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Abstract. Atmospheric flux inversions use observations of
atmospheric CO, to provide anthropogenic and biogenic
CO, flux estimates at a range of spatio-temporal scales. In-
versions require prior flux, a forward model and observation
errors to estimate posterior fluxes and uncertainties. Here,
we investigate the forward transport error and the associ-
ated biogenic feedback in an Earth system model (ESM)
context. These errors can occur from uncertainty in the
initial meteorology, the analysis fields used, or the advec-
tion schemes and physical parameterisation of the model.
We also explore the spatio-temporal variability and flow-
dependent error covariances. We then compare the error with
the atmospheric response to uncertainty in the prior anthro-
pogenic emissions. Although transport errors are variable,
average total-column CO, (XCO») transport errors over an-
thropogenic emission hotspots (0.1-0.8 ppm) are compara-
ble to, and often exceed, prior monthly anthropogenic flux
uncertainties projected onto the same space (0.1-1.4 ppm).
Average near-surface transport errors at three sites (Paris,
Caltech and Tsukuba) range from 1.7 to 7.2 ppm. The global
average XCO; transport error standard deviation plateaus at
~ 0.1 ppm after 2-3 d, after which atmospheric mixing sig-
nificantly dampens the concentration gradients. Error corre-
lations are found to be highly flow dependent, with XCO;
spatio-temporal correlation length scales ranging from 0O to
700km and O to 260 min. Globally, the average model er-
ror caused by the biogenic response to atmospheric meteo-
rological uncertainties is small (< 0.01 ppm); however, this
increases over high flux regions and is seasonally depen-
dent (e.g. the Amazon; January and July: 0.24 £0.18 ppm
and 0.13+0.07 ppm). In general, flux hotspots are well-
correlated with model transport errors. Our model error es-

timates, combined with the atmospheric response to anthro-
pogenic flux uncertainty, are validated against three Total
Carbon Observing Network (TCCON) XCO; sites. Results
indicate that our model and flux uncertainty account for
21 %—-65 % of the total uncertainty. The remaining uncer-
tainty originates from additional sources, such as observa-
tion, numerical and representation errors, as well as struc-
tural errors in the biogenic model. An underrepresentation of
transport and flux uncertainties could also contribute to the
remaining uncertainty. Our quantification of CO; transport
error can be used to help derive accurate posterior fluxes and
error reductions in future inversion systems. The model un-
certainty diagnosed here can be used with varying degrees of
complexity and with different modelling techniques by the
inversion community.

1 Introduction

Since 1750 global atmospheric CO; concentrations have in-
creased from 277 ppm (Joos and Spahni, 2008) to 2019 val-
ues of 410 ppm (Dlugokencky and Tans, 2019). The initial
growth in CO; was primarily caused by land use change and
then subsequently by fossil fuel sources. The budget con-
tribution from anthropogenic sources, along with existing
ocean and biogenic fluxes, is difficult to disentangle at both
short (days) and long (decades) timescales. For example, Le
Quéré et al. (2018) found a 2008-2017 budget imbalance of
0.5 GtC yr~! caused by uncertainties in fossil fuel emissions,
land use change and the land—ocean sink.

Atmospheric inversions are often used to estimate both
biogenic and anthropogenic CO; fluxes at a range of spa-

Published by Copernicus Publications on behalf of the European Geosciences Union.



2298

tial and temporal scales (e.g. Gurney et al., 2002; Peylin et
al., 2013; Lauvaux et al., 2016). These inversions typically
follow a Bayesian framework whereby prior information is
used in an atmospheric transport model; those fluxes and
uncertainties are then updated based on comparisons with
atmospheric observations. Inversion intercomparison studies
show that whilst model agreement is improving, large differ-
ences remain between different inversion systems (Peylin et
al., 2013; Le Quéré et al., 2018; Gaubert et al., 2019). These
are caused by a combination of differences in the prior in-
formation, transport model and observation networks used to
constrain the fluxes.

Bayesian CO; inversions require combined knowledge of
the prior uncertainty, model transport uncertainty, measure-
ment error and representation error to provide an accurate
estimation of fluxes (e.g. Engelen et al., 2002). Neglecting
these components of uncertainty imposes a hard constraint
on the inversion, resulting in unreasonable solutions.

Prior fluxes are typically derived from bottom-up process
models and observations. The uncertainty can, in part, be es-
timated by sampling the prior inventory probability distri-
bution function (PDF), perturbing the meteorological data
used to force the process models, using ancillary informa-
tion on uncertainty estimates (e.g. national energy statistics)
or a combination of these. Spatial and temporal prior flux er-
ror correlation structures can also be considered (e.g. Wu et
al., 2013). The prior uncertainty is often only applied to the
biogenic fluxes, with assumed perfect knowledge of the an-
thropogenic flux, although joint inversions of both biogenic
and anthropogenic fluxes require consideration of uncertain-
ties from both.

The observation uncertainty is independent, relatively
small and well-known for in situ observations, and the ap-
plication of this uncertainty to an inverse system is straight-
forward. For satellite observations, spatially coherent biases
might influence uncertainties (Basu et al., 2018).

The representation error consists of two components. The
first is the internal model component, which relates to the
model inversion resolution being lower than that of the for-
ward model (see Engelen et al., 2002, for more details). The
second is the error that arises from spatio-temporal differ-
ences between the model and observations: for example, a
point measurement compared to a model grid box average.
This error is expected to be reduced as both the forward
and inverse model resolution increase, and to an extent it
can be quantified using multi-resolution models (see Agusti-
Panareda et al., 2019, for more details).

Here, we investigate the forward transport error and the as-
sociated biogenic feedback in an Earth system model (ESM)
context. Model transport error is usually larger than the ob-
servation error (Stephens et al., 2007; Law et al., 2008) and
often consists of simplified assumptions. Depending on the
configuration of the forward model, errors can occur from
uncertainty in the initial meteorological conditions, the anal-
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ysis fields used, or the advection schemes and physical pa-
rameterisation of the model.

Uncertainties in the physical parameterisation of land sur-
face and planetary boundary layer schemes can cause errors
in the mixed layer (ML) depth, which can lead to errors in the
vertical mixing of CO, (Sarrat et al., 2007; Diaz-Isaac et al.,
2018). For CO;,, the biogenic flux exchange at the surface
correlates with changes in the ML depth, making the issue
more complex (Denning et al., 1995). When performing in-
versions using surface observations, the accurate representa-
tion and consideration of any uncertainties in vertical mixing
are especially important to avoid biases in estimated fluxes
(Yi et al., 2004; Denning et al., 2008; Ahmadov et al., 2009).
For aircraft and column observations the errors in the verti-
cal mixing may become less important; for example, Verma
et al. (2017) found that inverse flux estimates from aircraft
profiles are not sensitive to errors in the ML depth. Similarly,
satellite-based inversions, which retrieve total-column CO»
(XCO,), are expected to be less sensitive to vertical mixing
errors. However, the issue of sensitivity becomes more com-
plex in this case because the XCO, signal is smaller than the
ML signal (Basu et al., 2018). In addition to vertical mixing,
advection errors associated with horizontal wind can result
in errors up to 6 ppm (Lin and Gerbig, 2005).

