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Abstract. A free software package for the computation of
the three-dimensional normal modes of an hydrostatic at-
mosphere is presented. This software performs the computa-
tions in isobaric coordinates and was developed for two user-
friendly languages: MATLAB and Python. The software can
be used to expand the global atmospheric circulation onto the
3-D normal modes. This expansion allows the computation
of a 3-D energetic scheme, which partitions the energy reser-
voirs and energy interactions between 3-D spatial scales,
barotropic and baroclinic components, and balanced (rota-
tional) and unbalanced (divergent) circulation fields. More-
over, by retaining only a subset of the expansion coefficients,
the 3-D normal mode expansion can be used for spatial-scale
filtering of atmospheric motion, filtering of balanced motion
and mass unbalanced motions, and barotropic and baroclinic
components. Fixing the meridional scale, the 3-D normal
mode filtering can be used to isolate tropical components of
the atmospheric circulation. All of these features are useful
both in data analysis and in assessment of general circulation
atmospheric models.

1 Introduction

The use of the three-dimensional normal mode functions
(3-D NMFs) of the linearised primitive equations as a ba-
sis to expand the global horizontal wind and mass fields si-
multaneously was presented for the first time by Kasahara
and Puri (1981). The expansion of both atmospheric fields
onto the 3-D NMFs allows the partition of the energy of the
global motion into two kinds of motion: mass balanced rota-

tional modes (Rossby–Haurwitz waves) and divergent modes
(inertio-gravity waves).

The original work of Kasahara and Puri (1981) was devel-
oped for terrain, following sigma coordinates. Tanaka (1985)
extended the methodology to isobaric coordinates 4 years
later. In these coordinates, Tanaka (1985) and Tanaka and
Kung (1988) were able to develop a 3-D normal mode energy
scheme, including the exchanges of kinetic and available po-
tential energy (APE) among the different three-dimensional
scales and types of motions. Recently, Marques and Castan-
heira (2012) extended the methodology to analyse the con-
version of APE into kinetic energy.

The 3-D normal mode expansion has been applied in
several type of studies, such as the comparisons of re-
analysis datasets (Marques and Castanheira, 2012; Yam-
agami and Tanaka, 2016, and references therein), or the
analysis of ensemble prediction system uncertainties (Žagar
et al., 2015a). The methodology was also applied in stud-
ies of low-frequency extratropical variability, like the Arctic
Oscillation–North Atlantic Oscillation (AO–NAO) (Castan-
heira et al., 2002; Tanaka and Tokinaga, 2002; Tanaka and
Seki, 2013; Castanheira and Marques, 2019), as well as in
tropical variability analysis (Yamagami and Tanaka, 2014;
Castanheira and Marques, 2015; Marques and Castanheira,
2018; Blaauw and Žagar, 2018; Franzke et al., 2019; Kitsios
et al., 2019).

Recently, Žagar et al. (2015b) developed an open-source
software package for the projection of global horizontal wind
and mass fields onto 3-D NMFs. Their software was devel-
oped for sigma coordinates but does not allow for the analysis
of the full energy cycle. Here we present a software package
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for the projections of horizontal wind and mass fields onto
3-D NMFs using isobaric coordinates. This software allows
for the analysis of the full atmospheric energy cycle and was
developed for two user-friendly languages: MATLAB and
Python. The methodology described in this study to obtain
the 3-D NMFs has been used in previous works, Marques
and Castanheira (e.g. 2012); Marques et al. (e.g. 2014); Cas-
tanheira and Marques (e.g. 2015); Marques and Castanheira
(e.g. 2018); Castanheira and Marques (e.g. 2019), in the form
of unstructured and disperse scripts written for the specific
dataset used in those studies. The software presented here
consists of a structured collection of functions, intended to
be used for a wider and more general datasets (such as re-
analysis and outputs from climate models) and requiring the
minimum amount of user interaction as we found to be pos-
sible.

2 3-D normal mode functions

2.1 The basic equations

In the traditional shallow atmosphere approximation, a set of
primitive equations in isobaric coordinates may be written as
follows:
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where λ and θ are longitude and latitude, respectively. Vari-
ables u and v are the zonal and meridional components of
horizontal wind vector V , and the vertical wind component
in the isobaric system is represented by ω. The constants �
and a denote the Earth’s angular velocity and Earth’s radius,
respectively. Variable Q̇ is the rate of diabatic heating per
mass unity, cp the specific heat at constant pressure (p), and
R is the dry air gas constant. Temperature and geopotential,
T and φ, are the deviations from a hydrostatic reference state
T0(p) and φ0(p), respectively, and the static stability param-
eter, S0, is given by

S0 =
R

p
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−
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)
. (6)

Multiplying Eq. (5) by R/(pS0), then calculating the
derivatives with respect to p, and finally using the hydrostatic
and continuity Eqs. (3) and (4) on the resulting equation, the
thermodynamic energy equation takes the form
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The right-hand side of Eqs. (1), (2), and (7) contain the
non-linear terms, frictional forces, and the diabatic heat
sources. By setting the right-hand sides of those equations
to zero, the linearised system of equations for the three de-
pendent variables u, v and φ is written as
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The linearised system (8)–(10) describes small oscillations
of an incompressible, homogeneous, hydrostatic and inviscid
fluid over a rotating sphere, around a state at rest (Tanaka and
Kung, 1988; Daley, 1991). Assuming the following separa-
tion of variables (Kasahara and Puri, 1981; Daley, 1991),

[u, v, φ]=9 (p)
[
ũ(λ,θ, t), ṽ(λ,θ, t), φ̃(λ,θ, t)

]
, (11)

and substituting into Eq. (10), one obtains

1
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where g is the constant gravity acceleration and 1/(gh) is the
separation constant.

Following this, the separable vertical structures 9 of the
solutions of the linearised system (8)–(10) are given by the
eigensolution of the following vertical structure equation
(VSE)

∂

∂p

(
1
S0

∂9
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)
+

1
gh
9 = 0, (13)

satisfying an appropriate pair of upper and lower boundary
conditions.

