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Abstract. The flow of large ice sheets and glaciers can be
simulated by solving the full Stokes equations using a fi-
nite element method. The simulation is particularly sensi-
tive to the discretization of the grounding line, which sepa-
rates ice resting on bedrock and ice floating on water, and
is moving with time. The boundary conditions at the ice
base are enforced by Nitsche’s method and a subgrid treat-
ment of the grounding line element. Simulations with the
method in two dimensions for an advancing and a retreat-
ing grounding line illustrate the performance of the method.
The computed grounding line position is compared to pre-
viously published data with a fine mesh, showing that sim-
ilar accuracy is obtained using subgrid modeling with more
than 20-times-coarser meshes. This subgrid scheme is imple-
mented in the two-dimensional version of the open-source
code Elmer/ICE.

1 Introduction

1.1 Ice sheet dynamics, sea-level rise, and grounding
line migration

Numerical simulation of ice sheet flow is necessary to assess
the future sea-level rise (SLR) due to melting of continental
ice sheets and glaciers (Hanna et al., 2013) and to reconstruct
the ice sheets of the past (Stokes et al., 2015; DeConto and
Pollard, 2016) for comparison with measurements and vali-
dation of the models. Ice sheet model predictions are partic-
ularly sensitive to the numerical treatment of the grounding
line (GL) (Durand and Pattyn, 2015; Konrad et al., 2018), the
line where the ice sheet leaves the solid bedrock and becomes
an ice shelf floating on water driven by buoyancy.

The distance that the GL moves may be long over paleo-
timescales. In Kingslake et al. (2018) it is shown that the GL
retreated several hundred kilometers in West Antarctica dur-
ing the last 11 500 years and then advanced again after the
isostatic rebound of the bed. The sensitivity, long time inter-
vals, and long distances of the GL migration require a care-
ful treatment of the GL and its neighborhood in the numeri-
cal method used to discretize the equations modeling the ice
sheet dynamics. In this paper, we develop an accurate and
efficient method for such problems.

1.2 Model equations

When the ice rests on the ground and is affected by large fric-
tional forces on the bed, the ice flow is dominated by vertical
shear stresses. On the other hand, when the ice is floating
on water, it is the longitudinal stress gradient that controls
the flow of the ice. The GL is in the transition zone between
these two types of flow with a gradual change of the stress
field (Schoof, 2011).

The most accurate ice model in theory is based on the
full Stokes (FS) equations. A simplification of the FS equa-
tions by integrating the depth of the ice is the shallow shelf
(or shelfy stream) approximation (SSA) (MacAyeal, 1989),
which is often used for simulation of the coupling between
a grounded ice sheet and a marine ice shelf. In the zone be-
tween the grounded ice and the floating ice, it is necessary
to use the FS equations (Wilchinsky and Chugunov, 2000;
Schoof and Hindmarsh, 2010; Docquier et al., 2011; Schoof,
2011) unless the ice is moving rapidly on the ground with
low basal friction, when the SSA equations are accurate both
upstream and downstream of the GL.

The evolution of the GL in simulations is sensitive to the
model equations and the basal friction law. In the Marine
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Ice Sheet Model Intercomparison Project (MISMIP) (Pat-
tyn et al., 2012, 2013), different ice models and implementa-
tions solve the same ice flow problems, and the predicted GL
steady state and transient GL motion are compared. The re-
sults show that the position of the GL depends on the model
equations (Pattyn et al., 2013). Predictions of the GL posi-
tion and SLR are different for different ice models such as
FS and SSA (Pattyn and Durand, 2013). Including equations
with vertical shear stress at the GL such as the FS equations
is crucial to accurately resolve GL dynamics in a wide range
of circumstances.

The friction laws at the ice base depend on the effective
pressure, the basal velocity, and the distance to the GL in dif-
ferent combinations in Leguy et al. (2014), Gagliardini et al.
(2015), Brondex et al. (2017), and Gladstone et al. (2017).
The GL position and SLR vary considerably depending on
the choice of friction law. Given the friction law, the results
are sensitive to its model parameters too (Gong et al., 2017).

1.3 Numerical methods

Parameters in the numerical methods used to simulate ice
sheet flow influence the GL migration. Durand et al. (2009b)
find that the mesh resolution along the ice bed has to be fine
to obtain reliable solutions with FS in GL simulations. The
GL is then located in a node of the fixed or static mesh. A
mesh size below 1 km is necessary in Larour et al. (2019) to
resolve the features at the GL. Adaptive meshes for a finite
volume discretization of an approximation of the FS equa-
tions are employed in Cornford et al. (2013) to study the GL
retreat and loss of ice in West Antarctica. The FS solutions
of benchmark problems in Pattyn et al. (2013) computed
by an implementation of the finite element method (FEM)
in Elmer/ICE (Gagliardini et al., 2013) and FELIX-S (Leng
et al., 2012) are compared in Zhang et al. (2017). The dif-
ferences between these implementations are attributed to dif-
ferent treatment of a friction parameter at the GL and differ-
ent assignment of grounded and floating nodes and element
faces.

A subgrid scheme introduces an inner structure in the dis-
cretization element or mesh volume where the GL is located.
Such schemes have been developed for simplifications of the
FS equations. A subgrid model for the GL is tested in Glad-
stone et al. (2010b) for the one-dimensional (1D) SSA equa-
tion where the flotation condition for the ice defines the posi-
tion of the GL. The GL migration is determined by the two-
dimensional (2D) SSA equations discretized by the FEM in
Seroussi et al. (2014). Subgrid models at the GL are com-
pared to a model without an internal structure in the ele-
ment. The conclusion is that sub-element parameterization
is necessary to obtain accurate results at reasonable compu-
tational expense. A shallow approximation to FS with a sub-
grid scheme on coarse meshes is compared to FS in Feld-
mann et al. (2014) with similar results for the GL migration.
Subgrid modeling and adaptivity are compared in Cornford

et al. (2016) for a vertically integrated model. The thickness
of the ice above flotation determines if the ice is grounded or
floating. A fine mesh resolution is necessary for converged
GL positions with FS in Durand et al. (2009a, b). A dynamic
mesh refinement and coarsening of the mesh following the
GL would solve the problem in paleo-simulations when the
GL moves long distances. An alternative is to introduce a
subgrid scheme in the mesh elements where the GL is located
in a static mesh and keep the mesh size coarser everywhere
else in the ice sheet.

