GFu and MSKFv and MSKFu. Despite the fact that GF
does not include a spatial scale dependence in its formula-
tion of shallow convection, GFv produces reduced shallow
convection relative to GFu over most of the tropical Pacific,
except most notably immediately off the coast of Peru. In
contrast to GFv, MSKFv yields increased incidence of shal-
low convection over most of the warm pool region. In MSKF,
the height of deep convective clouds decreases as horizontal
resolution increases. As the classification between deep and
shallow convection is a function of cloud depth, convective
clouds originally defined as deep are reclassified as shallow,
leading to increased incidence of shallow convection in the
refined area of the mesh.
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Figure 7a–d show that, in contrast to shallow convection,
the incidence of deep convection has the same order of mag-
nitude in GFu and MSKFu and GFv and MSKFv. The top
panels (a, b) reveal that the incidence of deep convection
is higher in MSKFu than in GFu over the ITCZ and warm
pool. In MSKFu, a sharp transition between areas of high and
low incidence of deep convection causes areas outside of the
ITCZ and warm pool to be mostly void of deep convection,
as seen between 10 and 30◦ N. In GFu, the incidence of deep
convection is decreased over the warm pool relative to the
ITCZ west of 160◦W. Outside of the ITCZ and warm pool,
GFu and GFv lead to higher incidence of deep convection
than MSKFu and MSKFv because, in contrast to MSKF, GF
allows deep and shallow convection to coexist in the same
grid cell. Middle panels (c, d) highlight decreased incidence
of subgrid-scale deep convection inside the refined area of
the mesh over the warm pool in both GFv and MSKFv, as
we expect clouds to be resolved on the higher-resolution
grid, in conjunction with increased incidence east and west
of the refined area. The decreased incidence in the refined
area is more pronounced between MSKFu and MSKFv than
between GFu and GFv, whereas the upscaling impact of spa-
tial refinement outside the refined area is greater in GFv than
in MSKFv. The scale-aware formulation in GF does not pro-
duce the same contrast between the refined and coarse mesh
in GFv and GFu as that in MSKFv and MSKFu. Figure 7f re-
veals a reduced incidence in excess of 25 % between MSKFu
and MSKFv starting at resolutions higher than 12 km flanked
by increased incidence of deep convection east and west of
the refined area. In contrast, Fig. 7e displays a longitudi-
nal band of decreased incidence of deep convection between
90◦W and the dateline, bordered by increased deep convec-
tion north of the Equator and south of 10◦ S. Table 2 lists
the area-averaged incidence of deep and shallow convection
for an area inside the refined mesh (REFINED: 0.1–5.1◦ N;
150–180◦W) and an area over the Tropical Eastern Pacific
(EAST: 3.1–8.1◦ N; 90–120◦W), as later shown in Fig. 9a.
The REFINED and EAST areas display little variation in
the incidence of shallow convection between GFu (MSKFu)
and GFv (MSKFv), but the incidence of shallow convec-
tion in GFu and GFv is much higher than in MSKFu and
MSKFv. The incidence of subgrid-scale deep convection is
higher in the EAST area compared to the REFINED area in
all four experiments. Over the REFINED area, the incidence
of subgrid-scale deep convection remains about the same be-
tween GFu and GFv but strongly decreases between MSKFu
and MSKFv.

As described in Sect. 2, MSKF differentiates shallow from
deep convection as a function of the convective cloud depth.
As spatial resolution increases, the scale-aware formulation
leads to a reduction in the intensity of convection and depth
of convective clouds, mostly deep convection, over the re-
fined area as seen in Fig. 7f. As the depth of convective
clouds originally classified as precipitating deep convective
clouds becomes shallower, MSKF reclassifies those same

Table 2. Area-averaged incidence of deep and shallow convection.
The REFINED and EAST areas are shown in Fig. 9a.

Deep convection (%) Shallow convection (%)

REFINED EAST REFINED EAST

GFu 20 30 52 52
GFv 23 36 47 48
MSKFu 27 33 14 17
MSKFv 10 36 17 15

clouds as non-precipitating shallow clouds, leading to near-
equal compensation between the decreased and increased in-
cidence of deep and shallow convection over the warm pool.
In contrast to MSKF, GF causes precipitating deep convec-
tion to become precipitating shallow convection at increased
spatial resolution. As this process occurs in the deep convec-
tion scheme, and both cloud types precipitate, variations in
the incidence of deep convection between GFu and GFv are
small. Further analysis of the response of shallow convection
between GFu and GFv over the refined area is beyond the
objectives of this research.