CO, inversions are performed using either an online model
with a full physics scheme used to compute the meteorology
or offline using analysis transport fields. Online inversions
are computationally expensive, require access to a numerical
weather prediction (NWP) system and, without the benefit of
analysed transport fields, are limited by the accuracy of the
physical forecast model. There is the added logistical chal-
lenge of reconciling the relatively short NWP assimilation
window length (hours to days) with the typically longer CO»
window length (weeks to years). Typically, online systems
have a higher temporal frequency than offline systems, which
are limited by the output frequency of the archived analysis
fields used. Vertical transport and other subgrid-scale pro-
cesses, which are missing from the analysis, are computed
by offline systems using schemes that are likely to be incon-
sistent with the original analysis, resulting in further errors
(Engelen et al., 2002). Within an online ESM context, bio-
genic fluxes and surface parameter estimation can be inte-
grated within the inversion system at a high temporal reso-
Iution. The advantages of an online inversion system for the
attribution of model uncertainty are investigated here.

Ensembles of transport models are often used to quantify
transport uncertainty (e.g. Gurney et al., 2002; Baker et al.,
2006; Peylin et al., 2013; Basu et al., 2018). Whilst this rep-
resents the variability between models, systematic errors in-
herent within those models remain unaccounted for. For ex-
ample, several models within an ensemble may use the same
planetary boundary layer scheme, resulting in an unrealistic
assumption of transport uncertainty. Ensembles using multi-
ple schemes or resolutions may yield different inverse results
(Gaubert et al., 2019), but this does not necessarily mean
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they provide an accurate representation of transport uncer-
tainty. Alternatively, multi-physics ensembles with perturbed
parameterisations provide a representation of transport un-
certainty caused by parametric uncertainty during the simu-
lation period (Kretschmer et al., 2012; Lauvaux and Davis,
2014; Diaz-Isaac et al., 2019). The stochastic representation
of model uncertainty required for reliable ensemble forecasts
has been thoroughly researched within the NWP community
(e.g. Leutbecher et al., 2017). The ensemble approach may
also consist of models which use forcing data taken from
the same analysis product, leading to an underestimate in the
uncertainty associated with the initial conditions and mete-
orological fields. A representation of uncertainties in initial
meteorological conditions, boundary conditions (for regional
models), forcing data and model physics is required to accu-
rately evaluate transport uncertainty. Numerical uncertainty
in models, including errors relating to interpolation, diffu-
sion and advection, also contribute to transport uncertainty,
although these are not investigated in this study. A comple-
mentary approach to quantify transport uncertainty is to per-
form direct comparisons with modelled and observed mete-
orological variables, as described by Lin and Gerbig (2005).

Here we use an NWP ensemble forecast system, initialised
from an ensemble data assimilation (EDA) system, to inves-
tigate transport model uncertainty relating to both the un-
certainty in the initial meteorological conditions and in the
model physics. Furthermore, we explore the spatio-temporal
variability and flow-dependent error covariances. We per-
form preliminary investigations into the biogenic fluxes as-
sociated with the meteorological uncertainty, resulting in a
more complete model uncertainty. The biogenic feedbacks
here do not account for parameterisation and mapping un-
certainties. Finally, we investigate the signal-to-noise ratio
for a prospective CO; flux inversion system by comparing
model uncertainties to the atmospheric response to anthro-
pogenic emission uncertainties. The combined XCO, error
from model uncertainty and anthropogenic flux uncertainty
is validated against Total Carbon Observing Network (TC-
CON) observations. If the model uncertainty is comparable
to the model—observation error, as given by a control exper-
iment, then it can be reasoned that the estimated model un-
certainty is a relatively accurate estimation of the true model
uncertainty. Other errors not accounted for, such as the repre-
sentation error, would further increase this error towards the
true model uncertainty.

2  Model set-up

We have used version 46R1 of the Integrated Forecasting
System (IFS), operated and licensed by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF). A de-
tailed scientific and technical description of the IFS can be
found at https://www.ecmwf.int/en/forecasts/documentation/
evolution-ifs/cycles/summary-cycle-46r1 (last access: 22
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September 2019). The IFS primary use is in NWP, although
extensions exist for atmospheric CO; modelling. We used the
Ensemble Prediction System (EPS) component of the Inte-
grated Forecasting System (IFS), detailed in Leutbecher and
Palmer (2008), to simulate 3-D atmospheric CO; concentra-
tions given a combination of prescribed and modelled surface
fluxes. The EPS is configured to represent the uncertainty in
both the initial meteorological conditions and the model for-
mulation. The uncertainty in initial conditions was inherited
from an operational EDA, wherein input observations were
perturbed with stochastic noise based on a given observa-
tion error (Isaksen et al., 2010). In addition to this, both the
EPS and EDA use a stochastically perturbed parameterisa-
tion tendencies (SPPT) scheme to represent errors caused by
uncertainty in physical parameterisations, including subgrid-
scale processes (Buizza et al., 1999; Leutbecher et al., 2017).
Different from the operational configuration of the EPS we
start the ensemble members directly from the EDA members
instead of adding perturbations to the deterministic analysis.
Furthermore, we do not apply singular vector perturbations
to the initial conditions.

All simulations were performed globally for January and
July 2015 with 137 vertical levels and at ~ 25 km horizon-
tal resolution (TC0399). Instantaneous 3-D model CO, fields
and biogenic fluxes calculated online by CTESSEL, the land
surface component of the IFS (Boussetta et al., 2013; Agusti-
Panareda et al., 2014, 2016), were output at hourly frequency.
The uncertainty in each simulation is represented by the stan-
dard error of a 50-member ensemble; the sampling error re-
sulting from the ensemble size is discussed in the following
sections. The 3-D CO, fields for all ensemble members were
initialised using the ECMWF operational product, which is
provided under the Copernicus Atmosphere Monitoring Ser-
vice (Agusti-Panareda et al., 2019). Each month-long ensem-
ble member is comprised of 24 h forecasts reinitialised from
the operational EDA, with the 3-D CO; field cycled from the
last time step of the previous forecast. As a result, on the first
day of the month the ensemble does not include a representa-
tion of the initial atmospheric 3-D CO, uncertainty; however,
the error in initial CO, concentrations for each forecast is es-
tablished within the ensemble after a few days. To account
for this the first 2d are discarded from all monthly values
provided.

