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Abstract. Multiple-point geostatistics enable the realistic
simulation of complex spatial structures by inferring statis-
tics from a training image. These methods are typically
computationally expensive and require complex algorithmic
parametrizations. The approach that is presented in this pa-
per is easier to use than existing algorithms, as it requires
few independent algorithmic parameters. It is natively de-
signed for handling continuous variables and quickly imple-
mented by capitalizing on standard libraries. The algorithm
can handle incomplete training images of any dimensionality,
with categorical and/or continuous variables, and stationarity
is not explicitly required. It is possible to perform uncon-
ditional or conditional simulations, even with exhaustively
informed covariates. The method provides new degrees of
freedom by allowing kernel weighting for pattern matching.
Computationally, it is adapted to modern architectures and
runs in constant time. The approach is benchmarked against a
state-of-the-art method. An efficient open-source implemen-
tation of the algorithm is released and can be found here
(https://github.com/GAIA-UNIL/G2S, last access: 19 May
2020) to promote reuse and further evolution.

The highlights are the following:

1. A new approach is proposed for pixel-based multiple-
point geostatistics simulation.

2. The method is flexible and straightforward to
parametrize.

3. It natively handles continuous and multivariate simula-
tions.

4. It has high computational performance with predictable
simulation times.

5. A free and open-source implementation is provided.

1 Introduction

Geostatistics is used widely to generate stochastic random
fields for modeling and characterizing spatial phenomena
such as Earth’s surface features and geological structures.
Commonly used methods, such as the sequential Gaussian
simulation (Gómez-Hernández and Journel, 1993) and turn-
ing bands algorithms (Matheron, 1973), are based on kriging
(e.g., Graeler et al., 2016; Li and Heap, 2014; Tadić et al.,
2017, 2015). This family of approaches implies spatial re-
lations using exclusively pairs of points and expresses these
relations using covariance functions. In the last 2 decades,
multiple-point statistics (MPS) emerged as a method for rep-
resenting more complex structures using high-order nonpara-
metric statistics (Guardiano and Srivastava, 1993). To do so,
MPS algorithms rely on training images, which are images
with similar characteristics to the modeled area. Over the
last decade, MPS has been used for stochastic simulation
of random fields in a variety of domains such as geological
modeling (e.g., Barfod et al., 2018; Strebelle et al., 2002),
remote-sensing data processing (e.g., Gravey et al., 2019;
Yin et al., 2017), stochastic weather generation (e.g., Oriani
et al., 2017; Wojcik et al., 2009), geomorphological classi-
fication (e.g., Vannametee et al., 2014), and climate model
downscaling (a domain that has typically been the realm of
kriging-based methods; e.g., Bancheri et al., 2018; Jha et al.,
2015; Latombe et al., 2018).

In the world of MPS simulations, one can distinguish two
types of approaches. The first category is the patch-based
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methods, where complete patches of the training image are
imported into the simulation. This category includes meth-
ods such as SIMPAT (Arpat and Caers, 2007) and DIS-
PAT (Honarkhah and Caers, 2010), which are based on
building databases of patterns, and image quilting (Mah-
mud et al., 2014), which uses an overlap area to identify
patch candidates, which are subsequently assembled using
an optimal cut. CCSIM (Tahmasebi et al., 2012) uses cross-
correlation to rapidly identify optimal candidates. More re-
cently, Li (2016) proposed a solution that uses graph cuts to
find an optimal cut between patches, which has the advan-
tage of operating easily, efficiently, and independently of the
dimensionality of the problem. Tahmasebi (2017) proposed a
solution that is based on “warping” in which the new patch is
distorted to match the previously simulated areas. For a mul-
tivariate simulation with an informed variable, Hoffimann et
al. (2017) presented an approach for selecting a good can-
didate based on the mismatch of the primary variable and on
the mismatch rank of the candidate patches for auxiliary vari-
ables. Although patch-based approaches are recognized to be
fast, they are typically difficult to use in the presence of dense
conditioning data. Furthermore, patch-based approaches of-
ten suffer from a lack of variability due to the pasting of large
areas of the training image, which is a phenomenon that is
called verbatim copy. Verbatim copy (Mariethoz and Caers,
2014) refers to the phenomenon whereby the neighbor of a
pixel in the simulation is the neighbor in the training image.
This results in large parts of the simulation that are identical
to the training image.

The second category of MPS simulation algorithms con-
sists of pixel-based algorithms, which import a single pixel
at the time instead of full patches. These methods are typi-
cally slower than patch-based methods. However, they do not
require a procedure for the fusion of patches, such as an opti-
mal cut, and they allow for more flexibility in handling con-
ditioning data. Furthermore, in contrast to patch-based meth-
ods, pixel-based approaches rarely produce artefacts when
dealing with complex structures. The first pixel-based MPS
simulation algorithm was ENESIM, which was proposed by
Guardiano and Srivastava (1993), where for a given categor-
ical neighborhood – usually small – all possible matches in
the training image are searched. The conditional distribution
of the pixel to be simulated is estimated based on all matches,
from which a value is sampled. This approach could origi-
nally handle only a few neighbors and a relatively small train-
ing image; otherwise, the computational cost would become
prohibitive and the number of samples insufficient for esti-
mating the conditional distribution. Inspired by research in
computer graphics, where similar techniques are developed
for texture synthesis (Mariethoz and Lefebvre, 2014), an im-
portant advance was the development of SNESIM (Strebelle,
2002), which proposes storing in advance all possible condi-
tional distributions in a tree structure and using a multigrid
simulation path to handle large structures. With IMPALA,
Straubhaar et al. (2011) proposed reducing the memory cost

by storing information in lists rather than in trees. Another
approach is direct sampling (DS) (Mariethoz et al., 2010),
where the estimation and the sampling of the conditional
probability distribution are bypassed by sampling directly in
the training image, which incurs a very low memory cost.
DS enabled the first use of pixel-based simulations with con-
tinuous variables. DS can use any distance formulation be-
tween two patterns; hence, it is well suited for handling vari-
ous types of variables and multivariate simulations.