1.4 Proposed method and outline of the paper

From the above we conclude that it seems crucial that the
ice model include equations with vertical shear stress in the
neighborhood of the GL, and one way to avoid the fine
meshes that are otherwise needed close to the GL is to intro-
duce a subgrid scheme in the discretization element where
the GL is located. In this study, we develop such a numerical
method for the FS equations in two dimensions, introducing
a subgrid scheme in the mesh element where the GL is lo-
cated. Since the subgrid scheme is restricted to one element
in a 2D vertical ice, this is computationally inexpensive. In an
extension to 3D, the subgrid scheme would be applied along
a line of elements in 3D. The results with numerical mod-
eling will always depend on the mesh resolution but can be
more or less sensitive to the mesh spacing and time steps. It
depends on the equation, the mesh size, the mesh quality, and
the finite element spaces in the approximation.

We solve the FS equations in a 2D vertical ice with the
Galerkin method implemented in Elmer/ICE (Gagliardini
et al., 2013). A subgrid discretization is proposed and tested
for the element where the GL is located. The boundary condi-
tions are imposed by Nitsche’s method at the ice base in the
weak formulation of the equations (Nitsche, 1971; Urquiza
et al., 2014; Reusken et al., 2017). The linear Stokes equa-
tions are solved in Chouly et al. (2017a) with Nitsche’s treat-
ment of the boundary conditions. They solve the equations
for the displacement, but here we solve for the velocity using
similar numerical techniques to weakly impose the Dirichlet
boundary conditions on the normal velocity at the base. The
frictional force in the tangential direction is applied on part of
the element with the GL. The position of the GL within the
element is determined in agreement with theory developed
for the linearized FS in Schoof (2011).

The paper is organized as follows. Section 2 is devoted to
the presentation of the mathematical model of the ice sheet
dynamics. In Sect. 3, the numerical discretization with FEM
is given, while the subgrid scheme around the GL is found in
Sect. 4. The numerical results for a MISMIP problem are pre-
sented in Sect. 5. The extension to three dimensions (3D) is
discussed in Sect. 6, and finally some conclusions are drawn
in Sect. 7.
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Figure 1. A two-dimensional schematic view of a marine ice sheet.

2 Ice model

2.1 The full Stokes (FS) equations

To simulate flow in a 2D vertical cross section of an ice
sheet, we use the FS equations with coordinates x = (x,z)T

(Hutter, 1983). The nonlinear partial differential equations
(PDEs) in the interior of the ice domain � are given by{
∇ ·u= 0,

−∇ · σ = ρg,
(1)

where the stress tensor is σ = τ (u)−pI and the deviatoric
stress tensor is τ (u)= 2η(u)ε̇(u). The strain rate tensor is
defined by

ε̇(u)=
1
2
(∇u+∇uT )=

(
ε̇11 ε̇12
ε̇12 ε̇22

)
. (2)

I is the identity matrix, and the viscosity is defined by Glen’s
flow law:

η(u)=
1
2

(
A(T ′)

)− 1
n ε̇

1−n
n

e , ε̇e =

√
1
2

tr(ε̇(u)ε̇(u)). (3)

Here u= (u,w)T is the vector of velocities, ρ is the density
of the ice, p denotes the pressure, and the gravitational vec-
tor is denoted by g. The viscosity η is a function of the rate
factor A(T ′), where T ′ is the ice temperature. For isothermal
flow assumed here, the rate factor A is constant. Finally, n is
usually taken to be 3.

2.2 Boundary conditions

At the boundary 0 of the ice domain � we define the normal
outgoing vector n and tangential vector t (see Fig. 1). In the
2D vertical case considered here, the ice sheet geometry is
constant in y. The ice surface is denoted by 0s and the ice
base is 0b = 0bg ∪0bf. At 0s, and 0bf, the floating part of
0b, we have

σn= f s, σn= f bf, (4)

respectively. The ice is stress free at 0s, f s = 0, and f bf =

−pwn at the ice–ocean interface 0bf, where pw is the water
pressure. Let

σ nt = t · σn, σ nn = n · σn, ut = t ·u,

where σ nn and σ nt are the normal and tangential components
of the stress and ut is the tangential component of the ice
velocity at the ice base. Then for the slip boundary 0bg, the
grounded part of 0b where the ice rests on the bedrock, we
have a friction law for the sliding ice

σ nt+β(u,x)ut = 0, un = n ·u= 0, −σ nn ≥ pw, (5)

where un is the normal component of the ice velocity. The
type of friction law is determined by the friction coefficient
β (≥ 0). At 0bf, there is a balance between σ nn and pw, and
the contact is friction free, β = 0. Then

σ nt = 0, −σ nn = pw. (6)

At the GL, the boundary condition switches from β > 0 and
un = 0 on 0bg to β = 0 and a free un on 0bf. In a 2D vertical
cross section of ice, the GL is the point (xGL,zGL) shared
between 0bg and 0bf.

The ocean surface is at z= 0, and pw =−ρwgzb. The den-
sity of sea water is denoted by ρw, zb is the z coordinate of
0b, and g is the vertical component of the gravitational force.

2.3 The free-surface equations

The boundaries 0s and 0b are time dependent and move ac-
cording to two free-surface equations. The boundary 0bg fol-
lows the fixed bedrock with coordinates (x,b(x)).

The z coordinate of the ice surface position zs(x, t) at 0s
(see Fig. 1) is the solution of an advection equation

∂zs

∂t
+ us

∂zs

∂x
−ws = as, (7)

where as denotes the surface mass balance and us =

(us,ws)
T the velocity at the ice surface in contact with the

atmosphere. Similarly, the z coordinate for the ice base zb of
the floating ice at 0bf satisfies

∂zb

∂t
+ ub

∂zb

∂x
−wb = ab, (8)

where ab is the basal mass balance and ub = (ub,wb)
T the

velocity of the ice at 0bf. On 0bg, zb = b(x); on 0bf, zb >

b(x).
The thickness of the ice is denoted by H = zs− zb and

depends on x and t .