Multiple experiments were performed to identify specific
contributions to the total ESM uncertainty. Perturbing the ini-
tial conditions, model physics and the meteorologically de-
pendent biogenic flux provides a representation of model un-
certainty; hereafter, this simulation is referred to as FME. In-
dividually, the uncertainties associated with the initial condi-
tions (IME), the model physics (PME) and the biogenic re-
sponse to uncertainty in meteorological forcing (BME) were
investigated by performing ensemble simulations in which
only the target component was perturbed. It is important to
note that the biogenic uncertainty shown here only represents
the biogenic feedback to uncertainties in meteorology and
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not the mapping or process uncertainty inherent within the
model. A simulation in which both the initial meteorological
conditions and model physics were perturbed (TME) repre-
sents the transport model uncertainty by using offline bio-
genic emissions from a control experiment. Hereafter, trans-
port model uncertainty is defined as the uncertainty associ-
ated with the initial conditions and model physics during the
integration, which is typically simplified in inverse modelling
studies, and model uncertainty includes uncertainty in bio-
genic fluxes associated with meteorological uncertainty. The
biogenic response to errors in the forcing is estimated us-
ing the member-specific biogenic fluxes from TME as offline
fluxes in BME.

Offline biogenic emissions were broadly consistent with
online biogenic emissions in that they were generated us-
ing CTESSEL; the only difference is in the frequency. The
online biogenic emissions were applied at model time step
frequency (20 min), whereas the offline biogenic emissions
were input at 3 h intervals and interpolated across each time
step. Unless otherwise stated offline biogenic emissions were
generated using a control forecast. Offline monthly anthro-
pogenic emissions were generated using EDGAR v4.3.2
(Janssens-Maenhout et al., 2019), extended to 2015 with
monthly scaling factors derived from 2010. These were re-
gridded to the model grid from a native 0.1° x 0.1° reso-
lution. Daily mean fire emissions were also regridded from
0.1° x 0.1° resolution, taken from the Global Fire Assimi-
lation System (GFAS; Kaiser et al., 2012). Monthly mean
ocean fluxes were taken from Jena CarboScope v1.6 based
on the SOCAT data set of pCO; observations (Rodenbeck et
al., 2014). The uncertainties in fire and ocean fluxes are not
considered here.

The forward model component of an ensemble-based CO»
flux inversion provides an estimated PDF of atmospheric
CO, based on a signal (prior emission uncertainty) and noise
(model uncertainty). To investigate the signal-to-noise ratio
relevant for anthropogenic CO, inversions, additional simu-
lations were performed using estimated anthropogenic emis-
sion uncertainties and are described alongside all other ex-
periment configurations in Table 1 (EXP, PEM and PEA).
These estimates are calculated per sector and per country fol-
lowing the error propagation method outlined by the IPCC
guidelines (IPCC, 2006) and are based upon uncertainties
in emission factors and activity data. The statistical infras-
tructure development level of the country is also considered,
defining all countries as either statistically well-developed
or less developed. The most commonly used fuel type is
considered for uncertainty calculations when multiple types
are used. Uncertainties are assumed to be uncorrelated in
time and between sectors and countries. Further details will
be discussed in detail in a follow-up paper (Choulga et al.,
2020). Anthropogenic emissions were grouped into six sec-
tors: large power plants, the remaining energy sector, man-
ufacturing, transport, settlements and other. National uncer-
tainties for annual and monthly emissions are strongly sector
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and country dependent, ranging from annual transport uncer-
tainties of ~ 4 % for numerous developed nations to monthly
other sector uncertainties of ~ 330 % for the Democratic Re-
public of the Congo. Aviation emissions were used as 3-D
profiles but remained unperturbed in these simulations.

The uncertainties used here are thought to be relatively
modest considering the timescales being investigated. Data
availability for several aspects of anthropogenic uncertain-
ties currently limits our ability to diagnose a reasonable at-
mospheric XCO, response signal at short timescales. For ex-
ample, daily uncertainties, which would be required for high-
temporal-frequency flux inversions, are expected to be con-
siderably larger than monthly uncertainties. This would pro-
vide, in principle, a larger signal. Additionally, a lack of prior
information prevented the consideration of uncertainty corre-
lations in prior fluxes. Finally, the diurnal variability in emis-
sions, which is likely to influence the modelled atmospheric
response to anthropogenic emissions, is not considered. The
missing information in prior uncertainties of anthropogenic
fluxes leads to an underestimation of the flux signal and as a
result the signal-to-noise ratio.

3 Observations

We used atmospheric XCO, measurements from the Total
Carbon Column Observing Network (TCCON) (Wunch et
al., 2011) to evaluate the combined forward model error and
the atmospheric response to anthropogenic flux uncertain-
ties. Assuming the 50-member ensemble accurately repre-
sents the atmospheric CO, PDF accounting for all uncer-
tainties, the standard error in EXP should be comparable
to the model-observation error. However, the total error is
expected to underrepresent the model—observation error be-
cause some uncertainties were either missing or underes-
timated by the ensemble. For example, the representation
error is not present in our ensemble, and the prior anthro-
pogenic flux uncertainty is based on monthly estimates and
not weekly or daily values.

Here, we focus on model uncertainty relative to prior an-
thropogenic flux uncertainty. Therefore, three TCCON sites
with nearby anthropogenic sources and with available data
for 2015 were selected for evaluation: Paris (T€ et al., 2014),
Caltech (Wennberg et al., 2015) located near Los Angeles
and Tsukuba (Morino et al., 2018) near Tokyo. Sounding-
specific TCCON averaging kernels were applied to inter-
polated model output for direct model—observation compar-
isons.

4 Results
4.1 TCCON site-specific error representation

All results shown are taken from the January 2015 simula-
tions; results from the July simulations, although discussed
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Table 1. Configuration of model experiments used for the attribution of model uncertainty and the signal-to-noise ratio for atmospheric CO,

inversions. The control denotes the control member of the EDA.

Name Initial conditions  Physics Biogenic emissions  Anthropogenic emissions  Error information

IME EDA SPPT off  Offline Fixed Initial meteorological

PME  Control SPPTon  Offline Fixed Model physics

TME EDA SPPTon  Offline Fixed Transport

BME  Control SPPT off Offline FME Fixed Biogenic feedback

FME EDA SPPT on  Online Fixed Model (noise)

PEA Control SPPT off  Online Perturbed annual error Anthropogenic emission (signal)
PEM  Control SPPT off  Online Perturbed monthly error Anthropogenic emission (signal)
EXP EDA SPPTon  Online Perturbed monthly error Full PDF (signal and noise)

here, are shown in the Supplement. The relative contribu-
tion to total XCO, variability from the uncertainties in ini-
tial meteorological conditions, model physics and biogenic
feedback, as well as the atmospheric response to prior an-
thropogenic uncertainty, is shown to be location and time de-
pendent (Fig. 1 and Fig. S1 in the Supplement; for illustration
purposes only the first 5d are shown). After 2-3d the total
error stabilises, caused by the impact of atmospheric diffu-
sion (Figs. 2 and S2). All monthly averages are calculated
after an initial 2d spin-up, omitting the first and second of
the month.