In addition to its advantages, DS has several shortcom-
ings: DS requires a threshold – which is specified by the user
– that enables the algorithm to differentiate good candidate
pixels in the training image from bad ones based on a prede-
fined distance function. This threshold can be highly sensi-
tive and difficult to determine and often dramatically affects
the computation time. This results in unpredictable computa-
tion times, as demonstrated by Meerschman et al. (2013). DS
is based on the strategy of randomly searching the training
image until a good candidate is identified (Shannon, 1948).
This strategy is an advantage of DS; however, it can also be
seen as a weakness in the context of modern computer ar-
chitectures. Indeed, random memory access and high con-
ditionality can cause (1) suboptimal use of the instruction
pipeline, (2) poor memory prefetch, (3) substantial reduction
of the useful memory bandwidth, and (4) impossibility of us-
ing vectorization (Shen and Lipasti, 2013). While the first
two problems can be addressed with modern compilers and
pseudorandom sequences, the last two are inherent to the cur-
rent memory and CPU construction.

This paper presents a new and flexible pixel-based simu-
lation approach, namely QuickSampling (QS), which makes
efficient use of modern hardware. Our method takes advan-
tage of the possibility of decomposing the standard distance
metrics that are used in MPS (L0, L2) as sums of cross-
correlations. As a result, we can use fast Fourier transforms
(FFTs) to quickly compute mismatch maps. To rapidly se-
lect candidate patterns in the mismatch maps, we use an op-
timized partial sorting algorithm. A free, open-source and
flexible implementation of QS is available, which is inter-
faced with most common programming languages (C/C++,
MATLAB, R, and Python 3).

The remainder of this paper is structured as follows:
Sect. 2 presents the proposed algorithm with an introduc-
tion to the general method of sequential simulation, the
mismatch measurement using FFTs, and the sampling ap-
proach of using partial sorting followed by methodologi-
cal and implementation optimizations. Section 3 evaluates
the approach in terms of quantitative and qualitative metrics
via simulations and conducts benchmark tests against DS,
which is the only other available approach that can handle
continuous pixel-based simulations. Section 4 discusses the
strengths and weaknesses of QS and provides guidelines. Fi-
nally, guidelines and the conclusions of this work are pre-
sented in Sect. 5.
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2 Methodology and implementation

2.1 Pixel-based sequential simulation

We recall the main structure of pixel-based MPS simulation
algorithms (Mariethoz and Caers, 2014, p. 156), which is
summarized and adapted for QS in the pseudocode given
below. The key difference between existing approaches
is in lines 3 and 4 of Fig. 1, when candidate patterns are
selected. This is the most time-consuming task in many
MPS algorithms, and we focus only on computing it in a
way that reduces its cost and minimizes the parametrization.
The pseudocode for the QS algorithm is given here.

Inputs:

– T the training images;

– S the simulation grid, including the conditioning data;

– P the simulation path.

The choice of pattern metric:

1. for each unsimulated pixel x following the path P ,

2. find the neighborhood N(x) in S that contains all pre-
viously simulated or conditioning nodes in a specified
radius.

3. compute the mismatch map between T and N(x)

(Sect. 2.3)

4. select a good candidate usind quantile sorting over the
mismatch map (Sect. 2.4)

5. asisgn the valule of the selected candidate to x in S

6. End

2.2 Decomposition of common mismatch metrics as
sums of products

Distance-based MPS approaches are based on pattern match-
ing (Mariethoz and Lefebvre, 2014). Here, we rely on the
observation that many common matching metrics can be ex-
pressed as weighted sums of the pixelwise mismatch ε. This
section explores the pixelwise errors for a single variable
and for multiple variables. For a single variable, the mis-
match metric ε between two pixels is the distance between
two scalars or two classes. In the case of many variables, it is
a distance between two vectors that are composed by scalars,
by classes, or by a combination of the two. Here, we focus on
distance metrics that can be expressed in the following form:

ε (a,b)∝
∑
j∈J

fj (a) · gj (b), (1)

where a and b represent the values of two univariate pixels
and fj and gj are functions that depend on the chosen metric.

J is defined by the user depending on the metric used. Here,
we use the proportionality symbol, because we are interested
in relative metrics rather than absolute metrics; namely, the
objective is to rank the candidate patterns. We show below
that many of the common metrics or distances that are used
in MPS can be expressed as Eq. (1).

For the simulation of continuous variables, the most com-
monly used mismatch metric is the L2 norm, which can be
expressed as follows:

εL2 (a,b)= (a− b)
2
= a2
− 2ab+ b2. (2)

Using Eq. (1), this L2 norm can be decomposed into the fol-
lowing series of functions fj and gj .

f0 : x→ x2 g0 : x→ 1
f1 : x→−2x g1 : x→ x

f2 : x→ 1 g2 : x→ x2

A similar decomposition is possible for the L0 norm (also
called Hamming distance), which is commonly used for the
simulation of categorical variables. The Hamming distance
measures the dissimilarity between two lists by counting the
number of elements that have different categories (Hamming,
1950). Example the dissimilarity between a,b,b,c,b,a and
a,c,b,a,c,a is 0,1,0,1,1,0 and the associated Hamming
distance is 3.

εL0 (a,b)= (a− b)
0
= 1−

∑
j∈C

(
δa,j .δb,j

)
∝

∑
j∈C

δa,j · δb,j , (3)

where δx,y is the Kronecker delta between x and y, which is
1 if x equals y and 0 otherwise, andC is the set of all possible
categories of a specified variable. Here J = C.

