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Abstract. This article describes the new Earth system model
(ESM), the Model for Interdisciplinary Research on Climate,
Earth System version 2 for Long-term simulations (MIROC-
ES2L), using a state-of-the-art climate model as the phys-
ical core. This model embeds a terrestrial biogeochemical
component with explicit carbon–nitrogen interaction to ac-
count for soil nutrient control on plant growth and the land
carbon sink. The model’s ocean biogeochemical component
is largely updated to simulate the biogeochemical cycles of
carbon, nitrogen, phosphorus, iron, and oxygen such that
oceanic primary productivity can be controlled by multiple
nutrient limitations. The ocean nitrogen cycle is coupled with
the land component via river discharge processes, and exter-
nal inputs of iron from pyrogenic and lithogenic sources are
considered. Comparison of a historical simulation with ob-
servation studies showed that the model could reproduce the
transient global climate change and carbon cycle as well as
the observed large-scale spatial patterns of the land carbon
cycle and upper-ocean biogeochemistry. The model demon-
strated historical human perturbation of the nitrogen cycle
through land use and agriculture and simulated the resul-
tant impact on the terrestrial carbon cycle. Sensitivity analy-
ses under preindustrial conditions revealed that the simulated
ocean biogeochemistry could be altered regionally (and sub-
stantially) by nutrient input from the atmosphere and rivers.
Based on an idealized experiment in which CO2 was pre-
scribed to increase at a rate of 1 % yr−1, the transient climate

response (TCR) is estimated to be 1.5 K, i.e., approximately
70 % of that from our previous ESM used in the Coupled
Model Intercomparison Project Phase 5 (CMIP5). The cu-
mulative airborne fraction (AF) is also reduced by 15 % be-
cause of the intensified land carbon sink, which results in an
airborne fraction close to the multimodel mean of the CMIP5
ESMs. The transient climate response to cumulative carbon
emissions (TCRE) is 1.3 K EgC−1, i.e., slightly smaller than
the average of the CMIP5 ESMs, which suggests that “opti-
mistic” future climate projections will be made by the model.
This model and the simulation results contribute to CMIP6.
The MIROC-ES2L could further improve our understanding
of climate–biogeochemical interaction mechanisms, projec-
tions of future environmental changes, and exploration of our
future options regarding sustainable development by evolv-
ing the processes of climate, biogeochemistry, and human
activities in a holistic and interactive manner.

1 Introduction

Originally, global climate projections using climate models
were based on simulations using atmosphere-only physical
models (Manabe et al., 1965). Numerical climate models
evolved through the integration or improvement of compo-
nent models on ocean circulation (Manabe and Bryan, 1969),
land hydrological processes (Sellers et al., 1986), sea ice dy-
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namics (e.g., Meehl and Washington, 1995), and aerosols
(e.g., Takemura et al., 2000), most of which focus on physical
aspects that affect how climate is formed. Cox et al. (2000)
attempted to couple a carbon cycle model and a climate
model to investigate the roles of biophysical and biogeo-
chemical (carbon cycle) feedbacks on climate. Their results
showed that such interactions are significant in projecting fu-
ture climate due to processes and feedbacks beyond those
incorporated in traditional climate models. Models that in-
corporate biogeochemical processes, such as that by Cox et
al. (2000), are often called Earth system models (ESMs).
Currently, the most comprehensive state-of-the-art ESMs in-
clude component models of the land and ocean carbon cycle,
atmospheric chemistry, dynamic vegetation, and other bio-
geochemical cycles (e.g., Watanabe et al., 2011; Collins et
al., 2011).

Among many processes and possible interactions in the
Earth system, the carbon cycle and its feedback on climate re-
main the focus of simulation studies using ESMs because of
the importance of anthropogenic CO2 as the primary driver
for climate change and the complexity of the natural car-
bon cycle that determines its fate. As ESMs simulate explicit
climate–carbon interactions, they can simulate the temporal
evolution of the atmospheric CO2 concentration and the re-
sultant climate change using anthropogenic CO2 emissions
as an input (Friedlingstein et al., 2006, 2014). It is also pos-
sible to make climate projections using prescribed CO2 con-
centrations, and the diagnosed CO2 fluxes in the simulations
can be used to calculate the level of anthropogenic CO2 emis-
sions compatible with prescribed CO2 pathways (Jones et al.,
2013). Furthermore, ESM simulations can be diagnosed in
terms of the relationship between anthropogenic CO2 emis-
sions and global temperature rise, i.e., the so-called transient
climate response to cumulative carbon emissions (TCRE)
(Allen et al., 2009; Matthews et al., 2009). The ESMs of the
Coupled Model Intercomparison Project Phase 5 (CMIP5)
revealed that the relationship is approximately linear (Gillett
et al., 2013), which facilitates the estimation of the total
amount of anthropogenic CO2 emissions to restrict global
warming below a specific mitigation target.

The feedback of the carbon cycle on climate is manifested
through the regulation of the atmospheric CO2 concentra-
tion, which can be decomposed into two feedback processes.
The first process is the carbon cycle response to CO2 in-
crease. An elevated CO2 concentration accelerates vegetation
growth that intensifies the land carbon sink. Additionally, in-
creased levels of atmospheric CO2 accelerate CO2 dissolu-
tion into the surface water of the ocean, and the absorbed
CO2 is transported into the deeper ocean via ocean circula-
tion and biological processes. Consequently, an increase in
atmospheric CO2 triggered by external forcing (e.g., anthro-
pogenic emissions) can be partly mitigated by natural CO2
uptake, forming a negative feedback loop between the atmo-
spheric CO2 concentration and natural carbon uptake, i.e.,
the so-called CO2–carbon feedback (Gregory et al., 2009) or

carbon concentration feedback (Boer and Arora et al., 2009).
The second feedback process is the carbon cycle response
to global warming. Global warming induces the loss of car-
bon from the land to the atmosphere by accelerating ecosys-
tem respiration (Arora et al., 2013; Todd-Brown et al., 2014;
Friedlingstein et al., 2014), while ocean surface warming re-
duces the solubility of CO2 in seawater. The intensification
of upper-ocean stratification and weakening of the biological
pump by global warming also prevent the effective transport
of dissolved carbon into the deeper ocean (Frölicher et al.,
2015; Yamamoto et al., 2018). Global warming might lead
to localized intensification of the natural carbon sink (e.g.,
lengthening of the growing season and exposure of the ocean
surface through melting of sea ice). However, state-of-the-
art ESMs have projected global natural carbon loss due to
warming, which suggests a positive feedback loop between
climate change and natural carbon uptake, i.e., the so-called
climate–carbon feedback (Friedlingstein et al., 2006; Arora
et al., 2013).

Quantifications of the strength of the carbon cycle feed-
backs and their comparison among ESMs were first made
by Friedlingstein et al. (2006), who showed that all ESMs
agreed with the positive sign of the climate–carbon feed-
backs for both land and ocean. The latest comparison us-
ing CMIP5 ESMs was made by Arora et al. (2013). They
found that the widest spread between the models was in
the land carbon response to CO2 increase, while the second
greatest spread was in the land carbon response to warming.
Two of the ESMs in their analysis employed explicit carbon–
nitrogen (C–N) interactions in the land component for con-
sidering the limitation of soil N on land CO2 uptake, and
these two models showed the smallest land carbon response
to CO2 increase. Although it was pointed out later that the
lowest response of the two C–N models was not necessarily
induced by N limitation (Hajima et al., 2014b), the compar-
ison study by Arora et al. (2013) aroused interest in terres-
trial biogeochemical feedbacks other than the carbon cycle.
The importance of N limitation on the land carbon sink has
also been suggested following simulation studies using of-
fline land models (e.g., Thornton et al., 2007; Sokolov et al.,
2008; Zaehle and Friend, 2010) and diagnostic analyses us-
ing the simulation output of ESMs (e.g., Wieder et al., 2015).

Compared with land, the oceans showed better agreement
among the CMIP5 ESMs (Arora et al., 2013) in terms of the
strength of both CO2–carbon and climate–carbon feedbacks.
However, the ESMs showed substantial discrepancies in the
spatiotemporal patterns of ocean CO2 uptake, even in his-
torical simulations. In particular, in the Southern Ocean, al-
though the models indicated dominance of the region in rela-
tion to anthropogenic carbon uptake (Frölicher et al., 2015),
the seasonality of the atmosphere–ocean CO2 flux and the
cumulative values in that region showed divergent patterns
among the models (Anav et al., 2013; Frölicher et al., 2015;
Kessler and Tjiputra, 2016).
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The ecological response of the ocean in ESMs remains far
from certain. A benchmark study by Anav et al. (2013) re-
vealed that all CMIP5 ESMs underestimate net primary pro-
ductivity (NPP) in the high latitudes of the Northern Hemi-
sphere, where seawater temperature and N availability likely
limit primary production (e.g., Moore et al., 2013). They also
found that most models overestimate NPP in the Southern
Hemisphere high latitudes, where the nutrient supply is suffi-
cient because of strong upwelling but the iron supply is lim-
ited (Moore et al., 2013). Globally, the CMIP5 ESMs sim-
ulate NPP with different magnitudes, even in preindustrial
conditions, and the global NPP response among the mod-
els to past and future climate change is largely divergent
(Laufkötter et al., 2015), as is the sinking particle flux (Fu et
al., 2016). Although such problems regarding oceanic NPP
might be partly attributable to an inaccurate reproduction of
oceanic physical fields by the models (Frölicher et al., 2015;
Laufkötter et al., 2015), it is critical in simulations to ac-
curately reproduce the relative abundances of nutrients in
the euphotic zone and their availability to microorganisms.
In particular, nutrients in the upper ocean are sustained by
upwelling from the deeper ocean and inputs from external
sources. Some studies suggest that nutrient availability to
marine ecosystems could decline in the future through the
reduction of nutrient upwelling because of intensified stratifi-
cation (e.g., Ono et al., 2008; Whitney et al., 2013; Yasunaka
et al., 2016). Conversely, other studies suggest that nutrient
supply through atmospheric deposition and river discharge
processes could be amplified in the future because of hu-
man activities (Gruber and Galloway, 2008; Mahowald et al.,
2009) unless robust mitigation policies are adopted. Thus, to
project the effects of biogeochemical feedback on climate, it
is necessary to consider the response of ecological processes
to changing nutrient inputs as well as the physical response.

On the basis of the above, we previously reviewed the
CMIP5 exercises and discussed the perspective for new ESM
development (Hajima et al., 2014a). In our ESM develop-
ment, we prioritized the incorporation of explicit C–N inter-
action in the land biogeochemical component. The terrestrial
nitrogen cycle regulates the carbon cycle by modulating soil
nutrient availability to plants, regulating leaf N concentra-
tion and photosynthetic capacity, and changing the C : N ra-
tio in plants and soils. In particular, CO2 stimulation of plant
growth (the so-called CO2 fertilization effect) is the main
driver of terrestrial CO2–carbon feedback, while N limitation
on plant growth might regulate the feedback strength (Arora
et al., 2013; Hajima et al., 2014a, b). Thus, consideration of
C–N coupling in the terrestrial ecosystem in an ESM will
enable change in the land carbon sink capacity following a
change in N dynamics induced by human perturbation (e.g.,
fertilizers) and/or atmospheric N deposition.

For the ocean, the biogeochemical component in our pre-
vious model (MIROC-ESM; Watanabe et al., 2011) was
unchanged from that used for the first stage of the Cou-
pled Climate Carbon Cycle Model Intercomparison Project

(C4MIP; Friedlingstein et al., 2006; Yoshikawa et al., 2008).
The ocean component simulated C and N cycles only, using
simple parameterizations of ocean ecosystem dynamics with
four types of N tracer and five C tracers (Watanabe et al.,
2011) with fixed C : N ratios of the organic components. Fur-
thermore, the ocean N cycle in the model was isolated from
other subsystems; i.e., there was no N input into the ocean
(e.g., biological N fixation, atmospheric N deposition, and
riverine N input) or flux out of the system (e.g., outgassing
and sedimentation). To account for changing inputs of N nu-
trients into the ocean in the simulations, we gave second pri-
ority to the coupling of the ocean N cycle to other subsystems
by incorporating N exchange processes between the ocean
and other components in the new ESM. The ocean N fixer
(i.e., diazotrophs) can be strongly regulated by P availability
(Shiozaki et al., 2018); therefore, inclusion of the ocean P
cycle should be adopted together with improvement of the N
cycle. Additionally, as the denitrification process is strongly
regulated by the level of oxygen in seawater, it was also de-
cided to include the oxygen cycle in the new model. Inclu-
sion of the oxygen cycle provides potential to project future
oceanic deoxygenation that is likely to threaten the habit-
able zone of marine ecosystems driven by changes in oxygen
solubility, mixing, circulation, and respiration due to global
warming (Oschlies et al., 2018; Yamamoto et al., 2015).

The third priority in developing a new ESM was the in-
corporation of Fe cycle processes. Fe is an essential mi-
cronutrient for phytoplankton. Thus, any model lacking con-
sideration of the Fe cycle potentially overestimates primary
productivity, especially in regions in which the subsurface
macronutrient supply is enhanced but Fe availability is lim-
ited, e.g., the main oceanic upwelling “high-nutrient, low-
chlorophyll” (HNLC) regions (Martin and Gordon, 1988;
Moore et al., 2013). Similar to the N cycle, the ocean Fe cy-
cle is also an open system. One of its main external sources is
dissolved Fe from continental margins and from hydrother-
mal vents along mid-ocean ridges (Tagliabue et al., 2017).
Thus, the continental and hydrothermal Fe supply is impor-
tant in terms of determining the background Fe concentra-
tion in seawater. Additionally, the ocean Fe cycle is also con-
nected to the land through the atmosphere (Jickells et al.,
2005; Mahowald et al., 2009; Ito et al., 2019a). Fe-containing
aerosols are emitted from dry land surfaces, open biomass
burning, and fossil fuel combustion, and they are delivered
to marine ecosystems via dry and wet deposition processes.
These processes have been perturbed by climate change, land
use change (LUC), and air pollution (Jickells et al., 2005;
Mahowald et al., 2009; Ito et al., 2019a). Thus, consideration
of atmospheric Fe deposition, in particular, is necessary to
reflect the anthropogenic impact on future marine ecosystem
dynamics via Fe cycle processes.

Here, we present a description of a new ESM, the Model
for Interdisciplinary Research on Climate, Earth System ver-
sion 2 for Long-term simulations (MIROC-ESL2), which
considers explicit carbon and nitrogen cycles for land and
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carbon, nitrogen, iron, phosphate, and oxygen cycles for the
ocean. In the model, the biogeochemical components are
coupled interactively with physical climate components, en-
abling consideration of climate–biogeochemical feedbacks.
The model description and experimental settings are pre-
sented in Sect. 2. The basic performance of the model, eval-
uated by executing a historical simulation and comparison
of the results with observation-based studies, is presented
in Sect. 3.1. To evaluate the sensitivity of the biogeochem-
ical processes, experiments for sensitivity analysis were per-
formed and the results compared with existing studies. In
particular, the global temperature response to cumulative an-
thropogenic CO2 emissions in the new model was quantified
and compared with that of the CMIP5 ESMs to characterize
the general features of the new model in relation to existing
ESMs. The results of the sensitivity analyses are presented in
Sect. 3.2. Finally, a summary and perspectives obtained from
this study are offered in Sect. 4.

2 Methods

2.1 Model configurations

To comprehensively describe the MIROC-ES2L structure
(Fig. 1), we first present the physical core of MIROC5.2,
which is an updated version of MIROC5 used in CMIP5.
Only a brief summary is presented here because a detailed
description of the modeling of MIROC5 can be found in
Watanabe et al. (2010), and an account of a simulation
study performed by MIROC5.2 can be found in Tatebe et
al. (2018). Additionally, a description of MIROC6, which
shares almost the same structure and many of the character-
istics of MIROC5.2 except for the atmospheric spatial res-
olution and cumulus treatments, can be found in Tatebe et
al. (2019). In this paper, a description of the land and ocean
biogeochemistry is presented in detail because those two
components represent the main modifications from the pre-
vious version of the ESM (i.e., MIROC-ESM; Watanabe et
al., 2011).

2.1.1 Physical core

The MIROC5.2 physical core comprises component mod-
els of the atmosphere, ocean, and land. The atmospheric
model is based on a spectral dynamical core originally named
the Center for Climate System Research–National Institute
for Environmental Studies atmospheric general circulation
model (CCSR-NIES AGCM; Numaguti et al., 1997), which
is interactively coupled with an aerosol component model
called the Spectral Radiation-Transport Model for Aerosol
Species (SPRINTARS; Takemura et al., 2000, 2005). For the
ocean, the CCSR Ocean Component (COCO) model (Ha-
sumi, 2006) is used in conjunction with a sea ice component
model. For land, the Minimal Advanced Treatments of Sur-
face Interaction and Runoff (MATSIRO) model (Takata et

al., 2003) is coupled to simulate the atmosphere–land bound-
ary conditions and freshwater input into the ocean. Consid-
ering the application possibility of the ESM to long-term cli-
mate simulations of more than hundreds of years, e.g., paleo-
climate studies (Ohgaito et al., 2013; Yamamoto et al., 2019),
the horizontal resolution of the atmosphere is set to have T42
spectral truncation, which is approximately 2.8◦ intervals for
latitude and longitude. The vertical resolution is 40 layers up
to 3 hPa with a hybrid σ–p coordinate, as in MIROC5. The
horizontal coordination for the ocean is changed from the
bipolar system employed in MIROC5 to a tripolar system in
MIROC5.2 that is divided horizontally into 360× 256 grids.
(To the south of 63◦ N, the longitudinal grid spacing is 1◦

and the meridional spacing becomes fine near the Equator.
In the central Arctic Ocean, the grid spacing is finer than 1◦

because of the tripolar system.) The vertical levels increase
from 44 to 62 with a hybrid σ–z coordinate system. For land,
the same horizontal resolution as used for the atmosphere is
employed; the vertical soil structure of the model has six lay-
ers down to the depth of 14 m. Subgrid fractions for two land
use types (agriculture plus managed pasture and others) are
considered for the physical processes.

For the AGCM, the schemes used for the dynamical core,
radiation, cumulus convection, and cloud microphysics are
mostly the same as in MIROC5; the major update of pro-
cesses mainly concerns the aerosol module. The version used
here treats atmospheric organic matter (OM) as one of the
prognostic variables, and emissions of primary OM and pre-
cursors for secondary OM are diagnosed in the component.
For land, the scheme for subgrid snow distribution is replaced
by one incorporating a physically based approach (Nitta et
al., 2014; Tatebe et al., 2019), and wetland formed temporar-
ily in the snowmelt season is newly considered to reduce
the warm bias in temperature in the European region dur-
ing spring–summer (Nitta et al., 2017; Tatebe et al., 2019).
The ocean and sea ice components are mostly the same as in
MIROC5.