2.2 Vertical structure functions

The VSE (13), with appropriate boundary conditions, forms
an eigenvalue problem with discrete eigensolutions 9k(p)
and eigenvalues −1/ghk (Cohn and Dee, 1989). The soft-
ware presented here was developed for two sets of boundary
conditions. One set was derived from the linearised version
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of the thermodynamic equation with the assumption that the
vertical p velocity, ω, vanishes at the top of the atmosphere
and from the assumption that the linearised geometric verti-
cal velocity, w = dz/dt , vanishes at a constant pressure, ps ,
near the surface (Tanaka, 1985). Such boundary conditions
may be written as

d9k
dp
+
pS0

RT0
9k = 0 at p = ps, (14)

lim
p→0

1
S0

d9k
dp
= 0. (15)

Another set of boundary conditions assumes that the atmo-
spheric mass is bounded by an isobaric surface ps and that
the pressure vertical velocity ω must also vanish at ps . In this
case, the lower boundary condition (14) becomes

d9k
dp
= 0 at p = ps . (16)

The vertical structure functions (VSFs), 9k(p), can be
normalised to satisfy the following orthonormality condition

1
ps

ps∫
0

9i(p)9j (p)dp = δij . (17)

Using this orthonormality condition, one can define a ver-
tical transform

fk =
1
ps

ps∫
0

f (p)9k(p)dp, (18)

where f (p) is an arbitrary function of pressure.
It can be shown (Cohn and Dee, 1989) that the VSFs form

a complete orthonormal basis and the circulation variables
(u,v,φ)T may be expanded as

(u,v,φ)T =

∞∑
k=0

(uk,vk,φk)
T 9k (p), (19)

where (uk,vk,φk)T =
1
ps

ps∫
0

(u,v,φ)T 9k (p)dp. (20)

In this software package, the VSE is solved by using the
spectral method introduced by Kasahara (1984) (see also
Castanheira et al., 1999), which has the advantage over the
finite-difference method that the derivatives of the vertical
structure function can be calculated by analytical differenti-
ation. The input data are the temperature profile T0, which is
assumed to be defined on Nk pressure levels. Following the
computational results of Castanheira et al. (1999), the num-
ber J of Legendre polynomials used to approximate 9 is de-
fined as J =Nk + 20. The vertical integration is performed
by Gaussian quadrature interpolating T0 into GL = 2J − 1

Figure 1. (a) Vertical profile of temperature at the ERA-Interim
pressure levels (black dots) and interpolated to GL Gaussian levels
(red line). (b) Stability parameter S0 calculated from T0 at original
pressure levels (black dots) and from interpolated T0 at Gaussian
levels (red line). The stability parameter S0 was made dimensionless
by multiplying Eq. (6) by p2

s /gH∗ with H∗ = 8 km. The profiles
were computed from the 3-D temperature field of the ERA-Interim
reanalysis, covering the period from 1 January 1979 to 31 Decem-
ber 2010.

Gaussian levels. The maximum number of VSFs saved in the
output is equal to the number of pressure levels (Nk).

Figure 1 shows the vertical profiles of temperature T0 and
the base 10 logarithm of the stability parameter S0. The pro-
files were computed based on the 3-D temperature field of
the ERA-Interim reanalysis (Dee et al., 2011), covering the
period from 1 January 1979 to 31 December 2010. The 3-D
temperature field was obtained with a 1.5◦ lat.× 1.5◦ long.
grid resolution for the 37 isobaric levels from 1 to 1000 hPa
at time intervals of 6 h. The first 12 vertical structures associ-
ated with the 12 smallest eigenvalues of ξk , which were ob-
tained using boundary conditions (14) and (15), are shown in
Fig. 2. The first 12 vertical structures obtained using bound-
ary conditions (16) and (15) are illustrated in Fig. 3. Both
sets of 37 VSFs were derived using the temperature profile
T0 and stability parameter S0 represented in Fig. 1.

The baroclinic structures in both Figs. 2 and 3, i.e. the ver-
tical structures with one or several nodes, are close to each
other. In Fig. 3 the vertical structure function, 90, is a pure
barotropic vertical structure, i.e. it is a constant, and the pro-
jection of an atmospheric variable onto the barotropic mode
corresponds exactly to the mass-weighted vertical mean of
that variable. The vertical structure function 90 in Fig. 2
is not strictly constant. Nevertheless, since 90 of Fig. 2
does not change sign as its counterpart in Fig. 3 and is ap-
proximately constant in the troposphere, it is also called as
barotropic mode.
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Figure 2. The first 12 vertical structure functions derived using T0 and S0 of Fig. 1 with boundary conditions (14) and (15).

Figure 3. The first 12 vertical structure functions derived using T0 and S0 of Fig. 1 with boundary conditions (16) and (15).
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2.3 Computation of the horizontal structure functions

Applying the vertical transform (18) to the system of Eqs.
(8)–(10), a dimensionless equation is obtained in the follow-
ing vector form (Tanaka, 1985; Marques and Castanheira,
2012):

∂

∂t̂
Wk +LWk = 0, (21)
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The time was made dimensionless by multiplying with 2�,
and the vectors are made dimensionless by multiplying by
the inverse of the scaling matrix Xk , which is given by

Xk =

√ghk 0 0
0

√
ghk

0 0 ghk

 . (25)

The dimensionless parameter, αk , in the linear differential
matrix operator L is defined as

αk =

√
g hk

2�a
. (26)

Equation (21) is a dimensionless form of the linearised
shallow water equations.

Since Eq. (21) is a linear system with respect to λ and t̂ , the
solution Wk can be expressed as zonal waves (Swarztrauber
and Kasahara, 1985)

Wnlk

(
λ,θ, t̂

)
=2nlk (θ) e

i(n λ−σnlk t̂), (27)

where σnlk is the dimensionless frequencies for the free
waves with zonal wave number n and meridional struc-
tures 2nlk (θ). The functions Hnlk(λ,θ)=2nlk (θ) e

i n λ

are known as the horizontal structure functions, and the
meridional structures 2nlk are the Hough vector functions
(Longuet-Higgins, 1968; Swarztrauber and Kasahara, 1985).
Substituting Eq. (27) into Eq. (21) gives

−i σnlkHnlk (λ, θ)+LHnlk (λ, θ)= 0, (28)

and thus the horizontal structure functions are obtained as a
free eigenvalue problem. Equation (28) is referred to as the
horizontal structure equation (HSE).