Using Eq. (1), this L0 distance can be decomposed (Arpat
and Caers, 2007) into the following series of functions fj and
gj :

fj : x→−δxj
gj : x→ δxj

with a new pair of fj and gj for each class j of C.
For multivariate pixels, such as a combination of categori-

cal and continuous values, the mismatch ε can be expressed
as a sum of univariate pixelwise mismatches.

ε (a,b)∝
∑
i∈I

∑
j∈Ji

fj (ai) · gj (bi), (4)

where a and b are the compared vectors and ai and bi are the
individual components of a and b. Ji represents the set re-
lated to the metric used for the ith variable, and I represents
the set of variables.

2.3 Computation of a mismatch map for an entire
pattern

The approach that is proposed in this work is based on com-
puting a mismatch map in the training image (TI) for each
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Figure 1. Example of a mismatch map for an incomplete pattern.
Blue represents good matches, yellow bad matches, and purple
missing and unusable (border effect) data. The red circle highlights
the minimum of the mismatch map, which corresponds to the loca-
tion of the best candidate.

simulated pixel. The mismatch map is a grid that represents
the patternwise mismatch for each location of the training
image and enables the fast identification of a good candidate,
as shown by the red circle in Fig. 1.

If we consider the neighborhood N(s) around the simu-
lated position s, then we can express a weighted dissimilarity
between N(s) and a location in the training image N(t):

E(N (t) ,N (s))=
∑

l ∈N(t,s)

ωlε (Nl (t) ,Nl (s)) , (5)

where N (t,s)= {l |Nl (t), Nl (s) exists}, and Nl (p) repre-
sents the neighbors of p (p can represent either s or t)
with a relative displacement l from p; therefore, N (p)=
{l |Nl (p)}, l is the lag vector that defines the relative po-
sition of each value within N , and ωl is a weight for each
pixelwise error according to the lag vector l. By extension,
ω is the matrix of all weights, which we call the weighting
kernel or, simply, the kernel. E represents the mismatch be-
tween patterns that are centered on s and t ∈ T , where T is
the training image.

Some lags may not correspond to a value, for example,
due to edge effects in the considered images or because the
patterns are incomplete. Missing patterns are inevitable dur-
ing the course of a simulation using a sequential path. Fur-
thermore, in many instances, there can be missing areas in
the training image. This is addressed by creating an indicator
variable to be used as a mask, which equals 1 at informed
pixels and 0 everywhere else:

1l (p)=

{
1 if Nl (p) is informed
0 otherwise. (6)

Let us first consider the case in which, for a specified posi-
tion, either all or no variables are informed. Expressing the
presence of data as a mask enables the gaps to be ignored,
because the corresponding errors are multiplied by zero.

Then, Eq. (5) can be expressed as follows:

E(N (t) ,N (s))=
∑

l

ωl ·1l (t) ·1l (s)

· ε (Nl (t) ,Nl (s)) . (7)

Combining Eqs. (4) and (7), we get

E(N (t) ,N (s))

∝

∑
l

ωl1l (t)1l (s)
∑
i∈I

∑
j∈Ji

fj
(
Nl(t)i

)
gj
(
Nl(s)i

)
=

∑
l

∑
i∈I

∑
j∈Ji

ωl1l (t)1l (s)fj
(
Nl(t)i

)
gj
(
Nl(s)i

)
=

∑
i∈I

∑
j∈Ji

∑
l

ωl

(
1l (t)fj

(
Nl(t)i

))
(1l (s))

(
gj
(
Nl(s)i

))
=

∑
i∈I

∑
j∈Ji

∑
l

(
1l (t)fj

(
Nl(t)i

))
(ωl1l (s) gj

(
Nl(s)i

))
. (8)

After rewriting, Eq. (8) can be expressed as a sum of cross-
correlations that encapsulate spatial dependencies, using the
cross-correlation definition, f ? g =

∑
l

fl · gl , as follows:

E(N (t) ,N (s))

∝

∑
i∈I

∑
j∈Ji

(
1(t) ◦ fj

(
N(t)i

))
?
(
ω ◦1(s) ◦ gj

(
N(s)i

))
, (9)

where ω and 1(.) represent the matrices that are formed by
ωl and 1l (.) for all possible vectors l, ? denotes the cross-
correlation operator, and ◦ is the element-wise product (or
Hadamard product).

Finally, with T = {Ti, i ∈ I }, Ti represents the training im-
age for the ith variable, and, by applying cross-correlations
for all positions t ∈ T , we obtain a mismatch map, which is
expressed as

E(T ,N (s))

∝

∑
i∈I

∑
j∈Ji

(
1(T ) ◦ fj (Ti)

)
·
(
ω ◦ 1(s) ◦ gj

(
N(s)i

))
. (10)

The term 1(T ) allows for the consideration of the possibility
of missing data in the training image T .