4.2 Precipitation rates

Figure 8 shows the monthly-mean convective precipitation
rate simulated in GFu and MSKFu (a, b) and GFv and
MSKFv (c, d). Figure 8e and f display the ratio between the
convective precipitation rate simulated in GFv (MSKFv) and
GFu (MSKFu) to contrast the impact of the scale-aware for-
mulation in GF and MSKF. The top panels (a, b) highlight
similar geographical patterns of convective precipitation in
GFu and MSKFu. Between 80 and 160◦W, increased con-
vective precipitation is located along the ITCZ, in conjunc-
tion with increased incidence of deep convection, as seen
in Fig. 7a–b. West of 160◦W, GFu leads to decreased but
more widespread convective precipitation relative to MSKFu
over the warm pool, in conjunction with decreased but more
widespread incidence of convection. In GF, this result infers
that while deep convection is not triggered as often over the
warm pool as along the ITCZ, the amount of convective pre-
cipitation produced in one time step is higher over the warm
pool than along the ITCZ, so that monthly-mean convective
precipitation rates remain about the same in both regions.
Figure 8c and d, in agreement with Fig. 7c and d, display a
strong decrease in convective precipitation in both GFv and
MSKFv over the refined area of the mesh. In MSKFv, the
strong reduction in convective precipitation occurs not only
over the most refined area of the mesh but also where hori-
zontal grid spacing increases from 6 to 12 km. In GFv, con-
vective precipitation increases sharply as soon as grid spac-
ing is greater than 12 km and exceeds that simulated in GFu
over the coarse area of the mesh. In GFv, the monthly-mean
convective precipitation rate is higher than that in MSKFv
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Figure 8. Monthly-mean convective (DEEPC) precipitation rate over the tropical Pacific Ocean simulated in (a, b) GFu and MSKFu and
(c, d) GFv and MSKFv and ratio between the monthly-mean convective precipitation rate in (e, f) GFv (MSKFv) and GFu (MSKFu) for
December 2015.

over the most refined area of the mesh but starts to increase
more rapidly between 6 and 12 km than in MSKFv. Differ-
ences in increasing convective precipitation across the transi-
tion zone between the refined and coarse areas reflect differ-
ent impacts of the scale-aware formulation in GF and MSKF.
Figure 8e and f show that the ratio in convective precipita-
tion between GFv and GFu has the same order of magnitude
as that between MSKFv and MSKFu over the refined area of
the mesh. While it remains as small in the transition zone as
in the refined mesh with MSKF, this ratio increases to values
greater than 1 between 6 and 12 km with GF, indicating in-
creased convective precipitation on each side of the refined
area in GFv relative to GFu, as also seen in Fig. 8c. Maps
of monthly-mean grid-scale precipitation rates show similar
geographical patterns between GFu and MSKFu. Over the
refined area, increased grid-scale precipitation compensates

decreased convective precipitation in both GFv and MSKFv.
Over the coarse area, grid-scale precipitation decreases along
the ITCZ and warm pool in GFv, while remaining nearly the
same in MSKFv (not shown for brevity).

The simulated total precipitation rate can be compared to
observed TMPA precipitation using Figs. 9 and 10, which
show the precipitation rates and differences between simu-
lated and observed precipitation rates, respectively. Areas of
maximum satellite-retrieved precipitation are found over the
ITCZ between 130◦W and the dateline (Fig. 9a). Observed
precipitation decreases over the warm pool west of the date-
line and decreases strongly over the Tropical Eastern Pacific
(between 80 and 120◦W) and the SPCZ. The four simula-
tions overestimate precipitation in the Tropical Eastern Pa-
cific between 80 and 120◦W (Fig. 9.b–e) with biases in ex-
cess of 11 mm d−1 (Fig. 10a–d). The four simulations also
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Figure 9. Monthly-mean total precipitation rate over the tropical Pacific Ocean from (a) TMPA data and simulated with (b, c) GFu and
MSKFu and (d, e) GFv and MSKFv for December 2015.