2.1.2 Land biogeochemical processes

The model of the land ecosystem–biogeochemistry compo-
nent in MIROC-ES2L is the Vegetation Integrative SImula-
tor for Trace gases model (VISIT; Ito and Inatomi, 2012a).
This model simulates carbon and nitrogen dynamics on land
(schematics for the carbon cycle can be found in Ito and
Oikawa, 2002, and for the nitrogen cycle in Supplement
Fig. S1). It has been used for ecological studies of the site–
global scale (e.g., Ito and Inatomi, 2012b), impact assess-
ments of climate change (e.g., Warszawski et al., 2013; Ito et
al., 2016a, b), CO2 flux inversion studies (e.g., Maksyutov et
al., 2013; Niwa et al., 2017), and contemporary assessments
of CO2, CH4, and N2O emissions in the Global Carbon
Projects (Le Quéré et al., 2016; Saunois et al., 2016; Tian et
al., 2018). The early version of the model (Sim-CYCLE; Ito
and Oikawa, 2002) was actually used as the land carbon cycle
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Figure 1. Schematic of component models in the new MIROC-ES2L Earth system model, the biogeochemical and biophysical interactions,
and external forcing. The physical core of the model is MIROC5.2, which comprises an atmospheric climate model (CCSR-NIES AGCM
or MIROC-AGCM) with an aerosol module (SPRINTARS), an ocean physical model (COCO) with a sea ice model, and a land physical
model (MATSIRO) with a river submodel. The land biogeochemistry component (VISIT-e) simulates carbon and nitrogen cycles with an
LUC submodel, and the ocean biogeochemistry component (OECO) simulates the cycles of carbon, nitrogen, iron, phosphorus, and oxygen.
Color-boxed arrows indicate external forcing. Solid (dashed) black arrows represent biogeochemical (physical) variables exchanged between
the component models (the exchanges of physical variables are almost the same as in MIROC-ESM; see Table 1 of Watanabe et al., 2011).
Variables in square brackets represent the prognostic biogeochemical cycles and aerosol species (black carbon, BC; organic matter, OM;
sulfate (including precursors), SU; dust, DU; sea salt, SA). The names of exchanged variables within parentheses are diagnosed variables,
i.e., ocean–land riverine P flux diagnosed from the N flux and simulated land and ocean N2O fluxes used for diagnostic purposes.

component in the first stage of the C4MIP project (Friedling-
stein et al., 2006; Yoshikawa et al., 2008). The model covers
major processes relevant to the global carbon cycle. Photo-
synthesis or gross primary productivity (GPP) is simulated
based on the Monsi–Saeki theory (Monsi and Saeki, 1953),
which provides a conventional scheme to simulate leaf-level
photosynthesis in a semiempirical manner and for upscal-
ing to canopy-level primary productivity. The allocation of
photosynthate between carbon pools in vegetation (e.g., leaf,
stem, and root) is regulated dynamically following phenolog-
ical stages. The transfer of vegetation carbon into litter–soil
pools is simulated using constant turnover rates, and in decid-
uous forests, seasonal leaf shedding occurs at the end of the
growing period. The model focuses on biogeochemical pro-
cesses and it does not explicitly simulate dynamic change in
vegetation composition; therefore, the biogeochemical pro-
cesses are simulated under a fixed biome distribution (Sup-
plement Fig. S2). The carbon stored in litter (i.e., foliage,
stem, and root litter) and humus (i.e., active, slow, and pas-
sive) pools is decomposed and released as CO2 into the at-
mosphere under the influence of soil water and temperature.
Further details on the carbon cycle processes in the model
can be found in Ito and Oikawa (2002).

For the nitrogen cycle, the model considers two major ni-
trogen influxes to the ecosystem: biological nitrogen fixa-

tion (BNF) simulated based on the scheme of Cleveland et
al. (1999) and external nitrogen sources such as fertilizer and
atmospheric nitrogen deposition, which are prescribed in the
forcing data. The fluxes of nitrogen out of the land ecosystem
are simulated through N2 and N2O production during nitrifi-
cation and denitrification in soils based on the scheme of Par-
ton et al. (1996), leaching of inorganic nitrogen from soils,
which is affected by the amount of soil nitrate and runoff rate,
and NH3 volatilization from soils (Lin et al., 2000; Thornley,
1998). Within the vegetation–soil system, organic nitrogen
in the soil is supplied from litter fall, whereas inorganic ni-
trogen is released through soil decomposition processes (soil
mineralization) and stored as two chemical forms (NO−3 and
NH+4 ). Inorganic nitrogen is taken up by plants, allocated to
two vegetation pools (canopy and structural pools), and im-
mobilized into a microbe pool. Finally, mineral nitrogen is
lost via biotic–abiotic processes as mentioned above.

Although the original land component model covers most
major carbon–nitrogen processes, for the purposes of inclu-
sion in the new ESM and making fully coupled climate–
carbon–nitrogen projections, the land model was modified
for this study (hereafter, the modified version is called VISIT-
e). First, the modified model represents the close interaction
between carbon and nitrogen in plants. This is because the
original model has only a loose interaction between these two
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cycles, and thus it cannot precisely predict the nitrogen limi-
tation on primary productivity. To achieve this, the photosyn-
thetic capacity in VISIT-e is modified to be controlled by the
amount of nitrogen in leaves (leaf nitrogen concentration),
which is determined by the balance between the nitrogen de-
mand of plants and potential supply from the soil. Thus, if
sufficient inorganic nitrogen is not available for plants, the
leaf nitrogen concentration is gradually lowered, which re-
duces photosynthetic capacity and the plant production rate.
This process is required to simulate the observed downregu-
lation in elevated CO2 experiments (e.g., Norby et al., 2010;
Zaehle et al., 2014). Other modifications regarding the nitro-
gen cycle are described in Appendix A.

Second, although the original VISIT incorporates LUC
and associated CO2 emission processes, to take full advan-
tage of the latest LUC forcing dataset (Land-Use Harmo-
nization 2; Ma et al., 2019), additional LUC-related pro-
cesses have been newly introduced in VISIT-e. The model
assumes five types of land cover (each represented on a sep-
arate tile) in each land grid box (i.e., primary vegetation,
secondary vegetation, urban, cropland, and pasture) with the
same structure of carbon–nitrogen pools. All processes are
calculated separately for each tile (i.e., no lateral interaction),
and then the variables in the tile are summed after weight-
ing by the areal fraction of each land use type. The LUC
impact is modeled assuming two types of land use impact
on the biogeochemistry. The first impact considers status-
driven LUC processes, which affect land biogeochemistry
even when the areal fractions of the tiles are fixed. For ex-
ample, even when a simulation is conducted with fixed areal
fractions (e.g., a spin-up run under 1850 conditions), crop
harvesting, nitrogen fixation by N-fixing crops, and the de-
cay of OM in product pools occur. The second type of land
use impact includes transition-driven processes that happen
only when areal changes occur among the tiles. For exam-
ple, when an areal fraction is changed within a year (e.g.,
conversion of forest to urban land use), carbon and nitrogen
in the harvested biomass are translocated between product
pools. When cropland is abandoned and the area is reclassi-
fied as secondary forest, the apparent mean mass density of
secondary forest is first diluted because of the increase in the
less vegetated area, and then secondary forest starts regrowth
toward a new stabilization state. A further detailed descrip-
tion of LUC modeling is given in Appendix A.

The land ecosystem component runs with a daily time step
in the ESM. It has fixed spatial distribution patterns of 12
vegetation categories (see Supplement Fig. S2), and the land
biogeochemistry is affected by daily averaged atmospheric
conditions (CO2 concentration, downward shortwave radia-
tion, air temperature, and air pressure) and land abiotic con-
ditions (soil water, soil temperature, and runoff rate as the
base flow) simulated by the physical core of the ESM. In turn,
daily averaged land variables simulated by VISIT-e are used
by other components of the ESM (Fig. 1). For example, the
simulated leaf area index (LAI) is referenced in the physical

core of the model to simulate physical dynamics on the land
surface (e.g., evapotranspiration, albedo, and surface rough-
ness). Furthermore, the rate of net atmosphere–land CO2 flux
is used in the calculation of the atmospheric CO2 concentra-
tion, and inorganic N leached from the soil is transported by
rivers and subsequently used as an input of N nutrients to
the ocean ecosystem. The chemical state of N in rivers is as-
sumed conserved during transportation, and biogeochemical
processes such as outgassing or sedimentation in freshwater
systems are neglected in the present model. Additionally, al-
though the model can simulate terrestrial carbon loss by ero-
sion and dissolution of organic carbon, these processes are
not activated to close the global mass conservation of carbon
and nitrogen. Finally, although N2O and NH3 emissions are
simulated, the emission fluxes are considered only for diag-
nostic purposes and they do not produce any change in the
atmospheric radiation balance or air quality.

2.1.3 Ocean biogeochemical processes

The new ocean biogeochemical component model OECO2
(see Supplement Fig. S3 for a schematic) is a nutrient–
phytoplankton–zooplankton–detritus-type model that is an
extension of the previous model (Watanabe et al., 2011). Al-
though only an overview of OECO2 is presented here, a de-
tailed description can be found in Appendix B.

In OECO2, ocean biogeochemical dynamics are simu-
lated with 13 biogeochemical tracers. Three of them are
associated with cycles of macronutrients (nitrate and phos-
phate) and a micronutrient (dissolved Fe). The model has
four organic tracers of “ordinary” nondiazotrophic phyto-
plankton, diazotrophic phytoplankton (nitrogen fixer), zoo-
plankton, and particulate detritus. All OM in these four trac-
ers is assumed to have an identical nutrient, oxygen, and mi-
cronutrient iron composition following the Redfield ratio of
C : N : P : O = 106 : 16 : 1 : 138 (Takahashi et al., 1985) and
C : Fe = 150 : 10−3 (Gregg et al., 2003). Four other tracers
are associated with carbon and/or calcium, i.e., dissolved in-
organic carbon (DIC), total alkalinity, calcium, and calcium
carbonate. The two other tracers are oxygen and nitrous ox-
ide.

The nitrogen cycle in OECO2 is similar to that in the previ-
ous version (Yoshikawa et al., 2008; Watanabe et al., 2011),
except the new model accounts for nitrogen influxes such as
nitrogen deposition from the atmosphere (as external forc-
ing), input of inorganic nitrogen from land via rivers, and
BNF by diazotrophic phytoplankton (Fig. 1). Additionally,
denitrification is also modeled as the dominant process of
oceanic nitrogen loss, with an explicit distinction between
the gaseous forms of N2O and N2 (see below for nitrogen fix-
ation and denitrification processes). Loss of nitrogen through
the sedimentation process is also considered. The phospho-
rus cycle is newly embedded in the model to represent strong
phosphorous limitation on the growth of diazotrophic phy-
toplankton. The structure of the phosphorus cycle is gener-
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ally similar to that of nitrogen except in two respects: (1) the
riverine input of phosphate is the only process that introduces
phosphorus into the ocean, and (2) there is no process of
outgassing from the ocean, unlike the denitrification process
in the nitrogen cycle. As the land ecosystem model cannot
simulate the phosphorus cycle, the flux of phosphorous from
rivers is diagnosed from the nitrogen flux, assuming that the
phosphate brought to the river mouth satisfies the N : P ratio
of 16 : 1, similar to the Redfield ratio.

The structure of the ocean iron cycle is also similar to that
of nitrogen, except the following processes are modeled as
iron input into the ocean. Two major sources of iron depo-
sition from the atmosphere are included in the new model:
lithogenic and pyrogenic sources. Mineral dust emission is
diagnosed by the aerosol component module, depending on
the near-surface wind speed, soil dryness, and bare ground
cover, while iron emitted from biomass burning and the con-
sumption of fossil fuel and biofuel follows external forcing.
The latter emission dataset used in this study is shown in Sup-
plement Fig. S4. The iron emissions from pyrogenic sources
are estimated based on the iron content and emissions of par-
ticulate matter (Ito et al., 2018). A shift from coal to oil com-
bustion is considered in relation to shipping (Fletcher, 1997;
Endresen et al., 2007). The iron content of mineral dust is
prescribed at 3.5 % (Duce and Tindale, 1991). The iron de-
position from biomass burning is calculated from black car-
bon (BC) deposition and a ratio of 0.04 gFe gBC−1 in fine
particles at emission (Ito, 2011). The emission, transporta-
tion, and deposition processes are simulated explicitly by
the atmospheric aerosol component. The iron from different
sources has different solubility in seawater, and thus different
amounts of iron are available for phytoplankton. The solubil-
ity of iron is prescribed at 79 % for oil combustion, 11 % for
coal combustion, and 18 % for biomass burning (Ito, 2013).
The solubility of iron for mineral dust is prescribed at 2 %
(Jickells et al., 2005).

In addition to the Fe input from the atmosphere, recent
studies suggest contributions of Fe supply from sediment and
hydrothermal vents to ecosystem activities (Tagliabue et al.,
2017). The contributions of these two natural Fe sources to
the determination of the atmospheric CO2 concentration and
export production are similar to or greater than that of dust
(Tagliabue et al., 2014). Therefore, these three Fe sources are
also considered in the new ESM (Appendix B).

Ocean ecosystem dynamics are simulated based on the nu-
trient cycles of nitrate, phosphorous, and iron. The nutrient
concentration, in conjunction with the controls of seawater
temperature and the availability of light, regulates the pri-
mary productivity of the two types of phytoplankton. The
model assumes that diazotrophic phytoplankton can pros-
per in regions in which phosphate is available but the nitrate
concentration is small (< 0.05 µmolL−1). In the model, zoo-
plankton is assumed to be independent of abiotic conditions
(e.g., seawater temperature) and dependent on biotic condi-
tions (phytoplankton and zooplankton concentrations), as in

the previous model. The denitrification process is modeled
to occur only in suboxic waters (< 5 µmolL−1) (Schmittner
et al., 2008), and it is suppressed in water with a low ni-
trate concentration (< 1 µmolL−1). Detritus contains nitrate,
phosphorus, iron, and carbon, most of which is remineralized
while sinking downward. The detritus that reaches the ocean
floor is removed from the system; however, a fraction of OM
in the sediment is assumed to return to the bottom layer of the
water column at a constant rate in each location (Kobayashi
and Oka, 2018).

The ocean carbon cycle is formed by atmosphere–ocean
CO2 exchange, inorganic carbon chemistry, OM dynamics
driven by marine ecosystem activities, and transportation and
reallocation processes of ocean carbon within the interior.
The formulations of atmosphere–ocean gas exchange, car-
bon chemistry, and related parameters follow protocols from
the Ocean Model Intercomparison Project (OMIP; Orr et al.,
2017). The production of DIC and total alkalinity is con-
trolled by changes in inorganic nutrients and CaCO3, follow-
ing Keller et al. (2012).

Finally, the flux of dimethyl sulfide (DMS) from the ocean,
which is produced by plankton and is a precursor of atmo-
spheric sulfate aerosols, is diagnosed in the original aerosol
module from the surface downward shortwave radiation flux.
In MIROC-ES2L, this emission scheme is modified and
the flux is calculated from the sea surface DMS concen-
tration that is diagnosed from the simulated surface wa-
ter chlorophyll concentrations and the corresponding mixed-
layer depth (Appendix B). In the present model, this is the
only pathway via which ocean biogeochemistry affects cli-
mate if the model is driven by a prescribed CO2 concentra-
tion (Fig. 1). This modification of the DMS emission scheme
increases the sulfate aerosol amount, particularly over high-
latitude oceans during winter and in regions in which high
surface wind speed occurs. The solar irradiance of the sur-
face decreases in such regions; however, this effect is not
sufficiently significant to change the mean physical climate
states.

2.2 Experiments, forcing, and metrics

2.2.1 Experiments and forcing

To evaluate the performance and sensitivities of MIROC-
ES2L, we conducted four groups of experiments compris-
ing 11 experiments in total (Tables 1 and 2). The first group
was a control run that comprised two types of experiments: a
normal control run (CTL) in which the external forcing was
set to preindustrial conditions and an alternative control run
(CTL-D) used for sensitivity analysis of the ocean biogeo-
chemistry, which is described later.

The second group, used for historical simulations, com-
prised three types of experiments during the period 1850–
2014. All three experiments were driven by the Coupled
Model Intercomparison Project Phase 6 (Eyring et al., 2016)

www.geosci-model-dev.net/13/2197/2020/ Geosci. Model Dev., 13, 2197–2244, 2020



2204 T. Hajima et al.: Development of the MIROC-ES2L Earth system model

official forcing datasets (version 6.2.1; details on the forc-
ing datasets used in the simulations are summarized in Ap-
pendix C), and the CO2 concentration was prescribed in
the simulations (i.e., so-called concentration-driven experi-
ments). The first comprised a conventional historical simu-
lation (HIST), and the simulation result is used for direct
comparison with observation-based studies to evaluate model
performance. The second was a special experiment named
HIST-NOLUC, which was designed to evaluate the impact of
LUC on the climate and biogeochemistry. In this experiment,
land use and agricultural management (fertilizer application)
were fixed at preindustrial levels. This experimental config-
uration is the same as the LUMIP experiment in CMIP6
named land-noLu (Lawrence et al., 2016). The third exper-
iment (HIST-BGC) was the same as HIST, except that the
CO2 increase only affects the carbon cycle processes (named
in C4MIP of CMIP6 as hist-bgc; Jones et al., 2016). Thus,
there was no CO2-induced global warming in the experiment.

The third experimental group was used to evaluate the
climate and carbon cycle feedbacks. This group comprised
three types of idealized experiments, following experimen-
tal designs proposed by Eyring et al. (2016) and Jones et
al. (2016). In the three experiments, the CO2 concentration
was prescribed to increase at the rate of 1.0 % per year from
the preindustrial state throughout the 140-year period (i.e.,
the concentration finally reached a value of approximately
1140 ppmv), while other external forcing was maintained at
the preindustrial condition. The three experiments were con-
figured as follows: (1) 1PPY was a normal experiment in
which both climate and biogeochemical processes respond
to the CO2 increase; (2) 1PPY-BGC was the same as 1PPY
but the prescribed CO2 increase affects only the carbon cycle
processes; and (3) 1PPY-RAD was the same as 1PPY but the
CO2 increase affects only atmospheric radiation processes.
In 1PPY-BGC, carbon cycle processes respond to the CO2
increase without CO2-induced global warming; thus, the re-
sult of this simulation is used to quantify the CO2–carbon
feedback. In 1PPY-RAD, as there is no direct CO2 stimula-
tion on the carbon cycle, climate change is the only cause
of carbon cycle variation relative to the preindustrial control
(CTL). Thus, this simulation result is used to evaluate the
climate–carbon feedback (Arora et al., 2013; Schwinger et
al., 2014).

The final group comprised a set of experiments to evalu-
ate ocean biogeochemistry, focusing mainly on the processes
newly introduced in MIROC-ES2L. This group comprised
three types of experiments. The first experiment (NO-NR)
was configured similarly to the CTL run, except the ocean
component did not receive any riverine N input. Through
this experiment, the impact of riverine N on ocean biogeo-
chemistry could be evaluated. The second experiment (NO-
NRD) was the same as NO-NR, except atmospheric N depo-
sition additionally had no effect on ocean biogeochemistry.
By evaluating the difference between NO-NR and NO-NRD,
the impact of nitrogen deposition on ocean biogeochemistry

could be evaluated. The final experiment (NO-FD) was con-
figured with atmospheric Fe deposition onto the ocean sur-
face switched off. To detect slight signals of ocean biogeo-
chemistry arising from switching off the three processes (i.e.,
riverine N, N deposition, and Fe deposition), it was necessary
to maintain consistency in the ocean physical fields between
these experiments because a slight difference in the ocean
physical fields produces perturbation on ocean biogeochem-
istry. In MIROC-ES2L, the ocean DMS emissions represent
the feedback process of ocean biogeochemistry on the atmo-
spheric physical processes; thus, biogeochemical change in-
duced by the switching-off manipulations must change the
DMS emission, which leads to inconsistency in the physical
fields between the experiments. To avoid this occurrence, the
DMS emission scheme in all three experiments was reverted
to that used in the original aerosol component model, which
is independent of the ocean ecosystem state (Appendix B).
Similarly, the special control run (CTL-D), which was based
on CTL, also had the DMS emission scheme changed to the
same as NO-NR, NO-NRD, and NO-FD.