Over Paris the initial meteorology (IME) and model
physics (PME) errors are the largest individual components
of the total XCO, variability for January (Table 2). The com-
bined average transport error (TME) increases further, with
a January maximum of 0.61 ppm. The biogenic feedback
(BME) errors are small. The average atmospheric XCO;
variation associated with annual anthropogenic flux uncer-
tainties (PEA) is relatively small; however, using monthly
uncertainties (PEM) this variability increases slightly, but
this is still below the derived transport error.

Average initial meteorological error and model physics er-
ror also dominate the total error over Tsukuba in January,
with a combined average transport error reaching a maxi-
mum of 1.01 ppm. The biogenic feedback errors are again
smaller in comparison. Monthly and annual anthropogenic
emission uncertainties over Tsukuba consistently produce
smaller errors than the total transport error.

Over Caltech the January average variability in the atmo-
spheric response to annual anthropogenic emission uncer-
tainties is lower than that from the initial meteorological er-
ror, the model physics error and the combined transport error
(maximum value of 2.55 ppm). Conversely, the monthly an-
thropogenic uncertainties produce the largest average error in
atmospheric XCO,. The average biogenic feedback error is
once again small. For small periods the PEM standard error
exceeds the EXP standard error over Caltech; this is thought
to either be due to spurious noise generated by the small en-
semble size or a compensating reduction in total error caused
by other sources of errors (transport and biogenic).
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Variability between the three sites is a result of multiple
factors including nearby fluxes, regional atmospheric trans-
port and orography. The minor impact of the biogenic feed-
back, caused by meteorological uncertainty, results in the
FME and TME errors being almost identical at all three sites.

July simulations show comparable model transport er-
rors to January over Paris (0.1540.06), decreases over
Caltech (0.23£0.10ppm) and increases over Tsukuba
(0.38 £0.23 ppm), showing site-specific seasonal variability
(Figs. S1 and S2). The biogenic feedback error increased
over all three sites in July (Paris: 0.02 £0.01 ppm, Caltech:
0.02 +001 ppm, Tsukuba: 0.04 = 0.03 ppm) due to Northern
Hemisphere summer. This remains smaller than the trans-
port and anthropogenic uncertainty response but is no longer
negligible. The July spread in the atmospheric response to
monthly anthropogenic flux uncertainties is increased over
Paris (0.08 £ 0.05 ppm) and Tsukuba (0.38 £ 0.2 ppm) when
compared to January. Over Caltech (0.47 +0.19 ppm) the
same error is reduced for July.

There is no clear diurnal cycle in the column transport
error at any of the three stations; January midnight aver-
ages at Paris (0.15+0.08 ppm), Caltech (0.48 &= 0.47 ppm)
and Tsukuba (0.29 + 0.18 ppm) are all comparable to mid-
day averages (0.15 £ 0.07 ppm, 0.46 4= 0.32 ppm and 0.25 &
0.18 ppm, respectively). For July, only Caltech exhibits a
slight diurnal cycle, with midday averages of 0.2940.13 ppm
and midnight averages of 0.18 £0.05 ppm. Over Caltech in
July, a diurnal cycle is found in the atmospheric XCO; er-
ror as a response to both the biogenic feedback uncertainty
and anthropogenic flux uncertainty, with midday averages of
0.02+£0.01 ppm and 0.73 £0.30 ppm, respectively, and mid-
night averages of 0.01+0.01 ppm and 0.43+0.18 ppm. With-
out a diurnal cycle in anthropogenic fluxes, this would sug-
gest that the diurnal meteorological variability causes the ob-
served difference in model error as the magnitude in prior
flux and error remains the same for both night and day.
Summertime diurnal variability over Caltech has previously
been attributed to the sea—mountain breeze, whereby CO5-
enhanced air masses peak in the afternoon before being re-
duced again in the evening (Agusti-Panareda et al., 2019).
These enhancements cause an increase in atmospheric CO;

Geosci. Model Dev., 13, 2297-2313, 2020
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Figure 1. IFS model XCO, (ppm) variability over three TCCON sites for the 50-member ensemble for 1-5 January 2015 from uncertainties
in model transport (first row), biogenic feedback from meteorological uncertainty (second row), monthly uncertainties in anthropogenic
emissions (third row) and a combination of all uncertainties (fourth row). Individual ensemble members are shown with grey lines, and the
ensemble mean is the black line. TCCON observations, when available, are shown for 5 d (black circles). Values denote standard error after

12, 24, 48 and 96 h.

Table 2. The average IFS model XCO; (ppm) standard error across the 50-member ensemble over three TCCON sites for seven different

model configurations for January 2015.

Average January XCO; standard error (ppm) across 50 ensemble members

TME EXP
Site IME PME (transport error) BME PEA PEM (total error)
Paris 0.124+0.07 0.09+0.05 0.154+0.08 0.01+£ <0.01 0.05£0.04 0.06£0.05 0.16£0.06
Tsukuba 0.164+0.10 0.19+£0.15 0.24+0.16 <0.01£<0.00 0.03£0.02 0.094+0.09 0.27+£0.19
Caltech  0.414+0.41 0.29+£0.27 0.50£0.45 0.01£0.01 0.13+0.13 0.61£0.47 0.69+0.52

gradients, resulting in an increased transport error. Diurnal
variability in emissions is expected to increase the diurnal
signal in the atmospheric transport error, with typically lower
night-time emissions resulting in lower transport model er-
rors; however, we have not tested this hypothesis here.

Flux inversions, more specifically posterior error reduc-
tions, depend on the signal-to-noise ratio, wherein the atmo-
spheric response to prior flux uncertainty is the signal and
the remaining errors represent the noise. As previously men-
tioned, we underestimate the noise here by only account-
ing for some model uncertainty. Using annual anthropogenic
uncertainties to perturb January fluxes generates an aver-
age signal-to-noise ratio, after a 2d spin-up, of 0.38 +0.37,
0.27 £0.16 and 0.20 £ 0.17 at Paris, Caltech and Tsukuba,
respectively (Fig. 2). Over Caltech and Tsukuba, the ratio
does not exceed 1 for the whole of January and only ex-

Geosci. Model Dev., 13, 2297-2313, 2020

ceeds 1 % for 8 % of the month over Paris. Using monthly an-
thropogenic uncertainties, the signal-to-noise ratio over Paris
and Tsukuba after a 2d spin-up increases to an average of
0.5410.37 and 0.3640.21, exceeding 1 % for 9 % and 1 % of
the month, respectively. Over Caltech this increases to a ra-
tio of 1.02+0.68, exceeding 1 % for 44 % of the month. The
average signal-to-noise ratio, when using monthly uncertain-
ties, increases at all three sites in July to 0.6140.42 ppm over
Paris, 2.48+£0.93 ppm over Caltech and 0.94+0.48 ppm over
Tsukuba (S2). The ratio exceeds 1 % for 11 % of the month
over Paris, > 99 % over Caltech and 38 % over Tsukuba. It is
reasonable to assume that the uncertainties, and therefore the
signal-to-noise ratio, will increase by a similar order of mag-
nitude from monthly to daily uncertainties as the increase
seen here from annual to monthly uncertainties; however, no

www.geosci-model-dev.net/13/2297/2020/
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data are currently available for daily anthropogenic flux un-
certainties.