2.4 A first-order solution close to the grounding line

The 2D vertical solution of the FS equations in Eq. (1) with
a constant viscosity, n= 1 in Eq. (3), is expanded in small
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parameters in Schoof (2011). The solutions in different re-
gions around the GL are connected by matched asymptotics.
Upstream of the GL at the grounded part, x < xGL, the lead-
ing terms in the expansion satisfy a simple relation in scaled
variables close to the GL. Across the GL, the ice velocity u,
the flux of ice uH , and the depth-integrated normal or lon-
gitudinal stress τ11 in Eq. (2) are continuous. By including
higher-order terms in the expansion in small parameters, it is
shown in Schoof (2011, Sect. 4.7) that the ice surface slope
is continuous and Archimedes’ flotation condition

Hρ =−zbρw (9)

is not satisfied immediately downstream of the GL. A rapid
variation in the vertical velocityw in a short-distance interval
at the GL causes oscillations in the ice surface in the analysis
as also observed in FS simulations in Durand et al. (2009a).
The flotation condition in Eq. (9) determines where the GL
is in SSA in Docquier et al. (2011) and Drouet et al. (2013).

In Schoof (2011, Sect. 4.3), the solution to the FS in a 2D
vertical cross section of ice is expanded in two parameters, ν
and ε. The aspect ratio of the ice ν is the quotient between
a typical scale of the thickness of the ice H and a horizontal
length scale L, ν =H/L, and ε is ν times the quotient be-
tween the longitudinal and the shear stresses τ11 and τ12 in
Eq. (2). If ν5/2

� ε� 1, then in a boundary layer close to
the GL and x < xGL it follows from the equations that the
leading terms in the solution in scaled variables satisfy

τ22−p = σ22 = ρg(z− zs). (10)

On floating ice τ22−p+pw = 0 and the hydrostatic flotation
criterion Eq. (9) is fulfilled. This is a first-order approxima-
tion of the second relation in Eq. (6). On the grounded ice
domain, we have τ22−p+pw < 0.

Introducing the notation

χa(x,z)= τ22−p+pw = ρg(z− zs(x))− ρwgzb(x) (11)

and letting Hbw =−zb be the thickness of the ice below the
sea level yields

χa(x,zb)=−g(ρH − ρwHbw). (12)

If x < xGL, then χa < 0 in the neighborhood of xGL on 0bg; if
x > xGL then χa = 0 and Eq. (9) holds true on 0bf. Suppose
that zs and zb are linear in x. Then χa is also linear in x. In
numerical experiments with the linear FS (n= 1) in Nowicki
and Wingham (2008), χa(x,zb) varies linearly in x for x <
xGL.

In Sect. 4, we take this same approach but use an indicator
χ(x) or χ̃(x) derived from the solutions of the nonlinear FS
equations to estimate the GL position. These indicators are
approximated by χa(x,zb).

3 Discretization by FEM

In this section we state the weak form of Eq. (1), introduce
the spatial FEM discretization used for Eq. (1), and give the
time discretization of Eqs. (7) and (8).

3.1 The weak form of the FS equations

We start by defining the mixed weak form of the FS equa-
tions. Introduce k = 1+ 1/n, k∗ = 1+ n with n from Glen’s
flow law and the spaces

Vk = {v : v ∈ (W 1,k(�))2}, Qk∗ = {q : q ∈ L
k∗(�)}; (13)

see, for example, Jouvet and Rappaz (2011, Eq. 3.7), Chen
et al. (2013, Sect. 3.1), and Martin and Monnier (2014, Eq.
21). The weak solution (u,p) of Eq. (1) is obtained as fol-
lows. Find (u,p) ∈ Vk ×Qk∗ such that for all (v,q) ∈ Vk ×
Qk∗ the equation

A((u,p),(v,q))+B0(u,v,p)+BN (u,v,q)

= F(v)+F0(v) (14)

is satisfied, where

A((u,p),(v,q))=

∫
�

2η(u)ε̇(u) : ε̇(v) dx

− b(u,q)− b(v,p),

b(u,q)=

∫
�

q∇ ·u dx,

B0(u,v,p)=−

∫
0bg

(σ nn(u,p)n · v+ σ nt(u,p)t · v) ,

ds =
∫
0bg

(−σ nn(u,p)n · v+β(t ·u)(t · v)) ds,

BN (u,v,q)=−
∫
0bg

σ nn(v,q)n ·u ds

+ γ0

∫
0bg

1
h
(n ·u)(n · v) ds,

F (v)=

∫
�

ρg · v dx,

F0(v)=−

∫
0bf

pwn · v ds.

The last term in BN is added in the weak form in Nitsche’s
method (Nitsche, 1971) to impose the Dirichlet condition
un = 0 weakly on 0bg. It can be considered as a penalty term.
Since u= unn+ utt , the contribution of the tangential force
can also be written βu ·v when un = 0. The value of the pos-
itive parameter γ0 depends on the physical problem, and h is
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a measure of the mesh size on 0b. The sensitivity of the GL
positions for different values of γ0 is shown in Sect. 5. The
first term in BN symmetrizes the boundary term B0+BN on
0bg and vanishes when un = 0. The boundary term F0(v) is
from the buoyancy force at the ice–ocean interface in EQ. (6)
where pw depends on zb on 0bf.

3.2 The discretized FS equations

We employ linear Lagrange elements with Galerkin
least-square (GLS) stabilization (Franca and Frey, 1992;
Helanow and Ahlkrona, 2018) to avoid spurious oscilla-
tions in the pressure using the standard MISMIP setting in
Elmer/ICE (Durand et al., 2009a; Gagliardini et al., 2013) ap-
proximating solutions in the spaces Vk and Qk∗ in Eq. (13).

The mesh is constructed from a footprint mesh on the
ice base and then extruded with the same number of layers
equidistantly in the vertical direction according to the thick-
ness of the ice sheet. To simplify the implementation in 2D,
the footprint mesh on the ice base consists of N + 1 nodes
at xi = (xi,zb(xi)), i = 0, . . .,N, with x coordinates xi and a
constant mesh size 1x = xi− xi−1.