To conduct the experiments described above, preindustrial
spin-up was performed in advance. Land and ocean biogeo-
chemical components were decoupled from the ESM, and
the spin-up run was conducted for 3000 years for the ocean
component and 30 000 years for land by prescribing model-
derived physical fields and other external forcing for the
component models. In the final phase of the spin-up proce-
dure, continuous spin-up, forced by the 1850-year condition
of CMIP6 forcing, was performed for the entire system for
2483 years (Supplement Fig. S5). All the experiments listed
in Table 1 were initiated from the final condition of this spin-
up procedure.

2.2.2 Evaluation of climate and carbon cycle response
to CO2

To evaluate the climate and carbon cycle response to CO2
increase, we used the metrics of transient climate response
(TCR), airborne fraction of CO2 (AF), and TCRE, which
have been previously used to characterize the entire climate–
carbon cycle response to CO2 increase in other models
(Matthews et al., 2009; Hajima et al., 2012; Gillett et al.,
2013). A similar analysis is made in this study, and the re-
sult is presented in Sect. 3.2.

First, TCRE is defined as the ratio of global mean near-
surface air temperature change (T ) to cumulative anthro-
pogenic carbon emissions (CE) at the level of a doubled
CO2 concentration from the preindustrial state (hereafter,
2×COPI

2 ):

TCRE= T/CE, (1)

which can be written as follows:

TCRE= (CA/CE)× (T /CA), (2)
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Table 1. Summary of experimental details.

Experimental Experiment Purpose Configurations Duration
group (years)

Control CTL Control run CO2 conc. and other forcings are
fixed at preindustrial level

165

CTL-D Control run for NO-NR, NO-NRD,
and NO-FD

Same as CTL, but DMS emis-
sion follows the scheme of original
aerosol module

100

Historical HIST Evaluation of model performance Following CMIP6-DECK historical
run

165 (1850–2014)

HIST-NOLUC Evaluation of land use change im-
pact on carbon cycle

LUC and fertilizer are fixed at
preindustrial level

165 (1850–2014)

HIST-BGC Evaluation of response of carbon
cycle to CO2 increase

Same as HIST but only biogeo-
chemical processes respond to the
CO2 increase

165 (1850–2014)

1 %CO2 1PPY Evaluation of sensitivities of cli-
mate and carbon

Prescribed CO2 increased with 1.0
(percent per year)

140

1PPY-BGC Evaluation of response of carbon
cycle to CO2 increase

Same as 1PPY but only biogeo-
chemical processes respond to the
CO2 increase

140

1PPY-RAD Evaluation of response of carbon
cycle to climate change

Same as 1PPY but only atmo-
spheric radiative processes respond
to the CO2 increase

140

OBGC NO-NR Evaluation of impacts of riverine N
to ocean

Same as CTL-D but ocean is not
impacted by riverine N

100

NO-NRD Evaluation of impacts of deposition
N to ocean by combining NO-NR

Same as NO-NR but ocean is not
impacted by N deposition

100

NO-FD Evaluation of impacts of deposition
Fe to ocean

Same as CTL-D but ocean is not
impacted by Fe deposition

100

where CA is the atmospheric carbon increase until reaching
2×COPI

2 . The first term on the right-hand side (CA/CE) is
identical to the definition of the cumulative airborne fraction
of anthropogenic carbon emissions:

CA/CE= AF. (3)

The second factor (T/CA) can be represented by TCR as
follows:

T/CA= TCR/CA, (4)

given that TCR is defined as T at 2×COPI
2 . Thus, Eq. (2) can

be expressed as follows:

TCRE= AF× (TCR/CA). (5)

The result of the 1PPY simulation was used to evaluate
TCRE, TCR, and AF. As CA is prescribed in the simulation,
CE can be diagnosed by CE = CA + CL + CO, where CL
and CO represent the change in land and ocean carbon stor-
age, respectively. As shown by Matthews et al. (2009), AF

summarizes the carbon cycle response to anthropogenic CE;
the second term in Eq. (5) (TCR/CA) captures the global
temperature response to CO2 increase in the models, and
TCRE thus summarizes the two, i.e., the global temperature
response to anthropogenic CO2 emissions in the model.

To evaluate the strength of carbon cycle feedbacks in the
model, the feedback strength is quantified by the so-called
β and γ quantities (Friedlingstein et al., 2006; Arora et al.,
2013). The former is a feedback parameter for CO2–carbon
feedback (carbon cycle response to atmospheric CO2 in-
crease), which can be calculated as follows:

βL =
(

CL1PPY−BGC
−CLCTL

)
/CA1PPY, (6)

βO =
(

CO1PPY−BGC
−COCTL

)
/CA1PPY, (7)

where the subscripts L and O represent land and ocean, re-
spectively, and the superscripts represent the experiment used
for the calculation.
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Table 2. Biogeochemical configurations in experiments, summarized as biogeochemical process settings. Bold characters represent the major
differences between experiments within an experimental group.

Experimental group Experiments Impact on land–ocean BGCa Impact on ocean BGCb DMS schemec

CO2 Climate LUC River N Dep. N Dep. Fe

Control CTL – – – O O O TypeA
CTL-D – – – O O O TypeB

Historical HIST O O O O O O TypeA
HIST-NOLUC O O – O O O TypeA
HIST-BGC O – O O O O TypeA

1 %CO2 1PPY O O – O O O TypeA
1PPY-BGC O O – O O O TypeA
1PPY-RAD O – – O O O TypeA

OBGC NO-NR – – – – O O TypeB
NO-NRD – – – – – O TypeB
NO-FD – – – O O – TypeB

a If the biogeochemical process in an experiment was affected by CO2, climate, or land use change, the letter O is present; otherwise, the symbol – is used. b If the ocean
biogeochemistry process detected fluxes of riverine nitrogen, atmospheric nitrogen deposition, or atmospheric iron deposition, the letter O is present; otherwise, the symbol – is
used. c The TypeA DMS emission scheme is the default scheme in MIROC-ES2L, whereby DMS emissions are simulated as being dependent of the ocean biogeochemical states
and the mixed-layer depth. TypeB is a scheme employed in the original aerosol component model in which DMS emissions are calculated independently of ocean
biogeochemical states.

The quantity γ is a feedback parameter for climate–carbon
feedback (carbon cycle response to climate change), which
can be calculated using the results of the 1PPY-RAD and
CTL simulations:

γL =
(

CL1PPY−RAD
−CLCTL

)
/T 1PPY−RAD, (8)

γO =
(

CO1PPY−RAD
−COCTL

)
/T 1PPY−RAD. (9)

3 Results and discussion

3.1 Model performance in historical simulation

3.1.1 Global climate: atmosphere and ocean physical
fields

To evaluate the physical fields reproduced by MIROC-ES2L,
the temporal evolutions of the global mean net radiation
balance at the top of atmosphere (TOA) and anomalies of
near-surface air temperature (SAT), sea surface temperature
(SST), and upper-ocean (0–700 m) temperature were com-
pared with observation datasets; the results are shown in
Fig. 2. The model simulates a reasonably steady state of net
TOA radiation balance in the CTL run, showing a trend of
−4.6× 10−5 W m−2 yr−1 during the 165-year period. When
comparing the net TOA radiation balance of the HIST simu-
lation with satellite measurements (CERES EBAF-TOA edi-
tion 4.0 constrained by in situ measurements; Loeb et al.,
2012, 2018), the model result is −0.63 W m−2 (negative
means net incoming radiation) during 2001–2010, which is

within the range of−0.5±0.43 W m−2 estimated by Loeb et
al. (2012) for the corresponding period (Fig. 2a).

Following the net increase in incoming radiation, the SAT
anomaly increases in the latter half of the 20th century
(Fig. 2b). The warming trend during 1951–2011 is simulated
as 0.1 K per decade, which is consistent with that of Had-
CRUT4 (version 4.6; Morice et al., 2012), i.e., 0.11 K per
decade (Stocker et al., 2013). Observation datasets of SST
(HadSST version 3.1.1; Kennedy et al., 2011) and upper-
ocean temperature (Levitus et al., 2012) clearly display in-
creasing trends in the corresponding period, which are suc-
cessfully reproduced by the model (Fig. 2c and d). In addi-
tion to the warming trend in the latter half of the 20th cen-
tury, the model captures the slowdown of SAT increase both
in the 1950s and in the 1960s. These changes are likely in-
duced by increased anthropogenic aerosol emissions and re-
sultant cooling through indirect aerosol effects, together with
cooling attributable to large volcanic eruptions in the 1960s
(Wilcox et al., 2013; Nozawa et al., 2005). However, dis-
tinct deviations of the model results from HadCRUT4 are
found for SAT and SST in the 1860s and particularly in the
1900s. This might be due to inevitable asynchronization be-
tween the simulation and observations on the phasing of the
internal variability of the climate, as identified by Kosaka
and Xie (2016). They reported that there should have been
four major cooling events due to tropical Pacific variability
in the 20th century, one of which was found in the 1900s.
They also reported that the other three events were around
1940, 1970, and 2000; however, discrepancies arising from
these three events are not so evident in this study, likely be-
cause of the single ensemble simulation. The model also ex-
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hibits a short-term response of the TOA radiation balance
following episodic volcanic events (Fig. 2a, vertical dashed
lines), with resultant cooling of SAT and SST (Fig. 2a–c)
and further propagation into the deeper ocean with an ex-
tended cooling duration (Fig. 2d). Overall, the historical SAT
increase in MIROC-ES2L, taking the difference between the
averages of 1850–1900 and 2003–2012, is 0.69 K, while the
HadCRUT4-based estimate by Stocker et al. (2013) is 0.78 K
for the corresponding period. The model shows good perfor-
mance in reproducing global physical fields. This is likely
attributable to the inherited robust performance of the phys-
ical core of the model (MIROC5.2) because MIROC-ES2L
has only two feedback pathways of biophysical processes
on climate (DMS emissions from the ocean and terrestrial
processes associated with LAI dynamics) when the model is
driven by a prescribed CO2 concentration. Both processes are
likely to change the physical fields locally.

In addition to the radiation and temperature responses
against historical external forcing, we briefly describe
here the El Niño–Southern Oscillation (ENSO) and At-
lantic meridional overturning circulation (AMOC) strength
in MIROC-ES2L, both of which can affect interannual–
multidecadal carbon cycle processes (Zickfeld et al., 2008;
Pérez et al., 2013; Friedlingstein, 2015). In the HIST exper-
iment, the standard deviation of the monthly SST anomaly
in the Niño-3 region (5◦ S–5◦ N, 90–150◦W) was 1.57 K in
1950–2009, which is larger than that of HadSST (0.94 K).
This unrealistically large ENSO amplitude tends to influ-
ence the simulated interannual global temperature variabil-
ity (Fig. 2b), which is suggestive of a further effect on the
interannual variability in biogeochemical fields (e.g., CO2
flux in the tropics). The AMOC intensity, quantified by North
Atlantic Deep Water transport across 26.5◦ N, was approxi-
mately 13 Sv (1 Sv= 106 m3 s−1) as the 1850–2014 average,
which is smaller than the observational estimates of 17.2 Sv
(McCarthy et al., 2015). In the HIST run, the AMOC strength
was weakened at a rate of 0.01 Sv yr−1 (i.e., reduction of
1.7 Sv during the 165 years of HIST), which seems slightly
smaller than the recent estimate of AMOC weakening of
3± 1 Sv from the mid-20th century (Caesar et al., 2018).

Hereafter, we present an overview of the performance of
the mean state of the physical fields, atmosphere, and land–
ocean basic variables of the model in comparison with var-
ious observational-based data. The variables examined here
are SAT, precipitation, SST, sea ice concentration, land snow
cover, and mixed-layer depth, all of which are representative
physical states associated with biogeochemical processes.
The mixed-layer depth is defined as the depth at which the
potential density becomes larger than that of the sea surface
by 0.125 kg m−3. Figure 3 shows the climatology of SAT (air
temperature at 2 m of height) averaged over 1989–2009 for
annual, December–February (DJF), and June–August (JJA)
means and the biases in comparison with the ERA-Interim
dataset (Dee et al., 2011). The comparison suggests that the
model performs well (biases < 2 ◦C) over the tropics and

Figure 2. Comparison of HIST simulation results by MIROC-ES2L
with observations: anomalies of (a) net radiation balance at the top
of the atmosphere (TOA; upward positive), (b) global mean sur-
face air temperature, (c) global mean sea surface temperature, and
(d) global mean ocean temperature at 0–700 m of depth. Black, red,
and blue lines represent historical simulations, historical observa-
tions, and pi-control simulations, respectively. Vertical dashed lines
represent the timing of major volcanic eruptions (i.e., Krakatau in
1883, Santa Maria in 1902, Agung in 1963, El Chichón in 1982,
and Pinatubo in 1991). In panel (a), the simulation results are pre-
sented as anomalies from the 1850–2014 average of the CTL run.
In panels (b), (c), and (d), the results are presented as the anomalies
from the 1961–1990 averages. Observation data for the radiation
balance were obtained from the global product of CERES EBAF-
TOA edition 4.0. Observation data for SAT and SST were obtained
from HadCRUT4 (Morice et al., 2012) version 4.6 and HadSST
(Kennedy et al., 2011) version 3.1.1, respectively. The ocean tem-
perature anomaly updated from Levitus et al. (2012) is used to com-
pare ocean temperature at 0–700 m of depth during the period 1955–
2014.

most of the global area in terms of both annual mean and
seasonality. However, obvious warm biases exist over the
Southern Ocean and Antarctica. This is a general tendency
of CMIP5-class models, and both MIROC5 (Watanabe et al.,
2010) and MIROC6 (Tatebe et al., 2019) also suffer from
this problem. The warm bias in the Southern Ocean can be
mainly attributed to a poor representation of cloud radia-
tive processes (Bodas-Salcedo et al., 2012; Williams et al.,
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Figure 3. Air temperature at 2 m of height (◦C) in the HIST simu-
lation presented as a 1989–2009 climatology and the bias compared
with the ERA-Interim dataset (Dee et al., 2011) for (a, b) annual,
(c, d) DJF, and (e, f) JJA means.

2013; Hyder et al., 2018) but also poor representations of
the mixed-layer depth and deep convection in the open ocean
attributable to the lack of modeled mesoscale processes in
the Antarctic Circumpolar Current (Tatebe et al., 2019). A
related warm bias in SST over the Southern Ocean is also
confirmed, which is discussed later.

Figure 4 shows the precipitation distribution in the HIST
experiment in comparison with the Global Precipitation Cli-
matology Project (GPCP) dataset (Adler et al., 2003). Gen-
erally, the precipitation distribution is reasonably well rep-
resented in the model. The Intertropical Convergence Zone
is reproduced well in the experiment, except that the simu-
lated South Pacific Convergence Zone is shifted equatorward
relative to the GPCP, which is the so-called double Intertropi-
cal Convergence Zone syndrome (Bellucci et al., 2010). Over
continental areas, the model is effective in capturing the spa-
tial pattern of both the annual mean precipitation and the sea-
sonality. However, positive precipitation biases are evident
in some tropical land regions such as central Africa, South
and Southeast Asia, and South America. Additionally, arid
and semiarid regions of central Asia, Australia, and the west-
ern side of North America also show a positive precipitation
bias, although it is unclear in the bias map (see Supplement
Fig. S6 for a comparison with the absolute precipitation rate
of GPCP).

When projecting future climate change, it is important for
a model to reproduce the observed climatological patterns
of key physical variables, as suggested by Ohgaito and Abe-
Ouchi (2009). The biogeochemical tracers are also affected
by the representation of the physical fields. Figure 5 presents

Figure 4. Precipitation distributions (mm d−1) in the HIST simu-
lation and biases relative to the GPCP dataset (Adler et al., 2003)
for (a, b) annual, (c, d) DJF, and (e, f) JJA means averaged over
1981–2000.

the modeled SST and its bias with respect to the World Ocean
Atlas 2013 (Locarnini et al., 2013). Generally, the model per-
forms well, confirmed by the large extent of the area with
minimal bias (colored white in Fig. 5). However, obvious
bias is evident, e.g., the warm bias in the Southern Ocean, as
already explained above (Fig. 3). A cold bias is also evident
over the western North Pacific Ocean, which is attributable
to the lack of narrow and swift western boundary currents
owing to the coarse horizontal resolution in the ocean parts
of the present ESM.

The model performance in simulating sea ice concentra-
tion and snow cover over land for both March and Septem-
ber is shown in Fig. 6 in comparison with observational data
(Special Sensor Microwave Imager (SSM/I; Kaleschke et al.,
2001) for sea ice concentration and the Moderate-resolution
Imaging Spectroradiometer (MODIS; Hall et al., 2006) for
snow cover. Sea ice extent in the Northern Hemisphere is
represented well for both months, although the summertime
concentration minimum is slightly smaller than observed. In
the Southern Hemisphere, however, the sea ice extent is un-
realistically underestimated because of the persistent warm
bias described above. The extent of the snow-covered area is
also represented well, likely owing to the updated scheme for
subgrid snow representation (Nitta et al., 2014; Tatebe et al.,
2019). However, the fine structure of the snow cover is lost
in the simulation, which is likely attributable to the coarse
resolution of the modeled atmosphere and land. The reason-
able performance in reproducing land snow seasonality in the
boreal region is important for land biogeochemistry and the
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Figure 5. SST (◦C) in the HIST simulation presented as a 1955–
2012 climatology and the bias in comparison with WOA2013 (Lo-
carnini et al., 2013) for (a, b) annual, (c, d) JFM, and (e, f) JAS
means.

physical climate because snowmelt (accumulation) and leaf
flush (shedding) processes are mutually associated (Supple-
ment Fig. S7).

Figure 7 shows the mixed-layer depth in comparison
with the mixed-layer dataset of Argo with grid point value
(MILA_GPV; Hosoda et al., 2010). The HIST simulation
captures both the spatial pattern and the seasonality change
in mixed-layer depth. In the Northern Hemisphere winter,
the structure of the deep mixed layer over the western North
Pacific is consistent with observations; however, the actual
depth is overestimated owing to the lack of mesoscale ed-
dies. The deep mixed layer in the subarctic North Atlantic is
also consistent with observations, except there is less deep
water formed in the Labrador Sea. Additionally, the shallow
mixed layer in low latitudes is generally captured well by the
simulation, and the depth that is maintained at around 100 m
over the Southern Ocean is consistent with observations. In
austral winter, MILA_GPV shows that the mixed layer devel-
ops to more than 200 m over the Indian Ocean and the Pacific
sector of the Southern Ocean, whereas it is shallow (around
50 m) in the tropics and the Northern Hemisphere (Fig. 7d).
The model captures the general pattern in austral winter, al-
though the extent of the simulated deeper mixed-layer depth
of more than 200 m in the Southern Ocean is larger than that
of MILA_GPV (Fig. 7c).