overestimate precipitation between 130 and 160◦ E, or west
of the refined area, with biases about as large as those seen
east of the refined area, except for MSKFu. The uniform-
grid results (Fig. 9b–c) display the highest precipitation rates
over the area of warmest SSTs where we expect deepest
convection to occur and are in reasonable agreement with
TMPA data. However, GFu and MSKFu locate the ITCZ
south of its observed location (Figs. 10a, b), producing a pos-
itive bias straddling the Equator and a negative bias north
of the Equator. The scale-aware dependence of deep con-
vection in GF leads to decreased total precipitation in GFv
compared to GFu over the entire refined area (Fig. 10e). In
contrast, Fig. 10f shows that while the scale-aware depen-
dence in MSKF leads to decreased precipitation in MSKFv
over a major fraction of the refined area, it also leads to an
improved location of the simulated ITCZ, as evidenced by
increased precipitation north of the Equator.

Table 3 summarizes the area-mean monthly-mean convec-
tive, grid-scale, and total simulated and observed TMPA pre-
cipitation rates over the REFINED and EAST areas. Over
the two areas, the simulated total precipitation is about the

same for all four experiments but is underestimated (overes-
timated) relative to TMPA data over the REFINED (EAST)
areas, respectively. Over the REFINED area, total precipi-
tation decreases by 2.1 mm d−1 between GFu and GFv and
by 2.3 mm d−1 between MSKFu and MSKFv, highlighting a
near-equal compensation between decreased deep convective
and increased grid-scale precipitation over the most refined
area of the mesh. Over the EAST area, total precipitation in-
creases by 2.7 mm d−1 between GFu and GFv resulting from
a 5.3 (2.6) mm d−1 increase (decrease) in convective (grid-
scale) precipitation. In contrast, total precipitation increases
by 1.2 mm d−1 between MSKFu and MSKFv resulting from
a 0.5 (0.6) mm d−1 increase in convective (grid-scale) precip-
itation. The large (small) increase in convective precipitation
in GFv (MSKFv) over the coarse areas east (and west) of
the refined area highlights distinct upscaling effect of the re-
fined area on the coarse area of the mesh between GFv and
MSKFv.

In summary, the scale dependence of convection in GF
and MSKF produces the same partitioning between convec-
tive and grid-scale precipitation inside the refined area or
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Table 3. Area-averaged convective, grid-scale, and total precipitation rates over the same areas as those described for Table 2. The REFINED
and EAST areas are shown in Fig. 9a.

Convective (mm d−1) Grid-scale (mm d−1) Total (mm d−1)

REFINED EAST REFINED EAST REFINED EAST

GFu 10.0 8.7 6.1 3.7 16.1 12.4
GFv 1.9 14.0 12.1 1.1 14.0 15.1
MSKFu 10.9 10.6 4.9 4.8 15.8 15.5
MSKFv 1.7 11.1 11.8 5.4 13.5 16.5
TMPA 20.7 7.3

decreased convective and compensating increased grid-scale
precipitation as horizontal resolution increases. The upscal-
ing impact on convective and grid-scale precipitation varies
between GF and MSKF. As seen in Fig. 8 and Table 3, con-
vective precipitation increases strongly over the warm pool
and eastern Pacific starting across the transition zones east
and west of the refined area in GFv. In contrast, while the pa-
rameterization of the scale dependence of deep convection in
MSKF produces a stronger decrease in convective precipita-
tion in MSKFv than in GFv, it produces a smoother transition
in convective precipitation and decreased upscaling effect as
spatial resolution reaches 30 km.