Let us consider the general case in which only some vari-
ables are informed and the weighting can vary for each vari-
able. Equation (10) can be extended for this case by defining
separate masks and weights ωi for each variable:

E(T ,N (s))

∝

∑
i∈I

∑
j∈Ji

(
1(Ti) ◦ fj (Ti)

)
?
(
ωi ◦1(si) ◦ gj

(
N(s)i

))
. (11)

Equation (11) can be expressed using the convolution the-
orem applied to cross-correlation:

E(T ,N (s))

∝

∑
i∈I

∑
j∈Ji

F−1
{
F
{
1(Ti) ◦ fj (Ti)

}
◦F

{
ωi ◦ 1(si) ◦ gj

(
N(s)i

)}}
, (12)

where F represents the Fourier transform, F−1 the inverse
transform, and x the conjugate of x.
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By linearity of the Fourier transform, the summation can
be performed in Fourier space, thereby reducing the number
of transformations:

E(T ,N (s))

∝ F−1
{∑
i∈I

∑
j∈Ji

F
{
1(Ti) ◦ fj (Ti)

}
◦F

{
ωi ◦1(si) ◦ gj

(
N(s)i

)}}
. (13)

Equation (13) is appropriate for modern computers, which
are well suited for computing FFTs (Cooley et al., 1965;
Gauss, 1799). Currently, FFTs are well implemented in
highly optimized libraries (Rodríguez, 2002). Equation (13)
is the expression that is used in our QS implementation, be-
cause it reduces the number of Fourier transforms, which are
the most computationally expensive operations of the algo-
rithm. One issue with the use of FFTs is that the image T is
typically assumed to be periodic. However, in most practical
applications, it is not periodic. This can be simply addressed
by cropping the edges of E(T ,N (s)) or by adding a padding
around T .

The computation of the mismatch map (Eq. 13) is deter-
ministic; as a result, it incurs a constant computational cost
that is independent of the pixel values. Additionally, Eq. (13)
is expressed without any constraints on the dimensionality.
Therefore, it is possible to use the n-dimensional FFTs that
are provided in the above libraries to perform n-dimensional
simulations without changing the implementation.

2.4 Selection of candidates based on a quantile

The second contribution of this work is the k-sampling strat-
egy for selecting a simulated value among candidates. The
main idea is to use the previously calculated mismatch map
to select a set of potential candidates that are defined by the k
smallest (i.e., a quantile) values of E. Once this set has been
selected, we randomly draw a sample from this pool of candi-
dates. This differs from strategies that rely on a fixed thresh-
old, which can be cumbersome to determine. This strategy is
highly similar to the ε-replicate strategy that is used in image
quilting (Mahmud et al., 2014) in that we reuse and extend
to satisfy the specific requirements of QS. It has the main ad-
vantage of rescaling the acceptance criterion according to the
difficulty; i.e. the algorithm is more tolerant of rare patterns
while requiring very close matches for common patterns.

In detail, the candidate selection procedure is as follows:
All possible candidates are ranked according to their mis-
match, and one candidate is randomly sampled among the k
best. This number, k, can be seen as a quantile over the train-
ing dataset. However, parameter k has the advantage of be-
ing an easy representation for users, who can associate k = 1
with the best candidate, k = 2 with the two best candidates,
etc. For fine-tuning parameter k, the sampling strategy can
be extended to non-integer values of k by sampling the can-

Figure 2. Illustration of the k-sampling strategy.

didates with probabilities that are not uniform. For example,
if the user sets k = 1.5, the best candidate has a probability of
two-thirds of being sampled and the second best a probability
of one-third. For k = 3.2 (Fig. 2), each of the three best can-
didates are sampled with an equal probability of 0.3125 and
the fourth best with a probability of 0.0625. This feature is
especially useful for tuning k between 1 and 2 and for avoid-
ing a value of k = 1, which can result in the phenomenon of
verbatim copy.

An alternative sampling strategy for reducing the simula-
tion time is presented in Appendix A3. However, this strategy
can result in a reduction in the simulation quality.

The value of non-integer k values is not only in the fine
tuning of parameters. It also allows for direct comparisons
between QS and DS. Indeed, under the hypothesis of a sta-
tionary training image, using DS with a given max fraction of
scanned training image (f ) and a threshold (t) of 0 is statis-
tically similar to using QS with k = 1/f . In both situations,
the best candidate is sampled in a fraction f of the training
image.

2.5 Simplifications in the case of a fully informed
training image

In many applications, spatially exhaustive TIs are available.
In such cases, the equations above can be simplified by drop-
ping constant terms from Eq. (1), thereby resulting in a sim-
plified form for Eq. (13). Here, we take advantage of the
ranking to know that a constant term will not affect the re-
sult.

As in Tahmasebi et al. (2012), in the L2 norm, we drop
the squared value of the searched pattern, namely b2, from
Eq. (2). Hence, we can express Eq. (4) as follows:

ε (a,b)=
∑
i∈I

a2
i − 2

∑
i∈I

ai · bi . (14)

The term a2, which represents the squared value of the candi-
date pattern in the TI, differs among training image locations
and therefore cannot be removed. Indeed, the assumption that∑
a2 is constant is only valid under a strict stationarity hy-

pothesis on the scale of the search pattern. While this hypoth-
esis might be satisfied in some cases (as in Tahmasebi et al.,
2012), we do not believe it is generally valid. Via the same
approach, Eq. (3) can be simplified by removing the constant
terms; then, we obtain the following for the L0 norm:

ε (a,b)=−
∑
i∈I

∑
j∈C

δai ,j · δbi ,j . (15)
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2.6 Efficient implementation

An efficient implementation of QS was achieved by (1) per-
forming precomputations, (2) implementing an optimal par-
tial sorting algorithm for selecting candidates, and (3) opti-
mal coding and compilation. These are described below.

According to Eq. (13), F
{
1(Ti) ◦ fj (Ti)

}
is independent

of the searched pattern N(s). Therefore, it is possible to pre-
compute it at the initialization stage for all i and j . This
improvement typically reduces the computation time for an
MPS simulation by a factor of at least 2.