For n > 0, there are two kinds of motion (i.e. solutions)
with distinct frequencies for system (21). The first kind de-
scribes high-frequency eastward- and westward-propagating

gravity inertia waves, and the second kind describes low-
frequency westward-propagating rotational waves of the
Rossby–Haurwitz type (Longuet-Higgins, 1968; Kasahara
and Puri, 1981; Swarztrauber and Kasahara, 1985; Žagar
et al., 2015b).

It can be shown that for real αk all of the frequencies σ
of L are real and that any modes H corresponding to distinct
frequencies are orthogonal (e.g. Swarztrauber and Kasahara,
1985; Žagar et al., 2015b). For n > 0, the frequencies are dis-
tinct and thus the modes are orthogonal. However, for zonal
wavenumber n= 0, the rotational modes are not necessarily
orthogonal because their frequencies are all zero. Neverthe-
less, it is possible to derive an orthogonal set of rotational
modes for n= 0, which are also orthogonal to the modes
for n > 0 (Kasahara and Puri, 1981; Shigehisa, 1983; Swarz-
trauber and Kasahara, 1985). Therefore, all horizontal struc-
ture functions H satisfy the orthonormal condition given by

1
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where the superscript ∗ denotes a conjugate transpose and
the right-hand side is unity if n= n′ and l = l′ and zero oth-
erwise.

The Hough vector function, 2nlk (θ), has three compo-
nents, zonal velocity, meridional velocity, and height, and is
given by
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where the factor i in front of Vnlk is introduced to ac-
count for a phase shift of π/2 (Kasahara, 1977; Swarztrauber
and Kasahara, 1985). Substituting Eq. (30) into Hnlk(λ,θ)=

2nlk (θ) e
i n λ in Eq. (29), one can see that the Hough vector

functions satisfy the orthonormal condition given by
π
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π
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Using orthonormal condition (29), a complete set of Fourier–
Hough transforms may be constructed as

Wk (λ,θ, t)=

∞∑
l=0

∞∑
n=−∞

wnlk(t)Hnlk (λ,θ) , (32)
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In order to distinguish each wave type, i.e. the westward-
propagating Rossby wave and the westward- and eastward-
propagating gravity inertia waves, the meridional index l is
defined as a sequence of three distinct modes, lr, lw and le, re-
spectively (e.g. Kasahara and Puri, 1981; Marques and Cas-
tanheira, 2012).

2.4 Solutions of the horizontal structure equation

As shown in Swarztrauber and Kasahara (1985), the merid-
ional modal functions 2nlk (θ) for the eastward and west-
ward gravity inertia modes are symmetric (antisymmetric)
with respect to the Equator for the even (odd) meridional in-
dex l. For the rotational modes, the functions 2nlk (θ) are
symmetric (antisymmetric) for odd (even) l. For each vertical
mode k, the frequencies σnlk and the corresponding merid-
ional modal functions 2nlk (θ) are computed for a range of
zonal wavenumbers n and meridional indices l. The compu-
tational method was developed by Swarztrauber and Kasa-
hara (1985) and consists of expanding the eigensolutions of
Eq. (28) in terms of spherical vector harmonics. The modes
for n= 0 are determined following the approach suggested
by Shigehisa (1983), as described in Swarztrauber and Kasa-
hara (1985).

Figure 4 shows the dimensionless frequencies σ of
westward-propagating gravity inertia and rotational waves
(Fig. 4a) and eastward-propagating gravity inertia waves
(Fig. 4b), for the case n= 1. This figure corresponds to Fig. 2
in Swarztrauber and Kasahara (1985) because we have used
the same values of α as they did to compute the frequencies
σ . The α used here corresponds to 1/

√
ε of Swarztrauber and

Kasahara (1985). The frequencies are plotted as a function
of α−1 for 10 meridional indices (l = 0, . . .,9), 5 symmetric
(continuous lines), and 5 antisymmetric (dashed lines). The
logarithm scale was used on both axes and the y axis for
the westward-propagating waves has been reversed. The ro-
tational mode lr = 0 is referred to as a mixed Rossby–gravity
wave because it behaves like a rotational mode for large val-
ues of α but behaves like a gravity mode for small values
of α. The symmetric mode le = 0 is referred to as a Kelvin
wave.

The meaning of eastward and westward propagations is
lost in the case of n= 0. However, since the frequencies of
gravity inertia motion appear as pairs of positive and negative
values with the same magnitudes, we also use the term east-
ward (westward) to indicate positive (negative) frequency, as
adopted by Swarztrauber and Kasahara (1985). The frequen-
cies of the rotational motion, along with the frequencies of
the gravity motion corresponding to the lowest meridional
index (l = 0), are zero for n= 0 (Swarztrauber and Kasa-
hara, 1985). Therefore, instead of saving zeros for all of the
rotational frequencies and for the gravity frequencies corre-
sponding to the lowest meridional index, the software com-
putes the asymptotic rate (σa) at which those frequencies go
to zero (see Eqs. 4.14 and 4.18 in Swarztrauber and Kasa-

hara, 1985, for the definition and computational formula of
σa).