In general, the GL is somewhere in the interior of an in-
terval [xi−1, xi], and it crosses the interval boundaries as it
moves forward in the advance phase and backward in the re-
treat phase of the ice. The advantage with Nitsche’s method
of formulating the boundary conditions is that if xGL ∈

[xi−1, xi] then the boundary integral over the interval can
be split into two parts in Eq. (14) such that (x,zb(x)) ∈ 0bg
when x ∈ [xi−1, xGL], and if x ∈ [xGL, xi] then (x,zb(x)) ∈

0bf. In the GL element, we have

B0 +BN =

∫
[xi−1, xGL]

− (σ nn(u,p)n · v+ σ nn(v,q)n ·u)

+β(t ·u)(t · v)+
γ0

h
(n ·u)(n · v) ds,

F0 =−

∫
[xGL, xi]

pwn · v ds, (15)

with the integration element ds following 0b. There is a
change of the boundary condition in the middle of the FEM
element where the GL is located. With a strong formula-
tion of the boundary condition un = 0, the basis functions
in Vk share this property, and the condition changes from the
grounded node xi−1 where the basis function satisfies un = 0
to the floating node at xi with a free un without taking the po-
sition of the GL inside [xi−1, xi] into account. With the weak
formulation in Nitsche’s method, the standard basis functions
we use do not satisfy un = 0 strictly. The boundary condi-
tion is imposed on the solution by the additional penalty term
multiplied by γ0 inBN in Eq. (14). A large γ0 will force un to
be small. The penalty term may change inside an element as
in Eq. (15), where it is not equal to zero only in the grounded
part.

The resulting system of nonlinear equations forms a non-
linear complementarity problem (Christensen et al., 1998).
The distance d between the base of the ice and the bedrock
at time t and at x is

d(x, t)= zb(x, t)− b(x)≥ 0. (16)

If d > 0 on 0bf, then the ice is not in contact with the bedrock
and σ nn+pw = 0; if σ nn+pw < 0 on 0bg, then the ice and
the bedrock are in contact and d = 0. Hence, the complemen-
tarity relation in the vertical direction is

d(x, t)≥ 0, σ nn+pw ≤ 0,

d(x, t)(σ nn+pw)= 0 on 0b. (17)

The contact friction law is such that β > 0 when x < xGL and
β = 0 when x > xGL. The complementarity relation along
the ice base at x is then the non-negativity of d and

β ≥ 0, β(x, t)d(x, t)= 0 (18)

on 0b. In particular, these relations are valid at the nodes x =
xj , j = 0,1, . . .,N .

The complementarity condition also holds for un and σnn
such that

σ nn+pw ≤ 0, un(σ nn+pw)= 0 on 0b, (19)

without any sign constraint on un except for the retreat phase
when the ice leaves the ground and un < 0.

Similar implementations for contact problems using
Nitsche’s method are found in Chouly et al. (2017a, b), where
the unknowns in the PDEs are the displacement fields instead
of the velocity in Eq. (1). Analysis in Chouly et al. (2017a)
suggests that Nitsche’s method for the contact problem can
provide a stable numerical solution with an optimal conver-
gence rate.

The nonlinear equation Eq. (14), for the nodal values of u
and p are solved by Picard iterations. The system of linear
equations in every Picard iteration is solved directly by us-
ing the MUMPS linear solver in Elmer/ICE. The condition
on dj = d(xj ) is used to decide if the node xj is geometri-
cally grounded or floating. It is computed at each time step
and is not changed during the nonlinear iterations (Picard).
The procedure for solution of the nonlinear FS equations is
outlined in Algorithm 1. In two dimensions, the GL will be
located in one element.
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3.3 Discretization of the advection equations

The advection equations for the moving ice boundary in
Eqs. (7) and (8) are discretized in time by a finite differ-
ence method and in space by FEM with linear Lagrange ele-
ments for zs and zb. An artificial diffusion stabilization term
is added, making the spatial discretization behave like an up-
wind scheme in the direction of the velocity as implemented
in Elmer/ICE.

The advection equations Eqs. (7) and (8) are integrated in
time by a semi-implicit method of first-order accuracy. Let
c = s or b. Then the solution is advanced from time t` to
t`+1
= t`+1t with the time step 1t by

z`+1
c = z`c +1t

(
a`c − u

`
c

∂z`+1
c

∂x
+w`c

)
. (20)

The spatial derivative of zc is approximated by FEM as de-
scribed above. A system of linear equations is solved at
t`+1 for z`+1

c . This time discretization and its properties are
discussed in Cheng et al. (2017) and summarized in Algo-
rithm 2.

A numerical stability problem in zb is encountered in the
boundary condition at 0bf when the FS equations are solved
in Durand et al. (2009a). It is resolved by expressing zb in pw
at 0bf with a damping term. An alternative interpretation of
the idea in Durand et al. (2009a) and an explanation follow
below.

The relation between un and ut at0bf and ub = u(x,zb(x))

is

ub =

(
ub
wb

)
=

(
zbx
−1

)
un√

1+ z2
bx

+

(
1
zbx

)
ut√

1+ z2
bx

, (21)

where zbx denotes ∂zb/∂x. Inserting ub andwb from Eq. (21)
into Eq. (8) yields

∂zb

∂t
= ab− un

√
1+ z2

bx . (22)

Instead of discretizing Eq. (22) explicitly at t`+1 with u`n to
determine p`+1

w , the base coordinate is updated implicitly,

z`+1
b = z`b+1t

(
a`+1

b − u`+1
n

√
1+ (z`+1

bx )
2
)
, (23)

in the evaluation of pw in F0(v) in Eq. (14).
Assuming that zbx is small, the time step restriction in

Eq. (23) is estimated by considering a 2D slab of the floating
ice of width 1x and thickness H . Newton’s law of motion
yields

Mu̇n =Mg−1xpw,

where M =1x(zs− zb)ρ is the mass of the slab. Dividing
by M , integrating in time for un(t

m), letting m= `+ 1 or `,
and approximating the integral by the trapezoidal rule for the
quadrature yields

un(t
m)=

tm∫
0

g+
gρw

ρ

zb

zs− zb
ds ≈ gtm

+
gρw

ρ

m∑
i=0

αi
zib

zis− z
i
b
1t = umn ,

with the parameters

αi = 0.5, i = 0,m, αi = 1, i = 1, . . .,m− 1.