In the QS algorithm, a substantial part of the computation
cost is incurred in identifying the k best candidates in the
mismatch map. In the case of non-integer k, the upper limit
dke is used. Identifying the best candidates requires sorting
the values of the mismatch map and retaining the candidates
in the top k ranks. For this, an efficient sorting algorithm
is needed. The operation of finding the k best candidates
can be implemented with a partial sort, in which only the
elements of interest are sorted while the other elements re-
main unordered. This results in two sets: Ss with the k small-
est elements and Sl with the largest elements. The partial
sort guarantees that x ≤ y | (x,y) ∈ Ss× Sl. More informa-
tion about our implementation of this algorithm is available
in Appendix A1. Here, we use a modified vectorized online
heap-based partial sort (Appendix A1). With a complexity
of O (n ln(k)), it is especially suitable for small values of k.
Using the cache effect, the current implementation yields re-
sults that are close to the search of the best value (the small-
est value of the array). The main limitation of standard partial
sort implementations is that in the case of equal values, either
the first or the last element is sampled. Here, we develop an
implementation that can uniformly sample a position among
similar values with a single scan of the array. This is impor-
tant because systematically selecting the same position for
the same pattern will reduce the conditional probability den-
sity function to a unique sample, thereby biasing the simula-
tion.

Due to the intensive memory access by repeatedly scan-
ning large training images, interpreted programming lan-
guages, such as MATLAB and Python, are inefficient for a
QS implementation and, in particular, for a parallelized im-
plementation. We provide a NUMA-aware (Blagodurov et
al., 2010) and flexible C/C++/OpenMP implementation of
QS that is highly optimized. Following the denomination of
Mariethoz (2010), we use a path-level parallelization with a
waiting strategy, which offers a good trade-off between per-
formance and memory requirements. In addition, two node-
level parallelization strategies are available: if many training
images are used, a first parallelization is performed over the
exploration of the training images; then, each FFT of the al-
gorithm is parallelized using natively parallel FFT libraries.

The FFTw library (Frigo and Johnson, 2018) provides a
flexible and performant architecture-independent framework
for computing n-dimensional Fourier transformations. How-

Figure 3. Examples of unconditional continuous and categorical
simulations in 2D and 3D and their variograms. The first column
shows the training images that were used, the second column one re-
alization, and the third column quantitative quality metrics. MV v1,
MV v2, and MV v3 represent a multivariate training image (and the
corresponding simulation) using three variables. The first two met-
rics are scatter plots of MV v1 vs. MV v2 of the training image and
the simulation, respectively. The third metric represents the repro-
duction of the variogram for each of MV v1, MV v2, and MV v3.

ever, an additional speed gain of approximately 20 % was
measured by using the Intel MKL library (Intel Corporation,
2019) on compatible architectures. We also have a GPU im-
plementation that uses clFFT for compatibility. Many Fourier
transforms are sparse and, therefore, can easily be acceler-
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Table 1. Parameters that were used for the simulations in Fig. 3. Times are specified for simulations without parallelization. MVs represents
multivariates.

MVs v1, v2, v3 Strebelle Berea Folds

Mariethoz Mariethoz
Source and Caers (2014) Strebelle (2002) https://doi.org/10.6084/m9.figshare.1153794 and Caers (2014)

Size of the training image (px) 490× 490 250× 250 100× 100× 100 180× 150× 120
Size of the simulation (px) 490× 490 250× 250 100× 100× 100 180× 150× 120
Computation time (s) 1456 54 1665 76 270

k 1.2

N 80 125

Table 2. Hardware that was used in the experiments.

Name of the machine Machine (1) Machine (2) Machine (3)

CPU – 2x Intel(R) Xeon(R) CPU – Xeon Phi, Intel(R) Xeon Phi (TM) – 2x Intel(R) Xeon(R) Gold
E5-2680 v2 @ 2.80 GHz CPU 7210 @ 1.30 GHz 6128 Processor @ 3.40 GHz

Memory type – DDR3 – MCDRAM / DDR4 – DDR4

OS, compiler, and Linux, Intel C/C++ compiler 2018 with -xhost
compilation flags

ated in n-dimensional cases with “partial FFT” since Fourier
transforms of only zeros result in zeros.

3 Results

3.1 Simulation examples

This section presents illustrative examples for continuous
and categorical case studies in 2D and in 3D. Additional tests
are reported in Appendix A4. The parameters that are used
for the simulations of Fig. 3 are reported in Table 1.

The results show that simulation results are consistent with
what is typically observed with state-of-the-art MPS algo-
rithms. While simulations can accurately reproduce TI prop-
erties for relatively standard examples with repetitive struc-
tures (e.g., MV, Strebelle, and Folds), training images with
long-range features (typically larger than the size of the TI)
are more difficult to reproduce, such as in the Berea example.
For multivariate simulations, the reproduction of the joint
distribution is satisfactory, as observed in the scatter plots
(Fig. 3). More examples are available in Appendix A4, in
particular Fig. A2 for 2D examples and Fig. A3 for 3D ex-
amples.

3.2 Comparison with direct sampling simulations

QS simulations are benchmarked against DS using the
“Stone” training image (Fig. 4). The settings that are used for
DS are based on optimal parameters that were obtained via
the approach of Baninajar et al. (2019), which uses stochas-

Figure 4. Training image that was used for benchmarking and sen-
sitivity analysis.

tic optimization to find optimal parameters. In DS, we use a
fraction of scanned TI of f = 1 to explore the entire training
image via the same approach as in QS, and we use the L2

norm as in QS. To avoid the occurrence of verbatim copy, we
include 0.1 % conditioning data, which are randomly sam-
pled from a rotated version of the training image. The num-
ber of neighbors N is set to 20 for both DS and QS and the
acceptance threshold of DS is set to 0.001.