Figure 5a shows the curves of asymptotic dimensionless
frequencies σa in the case of n→ 0. The frequencies are
plotted as a function of α−1 for 10 meridional indices, us-
ing a log–log scale with the y axis reversed. In this case, the
lowest symmetric mode is identified as lr =−1 because the
symmetric equations begin at index −1 (see Swarztrauber
and Kasahara, 1985, for details;). The values of σa are all
negative, except for the mode lr =−1, which is similar to
the eastward-propagating Kelvin wave in Fig. 4b. For this
reason, the lr =−1 mode is saved as the eastward gravity
mode le = 0 as in Swarztrauber and Kasahara (1985). The
curves for the modes lr = 1,2, . . .,9 behave analogously to
those of rotational modes in Fig. 4a. The absolute values of
dimensionless frequencies σ in the case of n= 0 of the grav-
ity waves, are illustrated in Fig. 5b for l = 1,2, . . .,9. Fig-
ure 5a and b correspond to Figs. 1 and 3 of Swarztrauber and
Kasahara (1985), respectively.

As mentioned above, the horizontal modes include Kelvin,
westward and eastward inertio-gravity (WIG and EIG,
respectively), Rossby, and mixed Rossby–gravity (MRG)
waves. As an illustration of the software outputs, the hori-
zontal structure functions were calculated for each equiva-
lent height computed in Sect. 2.2 using boundary conditions
(14) and (15) (the first 12 VSFs are represented in Fig. 2),
and for 43 wavenumbers (n= 0, . . .,42) and 80 meridional
modes (20 WIG, 20 EIG and 40 Rossby modes). The merid-
ional profiles of the Hough functions corresponding to two
Rossby modes lr = 1 and lr = 2 are shown in Fig. 6 for the
barotropic mode (k = 0, with h0 ' 9.8 km) and for two zonal
wavenumbers (n= 0 and n= 10). Figure 7 shows the merid-
ional profiles corresponding to the Kelvin mode (le = 0) and
to the Rossby mode (lr = 1) for two baroclinic modes (k = 1,
with h1 ' 6.1 km and k = 10, with h10 ' 65 m) and for two
zonal wavenumbers (n= 0 and n= 10). By increasing the
vertical index k (i.e. reducing the equivalent height hk) or
the zonal wavenumber n for the same vertical index k, the
horizontal structure functions become more confined around
the Equator (Longuet-Higgins, 1968; Cohn and Dee, 1989;
Žagar et al., 2015b).

2.4.1 The Haurwitz waves

The Hough vector functions define modes in the transformed
variables as given by Eq. (23). If the equivalent height hk is
infinite, then transform (23) is no longer applicable. This is
the case for the barotropic mode when the lower boundary
condition (16) is used. However, an infinite equivalent height
means that the separation constant in Eq. (12) is null, and
the horizontal motion is non-divergent, and there must be
no vertical dependence in the linear system (8)–(10). Con-
sistently, the respective vertical structure is a constant. In
this case, the horizontal modes are computed in the untrans-
formed variables u,v, and φ as in Swarztrauber and Kasahara
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Figure 4. Dimensionless frequencies σ for westward-propagating gravity waves and rotational waves (a) and for eastward-propagating
gravity waves (b), plotted as a function of α−1 and for zonal wavenumber n= 1.

Figure 5. Asymptotic dimensionless frequencies σa in the case of n→ 0 (a) and dimensionless frequencies |σ | for gravity waves and zonal
wavenumber n= 0 (b), plotted as a function of α−1.
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Figure 6. Meridional structures of the barotropic (k = 0, h0 ' 9.8 km) Hough harmonics for two Rossby modes, lr = 1 (a, b) and lr = 2
(c, d), and two zonal wavenumbers, n= 0 (a, c) and n= 10 (b, d). The equivalent height h0 was obtained by solving the vertical structure
equation with boundary conditions (14) and (15).

(1985), and are called the Rossby–Haurwitz waves. Addi-
tionally, because the linear system (8)–(10) is non-divergent,
there are no WIG and EIG modes (and also no MRG mode
for the zonal mean component n= 0). Figure 8 shows the
same meridional profiles as in Fig. 6 but for the Haurwitz
modes.

2.5 3-D normal mode functions

The three-dimensional (3-D) normal mode functions (NMFs)
are obtained by the product of the vertical normal modes
9k(p) (the eigensolutions of the VSE) and the horizontal
normal modes Hnlk (λ,θ) – the eigensolutions of the HSE
(e.g. Kasahara, 1976; Kasahara and Puri, 1981). The 3-D
NMFs, denoted by 5nlk (λ,θ,p), form a complete orthogo-
nal basis, therefore allowing us to expand the horizontal wind
and the geopotential fields of the global atmosphere (Kasa-
hara and Puri, 1981; Tanaka, 1985; Daley, 1991):

(u,v,φ)T =

∞∑
k=0

∞∑
l=0

∞∑
n=−∞

wnlk(t)Xk5nlk (λ,θ,p), (34)

where

5nlk (λ,θ,p)=9k (p)2nlk (θ)e
i n λ. (35)

The expansion coefficients wnlk are obtained by means
of the vertical projection onto the vertical structure func-
tions, followed by the horizontal projection onto the horizon-
tal structure functions:

wnlk(t)=
1

2πps

π
2∫

−
π
2

2π∫
0

ps∫
0

5∗nlk (λ,θ,p)

·X−1
k Wcosθ dp dλdθ, (36)

with W= [u, v, φ]T .

2.6 3-D normal mode energetics scheme

Using the 3-D NMFs of the linearised primitive Eqs. (8)–
(10) as a basis to expand the global circulation field, Tanaka
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Figure 7. Meridional structures of two baroclinic Hough harmonics (k = 1, h1 ' 6.1 km and k = 10, h10 ' 65 m) for the Kelvin mode le = 0
(left column), the Rossby mode, lr = 1 (right column), and for two zonal wavenumbers, n= 0 and n= 10. The equivalent heights hk were
obtained by solving the vertical structure equation with boundary conditions (14) and (15).

(1985) (see also Tanaka and Kung, 1988) developed a 3-
D normal mode energetics (NME) scheme, which combines
three one-dimensional spectral energetics in domains of the
zonal wavenumber, n; meridional mode number, l; and ver-
tical mode number, k. The 3-D NME scheme therefore com-
plements the standard energetics in the zonal wavenumber
domain of Saltzman (1957), since it can diagnose the 3-D
spectral distribution of energy and energy interactions, the
energetics characteristics of Rossby waves and gravity iner-
tia waves, and the energy interaction between the barotropic
and baroclinic modes (Tanaka and Kung, 1988).