3.1.2 Global carbon budget

The simulated net CO2 uptake by land and ocean in cumula-
tive values (i.e., changes in total carbon of land and ocean)

Figure 6. Northern Hemisphere sea ice concentration and land
snow fraction (%) in the HIST simulation presented as a 2003–
2013 climatology and in comparison with SSM/I (Kaleschke et al.,
2001) and MODIS (Hall et al., 2006) data for (a, b) March and (c,
d) September.

is shown in Fig. 8a and b, respectively. For land, the CTL
run shows a slight reduction of carbon of 7.6 PgC during the
165 years (i.e., 4.6 PgC per century), which is within the ac-
ceptable range for the CMIP6 exercise (10 PgC per century;
Jones et al., 2016). The dashed gray line in Fig. 8a is the
result from HIST-NOLUC and shows a natural land carbon
sink in MIROC-ES2L of 200 PgC during 1850–2014. This is
comparable with the estimate of 185± 50 PgC by Le Quéré
et al. (2018) for the same period (vertical gray bar in Fig. 8a),
which was obtained from multiple offline terrestrial ecosys-
tem models with fixed land use. Additionally, LUC is one of
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Figure 7. Mixed-layer depth (m) in the HIST simulation presented
as a 2000–2010 climatology and comparison with the MILA_GPV
dataset (Hosoda et al., 2010) for (a, b) JFM and (c, d) JAS means.

the factors that drastically changes the historical land carbon
amount because positive (negative) LUC emissions are di-
rectly linked to a reduction (increase) in land carbon. Based
on bookkeeping methods, Le Quéré et al. (2018) estimated
the cumulative CE derived from LUC during 1850–2014 as
195± 75 PgC, whereas the simulated cumulative emissions
by MIROC-ES2L diagnosed by the difference in land carbon
amount between HIST-NOLUC and HIST are 156 PgC.

Through being affected by both environmental changes
and LUCs, MIROC-ES2L demonstrates in the HIST simu-
lation that land carbon is reduced by approximately 60 PgC
from the beginning of the simulation until the middle of the
20th century (black line in Fig. 8a). This reduction should
reflect LUC during this period because HIST-NOLUC does
not show such a trend of decrease in the corresponding pe-
riod (dashed gray line in Fig. 8a). From the 1960s, the model
shows continuous carbon sequestration on land, which re-
sults in a positive net CO2 uptake of 2.4 PgC yr−1 in the
2000s (Table 3). This continuous increase in the latter half
of the 20th century is due to the combined effects of CO2
fertilization, vegetation recovery associated with LUC, and
the increase in nitrogen input via deposition and the use of
fertilizer. This is clearly displayed in Fig. 8c, where the his-
torical land carbon change is decomposed into the responses
to (1) CO2 increase (blue line, diagnosed by HIST-NOLUC
+ HIST-BGC – HIST; see Table 2), (2) climate change (red
line, by HIST – HIST-BGC), and (3) LUC (green line, by
HIST – HIST-NOLUC). In the latter half of the 20th cen-
tury, land carbon sequestration accelerated by CO2 stimula-
tion is clear, while climate change and the resultant terres-
trial carbon loss also become evident. Additionally, land car-
bon reduction induced by LUC is slightly weakened in the
corresponding period. During the historical period, MIROC-
ES2L simulates a total land carbon change (CL) of 44 PgC.
This number drops to within the independent estimate range
of −10± 90 PgC (vertical black bar in Fig. 8a), and the
estimation uncertainties take into account both the terres-
trial natural carbon sink and LUC emissions (calculated as

(σ 2
LUC+ σ

2
SINK)

0.5, where σLUC and σSINK represent the un-
certainty range of LUC emissions and the land sink, respec-
tively, in Le Quéré et al., 2018). The possible range for CL
can be changed if we estimate it as the residual of other
global carbon budgets (i.e., CL = FF – CA – CO, where FF
is the cumulative fossil fuel carbon emission). Using the es-
timated ranges of FF, CA, and CO reported by Le Quéré et
al. (2018) (i.e., 400±20, 235±5, and 150±20 PgC, respec-
tively; the budget imbalance of 25 PgC is ignored here), the
CL range is suggested to be 15±29 PgC. In this case, the re-
sult of MIROC-ES2L (44 PgC) is still within the estimation
boundaries, although it is at the upper end of the suggested
range.

For the ocean, the model shows an increase in carbon ac-
cumulation in the CTL run (Fig. 8b). This is partly because
of carbon removal by the sedimentation process that is newly
introduced into MIROC-ES2L. In this process, an amount
of carbon is extracted from the ocean bottom, which should
be compensated for by an equivalent input of carbon from
the atmosphere through gas exchange processes. In the CTL
run, the rate of carbon extracted from the ocean bottom is
0.068 PgC yr−1 (Table 4), which suggests that the process
removes 11 PgC throughout the entire simulation period of
CTL (165 years). It is noted that Ciais et al. (2013) suggested
that the ocean was a net source of CO2 in the preindustrial era
to an amount of 0.7 PgC yr−1, whereas our model shows it as
a net sink in the same condition. This is likely attributable to
the lack of a process of riverine carbon input in our model.
For example, Ciais et al. (2013) estimated that the ocean ob-
tains an external carbon input of 0.9 PgC yr−1 from rivers,
0.2 PgC yr−1 of which is removed by ocean sedimentation
and 0.7 PgC yr−1 is lost from the ocean to the atmosphere via
gaseous exchange. The sedimentation process cannot explain
all the increase in oceanic carbon in the CTL run (30 PgC).
Therefore, the remainder should be attributed to other rea-
sons, e.g., the shortness of the spin-up period or imperfect
mass conservation in the ocean biogeochemical component.

The HIST run shows the cumulative carbon uptake by
the ocean, which is predominantly driven by CO2 increase
(Fig. 8b and d). In comparison with land, ocean carbon shows
a relatively small response to climate change (red line in
Fig. 8d), which is consistent with analysis of the carbon cy-
cle feedback in an idealized scenario (Arora et al., 2013).
Furthermore, the model shows weak or almost no response
against LUC (green line in Fig. 8d), although the ocean com-
ponent in the model actually receives increased nitrogen in-
put from rivers attributable to LUC and agriculture (Fig. 9,
Table 4). This suggests that the increase in riverine nitrogen
input due to LUC and agriculture would not induce a sig-
nificant global-scale impact on ocean carbon uptake in the
historical period. The model simulates a cumulative carbon
uptake of 163 PgC for 1850–2014, which is within the range
of 150±20 PgC (vertical black bar in Fig. 8b) reported by Le
Quéré et al. (2018).
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Overall, MIROC-ES2L qualitatively captures the tempo-
ral evolution of carbon dynamics in the historical period; the
cumulative carbon uptake by both land and ocean is within
the range of the estimates by Le Quéré et al. (2018). How-
ever, the model might overestimate the net carbon uptake by
the land and/or ocean or underestimate LUC emissions. This
is because the cumulative fossil fuel emissions, diagnosed
from the simulated atmosphere–land–ocean CO2 fluxes and
prescribed CO2 concentration change (FF = CA + CL +
CO; Appendix D), were 447 PgC, i.e., larger than the esti-
mate of 400± 20 PgC of Le Quéré et al. (2018). Addition-
ally, this speculation is also supported by the diagnosed CO2
concentration at the end of the HIST run (Appendix D); the
diagnosed concentration is 376 ppmv, which is lower (by
22 ppmv) than that actually monitored. We note, however,
that the likely biases in land–ocean carbon uptake, suggested
by the larger diagnosed emissions and lower diagnosed CO2
concentration, could be partially alleviated if the model were
driven by anthropogenic CO2 emissions. This is because
in emission-driven mode, the relatively stronger land–ocean
carbon uptake leads to a lower atmospheric CO2 concentra-
tion, which could weaken the land and ocean sink through
a negative CO2–carbon feedback. Indeed, in emission-driven
mode, the atmospheric CO2 concentration in the historical
run (esm-historical; Jones et al., 2016) is simulated to be
384 ppmv in 2014 (as an average of three ensemble ex-
periments; data not shown but available via the Earth Sys-
tem Grid Federation servers), which is closer to the actual
level monitored (but still lower by 14 ppmv). Additionally, in
emission-driven mode, the land and ocean are mutually inter-
linked via the atmospheric CO2 concentration; thus, a strong
bias of CO2 flux in one component can be modulated by the
other. This mechanism might reduce the bias of CO2 fluxes
of the land and ocean simultaneously, or it might exacerbate
the CO2 flux by imposing the flux bias of one onto the other.
For more detail, simulations and multimodel analyses based
on emission-driven configurations are necessary, as designed
in C4MIP (Jones et al., 2016).

3.1.3 Global nitrogen budget

MIROC-ES2L can simulate the global nitrogen cycle under
interaction with the climate and carbon cycle, and the global
N budget for land and ocean in the HIST simulation is shown
in Fig. 9 as the component fluxes. Comparison of the ter-
restrial nitrogen budget in the 2000s with the preindustrial
condition (Table 3) reveals that the annual inputs of nitrogen
via deposition and fertilizer, which are controlled by forcing
data, increase to 65.5 and 114 TgN yr−1, respectively. Addi-
tionally, BNF is also increased by 40 % (39 TgN yr−1), which
is caused by the areal expansion of agriculture for N-fixing
crops (Fig. 9, Supplement Fig. S8). Previous studies have
shown similar levels of increase. For example, Gruber and
Galloway (2008) reported a value of 35 TgN yr−1, and the
absolute magnitude of agricultural BNF in the present-day

condition was estimated as 50–70 TgN yr−1 by Herridge et
al. (2008) and 40 TgN yr−1 by Galloway et al. (2008).

For terrestrial nitrogen efflux, Gruber and Galloway
(2008) reported N2 emissions in the unperturbed state
as 100 TgN yr−1, i.e., larger than found in this study
(72 TgN yr−1). However, in the present-day condition, they
estimated the absolute magnitude of N2 emissions as
115 TgN yr−1, which is reasonably close to our model re-
sult (111 TgN yr−1). MIROC-ES2L simulates the historical
increase in N2O emission from soil as 4.3 TgN yr−1 from
the preindustrial condition to the 2000s, which is compara-
ble with the estimate of approximately 4 TgN yr−1 for 1861–
2015 derived from a model comparison study (Tian et al.,
2018). However, the absolute magnitude of terrestrial N2O
emission fluxes in preindustrial and present-day conditions
is likely overestimated (Table 3; Hashimoto, 2012).

Although it is difficult to obtain observation-based esti-
mates of how much nitrogen was accumulated by the land
ecosystem in the historical period, the model demonstrates
net nitrogen uptake by land in the 2000s as 37 TgN yr−1 (Ta-
ble 3). This positive uptake is likely caused by increased
total nitrogen input into the land ecosystem. In addition to
the increasing N input, the net positive N uptake by land is
likely accelerated by the increased nitrogen demand by plants
and soils that have higher C : N ratios under elevated CO2
concentrations. This is because the net increase in land N
uptake is also found in 1PPY-BGC (Supplement Table S1),
even though the N inputs such as BNF, fertilizer, deposition,
and climate conditions in the 1PPY-BGC simulation are al-
most unchanged from the CTL run. This suggests that atmo-
spheric CO2 increase in HIST has changed the C : N ratios
in plants and soil and hence stimulated ecosystem nitrogen
demand. The model demonstrates nitrogen loss by LUC at a
rate of > 50 TgN yr−1 (Fig. 9). This is because the harvested
biomass in the model is translocated to product pools, and
the nitrogen contained in the biomass is assumed lost with
implicit chemical form, together with carbon loss as CO2.

Compared with land, the model simulates relatively sta-
ble dynamics of the oceanic nitrogen budget but with larger
interannual variation (Fig. 9b). In the 2000s, oceanic BNF
is simulated as 126 TgN yr−1, which is almost at the same
level (slightly below) as that of the preindustrial state, i.e.,
129 TgN yr−1 (Table 4). This number is close to previously
reported estimates of approximately 130 TgN yr−1 (Eugster
and Gruber, 2012). The invariant behavior of BNF in the
model suggests that the historical change in nitrogen in-
put into the ocean is primarily attributable to two external
sources: deposition and riverine input. Nitrogen deposition
into the ocean, which is prescribed in the forcing data, shows
an increase from 14 TgN yr−1 in the preindustrial condition
to 35 TgN yr−1 in the 2000s. Riverine nitrogen input at a river
mouth is shown to increase from 17.5 TgN yr−1 in the prein-
dustrial condition to 33.9 TgN yr−1 in the 2000s (Table 4; this
is discussed further in Sect. 3.1.5 and 3.2.3). In this study, the
gross nitrogen input into the ocean in the present-day condi-
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Figure 8. Land and ocean carbon change (i.e., cumulative net carbon uptake by land and ocean) in historical simulations. (a, b) Simulation
results of the historical (HIST, black lines), historical without land use change (HIST-NOLUC, dashed gray), historical without climate
change (HIST-BGC, dashed red), and control (CTL, dashed blue) runs. For land calculation, the carbon amount change in product pools
for land use is considered. Vertical bars represent uncertainty ranges estimated from Le Quéré et al. (2018). Black bars correspond to the
HIST (1850–2014) run result, and the gray bar represents the uncertainty range for the natural carbon sink of land, which corresponds to the
HIST-NOLUC run in this study. (c, d) The HIST run result shown again (black lines) together with the decomposed response of land–ocean
carbon driven only by CO2 increase (dashed blue), climate change (dashed red), and LUC (dashed green). Note that the ocean in MIROC-
ES2L considers carbon removal via the sedimentation process onto ocean floor; thus, the model exhibits continuous carbon uptake, even in
the CTL experiment.

Table 3. Key variables of global land biogeochemistry: preindustrial condition (average of 10 years) and the 2000s in the historical run
(HIST).

Preindustrial 2000s

Gross primary productivity (PgC yr−1) 108.8 123.8
Net primary productivity (PgC yr−1) 57.7 67.2
Heterotrophic respiration (PgC yr−1) 56.7 59.4
Net carbon uptake1 (PgC yr−1) 0.2 2.4
Vegetation carbon (PgC) 537.9 543.3
Soil organic carbon (PgC) 1481.9 1491.0

Biological fixation2 (TgN yr−1) 97.1 135.9
Deposition (TgN yr−1) 19.6 65.5
Fertilizer (TgN yr−1) 0.0 114.0
N2 emission (TgN yr−1) 70.1 110.8
N2O emission (TgN yr−1) 9.4 13.7
NH3 emission (TgN yr−1) 1.9 19.5
N leaching (TgN yr−1) 16.6 33.4
Net ecosystem nitrogen uptake3 (TgN yr−1) 3.2 37.0
Vegetation nitrogen (PgN) 4.0 3.9
Soil total nitrogen (PgN) 75.0 75.3

1 Net carbon uptake is calculated as the net ecosystem productivity minus the carbon
emissions from product pools for land use. 2 BNF by agriculture is also included. 3 Net
nitrogen uptake is calculated by annual changes in total nitrogen storage.
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Table 4. Key global ocean biogeochemical fluxes and concentrations under the preindustrial control simulation and the 2000s.

Preindustrial 2000s

Net primary productivity (PgC yr−1) 28.3 28.6
Sinking particulate organic carbon at 100 m (PgC yr−1) 7.8 7.9
Nitrogen fixation (TgN yr−1) 129.1 125.9
Nitrogen deposition (TgN yr−1) 14.2 35.2
Riverine nitrogen input (TgN yr−1) 17.5 33.9
Denitrification (TgN yr−1) 142.2 164.5
N2O emission (TgN yr−1) 4.5 4.4
Nitrogen flux into the sediment (TgN yr−1) 0.012 0.013
N cycle imbalance (TgN yr−1) 14.1 26.1
Atmosphere–ocean CO2 flux (PgC yr−1) −0.15 −2.37
Carbon flux into sediment (PgC yr−1) 0.068 0.073
Mean O2 concentration (mmol m−3) 191 189.9
Hypoxic volume (1015 m3; [O2] < 80 mmol m−3) 34.2 34.3
Suboxic volume (1015 m3; [O2] < 5 mmol m−3) 2.3 2.7

tion is simulated as 195 TgN yr−1. The value is reasonably
close to the estimate of 200 TgN yr−1 by Wang et al. (2019)
and that of 209 TgN yr−1 by Galloway et al. (2004); how-
ever, it is smaller than other published estimates (e.g.,
294 TgN yr−1, Codispoti et al., 2001; 270 TgN yr−1, Gru-
ber and Galloway, 2008). Denitrification, the main source
of ocean nitrogen loss, is simulated as 142 TgN yr−1 for
the preindustrial condition and 165 TgN yr−1 for the 2000s.
These values are within the wide range of total denitrification
rates estimated by previous studies, i.e., 145–450 TgN yr−1

(Eugster and Gruber, 2012). It should be noted that the
present model used in this study does not include sedimen-
tary denitrification. Thus, the expected N flux by sedimentary
denitrification is imposed on water-column denitrification,
and the rate of water-column denitrification is likely over-
estimated. Overall, the model exhibits an oceanic N imbal-
ance of 26.1 TgN yr−1 in the present-day condition (Fig. 9,
Table 4).

3.1.4 Land biogeochemistry

Model performance in relation to land biogeochemistry is
evaluated based on the spatial distributions of three fun-
damental variables of the land carbon cycle in comparison
with observation-based products. First, GPP in the HIST
simulation is compared with the global product by Jung et
al. (2011) (Fig. 10a–c). The model simulates high productiv-
ity (> 2000 gC m−2) in the tropical forests of central Africa,
Southeast Asia, and South America, although the productiv-
ity in these regions is generally still underestimated in com-
parison with the observation-based product. This underesti-
mation is likely attributable to the use of the parameter val-
ues of photosynthetic capacities (KPSAT1 and KPSAT2 in Ap-
pendix A) from Kattge et al. (2009). This is because Kattge
et al. (2009) also showed substantial depression of photosyn-
thetic capacity in the tropics. The model captures the mod-

erate productivity of vegetation in savanna regions such as
the eastern side of South America and the marginal region
surrounding central Africa. Moderate GPP is also found in
the Northern Hemisphere in the region 20–45◦ N, where a
large proportion of land cover is dominated by both natural
and agricultural vegetation (Supplement Fig. S2). The GPP
gradient from moderate to lower GPP in the boreal to tundra
regions of Eurasia and North America is captured well by
the model. The model estimates global GPP at 124 PgC yr−1

in the 2000s (Table 3), which is within the range of 106–
140 PgC yr−1 produced by the CMIP5 ESMs and is reason-
ably close to the value of 119 PgC yr−1 derived from an ob-
servation product (1986–2005 average; Jung et al., 2011).
The simulated GPP seasonality is also compared with that
of Jung et al. (2011) (Supplement Fig. S9). It reveals a rea-
sonable summertime peak and the seasonality of GPP in the
extratropical Northern–Southern Hemisphere, where vegeta-
tion phenology is primarily controlled by air temperature.
However, the region around 40◦ N displays a longer growing
season than that of Jung et al. (2011), and the tropics (20◦ S–
20◦ N) show less seasonality, suggesting room for improve-
ment of the phenology-related processes and surface climate
fields in the corresponding region or biome types.

To evaluate the simulated vegetation carbon, we compare
the model results of forest carbon, not total vegetation car-
bon, with those of Kindermann et al. (2008) (Fig. 10d–f). The
model reproduces the reasonably high density of biomass in
tropical forests, although the values are smaller than the ob-
servation product (Fig. 10f). This is partly attributable to the
underestimation of GPP in this region, as described above.
In high-latitude regions of the Northern Hemisphere (around
50◦ N), the model overestimates biomass density, particu-
larly in terms of the evergreen coniferous forests that extend
across western Siberia and North America. GPP in these re-
gions is captured reasonably well by the model (Fig. 10a and
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Figure 9. Rate of change of the global nitrogen budget in the (a) land and (b) ocean in the HIST simulation. Solid lines represent the nitrogen
input into the land and ocean, and dashed lines represent its fate. Positive (negative) values mean a flux into (out of) the land and ocean. In
panel (a), BNF (black line) considers both natural and agricultural fluxes. LUC (dashed orange line) is an emission derived from the decay
of biomass in the LUC product pools. Other gases (yellow line) represent the sum of NH3 emissions and the flux from abiotic sources. For
the ocean, denitrification (purple line) includes both N2 and N2O emissions. The rate of nitrogen loss by the sedimentation process onto the
ocean floor is not shown in the figure because of the small size of the flux (< 0.015 TgN yr−1). All nitrogen gas emissions are diagnosed and
thus have no effect on the radiative balance in the atmosphere or on air quality change.

b), and thus the overestimation of boreal forest biomass is
likely due to the underestimated turnover rate of forest car-
bon. A slight overestimation of biomass is also found in re-
gions where intensive cultivation has occurred, i.e., Europe,
Southeast–East Asia, and eastern America. The model esti-
mates global vegetation carbon content including all types of
vegetation at 543 PgC (Table 3).