Then insert umn into Eq. (23). All terms in umn from time steps
i < m are collected in the sum 1tFm−1. Then Eq. (23) can
be written

z`+1
b = z`b−1t

2 gρw

2ρ
zmb

zms − z
m
b

+1t
(
a`b − gt

m
−1tFm−1

)
. (24)
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For small changes in zb in Eq. (24), the explicit method with
m= ` is stable when 1t is so small that

|1−1t2
gρw

2Hρ
| ≤ 1. (25)

When H = 100 m on the ice shelf, 1t < 6.1 s, which is far
smaller than the stable steps for Eq. (20). Choosing the im-
plicit scheme with m= `+ 1, the bound on 1t is

1/|1+1t2
gρw

2Hρ
| ≤ 1; (26)

i.e. there is no bound on positive1t for stability, but accuracy
will restrict 1t .

Much longer stable time steps are possible at the surface
and the base of the ice with a semi-implicit method (Eq. 20)
and a fully implicit method (Eq. 23) compared to an ex-
plicit method. For example, the time step for the problem in
Eq. (20) with 1 km mesh size can be up to a couple of months.
Therefore, we use the scheme in Eq. (20) for Eqs. (7) and (8)
and the scheme in Eq. (23) for Eq. (22) and pw as in Durand
et al. (2009a). The difference between the approximations of
zb in Eqs. (20) and (23) is O(1t2).

4 Subgrid scheme around the grounding line

The basic idea of the subgrid scheme for the FS equations in
this paper follows the GL parameterization (SEP3) for SSA
in Seroussi et al. (2014) and the analysis of FS in Schoof
(2011). The GL is located at the position where the ice is
on the ground and the flotation criterion is perfectly satis-
fied such that σnn =−pw. In the FS equations, the hydro-
static assumption Eq. (9) may not be valid close to the GL.
Therefore, the GL position can not be determined by simply
checking the total thickness of the iceH against the depth be-
low sea levelHbw. Instead, the flotation criterion is computed
by comparing the water pressure with the numerical normal
stress component orthogonal to the boundary inspired by the
first-order analysis in Sect. 2.4.

The numerical solutions (e.g., Gagliardini et al., 2016;
Gladstone et al., 2017) converge to the analytical solution
of the FS PDE as the mesh size decreases. The analytical so-
lution satisfies zb(x, t) > b(x) with the boundary conditions
in Eq. (6) at the base of the floating ice; where the ice is in
contact with the bedrock zb(x, t)= b(x), the boundary con-
ditions are given by Eq. (5). Examples of the analytical so-
lution are demonstrated by the thin light blue lines in Figs. 2
and 3 with a black “∗” at the analytical GL position xGL.
The two figures share the same analytical solution. However,
as illustrated in Figs. 2 and 3, the basal boundary of the ice
zb(x, t) does not conform with the mesh from the spatial dis-
cretization. In particular, the GL position xGL of the analyt-
ical solution does not coincide with any of the nodes, but it
usually stays on the bedrock b(x) between the last grounded
(xi−1) and the first floating (xi) nodes; see Figs. 2 and 3. The

Figure 2. Schematic figure of the GL in case i, with the arrows
indicating the direction of the net forces in the vertical direction.
The light blue line is the analytical solution of the ice sheet with the
analytical GL position xGL. The red line is the grounded boundary
0bg, the dark blue line is the floating boundary 0bf, and the brown
line is the bedrock topography b(x). (a) The last grounded and first
floating nodes as defined in Elmer/ICE. (b) Linear interpolation to
approximate the numerical GL position x̃GL. (c) The step functions
HN (x) and Hβ (x) indicate the area for Nitsche’s penalty and slip
boundary conditions.

linear element boundary between any xj−1 and xj is denoted
by Ej . The sequence of Ej ,j = 1, . . .,N , approximates 0b.
The grounding line element containing the GL is Ei .

Depending on how the mesh is created from the initial ge-
ometry and updated during the simulation, the first floating
node at xi, as well as the GL element, can be either on the
bedrock (as in Fig. 2) or at the ice base above the bedrock
(as in Fig. 3), even though the corresponding analytical so-
lutions are identical. Denote the situation in Fig. 2 as case
i and the one in Fig. 3 as case ii. The physical boundary
conditions of the two cases are different only at the GL el-
ement. More precisely, in case i the net force in the ver-
tical direction on the node xi is pointing inward, namely
χ(xi)= σnn(xi)+pw(xi) > 0, whereas in case ii the floating
condition σnn(xi)+pw(xi)= 0 is satisfied in the node xi. The
directions of the vertical net force at the nodes xi−1 and xi
are shown by the arrows in Figs. 2a and 3a. Consequently, the
external forces and boundary conditions imposed on the GL
element are different in the two cases. For instance, in case
i the GL element is considered as geometrically grounded
(defined as in Algorithm 1), shown with in red in Fig. 2a. In
case ii, the GL element is treated as geometrically floating
and colored in blue in Fig. 3a.

These two cases are similar to the LG and FF cases in
Gagliardini et al. (2016), implying that the numerical solu-
tions in the two cases are different, especially on a coarse
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Figure 3. Schematic figure of the GL in case ii, with the arrows in-
dicating the direction of the net forces in the vertical direction. The
colors of the lines follow those in Fig. 2. (a) The last grounded and
first floating nodes as defined in Elmer/ICE. The node xi is fully
geometrically floating, and the net force is 0. (b) Linear interpola-
tion to approximate the numerical GL position x̃GL. The point x̂i
on the bedrock has the same x coordinate as xi. (c) The step func-
tions HN (x) and Hβ (x) indicate the area for Nitsche’s penalty and
slip boundary conditions.

mesh (mesh size of about 100 m or larger). Thus, we propose
a subgrid scheme to reduce these differences in the spatial
discretization and to capture the GL migration without using
a fine mesh resolution (< 100 m). The schematic drawing of
the subgrid scheme for the two cases is shown in the pan-
els b of Figs. 2 and 3. The GL element is divided into the
grounded (red) and floating (blue) parts by the estimated GL
position x̃GL on Ei , which is the numerical approximation of
the analytical GL position xGL.