Derivation of the 3-D NME may be summarised as fol-
lows.

Applying the vertical transform (18) to Eqs. (1), (2), and
(7), a dimensionless equation is obtained in the following
vector form:

∂

∂t̂
Wk +LWk = Ik + Jk +Sk, (37)

where subscript k denotes the kth component of the vertical
transform and t̂ , Wk , and L are given by Eqs. (22), (23), and
(24), respectively. The dimensionless non-linear term vectors
for the wind and mass fields, Ik and Jk , and the energy source
or sink term due to diabatic heating and dissipation, Sk , are
given by

Ik = Y−1
k

−V · ∇u−ω ∂u
∂p
+

tanθ
a
uv

−V · ∇v−ω ∂v
∂p
−

tanθ
a
u2

0


k

, (38)

Jk = Y−1
k

 0
0

∂
∂p

[
R
pS0

(
−V · ∇T −ω ∂T

∂p

)]

k

, (39)

Sk = Y−1
k

 Fu
Fv

∂
∂p

(
q R

p cp S0

)

k

. (40)
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Figure 8. The same as in Fig. 6 but for the Haurwitz modes (h0 =∞).

These vectors are made dimensionless using the inverse of
scaling matrix Yk , which is given by

Yk =

2�
√
ghk 0 0

0 2�
√
ghk

0 0 2�

 . (41)

Applying the Fourier–Hough transform (33) to (37), yields

d
dt̂
wnlk + i σnlkwnlk = ınlk + jnlk + snlk, (42)

where the complex variables wnlk , ınlk , jnlk , and snlk are the
Fourier–Hough transforms of the vector variables Wk , Ik , Jk ,
and Sk , respectively.

The kinetic energy, K , and available potential energy, A,
are defined, respectively, by

K =
1
2

(
u2
+ v2

)
, (43)

A=
1

2S0

(
∂φ

∂p

)2

, (44)

and the total energy, E =K +A, is a conserved quantity of
the full non-linear Eqs. (1), (2), and (7) under frictionless and
adiabatic conditions (see Tanaka and Kung, 1988).

In the transformed 3-D normal mode space, the total en-
ergy Enlk associated with each mode (nlk) is

Enlk =
1

2εn
ps hk|wnlk|

2, (45)

where εn = 2 for the zonal (n= 0)modes, and εn = 1 for the
eddy (n > 0) modes.

Substituting Eq. (42) into the time derivatives of Eq. (45),
the energy balance equations for the 3-D normal modes are
finally obtained as

d
dt
Enlk = Inlk + Jnlk + Snlk, (46)

where

Inlk =
ps�hk

εn

[
w∗nlk ınlk +wnlk ı

∗

nlk

]
, (47)

Jnlk =
ps�hk

εn

[
w∗nlk jnlk +wnlk j

∗

nlk

]
, (48)

Snlk =
ps�hk

εn

[
w∗nlk snlk +wnlk s

∗

nlk

]
. (49)

The terms Inlk,Jnlk , and Snlk that contribute to the time
change of Enlk are, respectively, associated with non-linear
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interactions of kinetic and available potential energies and
with an energy source or sink due to diabatic heating and
dissipation. The spectra of these terms can therefore be anal-
ysed separately for the zonal mean and eddy components, the
barotropic and baroclinic modes, and the Rossby and gravity
waves (Tanaka and Kung, 1988).

As another illustration of the capabilities of the current
software, in Fig. 9 the spectra for total energy E (Fig. 9a,
b, c), interactions of available potential energy J (Fig. 9d, e,
f), and interactions of kinetic energy I are shown (Fig. 9g,
h, i). Figure 9a, d, and g contain the wavenumber spectra,
whereas Fig. 9b, e, and h and Fig. 9c, f, and i show the verti-
cal spectra for the zonal mean and eddy components, respec-
tively. In each panel the total spectra are represented, along
with the contributions of the Rossby and gravity components.
These spectra were computed using 34 years of ERA-Interim
reanalysis (Dee et al., 2011) data covering the period from
1 January 1979 to 31 December 2012. The horizontal wind
(u,v), pressure velocity (ω), temperature, and geopotential
fields were obtained with 1.5◦ lat.× 1.5◦ long. grid resolu-
tion for the 37 isobaric levels from 1000 to 1 hPa at time in-
tervals of 6 h. The solutions of the VSE (13), with boundary
conditions (16) and (15), were approximated using 57 Leg-
endre polynomials and 37 vertical modes were retained. The
zonal wavenumber has been truncated at n= 42. The spectra
were computed at each time step (6-hourly) and then aver-
aged over the 30-year period.

A detailed analysis of the spectra in Fig. 9 is beyond the
scope of this study, but some of its characteristics are men-
tioned. The wavenumber energy spectrum of Rossby modes
approximately follows the −3 power law over the synoptic
and mesoscale region, while that of the gravity modes has ap-
proximately a−5/3 slope, which is in line with the literature
(e.g. Charney, 1971; Nastrom and Gage, 1985; Tanaka, 1985;
Tanaka et al., 1986; Terasaki and Tanaka, 2007). The zonal
mean available potential energy is transferred into eddy avail-
able potential energy essentially due to the Rossby waves,
with a small contribution by planetary-scale gravity waves,
as indicated by the positive values in the wavenumber spectra
of J . On the other hand, the wavenumber spectra of I indi-
cate that the Rossby waves transfer energy out of the eddy ki-
netic energy reservoir, whereas the smaller quantity of energy
transferred by the gravity waves is in the opposite direction.
The vertical spectra for I shows that the eddy kinetic energy
contained in the Rossby baroclinic modes is transferred into
the Rossby barotropic modes of both zonal mean and eddy
components, and also into baroclinic zonal mean kinetic en-
ergy. Again, it is seen that the transfer of kinetic energy due
to the gravity waves is in the opposite direction.