In Fig. 10g–i, the model results of soil organic carbon
(SOC) are compared with two different types of SOC prod-
ucts: harmonized soil property values for broad-scale mod-
eling (WISE30sec) by Batjes (2016) and the Northern Cir-
cumpolar Soil Carbon Database version 2 (NCSCDv2) by
Hugelius et al. (2013). The former is a global dataset that rep-
resents soil column SOC down to the depth of 2 m, whereas
the latter targets only the high-latitudinal region of the North-
ern Hemisphere at different soil depths (∼ 1, ∼ 2, and ∼
3 m). Comparison with WISE30sec confirms that the model
successfully captures the spatial distribution of lower carbon
accumulation in arid and tropical regions and higher SOC
in boreal regions in the Northern Hemisphere. However, the
simulated zonal mean SOC in the boreal regions is about half
that of WISE30sec (Fig. 10i). This is likely attributable to
the different treatment of frozen carbon in deeper soils in
permafrost regions; i.e., WISE30sec covers the total SOC
down to 2 m of depth including frozen carbon, while the
model does not consider the frozen carbon and instead sim-
ulates only upper SOC as litter and lower SOC as humus.
The model result in the boreal region is comparable with the
NCSCDv2 estimation for 1 m of depth. We note, as men-
tioned by Todd-Brown et al. (2012), that large uncertainty
remains in the estimation of the SOC amount, especially
in boreal regions. Globally, SOC is simulated as 1491 PgC
(Table 3) in this study, which is smaller than the value of
2060± 215 PgC of WISE30sec (Batjes, 2016) but compara-
ble with the range of 890–1660 PgC, as estimated by Todd-

Brown et al. (2012) based on the Harmonized World Soil
Database v1.2 (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012).

3.1.5 Ocean biogeochemistry

In this section, we evaluate the simulated surface and ver-
tical distributions of nitrate, phosphate, dissolved Fe, NPP,
oxygen, DIC, and alkalinity against observations (Fig. 11).
Additionally, the ocean CO2 flux is also compared with
an observation-based estimation (Fig. 12). The observations
comprise the World Ocean Atlas 2013 (WOA2013; Garcia
et al., 2014a, b) for macronutrients and oxygen, the GEO-
TRACES dataset (updated to its 2015 version; Tagliabue et
al., 2012) for dissolved iron, the Global Ocean Data Analysis
Project version 2 (GLODAPv2; Lauvset et al., 2016) for DIC
and alkalinity, and SeaWiFS (Behrenfeld and Falkowski,
1997) satellite observations for NPP.

Owing to the long spin-up, the drift in global averaged
concentrations of biogeochemical tracers becomes close to
zero. The linear drift of dissolved oxygen, NO3, and Alk–
DIC over the final 250 years of the spin-up is less than
3 % kyr−1 (Supplement Table S3). This small bias is sig-
nificant in providing results on ocean biogeochemistry and
carbon cycle feedbacks that are quantitatively more correct
(Séférian et al., 2016).

The simulated surface distributions of nitrate and phos-
phate are generally in agreement with the WOA2013 datasets
(Fig. 11a and b). The surface macronutrient concentrations
in HNLC regions (e.g., the Southern Ocean, North Pacific
Ocean, and eastern equatorial Pacific Ocean) are higher than
those produced by the ocean biogeochemical component of
our previous model (Watanabe et al., 2011), and they are
more consistent with the observed values. This increase in
macronutrients in HNLC regions is reasonable because the
implementation of the iron cycle and the iron limitation on
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Figure 10. Comparison of the carbon flux and storage of the land ecosystem between the HIST simulation by MIROC-ES2L and an
observation-based dataset. (a–c) A comparison of GPP (gC m−2 yr−1) averaged over 1982–2011: (a) model result, (b) FluxNet-MTE of
Jung et al. (2011), and (c) zonally averaged distributions. (d–f) Vegetation carbon (gC m−2): (d) model result of forest carbon (obtained by
masking the total vegetation carbon where forest coverage is< 5 %), (e) forest carbon estimated by Kindermann et al. (2008), and (f) zonally
averaged distributions; solid black and red lines represent forest carbon, and the dashed thin line is the total vegetation carbon simulated by
the model. (g–i) SOC (gC m−2): (g) model result, (h) observation-based product of harmonized soil property values for broad-scale modeling
(WISE30sec) by Batjes (2016), and (i) zonally averaged distributions in which the model result and WISE30sec are shown by black and red
lines, respectively. Blue, green, and light blue lines in panel (h) are NCSCDv2 by Hugelius et al. (2013), which is an independent estimate
of SOC in the high-latitude region of the Northern Hemisphere at different soil depths (blue: 0–1 m, green: 0–2 m, light blue: 0–3 m).

phytoplankton growth can reduce macronutrient utilization
in these regions. Ocean circulation also influences the distri-
bution of nutrient concentrations. In the Southern Ocean, the
deep mixed-layer depths simulated by the model can cause
an overestimation of nutrient entrainment to the surface and
thus produce a high nutrient bias (Fig. 7). The simulated
global mean vertical profile of nitrate concentrations com-
pares reasonably well with observed values, likely because
the ocean circulation is represented adequately (Fig. 11a). To
check the influence of ocean circulation on the tracer distri-
butions, we compared the apparent oxygen utilization (AOU)
between the model and observations (Supplement Fig. S10).
Although the model captures the observed AOU distribu-
tions, the strong and deep AMOC causes an underestimation
of AOU values in the Atlantic Ocean deep water. The largest
bias is an underestimation in the North Pacific Ocean, which

is caused by the strong deep circulation of the Pacific Ocean.
It should be noted that the difficulty of simulating the Pa-
cific Ocean deep circulation appears to be a general problem
in present coarse-resolution models (Hasumi et al., 2010).
Model–data agreement on vertical nitrate concentrations is
also the result of the near balance between nitrogen cycle
sources (i.e., nitrogen fixation, atmospheric nitrogen depo-
sition, and riverine nitrogen input) and sinks (i.e., denitrifi-
cation, N2O emissions, and sedimentary loss) over the long
spin-up period.

The concentration of dissolved iron in the open ocean is
highest in the subtropical North Atlantic Ocean and in the
Arabian Sea (Fig. 11c), which is consistent with the pat-
tern observed in GEOTRACES. Such high concentrations
are caused by enhanced dust deposition from the Sahara.
In the remainder of the open ocean, dissolved iron concen-
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trations are generally < 0.2 µmolm−3, especially in HNLC
regions. The model captures the main observed patterns in
the surface ocean well. The very high iron concentrations
(> 1 µmolm−3) both observed and simulated along coasts
and over continental margins are the result of iron input from
sediment. The average simulated dissolved Fe concentration
in the surface ocean (0–100 m) is 0.39 µmolm−3, which is
lower than observed (0.52 µmolm−3) but within the range
of the iron model intercomparison project (FeMIP; Tagli-
abue et al., 2016). One factor not accounted for in our model
is the variation in the solubility of iron in aerosols, which
depends not only on the source chemical composition but
also on atmospheric processing during transport (Ito et al.,
2019a). Consideration of different degrees of atmospheric
Fe processing could reduce the overestimations of dissolved
Fe concentration in the North Atlantic Ocean and North Pa-
cific Ocean (Ito et al., 2019b). Our model also neglects vari-
ations in sedimentary iron flux. Observations have found that
iron release or burial in sediment is dependent on the oxygen
concentration of bottom water (Noffke et al., 2012), ambi-
ent temperature (Sanz-Lázaro et al., 2011), and the amount
of OM that reaches the sea floor and is remineralized therein
(Elrod et al., 2004). To simulate more realistic iron distribu-
tions, these processes should be considered in future studies.

Reproducing the spatial pattern of nutrient limitation on
phytoplankton growth is crucial for the accurate prediction
of primary production and for reflecting in the simulations
the consequences of ongoing anthropogenic perturbations to
oceanic nutrient cycles (Moore et al., 2013). The model rea-
sonably reproduces the HNLC regions because of the iron
limitation in the subarctic North Pacific Ocean, the equa-
torial Pacific Ocean, and the Southern Ocean (Supplement
Fig. S11), although the subarctic North Pacific Ocean and
the equatorial Pacific Ocean have larger HNLC zones than
observed upwelling regions. This is likely because of an un-
derestimation of surface iron concentrations and/or a rel-
atively high half-saturation constant for iron uptake (Ap-
pendix B). Nitrogen limitation occurs throughout much of
the low-latitude surface ocean where the nitrogen supply
from the subsurface is relatively slow.

Based on the distribution pattern of nutrients and the limi-
tations, annual NPP is simulated as 28.6 PgC yr−1 (Table 4).
This value is lower than a satellite-based estimate of 35–
78 PgC yr−1 (Carr et al., 2006), and it is also lower than the
range of 30.9–78.7 PgC yr−1 derived from the CMIP5 mod-
els (Bopp et al., 2013). This is likely attributable to the high
half-saturation constant for iron uptake, as mentioned above.
Although intense primary productivity in coastal regions is
not resolved by the coarse grid, the modeled NPP agrees with
the basin-scale patterns of observation-based NPP. The val-
ues of both modeled and observed NPP are high in regions
of equatorial upwelling, the North Atlantic Ocean, and the
Southern Ocean north of the polar front, whereas they are
low in subtropical gyres (Fig. 11g). Global export produc-

tion is estimated as 7.9 PgC yr−1, which is the upper bound
of the CMIP5 models (4.9–7.9 PgC yr−1; Bopp et al., 2013).

The simulated surface distribution of dissolved oxygen
compares reasonably well with observations (not shown).
This is because the surface oxygen concentration is close to
its solubility value, and it is strongly constrained by SST.
At depth, oxygen minimum zones in the eastern equatorial
Pacific Ocean, eastern tropical Atlantic Ocean, Arabian Sea,
and Bay of Bengal are reproduced well (Fig. 11f). However,
the model produces oxygen concentration values higher than
observed; thus, it underestimates the hypoxic volume ([O2]
< 80 mmol m−3) by a factor of 3 in comparison with data-
based estimates (Bianchi et al., 2012). Note that existing
global ocean biogeochemical models have difficulty in repro-
ducing oxygen minimum zones owing to their coarse resolu-
tion and simple globally tuned parameterizations of vertical
fluxes of OM (Cocco et al., 2013; Bopp et al., 2013). The
positive bias in oxygen might be driven by wintertime mix-
ing in the Southern Ocean and the North Pacific Ocean that is
too intense (Fig. 7), which transports too much oxygen from
the surface to depth.

The model also captures the global-scale patterns of ob-
served DIC and alkalinity (Fig. 11d and e). High values of
these tracers in subtropical gyres (and in the Southern Ocean
for DIC) are found in the model output and observations.
Salinity bias and the parameterization of calcium carbonate
production in the model can contribute to the alkalinity bias.
Overestimation of alkalinity in subtropical gyres leads to an
overestimation of DIC because alkalinity affects the ocean’s
capacity to take up and store atmospheric CO2.

Figure 12a shows the simulated annual mean air–sea CO2
fluxes for the period 1985–2014 with observational estimates
by Landschützer et al. (2014). Generally, the simulated spa-
tial pattern is consistent with the data-derived estimates. The
strongest carbon source to the atmosphere is found in the
equatorial Pacific Ocean, and the most intense carbon sink
is found in the North Atlantic Ocean. Model outgassing is
weaker than the observational estimate in the North Pacific
and equatorial Indian oceans. The model–data discrepancies
are pronounced in the seasonal cycle of air–sea CO2 fluxes in
the Southern Ocean and the North Atlantic Ocean (Fig. 12b
and c). In the Southern Ocean, the model simulates an oppo-
site CO2 flux seasonal phase, which could be driven by the
bias in SST variability (Kessler and Tjiputra, 2016). In the
North Atlantic Ocean, although the simulated seasonal phas-
ing of CO2 fluxes agrees with the observational estimate, the
amplitude is overestimated. The processes driving the sea-
sonal cycle should be investigated in future studies because
simulating a proper regional seasonal cycle of air–sea CO2
fluxes is important for future projections (Kessler and Tjipu-
tra, 2016; Goris et al., 2018).
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Figure 11. Comparison between model output and observations for key oceanic biogeochemical tracers. Simulated annual mean surface
(a) nitrate, (b) phosphate, (c) DIC, (d) alkalinity, (e) dissolved oxygen at 500 m of depth, and (f) surface NPP for the 2000s are compared with
observations from the WOA2013 (Garcia et al., 2014a, b) and GLODAPv2 datasets (Lauvset et al., 2016), as well as SeaWiFS (Behrenfeld
and Falkowski, 1997) satellite observations. Left and central panels show the horizontal distributions of model output and observations. Right
panels show the vertical distributions of model output (red lines) and observations (black lines).
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Figure 12. (a) Annual mean air–sea CO2 fluxes from (left) the model and (right) observational estimates adopted from Landschützer et
al. (2014). Seasonal cycle of air–sea CO2 fluxes for (b) the Southern Ocean and (c) the North Atlantic Ocean. Red lines represent the model
for the period 1985–2014, and black lines represent the observation-based estimates of Landschützer et al. (2014). Southern Ocean: 45–70◦ S,
North Atlantic Ocean: 30–70◦ N.

3.2 Sensitivity analysis

3.2.1 Sensitivity of land biogeochemistry

To evaluate the sensitivities of modeled land biogeochem-
istry, we focus on GPP and its response to external forcing
in the terrestrial system because this carbon flux is the pri-
mary driver of land carbon input. GPP change was calculated
by taking the difference of the 2005–2014 averages between
the HIST and CTL runs. Then, as diagnosed in Fig. 8c, the
GPP change was decomposed into the response to (1) CO2
increase, (2) climate change, and (3) LUC and agricultural
change (Fig. 13) based on the simulation results of HIST,
HIST-NOLUC, and HIST-BGC (Tables 1 and 2). Addition-
ally, the GPP changes were further decomposed into the con-
tributions from non-crop (i.e., the contribution of primary
and secondary vegetation, urban areas, and pasture) and crop
tiles by weighting the GPP of each tile by their areal fractions
on a grid.

Figure 13d–f shows that CO2 increase in the historical pe-
riod is the main driver of change in the land carbon cycle
and that the CO2 fertilization effect prevails over most land
areas except desert regions. Conversely, the GPP response
to climate change shows both positive and negative signs
(Fig. 13g–i) with relatively smaller magnitudes. Midlatitude
and high-latitude regions of the Northern Hemisphere show a
positive change in GPP that is likely attributable to lengthen-
ing of the vegetation growth season, enhanced plant growth
following accelerated soil mineralization due to warming,

and other mechanisms (e.g., soil water increase via precip-
itation and permafrost melting). In semiarid regions (i.e.,
Africa, South Asia, northern Australia, and the eastern side of
South America), GPP shows a slight reduction. As these re-
gions have less precipitation in comparison with the tropics,
the reduction in GPP is likely associated with precipitation
change.

In addition to the responses to CO2 increase and climate
change, the model demonstrates spatial variation in the re-
sponse of GPP to LUC (Fig. 13j). Historical LUC reduces the
non-crop GPP contribution (Fig. 13k), while the crop contri-
bution is enhanced (Fig. 13l). In the tropics, LUC reduces the
non-crop GPP but weakly increases crop GPP, which results
in a net negative reduction of GPP as grid averages (Fig. 13j).
Meanwhile, regions with intensive agriculture with nitrogen
fertilizer input (e.g., western Europe, East Asia, and parts of
North America) show a net positive change in GPP as grid
averages, whereby increases in the crop contribution over-
come reductions in the non-crop contribution (Figs. 13k and
12l). In the model, the crop contribution to GPP can be inten-
sified by the following: (1) increasing the areal fraction of the
crop tile following LUC forcing; (2) changing the vegetation
type from natural vegetation to crop, whereby the latter has
higher photosynthetic capacity than natural plant functional
types (given as parameters that relate photosynthetic capac-
ity to leaf nitrogen concentration; Appendix A); (3) applying
nitrogen fertilizer to crop tiles; and (4) increasing nitrogen
input via nitrogen-fixing crops, which is considered in the
model to be a subcategory of crop tiles. Indeed, the total area
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of cropland increases in the 20th century in the HIST simu-
lation (Supplement Fig. S2), which is reflected by the model
producing an increase in nitrogen input via fertilizer applica-
tion and biological fixation on the global scale (Fig. 9a).

By responding to CO2 increase, climate change, and LUC,
most land areas show increased GPP in the historical pe-
riod (Fig. 13a), and regions with intensive agriculture show a
greater increase in GPP than induced solely by the CO2 fer-
tilization effect (Fig. 13a and d). This suggests that modeled
GPP is sensitive to land use and agricultural management
forcing in addition to the increase in CO2, and this might
be one of the reasons for the slowing of LUC-induced land
carbon reduction in the latter half of the 20th century in the
HIST simulation (green line in Fig. 8c).

3.2.2 Sensitivity of ocean biogeochemistry

In this section, we investigate the sensitivity of oceanic NPP
to external nutrient inputs from atmospheric deposition and
river discharge processes under preindustrial conditions be-
cause these processes are newly incorporated into the ESM.
Through the combination of the simulation results of CTL-
D, NO-NR, NO-NRD, and NO-FD (Tables 1 and 2), the im-
pacts of nutrient input on both the nutrient concentration and
primary productivity are analyzed (Fig. 14 for N input as-
sessment and Fig. 15 for Fe), and the spatial patterns of sim-
ulated nutrient limitation on NPP in the four experiments are
examined (Fig. 16). Here, NO3, Fe, and PO4 limitation is
diagnosed using the equations NO3/(kN + NO3), Fe/(kFe
+ Fe), and PO4/(kP + PO4), respectively, as simulated in
MIROC-ES2L (Eq. B17); Fig. 16 presents the strength of
each limitation visualized by the intensity of each of the
three primary colors (red, blue, and green). In the simula-
tions, because changes in NPP and surface nutrient concen-
trations continued to change over several decades following
the abrupt switching-off manipulation, the average over the
final 10 years is used for the following analysis. The rapid re-
sponse of NPP to changes in nutrient input is consistent with
that found in previous research (Somes et al., 2016).

First, the impacts of riverine N input on the surface nu-
trient concentration and NPP are assessed by subtracting
the zero-input scenario NO-NR from the control experiment
CTL-D (Tables 1 and 2). Surface NPP is increased by river-
ine N input (by > 10 gC m−3 yr−1) in coastal areas such as
the North Brazil Shelf and the Gulf of Mexico (Fig. 14a).
In comparison with the pattern of the distribution of nutrient
limitation (Fig. 16a and b), it is clear that a strong NPP in-
crease in the open ocean occurs mainly in the Atlantic Ocean,
which is under an N-limited condition. Conversely, NPP de-
creases in Fe-limited regions because the NPP increase in N-
limited regions consumes surface dissolved Fe. Surface NO3
concentrations increase only slightly in N-limited regions be-
cause NO3 is immediately consumed locally by phytoplank-
ton. A remarkable increase in surface NO3 concentrations is
found in Fe-limited regions such as the Kara Sea, North At-

lantic Ocean, Hudson Bay, and Subantarctic Ocean. Global
NPP increases by 0.7 PgC yr−1 (by 2.5 % in comparison with
NO-NR). This value is comparable with the finding of da
Cunha et al. (2007), who estimated a 5 % increase in primary
production due to riverine nutrient input. Note that nutrient
retention in estuarine areas is not considered in our model.
Thus, most nitrogen supplied from river mouths can easily
be conveyed to the open ocean. Given that a recent modeling
study estimated that approximately 75 % of riverine nitrogen
globally escapes from shelf areas to the open ocean (Sharples
et al., 2017), our results on the impact of riverine N on NPP
should be viewed as an upper limit for the estimation.