The comparison is based on qualitative (Fig. 5) and quan-
titative (Fig. 6) metrics, which include directional and om-
nidirectional variograms, along with the connectivity func-
tion, the Euler characteristic (Renard and Allard, 2013), and
cumulants (Dimitrakopoulos et al., 2010). The connectivity
represents the probability for two random pixels to be in
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the same connected component. This metric is suited to de-
tect broken structures. The Euler characteristic represents the
number of objects subtracted by the number of holes of the
objects, and is particularly adapted to detect noise in the sim-
ulations such as salt and pepper. Cumulants are high-order
statistics and therefore allow for considering the relative po-
sitions between elements. The results demonstrate that the
simulations are of a quality that is comparable to DS. With
extreme settings (highest pattern reproduction regardless of
the computation time), both algorithms perform similarly,
which is reasonable since both are based on sequential simu-
lation and both directly import data from the training image.
The extra noise present in the simulation is shown in the Eu-
ler characteristic. Furthermore, it demonstrates that the use
of a kernel can reduce this noise to get better simulations.

With QS, kernel weighting allows for fine tuning of the
parametrization to improve the results, as shown in Fig. 8. In
this paper, we use an exponential kernel:

ωl = e
−α‖l‖2 , (16)

where α is a kernel parameter and ‖.‖2 the Euclidean dis-
tance. The validation metrics of Fig 6 show that both QS and
DS tend to slightly underestimate the variance and the con-
nectivity. Figure 6 shows that an optimal kernel improves the
results for all metrics, with all training image metrics in the
5 %–95 % realization interval, except for the Euler character-
istic.

3.3 Parameter sensitivity analysis

In this section, we perform a sensitivity analysis on the pa-
rameters of QS using the training image in Fig. 4. Only es-
sential results are reported in this section (Figs. 7 and 8);
more exhaustive test results are available in the appendix
(Figs. A4 and A5). The two main parameters of QS are the
number of neighborsN and the number of used candidates k.

Figure 7 (and Appendix Fig. A4) shows that large N val-
ues and small k values improve the simulation performance;
however, they tend to induce verbatim copy in the simulation.
Small values of N result in noise with good reproduction of
the histogram.
ω can be a very powerful tool, typically using the assump-

tion that the closest pixels are more informative than remote
pixels. The sensitivity analysis of the kernel value α is ex-
plored in Figs. 8 and A5. They show that α provides a unique
tool for improving the simulation quality. In particular, us-
ing a kernel can reduce the noise in simulations, which is
clearly visible by comparing the Euler characteristic curves.
However, reducing too much the importance of distant pixels
results in ignoring them altogether and therefore damaging
long-range structures.

Figure 5. Examples of conditional simulations and their standard
deviation over 100 realizations that are used in the benchmark be-
tween QS and DS.

3.4 Computational efficiency and scalability

In this section, we investigate the scalability of QS with re-
spect to the size of the simulation grid, the size of the training
image grid, the number of variables, incomplete training im-
ages, and hardware. According to the test results, the code
will continue to scale with new-generation hardware.

As explained in Sect. 2.3 and 2.4, the amounts of time that
are consumed by the two main operations of QS (finding can-
didates and sorting them) are independent of the pixel val-
ues. Therefore, the training image that is used is not relevant.
(Here, we use simulations that were performed with the train-
ing image of Fig. 4 and its classified version for categorical
cases.) Furthermore, the computation time is independent of
the parametrization (k and N). However, the performance is
affected by the type of mismatch function that is used; here,
we consider both continuous (Eqs. 2 and 14) and categorical
cases (Eqs. 3 and 15).
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Figure 6. Benchmark between QS (with and without kernel) and DS over six metrics using each time 100 unconditional simulation.

We also test our implementation on different types of hard-
ware, as summarized in Table 2. We expect Machine (2)
to be faster than Machine (1) for medium-sized problems
due to the high-memory-bandwidth requirement of QS. Ma-
chine (3) should also be faster than Machine (1), because
it takes advantage of a longer vector computation (512-bit
vs. 256-bit instruction set).

Figure 9 plots the execution times on the three tested ma-
chines for continuous and categorical cases and with training
images of various sizes. Since QS has a predictable execu-
tion time, the influence of the parameters on the computation
time is predictable: linear with respect to the number of vari-
ables (Fig. 9a, b), linear with respect to the size of the simu-
lation grid, and following a power function of the size of the
training image (Fig. 9c). Therefore, via a few tests on a set
of simulations, one can predict the computation time for any
other setting.

Figure 9d shows the scalability of the algorithm when us-
ing the path-level parallelization. The algorithm scales well
until all physical cores are being used. Machine (3) has a
different scaling factor (slope). This suboptimal scaling is at-

tributed to the limited memory bandwidth. Our implementa-
tion of QS scales well with an increasing number of threads
(Fig. 9d), with an efficiency above 80 % using all possible
threads. The path-level parallelization strategy that was used
involves a bottleneck for large numbers of threads due to the
need to wait for neighborhood conflicts to be resolved (Mari-
ethoz, 2010). This effect typically appears for large values of
N or intense parallelization (> 50 threads) on small grids. It
is assumed that small grids do not require intense paralleliza-
tion; hence, this problem is irrelevant in most applications.

4 Discussion

The parametrization of the algorithm (and therefore simu-
lation quality) has almost no impact on the computational
cost, which is an advantage. Indeed, many MPS algorithms
impose trade-offs between the computation time and the pa-
rameters that control the simulation quality, thereby impos-
ing difficult choices for users. QS is comparatively simpler to
set up in this regard. In practice, a satisfactory parametriza-
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Figure 7. Sensitivity analysis on one simulation for the two main
parameters of QS using a uniform kernel.

tion strategy is often to start with a small k value (say 1.2)
and a large N value (> 50) and then gradually change these
values to increase the variability if necessary (Fig. 6 and A4).