A disadvantage of the 3-D NME is that one cannot sepa-
rate the available potential and kinetic energies, only the total
energy (Enlk) associated with each mode can be calculated.
Consequently, the conversion rate of available potential en-
ergy into kinetic energy also cannot be accessed. However,
the separation of the available potential and kinetic energies

can be performed if one uses only the expansions in the ver-
tical and wavenumber domains. This reasoning led Marques
and Castanheira (2012) to present a normal mode energetics
formulation that performs an explicit evaluation of the avail-
able potential and kinetic energies, as well as the conversion
rates between them. In addition, the generation and dissipa-
tion rates and the non-linear interactions of each energy form
can be performed in both the zonal wavenumber and vertical
mode domains. Using the vertical normal mode basis that re-
sults from applying lower boundary condition (14) and (15),
and then performing the vertical and the zonal wavenumber
(Fourier) expansions, the set of balance equations for the ki-
netic energy (K) and available potential energy (A) is given
by (see Marques and Castanheira, 2012, for details)

dKnk
dt
= Cnk + Ink −Dnk, (50)

dAnk
dt
=−Cnk + Jnk +Gnk, (51)

where

Knk =
ps hk

2εn

π
2∫

−
π
2

(
û∗nk ûnk + v̂

∗

nk v̂nk
)

cosθdθ, (52)

Ank =
ps hk

2εn

π
2∫

−
π
2

(
φ̂∗nk φ̂nk

)
cosθ dθ, (53)

Cnk =
ps�hk

εn

π
2∫

−
π
2

{
i nαk

cosθ

(
ûnk φ̂

∗

nk − û
∗

nk φ̂nk

)

− αk

(
v̂∗nk

∂φ̂nk

∂θ
+ v̂nk

∂φ̂∗nk

∂θ

)}
cosθ dθ, (54)

Ink =
ps�hk

εn

π
2∫

−
π
2

{(
û∗nk

(
Î1

)
nk
+ ûnk

(
Î1

)∗
nk

)

+

(
v̂∗nk

(
Î2

)
nk
+ v̂nk

(
Î2

)∗
nk

)}
cosθ dθ, (55)

Jnk =
ps�hk

εn

π
2∫

−
π
2

(
φ̂∗nk

(
Ĵ3

)
nk

+φ̂nk

(
Ĵ3

)∗
nk

)
cosθ dθ, (56)

Dnk =−
ps�hk

εn

π
2∫

−
π
2

{(
û∗nk

(
F̂u

)
nk
+ ûnk

(
F̂u

)∗
nk

)

+

(
v̂∗nk

(
F̂v

)
nk
+ v̂nk

(
F̂v

)∗
nk

)}
cosθ dθ, (57)
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Figure 9. Spectra of total energy E (a, b, c) and of non-linear interactions of available potential J (d, e, f) and kinetic I (g, h, i) energies, in
the zonal wavenumber (a, d, g) and the vertical index, separately, for the zonal (b, e, h) (0) and eddy (c, f, i) (n) components. In each panel
the contributions of the Rossby (R) and gravity (G) components to the total (T ) spectra of energy or energy interactions are represented.

Gnk =
ps�hk

εn

π
2∫

−
π
2

(
φ̂∗nk

(
N̂3

)
nk

+φ̂nk

(
N̂3

)∗
nk

)
cosθ dθ, (58)

and(
Î1

)
nk
=

1
2�
√
g hk

[
−V · ∇u−ω

∂u

∂p
+

tanθ
a
uv

]
nk

, (59)(
Î2

)
nk
=

1
2�
√
g hk

[
−V · ∇v−ω

∂v

∂p
−

tanθ
a
u2
]
nk

, (60)

(Ĵ3)nk =
1

2�

(
∂

∂p

[
R

pS0

(
−V · ∇T −ω

∂T

∂p

)])
nk

, (61)

(N̂3)nk =
1

2�

[
∂

∂p

(
q R

pcp S0

)]
nk

, (62)

(
F̂u

)
nk
=

(Fu)nk

2�
√
g hk

, (63)

(
F̂v

)
nk
=

(Fv)nk

2�
√
g hk

. (64)

The term Cnk represents the conversion of available poten-
tial energy into kinetic energy, whereas Ink (Jnk) represents
interactions or exchanges of kinetic (available potential) en-
ergy between different scales or types of motion. Finally, the
dissipation of kinetic energy and the generation of available
potential energy, due to diabatic processes, are represented
by terms Dnk and Gnk , respectively, and may be computed
as residuals from balance Eqs. (50) and (51). The calculated
energetic terms may then be used to construct an extended
energy cycle diagram, as in Fig. 7 of Marques and Castan-
heira (2012) (see also Fig. 6 in Marques et al., 2014). Such
an extended energy cycle diagram is illustrated in Fig. 10, in
which the boxes represent the levels of energy and the arrows
the energy generation and dissipation rates and the energy
conversion and transfer rates. The estimates in the diagram
were based on the same 34 years of ERA-Interim reanaly-
sis mentioned above for the 3-D spectra of E, J , and I . The
solutions of the VSE (13) were obtained using boundary con-
ditions (14) and (15). The energetic terms were computed at
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Figure 10. Extended energy cycle diagram describing the flow of energy among the zonal mean and eddy components and among the
barotropic and baroclinic components for ERA-Interim in DJF (top values) and JJA (bottom values) climates. Units are 105 J m−2 for energy
levels and W m−2 for conversion and transfer rates and generation and dissipation rates.

each time step (6-hourly) and then averaged over the 34-year
period to obtain the corresponding mean values for the north-
ern winter (DJF) and summer (JJA) seasons, which are rep-
resented as the top (black) and bottom (red) values in Fig. 10.