The GL moves toward the ocean in the advance phase and
away from the ocean in the retreat phase. First, we consider
case i in the advance phase and define the indicator as

χ(x)= σnn+pw, (27)

which vanishes on the floating ice and is negative and ap-
proximately equal to χa = τ22−p+pw in Eq. (11) on the
ground since the slope of the bedrock is small and n≈

(0,−1)T . Because of the poor spatial resolution of the coarse
mesh, χ(xi) is positive.

To determine the position x̃GL, we solve χ(x̃GL)=

σnn(x̃GL)+pw(x̃GL)= 0 by linear interpolation between
χ(xi−1) and χ(xi) such that

x̃GL = xi−1−
χ(xi−1)

χ(xi−1)−χ(xi)
(xi−1− xi). (28)

The water pressure pw(x) is a linear function of x on the GL
element, and the numerical solution of σnn(x) is also piece-

wise linear on every element with the standard Lagrange
elements in Elmer/ICE (Gagliardini et al., 2013). Hence, it
makes sense to approximate the analytical GL position xGL
by x̃GL by linear interpolation in the current framework. This
approach fits well with case i since the indicator χ(x) has op-
posite signs at xi−1 and xi ; see Fig. 2b, where x̃GL is marked
with a red “∗”. It guarantees the existence and uniqueness of
x̃GL on the GL element.

Another situation in the advance phase is case ii, shown
in Fig. 3. As the elements on both sides of the node xi are
geometrically floating, the boundary condition imposed on
xi becomes χ(xi)= σnn(xi)+pw(xi)= 0. However, the im-
plicit treatment of the ice base moves the z coordinate of the
node xi towards the bedrock with un > 0 in Eq. (23) as dis-
cussed in Sect. 3.3. The result is that pw defined by the im-
plicit zb in Eq. (23) satisfies σnn+pw > 0 in Eq. (27) and
χ(xi) > 0.

The implicit treatment of the ice base has the consequence
that only case ii occurs in the retreat phase. When the FS
equations are solved, the implicit update of the ice base with
un < 0 in Eq. (23) implies that the last grounded node in the
previous time step is leaving the bedrock when the ice is re-
treating and the GL moves back to the adjacent element. Case
i will not appear in that situation since zb(xi) > b(xi). In this
circumstance, χ(xi)= 0 in the floating node and a correction
of χ(x) is introduced into case ii by χ̃ in

χ̃(x)= σnn(x)+pb(x). (29)

Here pb(x)=−ρwgb(x) is the water pressure on the
bedrock corresponding to linear extrapolation of the pressure
for x > xGL along the element on the bedrock. Furthermore,
χ̃(x)≥ χ(x). Notice that pb(xi)= pw(x̂i) > pw(xi), where
x̂i is a point on the bedrock with the same x coordinate of xi,
as illustrated in Fig. 3b. Both χ(x) in Eq. (27) and χ̃(x) in
Eq. (29) are nonlinear in x, but the numerical approximation
of them will vary linearly in x. A solution x̃GL is found by
linear interpolation of χ̃(x) between the nodes xi−1 and xi
as in Eq. (28). It follows from Eq. (28) that x̃GL is located on
the element boundary; see Figs. 2 and 3. If we compare with
case i, this correction can be considered as using σnn(x̃GL) to
approximate σnn(xGL) on a virtual element between xi−1 and
x̂i; see Fig. 3. The position x̃GL is a numerical approximation
of the analytical GL position, although it is not geometrically
in contact with the bedrock.

Since we have pb(x)= pw(x) and χ(x)= χ̃(x) at the GL
element in case i, we can simply use χ̃(x) to find x̃GL for the
two cases by replacing χ in Eq. (28) by χ̃ .

The domains 0bg and 0bf are separated at x̃GL as in
Eq. (15), and the integrals on the GL element are calculated
with a high-order integration scheme as in Seroussi et al.
(2014). We introduce two step functions, HN (x) and Hβ(x),
to include and exclude quadrature points in the integration of
Nitsche’s term and the slip boundary condition, respectively.
They are defined for case i in Fig. 2 and for case ii in Fig. 3.
To achieve a reasonable numerical accuracy within the GL
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element, as suggested in Seroussi et al. (2014), at least 10th-
order Gaussian quadrature is used.

The penalty term in Nitsche’s method restricts the motion
of the element in the normal direction. It is only imposed
on an element which is fully geometrically on the ground in
case i. In contrast, in case ii the GL element Ei is not in con-
tact with the bedrock; see Fig. 3. The normal velocity on the
element should not be forced to zero, and only the floating
boundary condition is then used on the GL element. Nitsche’s
penalty term should be imposed on all the fully geometrically
grounded elements and partially on the GL element in the ad-
vance phase as in case i. The step function HN (x) indicates
how Nitsche’s method is implemented on the basal elements;
see Figs. 2c and 3c for the two cases. The penalty term con-
tributes to the integration only when HN (x)= 1.

The slip coefficient β is treated similarly with the step
function Hβ(x), where Hβ(x)= 1 is on the fully geometri-
cally grounded elements and Hβ(x)= 0 on the floating ele-
ments. To further smooth the transition of β at the GL, the
step function is set to be 1/2 in parts of the GL element
before integrating using the high-order scheme. The conver-
gence of the nonlinear iterations is improved in this way. In
case i, full friction is applied at the grounded part between
xi−1 and x̃GL of the GL element since this part is also ge-
ometrically grounded in the analytical solution of the FS as
in Fig. 2. Then, the friction is lower in the remaining part of
Ei . For the floating part between x̃GL and xi in case ii, there
is no friction, Hβ(x)= 0, we have reduced friction between
xi−1 and x̃GL; see Fig. 3c. The boundary integral Eq. (15) on
Ei is now rewritten with the two step functions as

B0 +BN =
∫
Ei

−HN (σ nn(u,p)n · v+ σ nn(v,q)n ·u)

+Hββ(t ·u)(t · v)+HN
γ0

h
(n ·u)(n · v) ds,

F0 =

∫
Ei

(1−HN )pwn · v ds. (30)

A summary of the numerical treatment of the GL is as fol-
lows:

– advance phase⇒ indicator χ in Eq. (27), case i or case
ii;

– retreat phase⇒ indicator χ̃ in Eq. (29), case ii.