QS is adapted for simulating continuous variables using
the L2 norm. However, a limitation is that the L1 norm does
not have a decomposition that satisfies Eq. (1), and there-
fore it cannot be used with QS. Another limitation is that
for categorical variables, each class requires a separate FFT,
which incurs an additional computational cost. This renders
QS less computationally efficient for categorical variables (if
there are more than two categories) than for continuous vari-
ables. For accelerated simulation of categorical variables, a
possible alternative to reduce the number of required oper-
ations is presented in Appendix A2. The strategy is to use
encoded variables, which are decoded in the mismatch map.
While this alternative yields significant computational gains,
it does not allow for the use of a kernel weighting and is
prone to numerical precision issues.

Combining multiple continuous and categorical variables
can be challenging for MPS approaches. Several strategies
have been developed to overcome this limitation, using ei-
ther a different distance threshold for each variable or a linear
combination of the errors. Here we use the second approach,
taking advantage of the linearity of the Fourier transform.
The relative importance can be set in fi and gi functions
in Eq. (1). However, it is computationally advantageous to
use the kernel weights in order to have standard functions
for each metric. Setting such variable-dependent parameters
is complex. Therefore, in order to find optimal parameters,

stochastic optimization approaches (such as Baninajar et al.,
2019) are applied to QS. The computational efficiency of QS
is generally advantageous compared to other pixel-based al-
gorithms: for example, in our tests it performed faster than
DS. QS requires more memory than DS, especially for ap-
plications with categorical variables with many classes and
with a path-level parallelization. However, the memory re-
quirement is much lower compared to MPS algorithms that
are based on a pattern database, such as SNESIM.

There may be cases where QS is slower than DS, in par-
ticular when using a large training image that is highly repet-
itive. In such cases, using DS can be advantageous as it must
scan only a very small part of the training image. For sce-
narios of this type, it is possible to adapt QS such that only
a small subset of the training image is used; this approach
is described in Appendix A3. In the cases of highly repet-
itive training images, this observation remains true also for
SNESIM and IMPALA.

Furthermore, QS is designed to efficiently handle large and
complex training images (up to 10 million pixels), with high
variability of patterns and few repetitions. Larger training
images may be computationally burdensome, which could
be alleviated by using a GPU implementation thus allowing
gains up to 2 orders of magnitude.

QS can be extended to handle the rotation and scaling of
patterns by applying a constant rotation or affinity transfor-
mation to the searched patterns (Strebelle, 2002). However,
the use rotation-invariant distances and affinity-invariant dis-
tances (as in Mariethoz and Kelly, 2011), while possible in
theory, would substantially increase the computation time.
Mean-invariant distances can be implemented by simply
adapting the distance formulation in QS. All these advanced
features are outside the scope of this paper.

5 Conclusions

QS is an alternative approach for performing n-dimensional
pixel-based simulations, which uses an L2 distance for con-
tinuous cases and an L0 distance for categorical data. The
framework is highly flexible and allows other metrics to be
used. The simple parametrization of QS renders it easy to
use for nonexpert users. Compared to other pixel-based ap-
proaches, QS has the advantage of generating realizations in
constant and predictable time for a specified training image
size. Using the quantile as a quality criterion naturally re-
duces the small-scale noise compared to DS. In terms of par-
allelization, the QS code scales well and can adapt to new
architectures due to the use of external highly optimized li-
braries.

The QS framework provides a complete and explicit mis-
match map, which can be used to formulate problem-specific
rules for sampling or even solutions that take the complete
conditional probability density function into account, e.g., a
narrowness criterion for the conditional probability density
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Figure 8. Sensitivity analysis on the kernel parameter α, with fixed parameters k = 1.5 and N = 40. The values of the kernels are shown in
colors that correspond to the Euler characteristic lines (red is the training image).

Figure 9. Efficiency of QS with respect to all key parameters. Panels (a) and (b) are the evolution of the computation time for complete and
incomplete training images, respectively, with continuous and categorical variables. Panel (c) shows the evolution of the computation time
as the size of the training image is varied; the dashed lines indicate that the training image no longer fits in the CPU cache. Panel (d) shows
the evolution of the computation time as the number of threads is increased. The dashed lines indicate that all physical cores are used.
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function of the simulated value (Gravey et al., 2019; Rasera
et al., 2020), or to use the mismatch map to infer the optimal
parameters of the algorithm.
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Appendix A

A1 Partial sorting with random sampling

Standard partial sorting algorithms resolve tie ranks deter-
ministically, which does not accord with the objective of
stochastic simulation with QS, where variability is sought.
Here, we propose an online heap-based partial sort. It is re-
alized with a single scan of the array of data using a heap
to store previously found values. This approach is especially
suitable when we are interested in a small fraction of the en-
tire array.

Random positions of the k best values are ensured by
swapping similar values. If k = 1, the saved value is switched
with a smaller value each time it is encountered. If an equal
value is scanned, a counter c is increased for this specific
value and a probability of 1/c of switching to the new po-
sition is applied. If k > 1, the same strategy is extended by
carrying over the counter c.

This partial sort outperforms random exploration of the
mismatch map. However, it is difficult to implement effi-
ciently on GPUs. A solution is still possible for shared-
memory GPUs by performing the partial sort on the CPU.
This is currently available in the proposed implementation.

– k: the number of value of interest

– D: the input data array

– S: the array with the k smallest value (sorted)

– Sp: the array with the positions that are associated with
the values of S

1. for each value v of D

2. if v is smaller than the smallest value of S

3. search in S for the position p at which to insert v and
insert it

4. if p = k // last position of the array

– reinitialize the counter c to 0

– insert v at the last position

else

– increment c by one

– swap the last position with another of the same
value

– insert the value at the expected position p

end

5. else if v is equal to the smallest value of S

– increment c by one

– change the position of v to one of the n positions of
equal value with a probability of n/(n+ c)

6. end

7. end

A2 Encoded categorical variables

To handle categorical variables, a standard approach is to
consider each category as an independent variable. This re-
quires as many FFTs as classes. This solution renders it ex-
pensive to use QS in cases with multiple categories.