The energy cycle diagram of Fig. 10 describes the flow
of energy among the zonal mean and eddy components, and
also among the barotropic and baroclinic components. All
terms in the diagram are decomposed into the zonal mean
(n= 0) and eddy (n≥ 1) components, which are denoted,
respectively, by subscripts Z and E. Each one of these com-
ponents is also decomposed into the barotropic (k = 0) and
baroclinic (k ≥ 1) components by using the extra subscripts
B and b, respectively. The two exceptions are the barotropic–
baroclinic interactions of available potential energy, denoted
by JBb, and the baroclinic–barotropic interactions of kinetic
energy, which is represented as IbB. These values represent
the balances of the flows of kinetic energy and available po-
tential energy between the barotropic and baroclinic com-
ponents and both zonal mean and eddies, implying that the

energy flows represented by the dotted lines in the diagram
cannot by quantified individually. These flows are associ-
ated with eddy generation by barotropic instability and the
barotropic decay of baroclinic eddies (see Marques and Cas-
tanheira, 2012, and references therein, for details).

As an alternative, Marques and Castanheira (2017) and
Castanheira and Marques (2019) presented a similar NME
scheme, but using the vertical normal mode basis that re-
sults from applying lower boundary condition (16) in place
of (14). The main difference between the NME schemes pre-
sented in Marques and Castanheira (2012) and in Marques
and Castanheira (2017) is that in the latter, the first vertical
structure is strictly constant, which implies that its vertical
derivative is null and there is no available potential energy
associated with the barotropic mode (k = 0). Therefore, the
terms An0, Cn0, Jn0, and Gn0 are null in this variant of the
energetics scheme. All baroclinic terms (k ≥ 1) have iden-
tical expressions in both NME schemes. The terms associ-
ated with the kinetic energy of the barotropic component are
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Figure 11. The same as in Fig. 10 but replacing lower boundary condition (14) with (16).

calculated formally with identical expressions in both NME
schemes. However, a constant h0 cannot be derived from the
eigenvalues of the VSE (13). In this case the smallest eigen-
value is null and corresponds to the separation constant in
Eq. (12) being null. For such a case, it is not possible to de-
fine an equivalent height as it was in Eq. (12). In order to
keep the expressions for the barotropic and baroclinic terms
formally identical in both NME schemes, the software fixes
h0 = 1m, when the boundary condition (16) is used. Calcu-
lating the terms given by Eqs. (52)–(58) in this way, (50)
and (51) may also be used to construct an extended energy
cycle diagram as illustrated in Fig. 11 (see also Fig. A2 in
Marques and Castanheira, 2017). In this case, there is no
barotropic branch in the available potential energy side, as
compared to extended energy cycle diagram of Fig. 10. The
estimates in this diagram were based on the same data as
those of Fig. 10. The solutions of the VSE were also approx-
imated using 57 Legendre polynomials, retaining 37 vertical
modes. The same zonal wavenumbers as those for the esti-
mates in Fig. 10 were also considered.

Although boundary condition (16) may be seen as some-
what unrealistic, it presents some useful features. First, us-
ing the boundary conditions (15) and (16), it can easily be
shown that the total energy is exactly conserved by full non-
linear Eqs. (1)–(5), in the case of frictionless adiabatic mo-
tions (see Tanaka and Kung, 1988). Moreover, an extra sur-
face term, which was interpreted by Tanaka and Kung (1988)

as a geopotential flux across the lower boundary, does not ap-
pear in the available potential energy as defined by Eq. (44),
when the boundary condition (16) is used. Another feature of
(16) is that the barotropic mode represents the mass-weighted
average of the circulation field.

The use of the boundary condition (14) may seem more
realistic, but in order to guarantee the conservation of energy
for frictionless adiabatic motions it is necessary to impose
a non-slipping condition (u,v)s = 0 at p = ps , though this
may seem contradictory with the absence of friction.

3 Conclusions

The software presented here consists of tools or functions for
specific tasks and includes a Python and a MATLAB version.
The Python version requires NumPy and SciPy modules and
works with both Python 2 and 3. The netCDF4 library is rec-
ommended. The input–output data format for each function
may be either the native format of the chosen version, i.e.
“.mat” for MATLAB and “.npz” for Python, or netCDF for
both versions.

The tasks to be achieved with the functions in the software
include the solution of the VSE (13), the solution of HSE
(28), and the computation of complex expansion coefficients
wnlk , ınlk , and jnlk , which are the vertical Fourier–Hough
transforms of the dependent variable vector [u,v,φ]T , of the
non-linear term vector due to wind field, and of the non-
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linear term due to mass field, respectively. In addition, the
software also permits the computation of vertical transforms
of the terms in the normal mode energetics formulation pre-
sented by Marques and Castanheira (2012) or its alternative
presented by Marques and Castanheira (2017) and Castan-
heira and Marques (2019). These terms constitute the set of
balance Eqs. (50) and (51), and its expressions are given in
Eqs. (52)–(64). With these vertical transforms the user may
compute the global energy cycle in the wavenumber and ver-
tical domains (as in Marques and Castanheira, 2012, 2017;
Castanheira and Marques, 2019), with the dissipation and
generation terms computed as residuals from Eqs. (50) and
(51).

Other applications of this software include the spatial-
scale filtering of atmospheric motion and filtering of bal-
anced motion and mass unbalanced motions by retaining an
appropriate subset of terms in the expansion (34) (e.g. Cas-
tanheira and Marques, 2015; Žagar et al., 2020). Further-
more, the solutions of HSE, i.e. the Hough vector functions
(2nlk(θ)), can be used as meridional basis functions onto
which dynamical data may be projected. This can be an al-
ternative tool for investigating studies on tropical convection
as in Yang et al. (2003) and Gehne and Kleeman (2012),
which have used parabolic cylinder functions as meridional
basis functions. All of these features are useful both in data
analysis and in assessment of general circulation atmospheric
models (e.g. Žagar et al., 2020).
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Appendix A: Software functions

– Vertical structure.

The vertical structure equation (VSE), (13), is solved
with a function named vertical_structure that uses the
spectral method introduced by Kasahara (1984). The
function requires the mean vertical profile of temper-
ature T0, defined on pressure levels, and the pressure
levels as inputs, returning the vertical structure func-
tions (9k(p)) and equivalent heights (hk). The VSE
may be solved using either one of the two pairs of
boundary conditions, as described in Sect. 2.2. These
pairs of boundary conditions are controlled by the in-
put argument ws0. When ws0=False (the default) the
VSE is solved using boundary conditions (14) and
(15), whereas when ws0=True the VSE is solved using
boundary conditions (16) and (15). In the latter case the
first vertical structure is strictly constant and the associ-
ated equivalent height is infinite.