Second, the effects of atmospheric N deposition on the sur-
face nutrient concentration and NPP are evaluated by sub-
tracting the zero-input scenario NO-NRD from the NO-NR
experiment (Tables 1 and 2). Similar to riverine N input,
atmospheric N deposition causes an increase in NPP in N-
limited regions and a global increase in NO3 (Figs. 14b, 16a
and c). According to deposition flux, significant changes in
NPP are found in coastal areas and low-latitude regions of
the Pacific Ocean. Global NPP increases by 0.3 PgC yr−1 (by
1 % in comparison with NO-NR), which is consistent with
previous estimates (Duce et al., 2008; Moore et al., 2013).

Finally, changes in the surface nutrient concentration and
NPP, driven by atmospheric Fe deposition, are calculated by
subtracting the zero-input scenario NO-FD from the control
experiment CTL-D (Tables 1 and 2). In contrast to N input,
atmospheric Fe deposition causes an increase in NPP in Fe-
limited regions and a decrease in N-limited regions (Figs. 15,
16a and d). A significant Fe increase is found in N-limited
regions. Global NPP and export production increase by 1.8
and 0.8 PgC yr−1, respectively (by 6.7 % and 11 %, respec-
tively, in comparison with NO-FD). These percentage in-
creases are consistent with previous estimations by Moore et
al. (2013). However, the sensitivity of export production to
Fe deposition from dust is higher than reported by Tagliabue
et al. (2014), who estimated that export production increases
by 0.06–0.11 PgC yr−1. Therefore, it seems difficult to ob-
tain robust sensitivity for both iron and the biological cycle
to iron input because of the high uncertainty regarding the
iron cycle among models. Although nitrogen input from both
deposition and rivers has little effect on the spatial patterns
of the distribution of nutrient limitation (Fig. 16a–c), iron in-
put from the atmosphere changes the pattern in low-latitude
regions from iron limitation to nitrogen limitation (Fig. 16a
and d).

Here, we examine model sensitivity against global inputs
of both N and Fe into the ocean through atmospheric depo-
sition and river discharge in the preindustrial condition. We
note, however, that these two types of nutrient input have in-
creased significantly since the preindustrial era because of
human activities (Duce et al., 2008; Seitzinger et al., 2010;
Krishnamurthy et al., 2010). Additionally, ongoing nutrient
input increase can lead to a future increase in biological
production, which might partly negate the production de-

www.geosci-model-dev.net/13/2197/2020/ Geosci. Model Dev., 13, 2197–2244, 2020



2220 T. Hajima et al.: Development of the MIROC-ES2L Earth system model

Figure 13. (a, b, c) Changes in GPP (gC m−2 yr−1) in HIST derived by taking the difference of the 2005–2014 averages of GPP between
HIST and CTL. (d, e, f) GPP response to CO2 increase diagnosed from simulation results of HIST, HIST-NOLUC, and HIST-BGC. (g, h,
i) GPP response to climate change diagnosed by taking the difference between the simulation results of HIST and HIST-BGC. (j, k, l) GPP
response to LUC obtained by taking the difference between HIST and HIST-NOLUC. GPP changes in each left-hand panel are further
decomposed into contributions from (middle panels) non-crop tiles (primary vegetation, secondary vegetation, urban areas, and pasture) and
(right-hand panels) crop tiles.

crease driven by global warming. Conversely, the resultant
increase in the export of OM would accelerate CO2-induced
ocean acidification and warming-induced deoxygenation in
subsurface waters, which leads to major environmental pres-
sures. Thus, the combined effects of global warming and an-
thropogenic nutrient input on ocean biogeochemical cycles
should be explored in the future.

3.2.3 Sensitivity of riverine nitrogen

The coupling of land and ocean ecosystems via riverine ni-
trogen is one of the new features of MIROC-ES2L, and the
potential impact of the process on ocean biogeochemistry has
already been examined and discussed in Sect. 3.2.2. Here, we
examine the response of river nitrogen loading itself against
anthropogenic forcing by comparing the results of the CTL,
HIST-NOLUC, and HIST simulations.

Geosci. Model Dev., 13, 2197–2244, 2020 www.geosci-model-dev.net/13/2197/2020/



T. Hajima et al.: Development of the MIROC-ES2L Earth system model 2221

Figure 14. Changes in (a, d) surface nitrate, (b, e) dissolved iron, and (c, f) NPP driven by nitrogen input from (a–c) rivers (CTL-D –
NO-NR) and (d–f) atmospheric deposition (NO-NR – NO-NRD).

Figure 15. Changes in (a) surface dissolved iron, (b) nitrate, and (c) NPP driven by dissolved iron input from dust (CTL-D – NO-FD).

As mentioned in Sect. 3.1.3, the global flux of riverine ni-
trogen input into the ocean is simulated at 17.5 TgN yr−1 in
the CTL experiment (Table 4), and the flux is almost dou-
bled in the 2000s at 33.9 TgN yr−1 in the HIST run. This
number is larger than previous estimates of 19–25 TgN yr−1

for the present-day condition (Smith et al., 2003; Mayorga
et al., 2010; Dumont et al., 2005). This overestimation might
be caused by the inability of the model to simulate all forms
of nitrogen in rivers. For example, the model simulates only
the dissolved inorganic nitrogen (DIN) flux; thus, the ex-
pected nitrogen flux with non-DIN forms (e.g., dissolved or-
ganic and particulate matter) might be partly imposed on the
DIN flux in the simulations. Indeed, the global total nitrogen
flux, including DIN, dissolved organic nitrogen, and particu-
late nitrogen, is estimated at 37–66 TgN yr−1 (Beusen et al.,
2016; Mayorga et al., 2010; Boyer et al., 2006; Seitzinger et
al., 2005), which is closer to the result of MIROC-ES2L.

Another possible reason for the above overestimation is
precipitation bias, which results in the overestimation of BNF
on land. As mentioned in Sect. 3.1.1, the model has a positive
precipitation bias on land in arid and desert regions (Sup-
plement Fig. S6). As the scheme for the natural BNF flux

employed in MIROC-ES2L is modeled to be controlled by
the actual evapotranspiration rate (Cleveland et al., 1999),
the precipitation bias in arid regions could easily lead to an
overestimation of the BNF flux and an increase in riverine
nitrogen loading. This is also evident when decomposing the
global riverine flux into river basins and comparing the find-
ings with a previous study by Dumont et al. (2005) (Fig. 17).
MIROC-ES2L overestimates the DIN fluxes of large rivers
such as the Amazon, Mississippi, and Yangtze rivers, even in
the CTL experiment, in which all anthropogenic forcings are
fixed at preindustrial levels. This suggests the necessity of
improvement of the baseline flux of riverine nitrogen in the
model. For more in-depth discussion, it will be necessary to
explicitly simulate the organic and particulate nitrogen fluxes
in rivers, and it might be necessary to simulate the explicit
sedimentary and chemical reaction processes in freshwater
and coastal zone systems.

In Fig. 17, the difference between the results of CTL and
HIST-NOLUC mainly reflect the change induced by nitrogen
deposition (and historical climate change) (Table 2), and the
model demonstrates that deposition has increased N fluxes
in many rivers. Additionally, the difference between HIST-
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Figure 16. Limiting nutrient map for phytoplankton for (a) CTL-D,
(b) NO-NR, (c) NO-NRD, and (d) NO-FD. Shading indicates lim-
iting nutrient(s), e.g., red: N limitation, blue: Fe limitation, green:
P limitation, magenta: N and Fe limitation, cyan: Fe and P limita-
tion, yellow: P and N limitation (see bottom color triangle). Circles
in (a) represent observed limiting nutrients from nutrient addition
experiments (Moore et al., 2013).

NOLUC and HIST demonstrates the impact of LUC and
agricultural management change (Table 2), and regions that
have intensive agriculture within their watersheds (e.g., the
basins of the Mississippi, Indus, Yellow, and Yangtze rivers)
are simulated as strongly affected by the forcing change. The
DIN discharge in each river is not always smaller in HIST-
NOLUC than in HIST. This is because LAI in HIST-NOLUC
is different to that in HIST, which is sometimes accompa-
nied by a slight change in the surface climate via biophysical
feedback. If the soil temperature is slightly warmer in HIST-
NOLUC than in HIST, the soil mineralization rate in HIST-
NOLUC should be accelerated, and thus the DIN loadings of
rivers could be increased. This simulated trend in the histor-
ical period is qualitatively consistent with previous studies
(Gruber and Galloway, 2008). Furthermore, the model simu-
lates the global riverine flux to be increased by 16.4 TgN yr−1

in the historical period. This value is quantitatively consis-
tent with previous estimates, e.g., 16 TgN yr−1 by Dumont et
al. (2005) for DIN flux and 18 and 19 TgN yr−1 by Beusen et
al. (2016) and by Green et al. (2004), respectively, for total N
flux. Although bias exists in the magnitude of riverine nitro-
gen flux both globally and locally, we confirm that the model
can qualitatively capture the changes in riverine nitrogen flux
during the historical period.

3.2.4 TCR, AF, and TCRE

Here, the model sensitivity of the global climate–carbon cy-
cle against CO2 increase is analyzed by calculating TCR,
AF, and TCRE from the results of the 1PPY, 1PPY-BGC,
and 1PPY-RAD experiments (see Sect. 2.2.2 for the method).
These quantities summarize the total performance of the cli-
mate, carbon cycle, and coupled climate–carbon cycle sys-
tem in the models, which enables us to compare them with
existing ESMs.

The TCR, AF, and TCRE derived from the 1PPY simu-
lation are displayed in Table 5. The TCR of MIROC-ES2L
is 1.5 K, which is lower than the multimodel mean of the
CMIP5 ESMs but within the range of spread (1.8± 0.5 K;
Gillet et al., 2013). Compared with our previous ESM (i.e.,
MIROC-ESM; Watanabe et al., 2011), the TCR has de-
creased by 32 % because of the replacement of the physical
core of the ESM from the MIROC3-based model to that of
MIROC5 (Watanabe et al., 2010). The value of AF, which
is a quantity that characterizes the carbon cycle response in
an ESM but is dependent on TCR, was simulated at 0.61
in MIROC-ESM. This value is reduced to 0.52 in MIROC-
ES2L; i.e., the new model has a stronger carbon sink than
the previous version. The value of AF in the new model is of
similar magnitude to the CMIP5 model average (0.53±0.06;
Gillet et al., 2013). The lowered TCR and the moderate AF
cause the new model to have moderate TCRE (1.3 K EgC−1),
which is smaller than that of the CMIP5 model average (1.6±
0.5 K EgC−1) by 19 %. Using TCRE, we can approximate
the value of CE until the global temperature exceeds a spe-
cific mitigation target; CE for the 2 ◦C warming target should
be approximately 1540 PgC for MIROC-ES2L, 910 PgC for
MIROC-ESM, and 950–1820 PgC for the CMIP5 models.

To further explore why AF is lowered in MIROC-ES2L,
the strengths of the carbon cycle feedbacks were analyzed
using the 1PPY-BGC and 1PPY-RAD simulation results (Ta-
ble 6), and the findings were compared with the CMIP5
ESMs (Arora et al., 2013). The strength of the CO2–carbon
feedback (β) of land is simulated to be 0.52 PgC PgC−1,
which is slightly higher than the CMIP5 model average
(0.43± 0.21 PgC PgC−1) and larger than that of MIROC-
ESM by 48 %. The strength of oceanic CO2–carbon feed-
back in the CMIP5 ESMs displays less spread among the
models (0.38± 0.03 PgC PgC−1), and the result of MIROC-
ES2L is within this spread (0.35 PgC PgC−1). The absolute
magnitude of the climate–carbon feedback (γ ) for land and
ocean in MIROC-ES2L is −71 and −4.5 PgC K−1, respec-
tively, both of which are less negative than the result of
MIROC-ESM by 20 % for land and 63 % for ocean. Con-
sequently, the land γ in MIROC-ES2L is within the range of
the CMIP5 ESMs (−58± 29 PgC K−1), while the ocean γ
is slightly larger than the upper range of the CMIP5 ESMs
(−7.8± 2.9 PgC K−1).

As the quantities β and γ have different units, it is dif-
ficult to conclude which feedback process contributes most
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Figure 17. Simulated and observed DIN load per river basin: sorted by simulated (a) first 10 largest rivers and (b) second 10 largest rivers.
Vertical gray bars represent observations (Dumont et al., 2005); blue, green, and yellow bars correspond to the results of the HIST, HIST-
NOLUC, and CTL experiments, respectively.

Table 5. Comparison of TCR, AF, and TCRE between MIROC-ES2L, MIROC-ESM, MIROC5.2, and CMIP5 ESMs in the 1PPY simulation.
For MIROC-ES2L, both TCR and AF are calculated based on 20-year means of T2, CL, and CO centered on the 70th year of the 1PPY
simulation (i.e., the time when the CO2 concentration is doubled from the preindustrial condition), and TCRE is calculated based on TCR
and AF. Numbers for the CMIP5 ESMs were obtained from Gillett et al. (2013) and are presented as the multimodel mean ±1σ .

TCR (K) AF (–) TCRE (K EgC−1)

MIROC-ES2L
(This study)

1.5 0.52 1.3

MIROC-ESM
(Watanabe et al., 2011; Gillett et al., 2013)

2.2 0.61 2.2

MIROC5.2
(Tatebe et al., 2018)

1.6 – –

CMIP5
(Gillett et al., 2013)

1.8± 0.5 0.53± 0.06 1.6± 0.5

to the AF change. To compare them with the same unit, we
used the quantity u proposed by Gregory et al. (2009). This
quantity, which is defined as uβ = β and uγ = γ × T/CA
(PgC PgC−1), can relate the carbon cycle feedback param-
eters to AF, as AF = 1/(1+ uβL+ uβO + uγL + uγO) (see
Appendix E for the derivation). When comparing the u quan-
tities of MIROC-ES2L with the CMIP5 models (Fig. 18), it
is evident that the ocean component of MIROC-ES2L is less
sensitive than the previous model for both CO2–carbon and
climate–carbon feedbacks. These two changes almost coun-
teract each other; thus, the ocean component does not ex-
plain the reduced AF in the new model (Table 5). For land,
the climate–carbon feedback (uγ ) in MIROC-ES2L is inter-
mediate, while MIROC-ESM was one of the most sensitive

models of the CMIP5 ESMs. Additionally, the magnitude
of the land CO2–carbon feedback (uβ ) is increased from
MIROC-ESM to MIROC-ES2L by 48 % (uβ = β). There-
fore, the land component is the main cause of the lower
AF, making the magnitude of both the CO2–carbon and the
climate–carbon feedbacks more positive and less negative,
respectively, i.e., strengthening the land carbon sink.

4 Summary and conclusions

In this study, a new Earth system model (MIROC-ES2L)
was developed using a state-of-the-art climate model
(MIROC5.2) as the physical core. This new ESM embeds a
terrestrial biogeochemical component with explicit carbon–
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Table 6. Comparison of CO2–carbon and climate–carbon feedback parameters between MIROC-ES2L, MIROC-ESM, and the CMIP5
ESMs. As presented in Arora et al. (2013), TCR, AF, and TCRE are calculated at the time when the CO2 concentration is quadrupled from
the preindustrial condition (i.e., the 140th year in the 1PPY simulation) by taking the anomaly from the CTL run. Numbers for CMIP5 ESMs
were obtained from Arora et al. (2013) and are presented as the multimodel mean ±1σ .

β land β ocean γ land γ ocean
(PgC PgC−1) (PgC PgC−1) (PgC K−1) (PgC K−1)

MIROC-ES2L (this study) 0.52 0.35 −71 −4.5
MIROC-ESM (Watanabe et al., 2011; Arora et al., 2013) 0.35 0.39 −89 −12
CMIP5 (Arora et al., 2013) 0.43± 0.21 0.38± 0.03 −58± 29 −7.8± 2.9

Figure 18. Comparison of the strength of CO2–carbon and climate–carbon feedbacks between MIROC-ES2L and the CMIP5 models eval-
uated using the 1PPY, 1PPY-BGC, and 1PPY-RAD experiments. Vertical solid and dotted black bars represent MIROC-ES2L and MIROC-
ESM, respectively, and the horizontal bars represent the range of the CMIP5 ESMs (mean ±1.65σ ). To compare the two types of feedback
strength with the same unit, land and ocean carbon storage change were both normalized by dividing the atmospheric carbon change, which
corresponds to the u quantity proposed by Gregory et al. (2009): CE = CA (1+ uβ + uγ ), where uβ = β, uγ = γ ×α. If u > 0 (u < 0),
the feedback sign is negative (positive). The calculations were based on the anomaly from the CTL run at the time of a quadrupled CO2
concentration from the preindustrial condition (i.e., the 140th year of the 1PPY, 1PPY-BGC, and 1PPY-RAD simulations).

nitrogen interaction (VISIT-e) that accounts for the nutri-
ent limitation of nitrogen on plant growth and therefore the
change in the land carbon fluxes. Additionally, the ocean bio-
geochemical component (OECO2) is largely updated to sim-
ulate the biogeochemical cycles of carbon, nitrogen, phos-
phorus, iron, and oxygen such that oceanic primary produc-
tivity in the model is now controlled by multiple nutrient lim-
itations. As a new challenge, land and ocean nitrogen cycles
were coupled via river discharge processes; thus, marine pro-
ductivity is now also affected by the riverine nitrogen input.
Furthermore, iron-related processes such as emission, atmo-
spheric transport, deposition, and utilization in the marine
ecosystem are newly included to represent the micronutrient
limitation on phytoplankton productivity. This is necessary
to reproduce the HNLC regions and simulate ecosystem vari-
ability in response to changes in external iron inputs.

To evaluate the performance of the new model, a his-
torical simulation following CMIP6 protocols and forcing
datasets was performed for the 1850–2014 period, and the
results were compared with observation-based products. The
model reasonably reproduces the global changes in net TOA
radiation balance, SAT, SST, and upper-ocean temperature.
Considering the few biophysical feedbacks on climate in the

model, the MIROC-ES2L good performance in simulating
the physical fields is inherited from its original climate model
(MIROC5.2), although persistent problems remain such as
the warm bias in the Southern Ocean, as found in some cli-
mate models. Global carbon and nitrogen budgets in the his-
torical simulation were also examined and discussed by com-
paring the results with existing studies. The model success-
fully captured the observation-based estimates of contempo-
rary air–sea and air–land carbon fluxes in terms of cumula-
tive values. The component fluxes of global nitrogen between
land, atmosphere, and ocean are also reasonably reproduced
by the model. The spatial distributions of fundamental vari-
ables of the land carbon cycle were also assessed through
comparison with observation-based products, and the model
produced reasonable patterns for primary productivity, forest
carbon, and SOC. The spatial patterns of oceanic macronu-
trients and micronutrients, total inorganic carbon, alkalinity,
oxygen, primary productivity, and oceanic CO2 flux were all
captured well in the historical simulation.