To evaluate the accuracy of the total error in XCO, (model
uncertainty and atmospheric response to anthropogenic flux
uncertainty) the standard error across ensemble members
is compared to the control model-observation error from
TCCON (Figs. 1 and S1). For January, the mean centred
model—-observation errors are found to be 1.41 ppm at Cal-
tech and 0.54 ppm at Tsukuba compared to EXP total model
uncertainties (transport, biogenic feedback and monthly an-
thropogenic emission uncertainty) of 0.69 &+ 0.52 ppm and
0.27 £ 0.19 ppm, respectively. There are no available TC-
CON data over Paris for January 2015, and the EXP un-
certainty over Paris is 0.16 = 0.06 ppm. For July, the model-
observation errors are 0.92, 0.90 and 1.84 ppm for Paris, Cal-
tech and Tsukuba, respectively, compared to EXP uncertain-
ties of 0.194+0.07 ppm, 0.60£0.23 ppm and 0.56+0.31 ppm.
This would suggest that, depending on the time and loca-
tion, the uncertainties explored here account for 21 %—65 %
of the total model uncertainty. As previously mentioned, the
monthly uncertainty estimates used here are an underestima-
tion of the uncertainties at the short timescales being inves-
tigated here (hourly or daily). It should also be noted that
additional sources of model-observation variability, such as
observation errors, representation error, numerical errors and
biogenic flux errors relating to both processes and mapping,
are not considered in these values. Our results show that these
additional uncertainties are not negligible and need to be ac-
counted for in addition to the uncertainties derived here.

The vertical error structure for each ensemble configura-
tion at the three TCCON sites over a 24 h period shows col-
umn variability (Fig. 3). For all three sites individual errors
are typically largest near the surface, where the CO, gra-
dients are the largest. Both components of the transport er-
ror are noticeable in the mid-troposphere, with some model
levels exceeding 1 ppm errors for both initial meteorological
and model physics errors individually at all sites. On average,
the near-surface (~ 100 m) transport error over Paris is 1.7 £
2.7 ppm, with a maximum of 17.6 ppm. Over Caltech notice-
able transport errors are typically found in the lower tropo-
sphere. The average near-surface error is 7.2 6.2 ppm, with
a maximum of 21.8 ppm. Over Tsukuba the initial meteoro-
logical condition error is detectable not only near the surface
but also in the middle to upper troposphere (~ 300 hPa), with
averages of 0.41 4 0.21 ppm. Near-surface average transport
errors are 2.2 &= 2.8 ppm, with a maximum of 16.6 ppm.

For the near surface, which is typically used for in situ
based inversions, average signal-to-noise ratios for monthly
anthropogenic uncertainties are 1.4+£0.5,0.8+£0.7 and 0.4 £
0.2 over Paris, Caltech and Tsukuba, respectively. The ratio
exceeds 11 % for 78 % of the time over Paris but less fre-
quently over Caltech (36 %) and Tsukuba (0 %).

All three sites do not exhibit a diurnal cycle in the near-
surface transport error. For each site the difference in error
between day and night is less than 10 %. This assumes that

www.geosci-model-dev.net/13/2297/2020/

the EDA and SPPT accurately represent transport error by
perturbing the boundary layer physics. These results under-
estimate the diurnal cycle in the transport error by not ac-
counting for diurnal variability in emissions.

4.2 Global and regional model uncertainty

The global XCO; uncertainty resulting from uncertainties in
emissions, biogenic feedback and transport, which includes
both initial conditions and physics, is found to be spatially
and temporally varying (e.g. January 2015 shown by Fig. 4).
As expected, the atmospheric XCO, signal from monthly
anthropogenic emission uncertainties is largest over emis-
sion hotspots in eastern China, with smaller signals over
North America, Europe and the Middle East (Tables 3 and
4). The global average error for both January and July 2015
is relatively small at 0.01 = 0.00 ppm, although the error val-
ues are heterogenous, with maximum local instantaneous
XCO; errors reaching 9.2 ppm. The error is expected to in-
crease further with uncertainties applied at the hourly or daily
timescale, as these currently unavailable values would be
larger than both monthly and annual uncertainties.

The XCO; biogenic feedback error from atmospheric
model uncertainty is largest over regions with a high net
ecosystem exchange, e.g. the Amazon; (January: 0.16 £
0.08 ppm, July: 0.06 £ 0.06 ppm) and southern Africa (Jan-
vary: 0.1340.07 ppm, July: 0.05£0.07 ppm). These are also
areas with large atmospheric gradients. The high values in
Southern Hemisphere summer suggest a seasonal cycle in the
biogenic feedback error. Globally, the average biogenic feed-
back error is smaller (< 0.01 ppm) in January and increases
slightly in July (0.02 £0.00 ppm), following the seasonal de-
pendence of biogenic fluxes.

The error in atmospheric XCO» caused by transport model
uncertainties correlates with the error caused by both the an-
thropogenic uncertainties and biogenic feedback uncertain-
ties, as these are the regions with the largest fluxes and, as
a result, the largest gradients. The globally averaged XCO;
error resulting from the initial model error, model physics er-
ror and combined transport error is 0.06 £ 0.00 ppm, 0.09 £
0.00ppm and 0.10 4 0.01 ppm, respectively. Over regions
with a high biogenic flux the average transport error fur-
ther increases, e.g. the Amazon (January: 0.24 4+ 0.18 ppm,
July: 0.20 £ 0.15 ppm) and southern Africa (January: 0.30 &
0.26 ppm, July: 0.18£0.21 ppm). The transport error in these
regions exhibits a similar seasonal cycle to the biogenic feed-
back error, most likely caused by the increased flux in South-
ern Hemisphere summer. The increase in transport error is
also evident over regions with a high anthropogenic flux (Ta-
bles 3 and 4). The average transport model error over these
hotspots is similar in July (0.32+£0.17 ppm) and January
(0.32 £0.22 ppm). Considering most of the sites are in the
Northern Hemisphere this would suggest there is little or no
seasonal variability in the average transport error over an-
thropogenic hotspots, although certain hotspots show some

Geosci. Model Dev., 13, 2297-2313, 2020
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Figure 3. Standard error of IFS model CO, profiles (ppm) across the 50-member ensemble for 5 January 2015 over three TCCON sites. En-
semble configurations consist of perturbed initial meteorological conditions (top row), perturbed model physics (second row), both perturbed
initial conditions and physics (third row), perturbed biogenic emissions caused by transport uncertainty (fourth row), perturbed emissions
using monthly anthropogenic uncertainties per sector and country (fifth row), perturbations of the combined transport, biogenic feedback,
and anthropogenic emission uncertainties (bottom row). Note that the colour scale is logarithmic.

seasonal variability (e.g. Los Angeles). The maximum trans-
port error for all times and locations is 9.2 ppm, although
globally for individual grid cells and times the error only ex-
ceeds 0.5 ppm for ~ 1 % of the time.