– Horizontal structure.

The solution of HSE (21) is obtained with a func-
tion called hough_functions. It uses the computa-
tional method developed by Swarztrauber and Kasa-
hara (1985), which consists of expanding the eigenso-
lutions of Eq. (28) in terms of spherical vector harmon-
ics. The function inputs are the equivalent heights (hk)
and the user-defined parameters for the maximum zonal
wavenumber, the total number of Rossby modes and
half the number of gravity modes used in the expan-
sion, along with the latitude points, which may be linear
(the default) or Gaussian. It returns the Hough vector
functions (2nlk(θ)) and the frequencies of the modes.
In the output, the meridional modes are written in the
following order: first the westward gravity modes, then
the eastward gravity modes, and finally the (westward)
Rossby modes. Both types of gravity modes are writ-
ten following the symmetric–antisymmetric mode or-
der, whereas the order for Rossby modes is reversed.
If the VSE (13) is solved using boundary conditions
(16) and (15), then the solutions for the barotropic
mode returned by hough_functions are the Haurwitz
waves (Swarztrauber and Kasahara, 1985). This is con-
trolled internally by hough_functions which calls func-
tions named hvf_baroclinic and hvf_barotropic for the
Haurwitz modes.

– Expansion coefficients.

The complex expansion coefficients wnlk , ınlk , and
jnlk may be obtained with a function called expan-
sion_coeffs. The inputs are the vertical structure func-
tions (9k(p)), the equivalent heights (hk), the Hough
vector functions (2nlk(θ)), and a data structure with ap-
propriate fields. For the expansion coefficients wnlk a
data structure with fields [u,v,φ] is required (recall that

field φ corresponds to the deviations from a hydrostatic
reference state φ0(p)). The computation of expansion
coefficients ınlk and jnlk requires data structures with
fields [I1,I2] and [J3], respectively. Each one of these
fields need to be pre-computed by the user and corre-
spond to the terms between square brackets of Eqs. (59),
(60) and (61), respectively (note that in Eq. 61 the ver-
tical derivative is outside the square brackets, and that
this is accounted for in the expansion_coeffs function).
The returned coefficients, wnlk , ınlk and jnlk , may then
be used to compute the 3-D spectrum of total energy
(Enlk) and of the non-linear interactions of kinetic (Inlk)
and available potential (Jnlk) energies (see Fig. 9), using
Eqs. (45), (47), and (48), respectively.

– The inverse transforms.

The zonal and meridional wind, u and v, and geopo-
tential perturbation φ (from the reference geopoten-
tial), as given by Eq. (34), can be obtained with the
function inv_expansion_coeffs. By choosing an appro-
priate subset of modes, this function can be used for
spatial-scale filtering of atmospheric motion, balanced
and mass unbalanced motions, and barotropic and baro-
clinic components. Moreover, choosing the appropri-
ate meridional indices the filtering can be used to iso-
late tropical components of the atmospheric circulation.
The function requires the vertical structure functions
(9k(p)); the equivalent heights (hk); the Hough vector
functions (2nlk(θ)); the complex expansion coefficients
(wnlk); the pressure levels (in hPa); the longitudes (in
degrees); and the wavenumber, meridional, and verti-
cal indices as inputs. In addition, the user can choose
to compute all three fields, u,v and φ (the default), or
only a subset of those, which is controlled by the input
argument uvz.

– Vertical and Hough transforms.

All functions described above have the same name
in both versions, MATLAB and Python, differing
only in the file extension (“.m” and “.py”, respec-
tively). The software tools presented here include two
more functions used to compute the vertical and the
Hough transforms. In the MATLAB version there
are two separate functions, vertical_transform.m and
hough_transform.m, whereas for Python both are in-
cluded in module transforms.py, being invoked as trans-
forms.vertical and transforms.hough. The vertical and
Hough transforms are used by the expansion_coeffs
function, but they may be also executed independently
by the user. For example, the vertical_transform func-
tion (or transforms.vertical) may be used to compute
the vertical transforms of u, v, φ, I1, I2, and J3. Again,
I1, I2, and J3 correspond to the terms between square
brackets of Eqs. (59), (60), and (61). The computation
of these six vertical transforms constitute the essential
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task to obtain the global energy cycle in the wavenum-
ber and vertical domains as in Marques and Castanheira
(2012) or Marques and Castanheira (2017) (see also
Castanheira and Marques, 2019). Having these vertical
transforms, all of the terms of the normal mode energet-
ics formulation, represented by balance Eqs. (50) and
(51), may then be easily obtained using Eqs. (52)–(56),
with the remainder dissipation and generation terms
computed as residuals from Eqs. (50) and (51).
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Code and data availability. The exact version of the software code
used to produce the results presented in this paper is archived on
Zenodo (https://doi.org/10.5281/zenodo.3631310, Marques et al.,
2020). A step-by-step tutorial is included in the repository for both
Python and MATLAB. Also included are the mean vertical profiles
of temperature and geopotential, computed from 32 years (1979–
2010) of the ERA-Interim reanalysis data as described in the text
(see Sect. 2.2). These two vertical profiles, along with the horizon-
tal wind (u, v), pressure velocity (ω), temperature, and geopotential
fields that may be obtained from the ERA-Interim data server with
1.5◦ lat.× 1.5◦ long. grid resolution for all of the provided 37 iso-
baric levels from 1000 to 1 hPa, at time intervals of 6 h, are the only
datasets needed to obtain all of the figures in the paper. The two
exceptions are Figs. 4 and 5, for which we have used the same val-
ues as Swarztrauber and Kasahara (1985); see, for example, their
Table 5. Note that our α corresponds to their 1/

√
ε.
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