To assess the global climate–carbon cycle feedback in
MIROC-ES2L, a sensitivity analysis was performed in which
the atmospheric CO2 concentration was prescribed to in-
crease by 1 % yr−1. Then, the values of TCR, AF, and
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TCRE were calculated and compared with those of the
CMIP5 ESMs. TCR in the new model is reduced to 1.5 K,
which is approximately 70 % of the previous model used
for CMIP5, through the replacement of the physical core
from the MIROC3-based model to that of MIROC5.2. AF
is also reduced by 15 %. Further feedback analysis of the
carbon cycle revealed that most of the AF reduction should
be attributable to the intensified land carbon sink in the new
model, which results in a level of AF that is close to the av-
erage of the CMIP5 ESMs. TCRE, which is a quantity that
aggregates the temperature response as a result of the entire
climate–carbon cycle processes against anthropogenic CO2
emissions, is 1.3 K EgC−1 in MIROC-ES2L. This is reduced
from the value seen in the model used for CMIP5 by 32 %,
and it is slightly smaller than the multimodel mean of the
CMIP5 ESMs. Thus, MIROC-ES2L might be an “optimistic”
model in terms of simulating global climate and carbon cy-
cle change considering that some CMIP6-class models are
likely to have higher climate sensitivity (Voosen, 2019). A
multimodal comparison of feedback strengths using CMIP6
ESMs is necessary to clarify whether the climate and car-
bon cycle sensitivities in MIROC-ES2L are realistic and to
establish constraints on each feedback process based on ob-
servations (e.g., Wenzel et al., 2016; Goris et al., 2018).

In the new model, the terrestrial nitrogen cycle processes
and the interaction with the carbon cycle are modeled ex-
plicitly. By performing several types of simulations, it was
clearly demonstrated that agricultural management such as
fertilizer application has changed the carbon cycle (GPP) in
the historical period, which suggests that the nitrogen cycle
in the model alters the land carbon cycle. The model sim-
ulated the change in the total land carbon content during
1850–2014 at 44 PgC, which is within the estimated range
of Le Quéré et al. (2018). However, historical terrestrial car-
bon change is highly uncertain because the change is pro-
cessed by multiple responses against the external forcing of
CO2, LUC, and climate change, each of which has its own
estimation uncertainty. Thus, as performed in this study, de-
composition of the impact of these forcings in historical sim-
ulations and in multimodel comparisons would be helpful in
specifying the processes that produce the large simulation
spread of the land carbon budget among the ESMs. Further-
more, although we confirmed that the nitrogen cycle alters
the carbon cycle in the model, this study did not quantify
the extent to which the soil nutrient deficit could downreg-
ulate plant growth and reduce the natural carbon sink. For
this, a sensitivity analysis associated with carbon–nitrogen
interaction is planned in CMIP6 (Jones et al., 2016), and the
multimodel comparison study will reveal the strength of the
carbon–nitrogen feedback in MIROC-ES2L relative to other
CMIP6-class ESMs.

In the new model, the ocean nitrogen cycle is modified
to be an open system, and thus the model can reflect the
influences of external sources of nitrogen via atmospheric
deposition and river discharge. Our sensitivity analyses un-

der the preindustrial condition suggested minor contributions
of these two external sources to primary productivity on the
global scale. However, regions in which primary productiv-
ity is constrained by nitrogen availability showed a strong
positive NPP response to the relaxation of nitrogen limita-
tion. It accelerates the use of other nutrients within the ma-
rine ecosystem in such regions and reduces iron and phos-
phorus availability in other regions. Furthermore, by switch-
ing on the process of iron deposition into the ocean, the
model showed an increase of approximately 7 % in primary
production under the preindustrial condition, which suggests
that iron input has a relatively stronger impact than nitrogen.
Coupling iron cycle processes in the model led to the suc-
cessful reproduction of HNLC regions, and it will enable the
model to project future biogeochemical changes induced by
anthropogenic iron emissions associated with the use of fos-
sil fuels and biomass burning. We note, however, that as an
atmospheric chemistry module is not included in MIROC-
ES2L, the atmospheric chemical reaction of iron-containing
aerosols is ignored and the iron solubility to seawater is sim-
ply assumed constant. Considering the relatively strong im-
pact of iron deposition on marine primary productivity in the
model, we need further detailed evaluation and modification
of the iron cycle processes in terms of both aerosol transport
and marine biogeochemical responses.

In addition to such improvements in terms of the iron cy-
cle, other factors should also be improved and extended in
the ESM for future simulation study. First, a freshwater bio-
geochemistry module is required. In the present model, the
chemical form of riverine nitrogen is assumed inorganic, but
actual river flow contains OM and particulate matter that
undergo biogeochemical processing during transport. Thus,
inclusion of the transport of organic–inorganic matter and
the modeling of freshwater biogeochemistry might be nec-
essary. This conclusion is supported by the sensitivity anal-
ysis that showed a relatively strong regional-scale impact of
riverine nitrogen on marine primary productivity, although
the global-scale impact was demonstrated to be minor. Sec-
ond, MIROC-ES2L can simulate natural emissions of ni-
trous oxide; however, the emissions did not change the ra-
diative balance in the atmosphere. Nitrous oxide is one of
the strongest greenhouse gases with a long lifetime. As di-
agnosed in this study, future nitrous oxide emissions could
be controlled by land use and agriculture, as well as climate
change. Therefore, full coupling of the nitrous oxide cycle
with other associated atmospheric chemical processes should
be incorporated in the next-generation ESM, together with
the methane cycle, as suggested in previous studies (e.g.,
Collins et al., 2018). Third, a mechanistic model for the den-
itrification process in ocean sediment should be included in a
future model. The present model simulates only the denitri-
fication rate of the water column, and the flux from sediment
is likely imposed on the water-column denitrification. As the
timescale of the sedimentary process is likely longer than that
of water-column denitrification, explicit modeling of sed-
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imentary denitrification will be important, particularly for
long-term simulations over timescales of millennia. Finally,
we partly demonstrated the importance of external sources
of nutrients for marine productivity, although its evaluation
was performed under the preindustrial condition. As anthro-
pogenic nutrient inputs under that condition are much smaller
than under the present-day condition and could be amplified
or mitigated in the future, a similar set of sensitivity simula-
tions should be undertaken for present-day and future condi-
tions.

ESMs represent powerful tools to investigate interactions
between the climate, biogeochemistry, and human activities,
and they have facilitated climate projections and quantifica-
tions of future emissions of greenhouse gases for achieving
climate change mitigation goals. Such models are also valu-
able for examining how Earth system components might re-
spond to different levels of mitigation policies and scenarios
spanning from the business-as-usual scenario to one employ-
ing intensive measures such as geoengineering techniques.
Furthermore, state-of-the-art ESMs can reproduce some of
the dominant long-term environmental changes on Earth that
are becoming evident or doubted in association with climate
change, e.g., ocean acidification and hypoxia, global nitrogen
loading, air pollution, and habitable zone changes in ecosys-
tems. ESMs can simulate such problems and their interac-
tions in a holistic and consistent manner. Such simulations
have the potential to elucidate sustainable ways to mitigate
climate change with less environmental stress. To support
such applications, further efforts should be made to improve
ESMs and to constrain model performance in collaboration
with observation studies.
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Appendix A: Land ecosystem–biogeochemical
component

A1 Nitrogen cycle

The structure of carbon and nitrogen compartments and the
flux calculations in VISIT-e mostly follow the original ver-
sion of the model (Ito and Inatomi, 2012a). For N cycle and
LUC processes, some major changes were brought to VISIT-
e to couple the model with MIROC-ES2L; the details are de-
scribed below.

A1.1 N compartment structure in VISIT-e

Terrestrial N dynamics in VISIT are simulated based on
three major compartment groups of N storage: vegetation N
(NVEG), soil organic matter (NSOM), and soil inorganic mat-
ter (NIOM). The component NVEG is composed of canopy N
(NCAN) and storage N (NSTG):

NVEG =NCAN+NSTG.

The mass conservation equations for NCAN and NSTG are as
follows:

dNCAN/dt = FNSBNF, CAN+FNUPTK, CAN+FNRALC

−FNMORT, CAN, (A1)

dNSTG/dt = FNSBNF, STG+FNUPTK, STG+FNWTHD

−FNMORT, STG, (A2)

where FN represents nitrogen flux, and the subscripts SBNF,
UPTK, RALC, WTHD, and MORT represent symbiotic bio-
logical N fixation, N uptake by plants, reallocation of storage
N to the canopy, withdrawal of canopy N to storage, and loss
of N by mortality, respectively. In this study, biological N in-
put into vegetation (represented by FNSBNF) is modified from
the original model; the details are described in Sect. A1.2.

The component NSOM is composed of the three nitrogen
pools of litter (NLIT), humus (NHUM), and microbes (NLIT):

NSOM =NLIT+NHUM+NMCR. (A3)

The N conservation equations for the pools are as follows:

dNLIT/dt = FNMORT, CAN+FNMORT, STG+FNNBNF

−FNHUMF−FNMNRL, LIT, (A4)

dNHUM/dt = FNHUMF+FNMORT, MCR

−FNMNRL, HUM, (A5)
dNMCR/dt = FNIMBL−FNMORT, MCR, (A6)

where the subscripts NBNF, HUMF, MNRL, and IMBL rep-
resent nonsymbiotic BNF, humification of litter, mineraliza-
tion of litter and humus, and immobilization by microbes,
respectively. The components FNNBNF and FNHUMF are new
components of flux, which are described in Sect. A1.2 and
A1.3, respectively.

The inorganic nitrogen is assumed to consist of N pools of
NH+4 (NNH4 ) and NO−3 (NNO3 ):

NIOM =NNH4 +NNO3 . (A7)

The budget equation for NNH4 is as follows:

dNNH4/dt = FNDEPO,NH4 +FNFRTL,NH4

+FNMNRL, LIT+FNMNRL, HUM−FNUPTK,NH4

−FNIMBL−FNN2ON−FNNTRF−FNNH3V

−FNALOS,NH4 , (A8)

where the subscripts DEPO, FRTL, N2ON, NTRF, NH3V,
and ALOS represent deposition, fertilizer, the N2O emis-
sions of the nitrification process, nitrification of NH+4 , NH3
volatilization, and abiotic N loss, respectively.

The budget equation for NNO3 is as follows:

dNNO3/dt = FNDEPO,NO3 +FNFRTL,NO3 +FNNTRF

−FNUPTK,NO3 −FNN2OD−FNN2

−FNLECH−FNALOS,NO3 , (A9)

where the subscripts N2OD and N2 represent N2O and N2
emissions in the denitrification process, respectively, and
LECH represents N leaching.

In the above two equations, FNDEPO and FNFRTL are
forced by external datasets, while FNALOS is the pro-
cess newly introduced in this study, which is described in
Sect. A1.4.

A1.2 Biological N fixation

BNF is calculated based on the actual evapotranspiration rate
(Cleveland et al., 1999). In the original version of VISIT, all
nitrogen fixed through BNF (FNBNF) was assumed available
for plants. As this assumption makes vegetation in the model
less dependent on soil nutrient availability, the model is mod-
ified in that only a portion of BNF N is made directly avail-
able for plants. For this, FNBNF is decomposed into symbi-
otic BNF (FNSBNF) and nonsymbiotic BNF (FNNBNF):

FNBNF = FNSBNF+FNNBNF (A10)

and

FNSBNF = αSBNF×FNBNF, (A11)
FNNBNF = (1−αSBNF)×FNBNF, (A12)

where αSBNF is the portion of N of symbiotic BNF. Here,
αSBNF is assumed to be 0.5 as the landscape-level parameter.
Nitrogen fixed by the symbiotic process is used directly by
plants, while N fixed by nonsymbiotic microbes is assumed
to directly form part of the litter. The BNF in cropland is
modeled differently, as shown in Sect. A2.3.
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A1.3 Mineralization, humification, and immobilization

The mineralization rate of litter is the same as that in the
original version, and it is calculated as follows:

FNMNRL, LIT =NLIT× (FCMNRL, LIT/CLIT), (A13)

where FCMNRL, LIT is the C mineralization rate of litter and
CLIT is the amount of C in the litter pool.

The humus N mineralization rate is similar to that of litter,
but it is modified to be dependent on the humus C : N ratio
(CNHUM):

FNMNRL, HUM =NHUM× (FCMNRL, HUM/CHUM)

× (1− fCN(CNHUM)) (A14)

and

fCN(CNHUM)= Smin×

exp((logSmax− logSmin)/(Rmax−Rmin)

× (CNHUM−Rmin)). (A15)

Here, Smax and Smin are the maximum and minimum frac-
tions of mineralized N that eventually move to the inorganic
N pool (NNH4 ), respectively. Rmax and Rmin are the maxi-
mum and minimum C : N ratios in the humus pool, respec-
tively. The term 1− fCN(CNHUM) controls the humus C : N
ratio to be between Rmax and Rmin by accelerating humus N
mineralization under a lower C : N ratio and decreasing it un-
der a higher C : N ratio. Here, the values of Smax = 0.95 and
Smin = 0.05 are assumed, and Rmax and Rmin are set to the
values of 40 and 10, respectively.

The immobilization rate is simplified in VISIT-e, and it is
modeled as a function of the mineralization rate of litter N,
depending on the C : N status in the humus:

FNIMBL = FNMNRL, LIT× fCN(CNHUM). (A16)

Thus, N immobilization is accelerated if the humus has a
high C : N ratio, and it decreases under a lower C : N con-
dition.

N flux by humification (N flow from litter to humus,
FNHUMF, LIT) is newly introduced in VISIT-e, and it is mod-
eled as follows:

FNHUMF, LIT =NLIT× (FCHUMF, LIT/CLIT), (A17)

where FCHUMF, LIT is the rate of C flux in the humification
process, which is simulated in the C cycle part of the model.

A1.4 Abiotic N loss

Abiotic N loss from soil (FNALOSS,NH4 and FNALOSS,NO3 ) is
newly introduced in VISIT-e to prevent infinite N accumula-
tion in deserts and arid regions, where much N removal thor-
ough biotic and hydrological processes cannot be expected.

This new scheme is based on the findings of McCalley and
Sparks (2009), and it is modeled as follows:

FNALOSS,NH4 = SALOSS× exp(KALOSS(Tsfc− 50))

×NNH4 , (A18)

FNALOSS,NO3 = SALOSS× exp(KALOSS(Tsfc− 50))

×NNO3 , (A19)

where SALOSS is a specific rate of abiotic loss that is set to the
value of 7.26× 10−3 (ngN m−2 s−1) (Schaeffer et al., 2003),
andKALOSS is a constant to normalize the rate at 50 ◦C. Here,
the emitted gas is assumed an inert form of N.

A1.5 N limitation on plant productivity

To simulate soil nutrient (soil inorganic nitrogen) control on
plant growth, VISIT-e is modified from the original model as
follows.

First, the photosynthetic capacity (PCSAT), which used to
be given as the fixed parameter, is modified such that it is
controlled by the N concentration in the leaf (NFOL):

PCSAT =KPSAT1×NFOL+KPSAT2 (A20)

and

NFOL =NCAN/LAI, (A21)

where KPSAT1 and KPSAT2 are the slope and intercept, re-
spectively, of the empirical relationship between NFOL and
PCSAT, and LAI is the leaf area index. In this study, the pa-
rameters KPSAT1 and KPSAT2 were obtained from a meta-
analysis study of Kattge et al. (2009). The leaf-level photo-
synthetic capacity is upscaled using the analytical method of
the Monsi–Saeki theory, assuming a vertically uniform dis-
tribution of canopy N.

Second, actual N uptake by plants (FNUPTK) is determined
by the balance between N demand by plants (FNDMND) and
the potential supply from the soil (FNSPPL), which allows the
model to have a flexible C : N ratio in plant organs:

FNUPTK =min{FNSPPL,FNDMND}. (A22)

Here, FNSPPL is assumed simply as the total amount of inor-
ganic N in soil (=NNH4 +NNO3 ). The component FNDMND
is the sum of the demand from plant organs:

FNDMND = FNDMND, CAN+FNDMND, ROT

+FNDMND, STM (A23)
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and

FNDMND, CAN = (FCTRNS, CAN−FCGRSP, CAN)

/(CCAN/N
′

CAN), (A24)

FNDMND, ROT = (FCTRNS, ROT−FCGRSP, ROT)

/(RROT), (A25)

FNDMND, STM = (FCTRNS, STM−FCGRSP, STM)

/(RSTM). (A26)

In the above, FC represents the carbon flux of the transloca-
tion of primary production (with subscript TRNS) and the
carbon lost by growth respiration (GRSP). The subscripts
CAN, ROT, and STM represent canopy, root, and stem, re-
spectively. RROT and RSTM are fixed parameters used as ref-
erence C : N ratios in the root and stem, respectively, ob-
tained from White et al. (2000). N ′CAN is the canopy N that
maximizes canopy productivity, which is determined numer-
ically by considering the balance between GPP and canopy
(foliage) respiration.

A2 Land use change

A2.1 Structure of LUC tiles

LUC by external forcing and its impact on land biogeochem-
istry are simulated with five main types of tiles (primary veg-
etation, secondary vegetation, urban, cropland, and pasture)
in each land grid. The same structure of C and N compart-
ments is shared among the tiles, and each tile has its own
areal fraction in a grid (fLUC):

fLUC, PV+ fLUC, SV+ fLUC, UR+ fLUC, CR

+ fLUC, PS = 1. (A27)

The crop tile further holds two subtiles and their areal frac-
tions: nitrogen-fixing crops and others:

fLUC, CR = fLUC, CRN+ fLUC, CRO , (A28)

where fLUC, CRN is the areal fraction for the N-fixing crop
and fLUC, CRO is for the others. This subtile-level fraction
is used for the estimation of nitrogen fixation by crops (see
Sect. A2.3).

A2.2 Product pool and decomposition

The carbon and nitrogen in biomass removed by crop har-
vesting and by land use conversion (P ) are allocated to
three product pools with different turnover rates (1, 10, and

100 years):

dMPROD, 1 year/dt = ε1 year×P −FMLUCE, 1 year, (A29)

dMPROD, 10 years/dt = ε10 years×P

−FMLUCE, 10 years, (A30)

dMPROD, 100 years/dt = ε100 years×P

−FMLUCE, 100 years, (A31)

where MPROD is the harvested biomass of C or N stored in
the three product pools, and P is the harvested mass of C
or N. Here, ε is the allocation fraction among the product
pools (set in this study as ε1 year = 0.5, ε10 years = 0.45, and
ε100 years = 0.05). FMLUCE represents the volatilization rates
of carbon (as CO2) or nitrogen (as an inert form) from the
three pools, which are calculated as follows:

FMLUCE, 1 year =KLUCE, 1 year×MPROD, 1 year, (A32)
FMLUCE, 10 years =KLUCE, 10 years×MPROD, 10 years, (A33)

FMLUCE, 100 years =KLUCE, 100 years

×MPROD, 100 years, (A34)

where KLUCE is the specific emission rate in each product
pool, which is set to reduce the carbon and nitrogen in each
pool by 99.9 % within 1, 10, and 100 years.

A3 LUC status-driven impact on biogeochemistry

Even if the areal fraction of each land use tile were fixed in
a simulation, there could still be impacts of land use on land
biogeochemistry, referred to here as the status-driven impact.
This impact is specific to each tile, and it is summarized as
follows:

1. prohibition of plant growth on an urban tile;

2. increased mortality of plants by grazing pressure on pas-
ture tiles, assuming a 20 % increase in mortality rate for
foliage;

3. annual crop harvesting on crop tiles (assuming 10 % of
foliage is harvested) and loss of C and N from the prod-
uct pools;

4. nitrogen fixation by N-fixing crop on crop tiles.