An alternative approach is to encode the categories and to
decode the mismatch from the cross-correlation. It has the
advantage of only requiring only a single cross-correlation
for each simulated pattern.

Here, we propose encoding the categories as powers of the
number of neighbors, such that their product is equal to one
if the class matches. In all other cases, the value is smaller
than one or larger than the number of neighbors.

εL0 (a,b)= ψ
(
(a− b)0 ∝−(N + 1)−p(a) · (N + 1)−p(b)

)
,

(A1)

where N is the largest number of neighbors that can be con-
sidered and p(c) is an arbitrary function that maps index
classes of C, c ∈ C.

In this scenario, in Eq. (1) this encoded distance L0
e can be

decomposed into the following series of functions fj and gj :

f0 : x→−(N + 1)p(x)

g0 : x→ (N + 1)−p(x)

and the decoding function is

ψ (x)= bxc modN. (A2)

Table A1 describes this process for three classes, namely
a, b, and c, and a maximum of nine neighbors. Then, the error
can be easily decoded by removing decimals and dozens.

Consider the following combination:

The decoding b−213.12cmod10=−213mod10=−3
yields three matches (in green).

This encoding strategy provides the possibility of drasti-
cally reducing the number of FFT computations. However,
the decoding phase is not always implementable if a nonuni-
form matrix ω is used. Finally, the test results show that the
method suffers quickly from numerical precision issues, es-
pecially with many classes.
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Table A1. Example of encoding for three classes and nine neigh-
bors and their associated products. The emboldened main diago-
nal shows the situations when the search classes match their corre-
sponded values.

Products g0(a)= 1 g0(b)= 0.1 g0(c)= 0.01

f0(a)= 1 1 0.1 0.01
f0(b)= 10 10 1 0.1
f0(c)= 100 100 10 1

A3 Sampling strategy using training image splitting

The principle of considering a fixed number of candidates
can be extended by, instead of taking the kth best candidate,
sampling the best candidate in only a portion, 1

k
, of the TI.

For instance, as an alternative to considering k = 4, this strat-
egy searches for the best candidate in one-fourth of the im-
age. This is more computationally efficient. However, if all
the considered candidates are contiguous (by splitting the TI
in k chunks), this approximation is only valid if the TI is com-
pletely stationary and all k equal subdivisions of the TI are
statistically identical. In practice, real-world continuous vari-
ables are often nonstationary. However, in categorical cases,
especially in binary ones, the number of pattern replicates is
higher and this sampling strategy could be interesting.

The results of applying this strategy are presented in Ta-
ble A2 and Fig. A1. The experimental results demonstrate
that the partial exploration approach that is provided by split-
ting substantially accelerates the processing time. However,
Fig. A1 shows that the approach has clear limitations when
dealing with training images with complex and nonrepetitive
patterns. The absence of local verbatim copy can explain the
poor-quality simulation results.

Figure A1. Comparison of QS using the entire training image and
using training image splitting. In these examples, the training image
is split into two images over each dimension. The original training
images are presented in Fig. 2.

Table A2. Computation times and speedups for the full and partial
exploration approaches. Times are specified for simulations with
path-level parallelization.

Training Using Using one
image all chunks random chunk Speedup

Berea 11 052 s 1 452 s 7.61x
Folds 35 211 s 4 063 s 8.66x
Strebelle 7.95 s 3.16 s 2.51x
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A4 Additional results

Figure A2. Examples of 2D simulations: the first three rows represent three variables of a single simulation. Parameters available in Table A3.

Figure A3. Examples of 3D simulation results. Parameters available in Table A4.
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Table A3. Simulation parameters for Fig. A2. Times are specified for simulations without parallelization.

Herten Stone

Mariethoz Mariethoz
Source and Caers (2014) and Caers (2014)

Size of the training image (px) 716× 350 200× 200
Size of the Simulation (px) 716× 350 200× 200
Computation time (s) 1133 21

k 1.2

N 80

Table A4. Simulation parameters for Fig. A3. Times are specified for simulations without parallelization.

Concrete 1 Concrete 2 F42A Folds continues

Meerschman Meerschman Mariethoz
Source et al. (2013) et al. (2013) https://doi.org/10.6084/m9.figshare.1189259 and Caers (2014)
Size of the training image (px) 150 × 150 × 150 100× 90× 80 100 × 100 × 100 180 × 150 × 120
Size of the simulation (px) 100 × 100 × 100 100× 100× 100 100× 100× 100 180× 150× 120
Computation time (s) 11 436 1416 1638 7637

k 1.2

N 50 125
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Figure A4. Complete sensitivity analysis, with one simulation for the two main parameters of QS.

Figure A5. Complete sensitivity analysis, with one simulation for each kernel with k = 1.5 and N = 40.
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A5 Mathematical derivation

The convolution theorem (Stockham, 1966; Krant, 1999; Li
and Babu, 2019) can be easily extended to cross-correlation
(Bracewell, 2000). The flowing derivation shows the validity
of the theorem for any function f and g.

F {f ? g} =

∫
(f ? g)(t)eit ·ξdt

=

∫ ∫
f (s)g(s+ t)dseit ·ξdt

=

∫ ∫
f (s)ei(−s)·ξds · g(s+ t)dsei(t+s)·ξdt

=

∫ ∫
f (s)ei(s)·ξds · g(s+ t)dsei(t+s)·ξdt

= F {f } ·F {g} (A3)

The discretization of this property can be obtained using two
piecewise continuous functions associated with each discrete
representation.
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