5 Simulated relative humidity and simulated versus
satellite-retrieved LWP and IWP

5.1 Relative humidity

One effect of local mesh refinement is the decreased con-
tribution of parameterized convection compensated by in-
creased contribution of grid-scale cloud microphysics to con-
densation processes and cloud formation with increasing spa-
tial resolution. Therefore, prior to comparing the simulated
LWP and IWP against SSF data, we first investigate dif-
ferences in relative humidity (RH) between our uniform-
and variable-resolution experiments. Figure 11 displays the
monthly-mean longitude-pressure cross sections of RH lat-
itudinally averaged between 5◦ S and 5◦ N. East of 150◦W
over the Tropical Eastern Pacific, the four experiments dis-
play similar vertical distributions of RH, with relatively
lower RH between 700 and 150 hPa and higher RH in the
PBL below 700 hPa and in the upper-troposphere above
150 hPa. All four experiments show significant increase in
RH west of 150◦W across the entire troposphere, over the
warm pool where the warmest SSTs are seen (Fig. 2a) and
deepest convective updrafts are formed. Comparing GFu
against MSKFu over the warm pool shows that GF has
stronger drying than MSKF in the lower troposphere, lead-
ing to a lower RH between 850 and 300 hPa in GFu than
in MSKFu. In addition, GF produces stronger moistening
than MSKF in the upper troposphere leading to a higher RH
between 300 and 100 hPa in GFu than in MSKFu. As seen

in Fig. 11c and d, reducing parameterized deep convection,
while enhancing grid-scale cloud microphysics produces a
higher RH over the refined area in GFv and MSKFv but with-
out significantly modifying RH over the coarse area of the
mesh. Variations in the vertical distribution of RH at pres-
sures less than 400 hPa are more pronounced between GFu
and GFv than between MSKFv and MSKFu. Because the
cloud fraction (CF) is a function of RH, as described in Xu
and Randall (1996; Eq. 1), there is a strong relationship be-
tween the longitude-pressure cross sections of RH and CF, as
seen in Fig. S2 (see Supplement). The highest CF coincides
with the highest RH at about 100 hPa over the warm pool
in all four experiments. As for RH, GFu and GFv display
higher and lower values of CF than MSKFu and MSKFv in
the upper and lower troposphere. The top and bottom panels
of Fig. S3 show differences in RH and CF between GFv and
GFu and between MSKFv and MSKFu. One notable differ-
ence is a stronger increase in upper-tropospheric clouds be-
tween MSKFu and MSKFv than between GFv and GFu, par-
ticularly over the refined area of the mesh. While increased
grid-scale condensation over the refined area impacts the en-
tire tropospheric in GFv, it more strongly affects the upper-
troposphere in MSKFv.

To explain the change in RH over the refined area be-
tween the uniform- and variable-resolution experiments, we
compare the monthly-mean upward moisture flux at 850
and 200 hPa between MSKFu and MSKFv over the Tropi-
cal Eastern Pacific (Fig. 12). There is a significant decrease
in the upward moisture flux between 850 and 200 hPa in
conjunction with decreased specific humidity with height in
MSKFu and MSKFv (Fig. 11). As seen in Fig. 12a and b,
MSKFu yields highest values of the upward moisture flux
along the ITCZ and over the warm pool in association with
parameterized deep convection. Outside the ITCZ and warm
pool, lower values of the upward moisture flux at 850 hPa re-
sult because of reduced deep convection in conjunction with
shallow convection, as seen over the SPCZ. At increased spa-
tial resolution, convective processes transition from being pa-
rameterized to resolved, producing larger grid-scale vertical
velocities, stronger upward moisture flux, and increased grid-
scale condensation through the entire troposphere over the
refined area of the mesh. Comparing Fig. 12c and d versus
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Figure 10. Monthly-mean precipitation rate difference over the tropical Pacific Ocean between (a, b) GFu (MSKFu) and TMPA data,
(c, d) GFv (MSKFv) and TMPA data, and (e, f) GFv (MSKFv) and GFu (MSKFu) for December 2015.

Fig. 12a and b outlines the intensification of vertical moisture
transport at both pressure levels over the refined area, lead-
ing to the increased relative humidity with increased spatial
resolutions shown in Fig. 11.

5.2 Liquid water path (LWP)

Figure 13 displays difference maps between the simulated
and satellite-derived LWP and between GFv (MSKFv) and
GFu (MSKFu). In Fig. 13, the simulated LWP is calcu-
lated using only the grid-scale cloud liquid water mixing ra-
tio from THOM. Separate analyses would show that adding
the prognostic grid-scale rain mixing ratio to the simulated
LWP further increases biases when compared against the
SSF LWP (not shown for brevity). We also do not include
the contribution of the convective cloud liquid water mix-
ing ratio to the LWP, which is small compared to that from
the grid-scale cloud microphysics. Figure 13 highlights that
GFu strongly overestimates the LWP over the ITCZ and be-
tween 20◦ N (20◦ S) and the northern (southern) limits of our
analysis. As seen in Fig. 6, GFu attempts to form low-level
boundary layer clouds off the coast of Peru, but these clouds