For (4), the total BNF rate on crop tiles (FNSBNF) is modeled
as follows:

FNSBNF = FNSBNF, CRO× fLUC, CRO

+FNSBNF, CRN× fLUC, CRN, (A35)

where FNSBNF, CRO represents the rate of nitrogen fixation
on non-N-fixing crop tiles, which is assumed the same as
that in natural vegetation. FNSBNF, CRN is the rate of nitrogen
fixation on N-fixing crop tiles, which is calculated simply to
satisfy a fixed ratio of BNF-derived N to all N taken up by
N-fixing crops (0.66; from Herridge et al., 2008).
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A4 LUC transition-driven impact on biogeochemistry

When the areal fractions of tiles are made to change follow-
ing the forcing dataset, the apparent mass densities of C and
N on a grid can be changed. For example, when a portion
of a grid area is converted from category X to category Y in
a year, the mass conservation between the “before (t)” and
“after (t + 1)” on a grid should be as follows:

M t
X × f

t
X +M

t
Y × f

t
Y =M

t+1
X × f t+1

X

+M t+1
Y × f t+1

Y +P (A36)

and

M t
X =M

t+1
X , (A37)

where M is the mass density per unit tile area, the subscripts
X and Y represent categories of land use type, and the super-
script t denotes time. By presenting the areal fraction change
as 1f and the change in apparent mass density in category
Y as 1My , these equations can be written as follows:

M t
X × f

t
X +M

t
Y × f

t
Y =M

t
X × (f

t
X −1f )

+ (M t
Y +1MY )× (f

t
Y +1f )+P (A38)

and

P =1f ×M t
X ×KHARV, (A39)

where KHARV determines the fraction of mass that enters
the product pools instead of the tile of category Y . Here,
KHARV is always set to zero for litter and soil pools, and
KHARV = 1 for vegetation pools in specific transition pat-
terns (e.g., KHARV = 1 if the LUC transition type is urban-
ization, whereas KHARV = 0 if the LUC conversion is pas-
ture abandonment). By solving the equations for 1MY , we
obtain the following:

1MY = (1f × (M
t
X −M

t
Y )−P)/(f

t
Y +1f ). (A40)

If 1MY > 0 (< 0), the apparent mass density in tile Y is in-
creased (decreased). The changes in apparent mass density
lead to a mass imbalance of C and N, and therefore the stor-
age of both C and N starts to move toward a rebalanced status
under the given environmental conditions.

Appendix B: Ocean ecosystem–biogeochemical
component

B1 Governing equations

The ocean ecosystem component (OECO2) embedded
within the ocean circulation model is based on nutrient–
phytoplankton–zooplankton–detritus (NPZD) type with four
prognostic variables: nitrate (NO3), ordinary nondia-
zotrophic phytoplankton (Phy), zooplankton (Zoo), and par-
ticulate detritus (Det). In addition, phosphate (PO4), dis-
solved oxygen (O2), dissolved iron (Fe), nitrous oxide

(N2O), and diazotrophic phytoplankton (nitrogen fixers,
Diaz) are included. Biogeochemical tracers associated with
the carbon cycle, i.e., dissolved inorganic carbon (DIC), alka-
linity (Alk), calcium carbonate (CaCO3), and calcium (Ca),
are also included. Constant (∼ Redfield) stoichiometry re-
lates the C, N, P, Fe, and O content of the biological variables
and their exchanges with the inorganic variables (NO3, PO4,
Fe, O2, N2O, Alk, and DIC).

Each variable changes its concentration C according to the
following equation:

∂C

∂t
= Tr+ S, (B1)

where Tr represents all transport terms associated with the
physical processes, including advection, isopycnal and di-
apycnal diffusion, and convection, and S denotes the source
minus sink terms that include the surface and bottom fluxes.
Using the variables and parameters listed in Tables B1 and
B2, the source minus sink terms for each prognostic variable
can be obtained as follows.

First, the source minus sink term for NO3 S(NO3) is given
by the following:

S (NO3)=GNO3

(
1− 0.8RO:N0NO3r

NO3
sox

)
+DepNO3

+RivNO3 , (B2)

where DepNO3
(RivNO3 ) represents nitrogen deposition from

the atmosphere (riverine input), and

GNO3 =
(
µDDet+µ∗PPhy+EZZoo− JOPhy− uNJDDiaz

)
0NO3 =

{
1 if NO3 > NO3crit,

0 if NO3 < NO3crit,

where JO (JD) is the growth rate of ordinary nondiazotrophic
(diazotrophic) phytoplankton (see Appendix B2). The nitrate
uptake rate is given by uN = NO3/(k

Diaz
N +NO3) (Schmit-

tner et al., 2005). Denitrification (Denit) can be expressed as
follows:

Denit=GNO3

(
−0.8RO:N0NO3r

NO3
sox

)
−PN2O,

where PN2O is the source term of N2O, which is discussed
later. The source minus sink terms for Phy and Diaz, i.e.,
S(Phy) and S(Diaz), respectively, can be expressed as fol-
lows:

S (Phy)= JoPhy−µ∗PPhy−mPhyPhy2
−GrazePhy, (B3)

S (Diaz)= JDDiaz−mDiazDiaz−GrazeDiaz. (B4)

The term S(zoo) is estimated as follows:

S (Zoo)= γ
(
GrazePhy+GrazeDiaz

)
−EzZoo−mZooZoo2. (B5)
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Then, S(Det) is given by the following:

S (Det)= (1− γ )
(
GrazePhy+GrazeDiaz

)
+mPhyPhy2

+mDiazDiaz+mZooZoo2

−µDDet−FsedDet−
∂ SinkDet

∂z
,

SinkDet =

{
wDDet if z < 200m
SinkDet200

(
z

200

)0.875 if z > 200m
, (B6)

where FsedDet represents the net flux of detritus between the
ocean and ocean sediment (Kobayashi and Oka, 2018), and
SinkDet200 is the flux of sinking detritus at the depth of 200 m
(Kawamiya et al., 2000).

Using the molar P : N ratio of organic matter,RP:N, and the
riverine input of phosphate (RivPO4 ), the source minus sink
term for PO4 becomes

S (PO4)= RP:NGNO3 +RivPO4 . (B7)

As the land ecosystem model cannot simulate the phosphorus
cycle, it is assumed that phosphate is brought to the river
mouth at a rate to satisfy RivNO3 : RivPO4 = 16 : 1, similar
to the Redfield ratio. The term S(O2) can be estimated as
follows:

S (O2)=−0O2 RO:NGNO3 +FsfcO2

0O2 =

{
1 if O2 > O2crit,

0 if O2 < O2crit,
(B8)

where FsfcO2 is the dissolved oxygen exchange with the at-
mosphere, according to the OMIP protocol (Orr et al., 2017).
The term S(Fe) can be expressed as follows:

S (Fe)= RFe:NGNO3 +Scav+Dustin+Sedin+HTin, (B9)

where Scav represents scavenging (Moore et al., 2004;
Moore and Braucher, 2008), Dustin is the iron input from
dust, Sedin is the iron input from sediment following both
Moore et al. (2004) and Aumont and Bopp (2006), and HTin
is the hydrothermal dissolved iron flux following Tagliabue
et al. (2010).

The source minus sink term for N2O is linked to the con-
sumption of oxygen during the remineralization of OM (Ily-
ina et al., 2013):

S (N2O)= rN2O0O2RO:N
(
µDDet+µ∗PPhy+EZZoo

)
+FsfcN2O, (B10)

where FsfcN2O is the N2O exchange with the atmosphere ac-
cording to Orr et al. (2017).

The source minus sink term for DIC can be expressed as
follows:

S (DIC)= RC:NGNO3

(
1− 0.8RO:Nr

NO3
sox

)
−GCaCO3 +FsfcDIC, (B11)

where FsfcDIC is the DIC exchange with the atmosphere
according to the OMIP protocol (Orr et al., 2017) and
GCaCO3 = PrCaCO3 −DiCaCO3

Then, S(Alk), S(CaCO3), and S(Ca) can be estimated, re-
spectively, as follows:

S (Alk)= −2GCaCO3 −GNO3 , (B12)
S (CaCO3)=GCaCO3 , (B13)
S (Ca)=−GCaCO3 . (B14)

B2 Growth rate of nondiazotrophic and diazotrophic
phytoplankton

To simply evaluate the effect of iron limitation on the growth
of ordinary nondiazotrophic phytoplankton and diazotrophic
phytoplankton (nitrogen fixers), we modify the equations of
phytoplankton growth rate by Keller et al. (2012) as follows.
First, we estimate the maximum potential growth rate of phy-
toplankton (Jmax

O ) and diazotrophic plankton (Jmax
D ) that de-

pend on temperature (T ) (Schmittner et al., 2008).

Jmax
O = ae(T /Tb) (B15)

Jmax
D = cDmax(0,a(e(T /Tb)− 2.61)) (B16)

Once the maximum potential growth rate has been calcu-
lated, the realized growth rate of phytoplankton (JO) is then
determined by irradiance (I ) and the concentrations of NO3,
Fe, and PO4, while the growth rate of diazotrophic plankton
(JD) is determined by irradiance (I ) and the concentrations
of Fe and PO4:

JO =min
(
JOI,J

max
O

NO3

kN+NO3
,Jmax

O
Fe

kFe+Fe
,

Jmax
O

PO4

kP+PO4

)
, (B17)

JD =min
(
JDI,J

max
D

Fe
kFe+Fe

,Jmax
D

PO4

kP+PO4

)
. (B18)

JOI and JDI in Eqs. (B17) and (B18) represent the light-
limited growth rate of phytoplankton and diazotrophic phy-
toplankton, respectively, given by JOI =

Jmax
O αI√

(Jmax
O )2+(αI)2

and

JDI =
Jmax

D αI√
(Jmax

D )2+(αI)2
, where α = 0.1 d−1 and I is shortwave

radiation at each depth (see Eq. 14 of Keller et al., 2012).

Appendix C: Forcing data

The external forcing used for the HIST experiment is sum-
marized in Table C1.
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Table B1. Model parameters.

Parameter Symbol Value Unit

Fast recycling term (microbial loop) µ∗
P

0.05 d−1

Excretion of zooplankton EZ 0.03 d−1

Critical NO3 concentration of denitrification NO3crit 1 µmolL−1

Critical O2 concentration of remineralization O2crit 4 µmolL−1

Molar O : N ratio RO:N 8.625 N.D.
Molar P : N ratio RP:N 0.0625 N.D.
Molar Fe : N ratio RFe:N 4.4167× 10−5 N.D.
Molar C : N ratio RC:N 6.625 N.D.
Half-saturation constant for N uptake kDiaz

N 0.05 µmolL−1

Phytoplankton mortality rate mPhy 0.05 d−1 (µmolL−1)−1

Diazotroph mortality rate mDiaz 0.025 d−1

Zooplankton mortality rate mZoo 0.2 d−1 (µmolL−1)−1

Assimilation efficiency coefficient γ 0.75 N.D.
Sinking speed at the depth of 0–200 m wD 5 m d−1

Maximum potential growth rate of nondiazotrophic phytoplankton at 0 ◦C a 0.8 d−1

Diazotroph handicap cD 0.5 N.D.
E-folding temperature of biological rates Tb 15.65 ◦C
Half-saturation constants for NO3 uptake kN 0.5 µmolL−1

Half-saturation constant for PO4 uptake kP 0.5 µmolL−1

Half-saturation constant for iron uptake kFe 10−3 nmol L−1

Table B2. Definitions of parameters and variables not mentioned specifically in the text.

Parameter or variable Definition Reference

r
NO3
sox Oxygen-equivalent oxidation of nitrate in suboxic

waters (i.e., denitrification)
Equation (A18) in Schmittner et al. (2008)

µD Temperature- and O2-dependent rate of detritus
remineralization

Equation (A16) in Schmittner et al. (2008)

α Initial slope of P –I curve Table A1 in Schmittner et al. (2008)
GrazePhy Grazing rate of zooplankton on nondiazotrophic

phytoplankton
Schmitter et al. (2005)

GrazeDiaz Grazing rate of zooplankton on diazotrophic
phytoplankton

Schmitter et al. (2005)

PrCaCO3 Production of calcium carbonate Schmittner et al. (2008)
DiCaCO3 Dissolution of calcium carbonate Schmittner et al. (2008)
I Shortwave radiation at each depth Equation (14) in Keller et al. (2012)
rN2O N2O production rate Broecker and Peng (1982)

Appendix D: Diagnosis of cumulative fossil fuel
emission and atmospheric CO2 concentration

The global carbon budget can be written as follows:

CE= CA+CL+CO,

where CE represents the cumulative emissions derived from
fossil fuel and industry. CA, CL, and CO represent the
changes in the carbon amount in the atmosphere, land, and
ocean, respectively. When models are forced with a pre-
scribed CO2 concentration (CA), both CL and CO are di-
agnosed in the simulations. By expressing the prescribed CA

as CAP, the budget equation can be described as

CED
= CAP

+CL+CO, (D1)

where CED is a diagnosed fossil fuel and industrial carbon
emission, as analyzed in Jones et al. (2013).

If we can obtain the prescribed emission (CEP) that is
consistent with the historical atmospheric CO2 concentration
change, we can diagnose the CO2 concentration (CAD) as
follows:

CAD
= CEP

−CL−CO. (D2)

For CMIP6, CEP during 1850–2014 was approximately
403 PgC, and the values of CL and CO in this study were
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Table C1. List of forcing datasets for the HIST simulation: categories, variables, and references for the data creation and a description of
how the datasets are applied in the HIST simulation in MIROC-ES2L.

Category Variables Reference Treatment in MIROC-ES2L

GHG concentration CO2, CH4, N2O, CFC11, CFC12,
CFC113, CFC114, CFC115, HCFC22,
HCFC123, HCFC141b, HCFC142b,
HFC32, HFC125, HFC134a, HFC143a,
SF6, CCl4, C2F6

Meinshausen et al. (2017) Same as Tatebe et al. (2019): given as
globally averaged annual concentration

Anthropogenic
SLCF emission

BC, OC, SO2 Hoesly et al. (2018) Same as Tatebe et al. (2019): given as
monthly emissions

Open biomass
burning emission

BC, OC, SO2 van Marle et al. (2017) Same as Tatebe et al. (2019): given as
monthly emissions

Atmospheric chem-
ical composition
for aerosol scheme

H2O2, OH radical, NO3 Precalculated from atmospheric
chemistry model CHASER;
Sudo et al. (2002)

Same as Tatebe et al. (2019): given as
three-dimensional concentration with
monthly interval

Anthropogenic dis-
solved iron emis-
sion

Dissolved Fe Biomass burning emission diagnosed from
BC emission (van Marle et al., 2017; Ito,
2011); fossil fuel and biofuel emission
(Hoesly et al., 2018; Ito et al., 2018)

Given as monthly emission of biomass
burning emission and fossil fuel–
biofuel emissions

Nitrogen
deposition

NOy (wet and dry),
NHy (wet and dry)

IGAC/SPARC CCMI;
http://blogs.reading.ac.uk/ccmi/
forcing-databases-in-support-of-cmip6/
(last access: 4 May 2020)

Given as wet plus dry monthly deposi-
tion for both NOy and NHy

Land use Status, transition, fertilizer Ma et al. (2019) Given as two types of land use sta-
tus (non-agriculture and agriculture) for
energy and hydrology processes; given
as a transition matrix among five land
use types (primary, secondary, urban,
crop, and pasture) for biogeochemistry;
given as cropland fertilizer

Stratospheric
aerosol

Extinction coefficient An online document by
Thomason et al.
(https://www.wcrp-climate.
org/images/modelling/WGCM/
CMIP/CMIP6Forcings_
StratosphericAerosolDataSet_
InitialDescription_150131.pdf,
last access: 4 May 2020)

Same as Tatebe et al. (2019): monthly
vertically integrated extinction coeffi-
cients for each radiation band

Ozone
concentration

O3 Checa-Garcia (2018) Same as Tatebe et al. (2019): given as
a three-dimensional concentration with
monthly interval

Solar Solar spectral irradiance Matthes et al. (2017) Same as Tatebe et al. (2019): given as
monthly solar irradiance spectra

44 and 163 PgC, respectively. Thus, CAD in this study was
193 PgC. This is equivalent to the CO2 concentration change
of 91 ppmv determined using a conversion factor of 2.12
(PgC ppmv−1). Consequently, we can obtain the diagnosed
CO2 concentration at the end of the simulation (2014), i.e.,
376 ppmv. We note that the estimate of anthropogenic CO2
emissions from fossil fuel and industry has an uncertainty
range. Le Quéré et al. (2018) estimate the cumulative emis-
sions as 400± 20 PgC for 1850–2014; however, this was not
considered in this study. Additionally, there is a budget im-
balance of 25 PgC in Le Quéré et al. (2018), which was also
ignored in this study.

Appendix E: Feedback parameters of carbon cycle with
same unit

As in Appendix D, the global carbon budget can be written
as follows:

CE= CA+CL+CO. (E1)

Following Gregory et al. (2009), this carbon budget equa-
tion can relate the feedback parameters of land and ocean
to AF. First, following the definition, CL and CO can be
expressed by the feedback parameters of CO2–carbon and
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climate–carbon feedbacks (β and γ , respectively) as follows:

CL= βLCA+ γLT , (E2)
CO= βOCA+ γOT , (E3)

where CA is the carbon increase in the atmosphere and T
is global temperature change (T ). Using Eqs. (E1)–(E3), the
global carbon budget equation can be written as follows:

CE= CA+CA(βL+βO)+ T (γL+ γO). (E4)

Dividing both sides of the equation by CA leads to the fol-
lowing:

CE/CA= 1+ (βL+βO)+ T (γL+ γO)/CA. (E5)

Then, we define T/CA= α, as used by Friedlingstein et
al. (2006) or Arora et al. (2013), and we replace CE/CA by
1/AF (because AF = CA/CE):

1/AF= 1+ (βL+βO)+α(γL+ γO). (E6)

The u quantity proposed by Gregory et al. (2009) is uβL =

βL, uβO = βO, uγL = αγL, and uγO = αγO. Through re-
placement with the u terms, Eq. (E6) can be expressed as

1/AF= 1+ uβL+ uβO+ uγL+ uγO, (E7)

and thus we obtain the following:

AF= 1/(1+ uβL+ uβO+ uγL+ uγO). (E8)

The unit of the u parameters is also dimensionless (AF unit:
PgC PgC−1).
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Code and data availability. The code of MIROC-ES2L is not pub-
licly archived because of the copyright policy of the MIROC com-
munity. Readers are requested to contact the corresponding author
if they wish to validate the model configurations of MIROC-ES2L
and conduct replication experiments. The model outputs of the con-
trol (https://doi.org/10.22033/ESGF/CMIP6.5710, Hajima et al.,
2019f), historical (https://doi.org/10.22033/ESGF/CMIP6.5602,
Hajima et al., 2019d; https://doi.org/10.22033/ESGF/CMIP6.5582,
Hajima et al., 2019e; https://doi.org/10.22033/ESGF/CMIP6.5496,
Hajima et al., 2020), and 1%CO2 increase simulations
(https://doi.org/10.22033/ESGF/CMIP6.5376, Hajima et al., 2019a;
https://doi.org/10.22033/ESGF/CMIP6.5378, Hajima et al., 2019b;
https://doi.org/10.22033/ESGF/CMIP6.5370, Hajima et al., 2019c)
performed and analyzed in this study are distributed and made
freely available through the Earth System Grid Federation (ESGF).
Details on the ESGF can be found on the website of the CMIP
Panel (https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6,
last access: 28 August 2019).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-13-2197-2020-supplement.
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