The signal-to-noise ratio using monthly and annual anthro-
pogenic uncertainties is location and time dependent, shown

Geosci. Model Dev., 13, 2297-2313, 2020

in Fig. 5 and for various emission hotspots in Tables 3 and 4.
After the initial 2-3 d this ratio is typically below 1 when us-
ing prior annual anthropogenic uncertainties, with exceptions
over eastern Asia and the Middle East. For prior monthly un-
certainties, large parts of North America, Europe, Asia and
some Southern Hemisphere hotspots consistently exceed 1.

www.geosci-model-dev.net/13/2297/2020/
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Figure 4. Global standard error of IFS model XCO; (ppm) across the 50-member ensemble after 6h, 24 h and 10d. Errors shown are from
uncertainties in biogenic emissions caused by meteorological uncertainty (a), monthly anthropogenic emission uncertainties per sector and
country (b), model transport uncertainty (c¢), and a combination of all uncertainties (d).
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Figure 5. Global signal-to-noise ratio of IFS model XCO, across the 50-member ensemble after 6 h (a, b), 24 h (c, d) and 10d (e, f). The
signal is the atmospheric response to annual (a, ¢, €) and monthly (b, d, f) anthropogenic emission uncertainty, and the noise is the transport

and biogenic feedback error.

Further work is required to investigate more robust daily, or
even hourly, uncertainty estimates for each sector, which is
relevant for posterior error reductions at high temporal fre-
quencies. The increased uncertainty in fluxes at higher tem-
poral resolution will result in a more accurate total error, in-
creasing the signal-to-noise ratio and resulting in increased
posterior error reductions.

4.3 Impact of ensemble size

After 2-3 d the global average transport model error reaches
a steady state at which the model error growth balances with
the atmospheric mixing caused by CO; gradients (Fig. 6).
Afterwards, the global transport model error remains approx-
imately 0.1 ppm for all ensemble sizes. Globally, as ensemble
size tends toward 50, the error across all ensemble members
converges.

Here, we investigated the required ensemble size to ade-
quately represent the prior XCO, PDF using multiple sizes
available. The model error is within 5 % of the 50-member
ensemble error for ensemble sizes of 40, 39 and 43 for Paris,
Caltech and Tsukuba, respectively (Fig. 6). Ensemble sizes
< 40 provide model error approximations that may not be
suitable for use in inversions. Computational cost currently
limits the use of larger ensemble sizes, and optimum ensem-

Geosci. Model Dev., 13, 2297-2313, 2020

ble size investigations indicated that the 50-member ensem-
ble may provide an adequate sample for meteorological er-
rors (Leutbecher et al., 2017), although CO; poses more spe-
cific challenges and requirements.

To investigate the suitability of representing the transport
error with a Gaussian PDF, ensemble members were binned
into 0.05 ppm bins and a non-linear least-square fit was ap-
plied to provide an estimated Gaussian fit for a PDF with
three terms: Ap, A1 and As.

2

f(x)=Age” 2 1
Assuming the prior PDF is Gaussian, results show that en-
semble sizes < 50 can fail to represent a suitable distribution
and contain spurious noise. Over Paris and Caltech, a Gaus-
sian distribution is relatively well-captured by a 50-member
ensemble; however, for Tsukuba either more ensemble mem-
bers are required or the PDF is not Gaussian.

4.4 Error correlation

The noise generated by small ensemble sizes creates spurious
spatial and temporal error correlations in the XCO, trans-
port error (Fig. 7). This localisation problem is typically ad-
dressed by limiting the distance of correlations considered

www.geosci-model-dev.net/13/2297/2020/
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Table 3. Average, minimum and maximum total-column model CO; error statistics for the transport model error and the atmospheric response
to monthly emission uncertainties (signal), as well as the signal-to-noise ratio for various emission hotspots for January 2015. Results are

calculated from the 50-member IFS ensemble.

Transport Transport error Emission Emission signal Signal-to-
location error (ppm)  (min—max, ppm)  signal (ppm) (min-max, ppm) noise ratio
Johannesburg 0.24£0.08 0.10-0.62 0.19+£0.07 0.10-0.40 0.79+0.34
London 0.12£0.03 0.05-0.22 0.05+£0.02 0.02-0.15  0.39+4+0.17
Los Angeles 0.55+0.43 0.06-2.23 0.91+0.43 0.26-1.97 1.66%1.16
Moscow 0.19+£0.11 0.05-0.71 0.23+£0.09 0.12-0.65 1.234+0.76
New York 0.15£0.08 0.05-0.48 0.19£0.09 0.06-0.47 1.2940.72
Riyadh 0.14£0.10 0.06-0.81 0.28+£0.13 0.11-0.75 2.074+0.77
Seoul 0.19£0.13 0.05-0.86 0.21£0.15 0.03-0.79 1.09+0.49
Shanghai 0.65+0.57 0.15-3.75 1.44+£0.63 0.60-4.29 2.2040.97
Singapore 0.22+0.07 0.12-0.56 0.09+0.03 0.04-0.18 0.3940.14
Tokyo 0.79£0.95 0.09-5.50 0.28 £0.27 0.04-1.38 0.36+0.24
Kendal* (RSA) 0.33£0.15 0.08-0.88 0.15+£0.05 0.07-0.29 0.4440.20
Waigaogiao™ (CHN)  0.42+0.28 0.14-1.27 0.74+£0.63 0.15-2.57 1.774+0.81
Neurath*™ (DEU) 0.14£0.07 0.06-0.59 0.06 £0.03 0.02-0.18  0.414+0.22

* Denotes large power stations.

Table 4. Average, minimum and maximum total-column model CO, error statistics for the transport model error and the atmospheric
response to monthly emission uncertainties (signal), as well as the signal-to-noise ratio for various emission hotspots for July 2015. Results

are calculated from the 50-member IFS ensemble.

Transport Transport error Emission  Emission signal Signal-to-
location error (ppm)  (min—max, ppm)  signal (ppm) (min-max, ppm) noise ratio
Johannesburg 0.18+0.11 0.05-0.69  0.26+0.18 0.06-0.87 1.64+0.91
London 0.16 = 0.06 0.05-0.36  0.05+£0.02 0.02-0.11  0.34+0.17
Los Angeles 0.18 £0.06 0.05-0.37  0.49+£0.29 0.11-1.48 2.78+1.23
Moscow 0.25+0.14 0.08-0.70  0.23+£0.12 0.10-0.76  1.01+0.45
New York 0.36+0.13 0.16-0.78  0.38£0.20 0.06-1.11 1.06+0.43
Riyadh 0.14+£0.10 0.04-0.59  0.11+£0.07 0.04-0.40 0.87+0.33
Seoul 0.39+0.17 0.14-0.85  0.43+£0.20 0.07-0.85 1.164+0.40
Shanghai 0.67+0.11 0.05-3.29 1.16£0.18 0.06-3.14 2.324+0.59
Singapore 0.24£0.09 0.11-0.53  0.21+£0.06 0.09-0.37 0.96+0.29
Tokyo 0.61 £0.38 0.16-2.60  0.48+0.30 0.11-1.49  0.934+0.58
Kendal* (RSA) 0.32+0.32 0.06-1.72  0.16£0.09 0.05-0.44 0.74+0.44
Waigaoqgiao™ (CHN)  0.4240.33 0.09-1.88  0.52+£0.50 0.07-2.40 1.19+0.66
Neurath* (DEU) 0.23£0.15 0.06-0.98  0.09+£0.06 0.02-0.29  0.39+0.18