form too far west from the coast when compared against
observations. This same bias is depicted in Fig. 13a since
these low-level boundary layer clouds are characterized by
high LWP. In Fig. 13b, decreased bias between the MSKFu
and SSF LWP reflects that the LWP is strongly decreased
in MSKFu compared to GFu, outside of the areas of low-
level boundary layer clouds. If we set aside that MSKFu is
unable to simulate low-level clouds off the Baja California
Peninsula and coast of Peru, the magnitude and regional pat-
terns of the LWP simulated in MSKFu is in fairly good agree-
ment with the SSF LWP. Because MSKF does not allow deep
and shallow convection to coexist within the same grid cell,
and deep convection dominates shallow convection over the
ITCZ and warm pool, we suggest that detrained cloud water
from deep convection as a source for grid-scale microphysics
contributes a major part to the LWP produced by MSKFu.
Figure 13e and f reveal that the mesh refinement impacts the
LWP simulated with MSKF more effectively than that simu-
lated with GF inside the refined area. This result is in agree-
ment with the stronger increase in RH between MSKFu and
MSKFv than between GFu and GFv at lower levels. MSKFv
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Figure 11. Longitude versus pressure cross section of latitudinally averaged (between 5◦ S and 5◦ N) relative humidity (RH) across the
tropical Pacific Ocean simulated in (a, b) GFu and MSKFu and (c, d) GFv and MSKFv for December 2015.

Figure 12. (a, c) 200 hPa and (b, d) 850 hPa monthly-mean upward moisture flux simulated with MSKF over the tropical Pacific Ocean for
December 2015. Top panels (a) and (b) are for MSKFu, and bottom panels (c) and (d) are for MSKFv. Note the 1× 10−2 scaling between
200 and 850 hPa.

yields an increased LWP relative to MSKFu over the entire
refined area (Fig. 13f). MSKFv also has increased LWP com-
pared to MSKFu over the coarse area but not as large as that
seen over the refined area. Figure 13e shows that the LWP

differences do not have a strong positive or negative trend in-
side the refined area, due to the fact that GF allows deep and
shallow convection to coexist within the same grid cell of
deepest convective activity, mainly over the ITCZ and warm
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Figure 13. Monthly-mean cloud liquid water path (LWP) difference over the tropical Pacific Ocean between (a, b) GFu (MSKFu) and
SSF data and (c, d) GFv (MSKFv) and SSF data and monthly-mean LWP difference between (e, f) GFv (MSKFv) and GFu (MSKFu) for
December 2015.

pool, and shallow convection does not account for variations
in horizontal grid spacing. Over the coarse area, an obvious
decrease in the LWP between GFv and GFu is seen over the
ITCZ in the Tropical Eastern Pacific as well as along the
southern boundary of our analysis.

In order to investigate the reasons why the LWP simu-
lated in GFu strongly exceeds that from the SSF product and
MSKFu, we calculate the monthly-mean LWP produced in
grid cells with incidence of deep convection, shallow con-
vection, and no convection, using LWP hourly outputs from
GFu. Separate maps show that a major fraction of the LWP
over convectively active regions such as the ITCZ is actually
produced at times when no convection is active or when only
shallow convection is triggered (not shown for brevity). In
GF, and in contrast to deep convection, shallow convection
detrains total water as a source of grid-scale water vapor in-

stead of detraining water vapor, cloud liquid, and ice water
separately. Because the detrained total water is treated as a
source of water vapor, supersaturation conditions are more
likely to persist and later removed by grid-scale condensa-
tion. In contrast, detrainment from deep convective updrafts
acts as a source of liquid water if temperatures are warmer
than 258 K. Deep convection in conjunction with grid-scale
condensation contributes the least to the LWP because up-
drafts are taller and their cloud-top temperatures colder than
those from shallow convection, leading to condensation and
deposition to occur at levels where temperatures are colder
than 258 K and where ice-phase processes dominate.

The impact of more active shallow convection in GFu
(GFv) than in MSKFu (MSKFv) is analyzed using Fig. 14,
which shows differences in the monthly-mean precipitable
water below 700 hPa between our experiments and ERA-
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Figure 14. Monthly-mean difference between the simulated and ERA-Interim precipitable water below 700 hPa over the tropical Pacific
Ocean for December 2015.