The case is determined by the geometry of the GL element
and the sign of the indicator χ .

The algorithm for the GL element is as follows:

Equations (1), (7), and (8) form a system of coupled non-
linear equations. They are solved by Elmer/ICE v.8.3 in the
same manner as Durand et al. (2009b) and Gagliardini et al.
(2013, 2016). The detailed procedure is explained in Algo-
rithms 1, 2, and 3. The solution to the nonlinear FS system is
computed with Picard iterations to a 10−5 relative error with
a limit of maximal 25 nonlinear iterations. The x̃GL position
is determined dynamically during each fixed-point iteration
by solving Eq. (28) with χ or χ̃ and the solution σnn(x) from
the previous nonlinear iteration, and the step functions HN
and Hβ are adjusted accordingly. The water pressure pb is
fixed since the ice geometry is not changed during the non-
linear iterations.

5 Results

The numerical experiments follow the MISMIP bench-
mark (Pattyn et al., 2012), and a comparison is made with
the results in Gagliardini et al. (2016). Using the experiment
MISMIP 3a, the setups are exactly the same as in the advanc-
ing and retreating simulations in Gagliardini et al. (2016).
The experiments are run with spatial resolutions of 1x = 4,
2, 1, and 0.5 km. The mesh at the base is extruded vertically
in 20 layers with equidistantly placed nodes in each vertical
column. The time step is1t = 0.125 year for all four resolu-
tions to eliminate time discretization errors when comparing
different spatial resolutions.

The dependence on γ0 in Eq. (30) for the retreating ice
is shown in Fig. 4 with γ0 between 104 and 109. The esti-
mated GL positions do not vary with different choices of γ0
from 105 to 108, which suggests a suitable range of γ0. If γ0
is too small (γ0� 104), oscillations appear in the estimated
GL positions. If γ0 is too large (γ0� 108), then more non-
linear iterations in Algorithm 1 are needed in each time step.
The same dependency of γ0 is observed for the advancing
experiments and for different mesh resolutions as well. The
results are not very sensitive to γ0 and for the remaining ex-
periments we choose γ0 = 106.

The GL position during the transient simulations in the
advance and retreat phases is displayed in Fig. 5, and the
steady-state results (at t = 10000) are shown in Fig. 6 for
different mesh resolutions. The range of the steady-state so-
lutions from Gagliardini et al. (2016) with mesh resolution
from 25 to 200 m are shown as background shaded regions
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Figure 4. The MISMIP 3a retreat experiment with 1x = 1 km for
different choices of γ0 in the time interval [0,10000] years.

Figure 5. The MISMIP 3a experiments for the GL position when
t ∈ [0,10000] with1x = 4, 2, 1, and 0.5 km for the advance (solid)
and retreat (dashed) phases.

in red. We achieve similar GL migration results for both the
advance and retreat experiments with at least 20-times-larger
mesh resolutions. The GL position is insensitive to the vari-
ation in mesh size between 0.5 and 4 km.

The distance between the steady-state GL positions of the
retreat and the advance phases is shown in Fig. 6b. The max-
imal distance is about 6 km at 1x = 1 km with the subgrid
model, whereas in Gagliardini et al. (2016) the resolution has
to be below 50 m to achieve a similar result.

We observe oscillations at the ice surface near the GL in
all the experiments as expected from Durand et al. (2009a)
and Schoof (2011). A zoomed-in plot of the surface eleva-
tion computed with four different mesh sizes (1x = 0.5, 1,
2, and 4 km) after an advance simulation to t = 10000 years
is found in Fig. 7a. The abscissa is the distance from the
steady-state GL position for each mesh size. In general, the

Figure 6. The MISMIP 3a experiments at the final time t = 10000
with the resolutions at 1x = 4, 2, 1, and 0.5 km. (a) The GL po-
sitions in the advance (») and retreat (•) phases. (b) The distance
between the retreat and the advance xGL at the steady states. The
shaded regions indicate the range of the results in Gagliardini et al.
(2016) with 20-times-smaller mesh resolutions from 25 to 200 m,
with the axis scale shown in red at the top of the plot.

estimated GL position does not coincide with any nodes even
at the steady state, but it may be close to a node.

The ratio between the thickness below sea level Hbw and
the ice thickness H is shown in Fig. 7b. As in Fig. 7a, the
ratio is plotted versus the distance from the GL achieved
with the particular mesh size. The horizontal, dash-dotted
purple line represents the ratio of ρ/ρw. The solutions vary
smoothly over the mesh with 1x = 0.5 km, which appears
to be a sufficient resolution in both panels of Fig. 7. More-
over, the solutions converge regularly toward the solution
with 1x = 0.5 km when the mesh size decreases.

The result for 1x = 0.5 km in panel b confirms that the
hydrostatic assumption Hρ =Hbwρw in Eq. (9) is not valid
in the FS equations for x > xGL close to the GL and at the
GL position (cf. Durand et al., 2009a; Schoof, 2011). For
x < xGL we have Hbw/H < ρ/ρw since Hbw decreases and
H increases. The conclusion from numerical experiments in
van Dongen et al. (2018) is that the hydrostatic assumption
and the SSA equations approximate the FS equations well
for the floating ice beginning at a short distance away from
the GL.

The surface and the base velocity solutions from the ad-
vance experiment are displayed in Fig. 8 with 1x = 0.5, 1,
2, and 4 km after 10 000 years. The horizontal velocities on
the two surfaces are on top of each other for all1x with neg-
ligibly small differences on the floating ice as expected. The
vertical velocities w on the surface (dotted curves) and the
base (solid curves) at the GL are almost discontinuous as an-
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Figure 7. Details of the solutions for the advance experiment with1x = 0.5,1,2,4 km after 10 000 years. The solid dots represent the nodes
of the elements, and the vertical, dashed red lines indicate the GL position. (a) The oscillations in zs at the ice surface near GL. (b) The
flotation criterion is evaluated by Hbw/H . The ratio ρ/ρw is drawn in a horizontal, dash-dotted purple line.