* Denotes large power stations.

within the inversion (e.g. Miyazaki et al., 2011) or by ap-
plying a decay function (e.g. Chatterjee et al., 2012). Here
we propose that temporal filtering, as shown by artificially
creating a 150-member ensemble using neighbouring times
from a 50-member ensemble, could be used to reduce spu-
rious error correlations. This is only applicable with suitably
high-frequency model data. By filtering a small ensemble (10
members) using time smoothing and finding the best fit to a
50-member ensemble, it is typically found that a 2 h smooth-
ing is optimum with our model set-up (7_1, Tp, T41). The
optimum filter length, however, is location and time depen-
dent.

www.geosci-model-dev.net/13/2297/2020/

For a given location we assume that non-spurious correla-
tions are represented by surrounding XCO; error correlation
values, which are both part of the spatial extent of the plume
and greater than the derived e-folding correlation length scale
(R > ¢7 ). Here we consider the plume to be represented
by correlation values that continuously remain above ¢~
extending out from the given location. The maximum dis-
tance of these correlations from the artificially generated
TME 150-member ensemble can range between maximum
distances of 30 to 520 km over Paris (Fig. 7). Over Caltech
and Tsukuba these range from 0 to 230 km and 30 to 700 km,
respectively. The flow dependency suggests that a predefined

Geosci. Model Dev., 13, 2297-2313, 2020
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Figure 6. Global average XCO, (ppm) standard error from the IFS model over 15d for a 3- (red), 5- (orange), 10- (green), 15- (turquoise),
25- (blue), 40- (purple) and 50-member (black) ensemble (top). A binned density plot of the change in normalised error relative to the 50-
member ensemble with respect to ensemble size (second row). The normalised error is computed for each ensemble size for 120 different
times (January 2015) before being binned. Histogram showing IFS model XCO, from a 10-, 25- and 50-member ensemble after 5 d. Note
that all ensembles shown consist of initial meteorological uncertainty and perturbed model physics (TME).

distance for the correlation filter might limit the available
useful information within the inversion system, even when
the filter is spatially varying. The application of the flow-
dependent structure to inverse systems can be computation-
ally expensive; as a result, offline systems should adopt a
simplified approach to represent the errors derived here.

For a given time and location, assuming a Gaussian error
correlation structure may cause an underestimation or over-
estimation of the correlation length scale, depending on di-
rection (Figs. 8 and S3). For most situations, regardless of lo-
cation, the shortest correlation length scale is close to the av-
erage correlation length in all directions; however, the down-
wind correlation length scale is typically around twice as far.
Downwind is defined as the plume direction at model out-
put time.

For January, the time- and direction-averaged error corre-
lation length scale, assuming a Gaussian distribution, varies
across all three sites (Paris 67 =24 km, Caltech 17 = 16 km
and Tsukuba 59426 km). In July, over Paris and Tsukuba, the
average correlation length scale is reduced to 61 £22 km and
35 £ 16 km, respectively, whereas there is a slight increase
over Caltech to 26 == 14 km. The large decrease in correlation
length scale detected over Tsukuba in summer may be a re-
sult of dominant mesoscale biogenic fluxes in the region dur-

Geosci. Model Dev., 13, 2297-2313, 2020

ing summer months masking the plume from anthropogenic
hotspots. The variability in average correlation length scale is
reduced at all three sites during Northern Hemisphere sum-
mer, which is also likely to be the result of a more active
background biogenic flux limiting the maximum spatial ex-
tent of the signal from anthropogenic hotspots. Seasonal vari-
ability in local meteorological systems is also likely to cause
observed changes in the correlation length scales derived. At
all three locations the average error correlation length scale in
all directions varies considerably with time, suggesting that
flow-dependent information is required and no single length
scale should be used (Figs. 8 and S3).

The average error correlation in both time and space simul-
taneously is also considered, again using a simplistic Gaus-
sian assumption (Figs. 8 and S3). This shows that the time
component of the average error correlation varies with loca-
tion, with an average time correlation length scale decreasing
with distance.

For January Paris (80 min) and Tsukuba (150 min) both
show a relatively short average time correlation length scale
but a long spatial length scale, whereas Caltech (260 min)
has a longer time correlation length scale and shorter spatial
length scale. For July the correlation length scale increases
over both Paris (120 min) and Tsukuba (170 min), with de-

www.geosci-model-dev.net/13/2297/2020/
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Figure 7. A snapshot of regional XCO; error correlation structure with respect to Paris XCO, from the 10-member (a) and 50-member (b)
IFS model ensemble after 4 d, when the ensemble consists of perturbed initial meteorology and model physics (transport error). (¢, d) The
same as (a, b) but including the preceding and subsequent model time steps (1 h), artificially increasing the correlation sample to 30 and
150 members. (e, f) The same correlation calculations as (d) (150 members consisting of £1h) but for two different times, highlighting
the flow dependence in error correlation structure. The star denotes the column over Paris, and the black arrows denote the downwind and
across-wind directions used to calculate further and the shortest correlation lengths for a given time (see Fig. 8).

creases over Caltech (160 min). Differences between loca-
tions and seasons are caused by changes in fluxes, meteorol-
ogy and orography. For instance, over Caltech, shorter spa-
tial correlations and longer time correlations result from the
impact of the Los Angeles basin, which reinforces air stagna-
tion during winter. This effect is less pronounced during the
summer due to the presence of stronger sea breezes.

5 Discussion

We have performed multiple ensemble simulations of CO»
using an online NWP model to quantify sources of atmo-
spheric model uncertainty. We have individually diagnosed
the relative contribution of uncertainties from the initial me-
teorological state and model physics to the total transport er-
ror. This work can be used to inform future atmospheric flux
inversion studies on the spatio-temporal variability of model
transport error, which is typically lacking. By utilising the
online capability of the ESM, we have also diagnosed the
biogenic flux feedback error associated with uncertainties in
atmospheric meteorology. We have performed ensemble sim-

www.geosci-model-dev.net/13/2297/2020/

ulations using perturbed anthropogenic emissions to investi-
gate the signal-to-noise ratio, which provides a first assess-
ment of the posterior error reductions in an anthropogenic in-
version system. Finally, we have diagnosed error correlations
and correlation length scales at selected sites. To evaluate the
diagnosed error, the results were validated at three TCCON
sites. The ensemble-derived uncertainties found here will be
used to model transport errors in a proposed future opera-
tional global CO, monitoring system being developed as part
of the CO,; Human Emissions project.