Interim reanalyses. Because varying horizontal resolution
does not affect shallow convection, GFv (MSKFv) displays
similar biases as GFu (MSKFu) over the entire analysis do-
main, including the refined area. Comparing Fig. 14a and c
versus Fig. 14b and d reveals that the precipitable water sim-
ulated in GFu (GFv) displays a positive bias, whereas that
simulated in MSKFu (MSKFv) displays a negative bias in the
lower troposphere relative to ERA-Interim data, mainly over
areas of shallow convection. In GF, the abundance of shallow
convection (Fig. 6a, c) associated with detrained total wa-
ter acting as a source of grid-scale water vapor promotes the
lower troposphere to stay more humid and cloud liquid wa-
ter to form more often than actually observed (Fig. 13a, c),
north and south of the ITCZ and warm pool. In MSKF, while
shallow convection is as widespread over the tropical Pacific
Ocean as in GF, it cannot act as a major source of detrained
total water to the grid-scale microphysics because it is not
triggered as often as deep convection. In addition, because
MSKF partitions detrained water into water vapor, cloud wa-
ter, cloud ice, rain, and snow, instead of detraining total water
in the form of water vapor as in GF, the amounts of available
water vapor and cloud liquid water are reduced relative to
GF.

5.3 Ice water path (IWP)

Because MODIS is relatively insensitive to precipitation, the
simulated IWP should comprise cloud ice, snow, and grau-
pel. Because graupel contributes a minor part to the IWP rel-
ative to cloud ice and snow, and our results highlight strong
biases against SSF data, we do not include graupel in our

computation of the simulated IWP. It is also important to
note that because THOM has the propensity to rapidly con-
vert cloud ice to snow (Thompson et al., 2016), most of the
IWP is in the form of snow, which falls at higher speeds
than cloud ice, enhancing the depth of ice clouds. Lastly,
Fig. 5c and d show that our gridding of the IWP orbital data
produces increased monthly-mean IWP compared to the offi-
cial SSF1deg product. This result implies that biases between
the simulated and satellite-derived IWP will be underesti-
mated when using our SSF 0.2◦× 0.2◦ IWP data. Figure 15
shows difference maps between the simulated and satellite-
derived IWP and between GFv (MSKFv) and GFu (MSKFu).
When compared against the SSF IWP, GFu is the only exper-
iment that mostly underestimates the IWP along the ITCZ
and warm pool, whereas GFv yields a strong increase in
the IWP over the refined area of the mesh relative to GFu.
Both GFu and GFv overestimate the IWP along the west
coast of Central America, as they did for the LWP and pre-
cipitation. Comparing MSKFu (MSKFv) against GFu (GFv)
shows that MSKF leads to increased positive biases in the
IWP compared to GF over the entire ITCZ and warm pool.
Increased convective detrainment of cloud ice as a source
of grid-scale cloud ice to THOM in MSKF compared to in
GF, because partitioning between cloud liquid and ice water
starts at warmer temperatures, may be responsible to the in-
creased IWP. Figure 15e and f reveal that increasing spatial
resolution worsens the simulated IWP compared to the SSF
IWP over the refined area in GFv and MSKFv. As shown in
Fig. 11, mesh refinement over the warm pool yields higher
upper-tropospheric relative humidity leading to increased ice
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Figure 15. As Fig. 13 but for the cloud ice water path (IWP).

cloud microphysics. In contrast to GFv, MSKFv displays an
increase in the IWP over the coarse area of the mesh, show-
ing a stronger impact of the refined area on the coarse area of
the mesh in MSKFv than in GFv in the upper-troposphere.

5.4 TOA radiation budget

Biases in the LWP and IWP introduce biases in the cloud
fraction and cloud optical properties, which in turn lead
to biases in the simulated TOALW and TOASW compared
to CERES-SSF data. Figures S4, S5, and S6 display the
monthly-mean CF, TOALW, and TOASW from SSF data for
December 2015 and the differences between the model re-
sults and observations. Focusing on areas of deep convection
over the ITCZ and warm pool, all four simulations overesti-
mate CF, with larger biases seen in the GF than the MSKF
experiments and larger biases seen in the variable-resolution
than the uniform-resolution experiments. All four simula-

tions also overpredict CF along the west coast of Central
America, while underpredicting CF over areas of stratiform
clouds along the west coast of South America and the Baja
California Peninsula. The impact of CF biases is that all four
experiments underestimate the size of the warm pool and
width of the ITCZ, leading the TOALW (TOASW) to be too
high (low) over areas of deep convection. These differences
are clearly linked to the differences noted in the LWP and
IWP between MPAS and SSF data.