Figure 8. The velocities u (a) and w (b) of the ice in the advance
experiment with 1x = 0.5, 1, 2, and 4 km after 10 000 years. The
solutions at the upper surface are the solid curves, and the solutions
at the lower surface are the dotted curves. The vertical velocity w is
zoomed in close to the GL, with the distance to the mesh-dependent
GL on the x axis.

alyzed in Schoof (2011). With the subgrid model, the rapid
variation is captured with1x = 0.5 km. The convergence for
decreasing mesh size behaves smoothly.

6 Discussion

Seroussi et al. (2014) describe four different subgrid models
(NSEP, SEP1, SEP2, and SEP3) for the friction in SSA and
evaluate them in a FEM discretization on a triangulated, pla-
nar domain. The flotation criterion is applied at the nodes of
the triangles. In the NSEP, an element is floating or not de-
pending on how many of the nodes of that element are float-

ing. In the other three methods, an inner structure in the trian-
gular element is introduced. One part of a triangle is floating
and one part is grounded. The amount of friction in a trian-
gle with the GL is determined by the flotation criterion. The
friction coefficient is reduced, the integration in the element
only includes the grounded part, or a higher-order polyno-
mial integration (SEP3) is applied. Faster convergence as the
mesh is refined is observed for the latter methods compared
to the first method. The discretization of the friction in Sect. 4
is similar to the SEP3 method, but the FS equations also re-
quire a subgrid treatment of the normal velocity condition. In
the method for the FS equations in Gagliardini et al. (2016),
the GL position is in a node, and the friction coefficient is
approximated in three different ways. The coefficient is dis-
continuous at the node in one case (DI in Gagliardini et al.,
2016). Our coefficient is also discontinuous but at the esti-
mated location of the GL between the nodes.

The convergence of the steady-state GL position toward
the reference solutions in Gagliardini et al. (2016) is ob-
served in the simulations in Figs. 5 and 6. However, as the
meshes we used are at least 20 times larger than the 25 m
finest resolution in Gagliardini et al. (2016), it has probably
not reached the convergence asymptote. At the current res-
olutions, the discretization introduces a strong mesh effect
such as the two different geometrical interpretations in the
two cases mentioned in Sect. 4. The subgrid scheme is able
to provide a more accurate representation of the GL posi-
tion and the boundary conditions, but the numerical solution
of the velocity field, pressure, and two free surfaces are still
computed on the coarse mesh, which are the main sources
of the numerical errors. Additional uncertainty at the GL is
introduced by the approximation of the bedrock geometry,
the friction at the GL, and the modeling of the ice–ocean in-
teraction. It is shown in Cheng and Lötstedt (2020) that the
solution at the GL is particularly sensitive to variation in the
geometry and friction at the ice base.
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Our method can be extended to a triangular mesh covering
0b in the following way (considering linear Lagrange func-
tions). The condition on χ in Eq. (27) or χ̃ in Eq. (29) is
applied on the edges of each triangle T in the mesh. If χ < 0
in all three nodes, then T is grounded. If χ ≥ 0 in all nodes,
then T is floating. The GL passes inside T if χ has a different
sign in one of the nodes. Then the GL crosses the two edges
where χ < 0 in one node and χ ≥ 0 in the other node. In this
way, a continuous reconstruction of a piecewise linear GL is
possible on 0b. The same tests are applied to χ̃ . The FEM
approximation is modified in the same manner as in Sect. 4
using step functions in Nitsche’s method.

An alternative to a subgrid scheme is to introduce static or
dynamic adaptation of the mesh on 0b with a refinement at
the GL as in, for example, Gladstone et al. (2010a), Corn-
ford et al. (2013), and Drouet et al. (2013). In general, a
fine mesh is needed at the GL and in an area surround-
ing it. Since the GL moves long distances in simulations
of paleo-ice sheets, the adaptation should be dynamic, per-
mit refinement and coarsening of the mesh varying in time,
and be based on some estimate of the numerical error of the
method. In shorter time intervals, a static adaptation may be
sufficient since the GL will move a shorter distance. Further-
more, shorter time steps are necessary for numerical stabil-
ity in static and dynamic mesh adaptation schemes. A static
adaptation is determined once before the simulation starts.
Introducing a time-dependent, dynamic mesh with adaptivity
into an existing code requires a substantial coding effort and
will increase the computational work considerably compared
to a static mesh. Subgrid modeling is easier to implement,
and the increase in computing time is small. A combination
of dynamic mesh adaptation and subgrid discretization may
be the ultimate solution. Then the mesh at the GL would be
adapted to resolve the variation in the interior of the ice at the
GL, while the subgrid modeling would handle the disconti-
nuity at the basal boundary.

7 Conclusions

A subgrid scheme at the GL was developed and tested in
the SSA model for 2D vertical ice flow in Gladstone et al.
(2010b) and in Seroussi et al. (2014), for the friction in
the vertically integrated model BISICLES (Cornford et al.,
2013) for 2D flow in Cornford et al. (2016), and for the PISM
model mixing SIA with SSA in 3D in Feldmann et al. (2014).
Here we propose a subgrid scheme for the FS equations for a
2D vertical cross section of ice, implemented in Elmer/ICE,
that can be extended to 3D. The mesh is static, and the mov-
ing GL position within one element is determined by linear
interpolation with an auxiliary function χ(x) or χ̃(x). Only
in that element is the FEM discretization modified to accom-
modate the discontinuities in the boundary conditions.

The numerical scheme is applied to the simulation of a 2D
vertical ice sheet with an advancing GL and one with a re-
treating GL. The model setups for the tests are the same as
in one of the MISMIP examples (Pattyn et al., 2012) and in
Gagliardini et al. (2016). The solution converges smoothly
in the neighborhood of the GL when the mesh size is re-
duced. Comparable results to Gagliardini et al. (2016) are
obtained using the subgrid scheme with more than 20-times-
larger mesh sizes. A larger mesh size also allows a longer
time step for the time integration.
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