The transport error is shown to be spatio-temporally vary-
ing and is largest near biogenic and anthropogenic flux
hotspots. Transport errors over anthropogenic flux hotspots
are on average 0.1-0.8 ppm and 0.1-0.7 ppm for January and
July, respectively. This transport error is comparable to un-
certainties in the prior monthly anthropogenic emissions pro-
jected onto the observation (XCO;) space over the same re-
gions (January: 0.1-1.4 ppm, July: 0.1-1.2 ppm). However,
since the proposed future monitoring system will be based
on prior flux uncertainties associated with higher temporal
resolutions than those used here (daily and hourly), a signifi-

Geosci. Model Dev., 13, 2297-2313, 2020
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Figure 8. A snapshot of XCO, error correlation with respect to Paris (a, d, g), Caltech (b, e, h) and Tsukuba (c, f, i) as a function of distance
for a 50-member IFS model ensemble after 4d (a, b, ¢). These panels show the directionally averaged (black dashed line), downwind (blue
dashed line) and across-wind (red dashed line) correlation values with a Gaussian fit (solid lines) in addition to the derived correlation length,
where R = ¢~0-3 (vertical solid lines). The directionally averaged derived correlation lengths for 120 sample times for January 2015 are
placed in 10km bins for all three sites (d, e, f). The directionally averaged and time-averaged error correlation values for the same 120

sample sizes as a function of both time and distance (g, h, i).

cant increase in the signal-to-noise ratio is expected. The es-
timation of high-frequency transport error covariance struc-
tures is essential to ensuring the reliability of the future inver-
sion system. With potential future improvements to bottom-
up flux estimations the signal-to-noise ratio may further de-
crease in the future, decreasing the posterior error reduction
values that could be expected from such a system. The spa-
tial and temporal variability of errors and resulting signal-to-
noise ratios are influenced by neighbouring hotspots, local
orography and meteorological variability. Our findings, on a
global scale, agree well with the regional study of Chen et
al. (2019).

Atmospheric CO; transport error initially grows and then
plateaus after 2-3 d, depending on the location. After this
time the error growth from uncertainties in transport balances
out with the atmospheric CO, mixing, resulting in a globally
averaged transport error of ~ 0.1 ppm.

A noticeable transport error is identified in both the near-
surface model levels and in the total-column CO;. As a re-
sult, it is likely to impact both satellite- and surface-based at-
mospheric inversions. These results highlight the importance
of including detailed transport error within atmospheric CO2
inversions, as most previous studies either ignore it or use a
simplistic representation of model transport error, leading to
overconfidence in results. The near-surface errors found here
at three sites (1.7-7.2 ppm) are comparable to the 3—4 ppm
errors found by Diaz-Isaac et al. (2018).

The atmospheric CO; error caused by the biogenic feed-
back error as a response to uncertainty in meteorology is

Geosci. Model Dev., 13, 2297-2313, 2020

found to be small; however, in regions of high net ecosystem
exchange this value increases to an average of 0.16 ppm and
requires consideration for high-precision atmospheric inver-
sions in those regions. Both the atmospheric response to prior
anthropogenic emission uncertainties and the biogenic feed-
back errors are found to be seasonally dependent for some lo-
cations, caused by seasonal changes in flux and meteorology.
This also results in seasonal variability in the model transport
error over regions of high net ecosystem exchange. The error
associated with biogenic fluxes shown here does not account
for uncertainties in the biogenic model or ancillary informa-
tion (e.g. mapping or plant functional type).

Validation performed with TCCON observations suggests
that the uncertainty derived in model XCO;, from trans-
port uncertainty, anthropogenic flux uncertainty and bio-
genic feedback to meteorological uncertainties accounts for
21 %—-65 % of the total model uncertainty, depending on
time and location. An underrepresentation of anthropogenic
flux uncertainty, by using monthly and not higher-temporal-
resolution uncertainties, and other factors including observa-
tion errors, numerical errors, the representation error, miss-
ing biogenic processes and biogenic mapping errors make up
the remaining model uncertainty. These remaining uncertain-
ties are not negligible; for example, a previous study showed
that over the same Caltech site used in this study, the model
representation error is typically 2 ppm for January (Agusti-
Panareda et al., 2019). Future studies should aim to quantify
these additional aspects of model uncertainty.
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The 50-member ensemble used here is shown to provide
a reasonable estimate of the prior PDF; however, for some
regions, ensemble sizes larger than 50 members may be re-
quired. The computational cost of sufficiently large ensemble
sizes to describe the spatial error structures could potentially
be overcome by appropriate filtering techniques of smaller
ensemble sizes (e.g. Lauvaux et al., 2019).

Spurious noise is evident in the transport error correlation
structure of a 50-member ensemble; to address this issue and
prevent further computational costs, we apply a simple time
filtering to artificially increase the member size to 150 mem-
bers. Error correlation structures are shown to be strongly
flow dependent. Using a simplified Gaussian assumption the
average correlation length scale values are found to be be-
tween 0 and 700 km in distance and O and 260 min in time,
with a seasonal dependence based on changes in flux and
meteorology.

The transport uncertainty diagnosed here highlights the
importance of accounting for all sources of model error when
performing inversions. Our results are derived using an on-
line NWP system; however, our findings can be used with
various levels of complexity to inform future CO; offline in-
versions at both the regional and global scale. It should be
noted that whilst these uncertainties can be used in an of-
fline system, several additional errors would also need to
be considered, including interpolation errors and inconsis-
tencies between transport parameterisations. The model er-
ror PDF, although reasonably well-represented by the 50-
member ensemble, requires either additional ensemble mem-
bers or suitable selection techniques (e.g. Diaz-Isaac et al.,
2019), which requires further investigation. For the wider in-
verse modelling community, gridded total errors are available
for the total-column CO, mixing ratios at 3-hourly intervals
for all of 2015, and hourly gridded transport errors are avail-
able for both the total column and surface for January and
July 2015 at https://doi.org/10.5281/zenodo.3703136.

Code availability. The IFS source code is available subject to
a licence agreement with the ECMWF; see also Leutbecher et
al. (2017) for details on the ensemble model description and spe-
cific details of the code relevant to this study, including the use of
the EDA and SPPT. ECMWF member-state weather services and
their approved partners will be granted access. Components of the
IFS code relevant to this study (e.g. SPPT), without modules for
data assimilation, are also available for educational and academic
purposes as part of the OpenlFS project (https://software.ecmwf.int/
wiki/display/OIFS/OpenlFS+Home, last access: 9 December 2019;
OpenlFS project, 2019). Technical developments specifically re-
lated to the work detailed here are available upon request; please
contact joe.mcnorton @ecmwf.int. The specific code relevant to this
study for emissions perturbations based on given log-normal uncer-
tainties is available at https://doi.org/10.5281/zenodo.3750842 (Mc-
Norton et al., 2020).
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(MARS) catalogue, but access may be limited. Model output
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