6 Discussion

When running GFu (MSKFu) and GFv (MSKFv), we set the
time step to be as large as possible to reduce the computa-
tional cost of the various experiments without compromising
computational stability. Using decreased time steps between
the uniform- and variable-resolution experiments from 150
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to 30 s implies that it is not possible to directly compare the
mean state of GFv (MSKFv) against that of GFu (MSKFu)
in the coarse area of the variable-resolution mesh and ana-
lyze upscaling effects of local mesh refinement. This is in
contrast to Sakaguchi et al. (2015) and Hagos et al. (2013),
which constrain the time step to be the same at all horizon-
tal scales, allowing the study to assess the upscaling effect
of mesh refinement across the transition zones between the
refined and coarse areas of the mesh and far from the re-
fined mesh. In order to understand the increase in convective
precipitation east and west of the transition zones in GFv rel-
ative to GFu, we run GFu with the reduced 30 s time step
to quantify the dependence of convective precipitation to the
dynamic time step. As seen in Fig. S7a (S7b), reducing the
time step from 150 to 30 s strongly increases convective pre-
cipitation over convectively active regions of the tropical Pa-
cific Ocean, highlighting the sensitivity of GF to the time
step. Reducing the time step in MSKFu yields convective
precipitation differences that are not as large as those seen
in Fig. S7b (not shown for brevity). Using the Community
Atmosphere Model Version 4 (CAM4) with a T340 spectral
truncation and a 5 min time step, Williamson (2013) demon-
strates the dependence of the removal of supersaturation con-
ditions to the shallow (30 min) and deep (1 h) convective
timescales. While it is important to point out that the sensi-
tivity studies discussed in Williamson (2013) depend on the
CAM4 coupling between the convective and grid-scale cloud
parameterizations and the dynamical core, shorter convec-
tive timescales relative to the time step yield faster removal
of moist instabilities through vertical motions and condensa-
tion. In GF, the timescales used in the AS and KF closures
are set to the dynamical time step and 20 min, respectively.
While the contribution of the KF closure decreases by a fac-
tor of 5 in response to the decreased time step, the contri-
bution of the AS closure is independent of the convective
timescale but will affect the cloud-base mass flux through
variations in the cloud work function. In order to further un-
derstand the impact of the time step on increased supersatu-
ration and convective precipitation in GF, a detailed analysis
of the contributions of the dynamics and physics forcing on
the AS cloud work function in MPAS is needed. This is the
object of future research.

7 Summary and future research

Uniform- and variable-resolution experiments with two
scale-aware parameterizations of deep convection (GF and
MSKF) in MPAS yield significant biases between the simu-
lated and satellite-derived monthly-mean precipitation rates,
LWP, IWP, and CF over the tropical Pacific Ocean for De-
cember 2015. In turn, biases affect the cloud fraction and
optical properties producing significant differences in the
TOALW and TOASW compared to CERES-SSF data.

Tropical precipitation simulated with uniform-resolution
experiments is overestimated compared to TMPA, due to
subgrid-scale deep convection. Biases using GF are as large
as those using MSKF and result in part because the simu-
lated ITCZ is located south of its observed location. Variable-
resolution experiments do not produce significant improve-
ment in simulating precipitation against TMPA. Inside the
refined area, decreased convective precipitation plus com-
pensating increased grid-scale precipitation have the simu-
lated total precipitation to exhibit similar biases between the
uniform- and variable-resolution experiments with GF and
MSKF. One major difference in using GF instead of MSKF is
the strong upscaling effect of the refined mesh on the coarse
mesh, producing a strong increase in convective precipitation
east and west of the refined mesh. Because deep convection
does not exhibit similar behavior over the transition zone be-
tween the coarse and refined areas of the mesh in MSKF,
we plan further to investigate this difference in convective
precipitation in terms of the size of convective updrafts as a
function of horizontal resolution and increased moistening of
the lower troposphere from shallow convection.

Differences in the simulated LWP between the uniform-
and variable-resolution experiments using GF and MSKF
against the CERES-SSF LWP highlight the need to revise
the treatment of shallow convection to improve warm-phase
clouds in both schemes. While experiments using MSKF
yield the simulated LWP to be in reasonable agreement
against that from the CERES-SSF product, those using GF
yield the simulated LWP to be strongly overestimated. Anal-
yses show that shallow convection and cloud microphysics
processes explain most of the increased LWP in GFu and
GFv compared to MSKFu and MSKFv and satellite-derived
data. We plan to update the GF shallow convection scheme
with that implemented in version 4.1 of the Advanced Re-
search WRF (Skamarock et al., 2008) model. Because the
updated scheme includes an improved cloud model that al-
lows water vapor and cloud liquid water to detrain sepa-
rately and a fraction of condensed water to precipitate, we
will focus on the impact of explicit detrainment of cloud
liquid water and precipitation from shallow convective up-
drafts on the simulated LWP in GF. Results show that MSKF
underestimates shallow convection, leading the troposphere
below 700 hPa to be drier than actually observed. These re-
sults imply that the shallow convection scheme in MSKF
needs to be updated or that a separate parameterization of
shallow convection needs to be used in addition to that in
MSKF. Using the same parameterization of shallow convec-
tion and partitioning of the detrained condensed water be-
tween cloud liquid water and ice in GF and MSKF will fur-
ther provide understanding in the partitioning of the LWP be-
tween subgrid-scale deep and shallow convection. Variable-
resolution experiments strongly overestimate the IWP com-
pared to CERES-SSF data over the refined area of the mesh,
leading to strong biases in the cloud fraction and TOA long-
wave and shortwave radiation. Because subgrid-scale deep
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convection is reduced at increased horizontal resolutions,
grid-scale cloud microphysics contributes a major part to bi-
ases in the simulated IWP.

Parameterizing the dependence of subgrid-scale deep con-
vection as a function of horizontal resolution allows the use
of variable-resolution meshes spanning between hydrostatic
and nonhydrostatic scales within a global framework for re-
gional NWP and climate experiments. Although deep con-
vection is not fully explicitly resolved over the refined area
of the mesh in our variable-resolution experiments, it is sub-
stantially reduced relative to that over the coarse area of the
mesh, allowing the contribution of subgrid-scale convection
and cloud microphysics processes to be contrasted. As hor-
izontal resolution increases from the coarse to refined area
of the mesh, deep convection gradually transitions from pa-
rameterized to resolved, and cloud microphysics contribute a
major part to moist processes over the refined mesh. Shallow
convection coupled with grid-scale microphysics contributes
a major part to the low-level cloud liquid water and mixed-
phase clouds, whereas grid-scale cloud microphysics con-
tribute a major part to the formation of upper-tropospheric
ice clouds over the refined area. Our results show that mesh
refinement does not systematically improve precipitation and
clouds over the tropical Pacific Ocean as grid-scale conden-
sation increases at increased resolutions. As cloud micro-
physics processes drive the moisture budget over the refined
area of the mesh, we propose expanding this diagnostic study
to a process study by further understanding the cloud micro-
physics processes that need to be improved in order to reduce
discrepancies between model and observations. In that vein,
the recently developed MSKF that includes a double-moment
microphysics (Glotfelty et al., 2019) would be useful in a fu-
ture process study.

Code and data availability. The source code used to initialize and
run our experiments is based on MPAS-v5.2, which is freely avail-
able from https://github.com/MPAS-Dev/MPAS-Model/releases/
tag/v5.2 (last access: 1 February 2018). Modifications to the origi-
nal source code and scripts to run the experiments are available from
https://doi.org/10.5281/zenodo.3515440 (Fowler, 2019), while ini-
tialization files and outputs from the experiments are located on the
NCAR Campaign Storage System. These files can be made avail-
able by contacting the corresponding author. Examples of CERES
SSF Aqua and Terra orbital and gridded data, daily-mean and
monthly-mean simulated diagnostics, and postprocessing scripts
are also available from https://doi.org/10.5281/zenodo.3515440
(Fowler, 2019).
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